优质公开课《一元二次方程》-教学设计

合集下载

《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇

《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。

元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。

本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。

教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。

还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。

同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。

因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

一元二次方程优秀教案

一元二次方程优秀教案

一元二次方程优秀教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元二次方程优秀教案标题:一元二次方程优秀教案一、教学目标:1.理解一元二次方程的概念和性质;2.掌握解一元二次方程的方法和步骤;3.能够应用一元二次方程解决实际问题。

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标:知识与技能目标:经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

一元二次方程市公开课获奖教案省名师优质课赛课一等奖教案小班

一元二次方程市公开课获奖教案省名师优质课赛课一等奖教案小班

一元二次方程教案小班一、教学目标:1. 学生能够理解一元二次方程的基本概念及解题方法;2. 学生能够独立解决简单的一元二次方程问题;3. 培养学生的逻辑思维、问题解决和数学计算能力。

二、教学重点:1. 一元二次方程的定义和基本概念;2. 一元二次方程的解题思路和方法。

三、教学难点:1. 解一元二次方程时的变形和运算规则;2. 将实际问题转化为一元二次方程的问题。

四、教学准备:黑板、粉笔、课件、练习册。

五、教学过程:Step 1 引入1. 教师介绍一元二次方程的概念:一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c是已知的数,且a ≠ 0。

2. 引导学生回顾一元一次方程的解法,了解方程的解是满足方程等式的未知数的值。

3. 教师提问:你们对一元二次方程有什么了解?Step 2 学习一元二次方程的解法1. 教师通过示例讲解一元二次方程的解法:先整理方程,再用因式分解、配方法或求根公式等方法求解。

2. 教师通过例题指导学生理解解题思路和方法。

Step 3 训练练习1. 学生独立或小组合作完成练习册上的一元二次方程练习题。

2. 教师适时地抽查学生解题过程和答案,并及时给予指导和反馈。

Step 4 应用拓展1. 教师提供一些简单的实际问题,引导学生将问题转化为一元二次方程的问题,并解决它们。

2. 学生独立或小组合作完成实际问题的解答,并与同学们分享思路和答案。

Step 5 总结归纳1. 教师与学生共同总结一元二次方程的解题方法和技巧。

2. 教师梳理学生在解题过程中容易出错的地方,并进行重点讲解和强化练习。

六、教学延伸:1. 学生可以自主查找更多一元二次方程的相关例题和解题方法进行练习;2. 可以引导学生探索一元二次方程的图像和解的性质。

七、教学评价:1. 以练习册中的题目为准,评价学生对一元二次方程基本概念和解题方法的掌握情况;2. 可以进行小组合作或个别补充练习,进一步考察学生的解题能力。

一元二次方程优秀教案

一元二次方程优秀教案

一元二次方程优秀教案一元二次方程优秀教案1. 教学目标1.1 知识目标1) 理解一元二次方程的定义;2) 掌握一元二次方程的解的判别式,并能应用到问题中;3) 掌握求一元二次方程的解的方法。

1.2 能力目标1) 能够运用一元二次方程解的判别式解决实际问题;2) 能够独立分析问题,提出一元二次方程模型,并求解。

1.3 情感目标1) 培养学生解决实际问题的兴趣和能力;2) 培养学生合作探究、归纳总结的能力。

2. 教学重点2.1 掌握一元二次方程解的判别式,能将其应用于实际问题;2.2 掌握求解一元二次方程的方法。

3. 教学难点3.1 在实际问题中运用一元二次方程解的判别式;3.2 独立提出一元二次方程模型,并求解。

4. 教学过程4.1 导入新知通过引入一个生活实例,如小明投篮问题,引发学生对解决实际问题的思考。

4.2 概念讲解与示例4.2.1 讲解一元二次方程的定义,并引入解的判别式。

4.2.2 通过教师示范和学生参与,做一些例题,使学生理解一元二次方程解的判别式的用法。

4.3 练习与巩固4.3.1 设计一定数量的练习题,包括解一元二次方程的判别式和求解方程。

4.3.2 学生独立完成练习,教师随机抽查答案并解析。

4.4 拓展与应用4.4.1 引导学生思考和讨论,提出其他生活实例,如最大面积问题,汽车行驶问题等,并分析解决的步骤。

4.4.2 学生通过小组合作讨论,提出一元二次方程模型,并求解。

4.5 归纳与总结通过学生讨论与教师指导,总结一元二次方程的解决步骤和应用方法。

5. 教学手段5.1 板书:绘制一元二次方程的定义、解的判别式和解的求解方法。

5.2 多媒体展示:展示生活实例和解决步骤。

5.3 小组讨论:提出生活实例并讨论解决方法。

5.4 练习册:配备练习题,供学生独立完成。

6. 教学评价6.1 反馈方法:批改学生练习册并给予针对性的解析和指导。

6.2 评价指标:学生能正确应用一元二次方程解的判别式解决问题,并能独立提出方程模型并求解。

全国初中数学优秀课一等奖教师教案:一元二次方程--教案

全国初中数学优秀课一等奖教师教案:一元二次方程--教案

全国初中数学优秀课一等奖教师教案:一元二次方程–教案一. 教材分析本节课的主题是一元二次方程,它是初中数学中的重要内容,也是后续学习更高阶数学的基础。

一元二次方程在实际生活中有着广泛的应用,如财务计算、物理运动等,因此,掌握一元二次方程的解法对于学生的数学素养和实际应用能力的提高具有重要意义。

二. 学情分析学生在学习本节课之前,已经学习了代数基础知识,对于方程的概念和解法有一定的了解。

但一元二次方程较为复杂,需要学生具有较强的逻辑思维能力和抽象思维能力。

此外,学生需要掌握一元二次方程的解法,才能更好地应用于实际问题中。

三. 教学目标1.让学生理解一元二次方程的概念和性质。

2.使学生掌握一元二次方程的解法。

3.培养学生将一元二次方程应用于实际问题的能力。

4.提高学生的逻辑思维能力和抽象思维能力。

四. 教学重难点1.一元二次方程的概念和性质。

2.一元二次方程的解法。

3.一元二次方程在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题引导学生思考,提供典型案例让学生分析,小组合作促进学生交流。

六. 教学准备1.教学PPT。

2.教学案例。

3.小组合作学习资料。

七. 教学过程1.导入(5分钟)通过提出实际问题,引发学生对一元二次方程的思考。

例如:“某个物品的价格是10元,如果卖家将价格降低5元,那么售价与成本价相等。

求这件物品的成本价。

”2.呈现(10分钟)呈现一元二次方程的定义、性质和解法。

通过PPT展示,让学生对一元二次方程有一个整体的认识。

3.操练(10分钟)让学生通过解答典型案例来掌握一元二次方程的解法。

教师引导学生进行分析,提示解题思路,学生独立完成解题过程。

4.巩固(10分钟)通过小组合作学习,让学生互相交流解题心得,共同解决问题。

教师巡回指导,解答学生疑问。

5.拓展(10分钟)让学生运用一元二次方程解决实际问题。

例如:“一个长方形的长比宽多2,且长方形的面积为36平方厘米,求长方形的长和宽。

2023最新-一元二次方程教案(优秀7篇)

2023最新-一元二次方程教案(优秀7篇)

一元二次方程教案(优秀7篇)作为一名默默奉献的教育工作者,时常会需要准备好教案,教案是备课向课堂教学转化的关节点。

优秀的教案都具备一些什么特点呢?牛牛范文为您带来了7篇一元二次方程教案,如果对您有一些参考与帮助,请分享给最好的朋友。

九年级数学《一元二次方程》教案篇一一、教材分析:1、本章的主要内容:(1)一元二次方程的有关概念;(2)一元二次方程的解法,根的判别式及根与系数的关系;(3)实际问题与一元二次方程。

2、本章知识结构图:3、教学目标:(1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;(2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;(3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。

4、本章的重点与难点本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。

难点:(1)分析方程的特点并根据方程的特点选择合适的解法;(2)实际背景问题的等量分析,设元列一元二次方程解应用题。

即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。

同时,还要根据实际问题的意义检验求得的结果是否合理。

二、教学中应注意的问题:1、重视一元二次方程与实际的联系,再次体现数学建模思想。

方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。

教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。

当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。

在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。

一元二次方程 -完整版公开课教学设计

一元二次方程 -完整版公开课教学设计

第二十一章 一元二次方程21.1 一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式ax 2+bx +c =0(a ≠0)及有关概念.3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟)问题1:.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x 2-75x +350=0__.①问题2:.列方程__x (x -1)2=28__,化简整理,得__x 2-x -56=0__.② 探究:(1)方程①②中未知数的个数各是多少?__1个__.(2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:1.一元二次方程的定义:等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式:ax 2+bx +c =0(a ≠0).这种形式叫做一元二次方程的一般形式.其中__ax 2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a ≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)x 3-2x 2+5=0; (2)x 2=1;(3)5x 2-2x -14=x 2-2x +35; (4)2(x +1)2=3(x +1); (5)x 2-2x =x 2+1; (6)ax 2+bx +c =0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3x(x -1)=5(x +2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x 2-3x =5x +10.移项,合并同类项,得3x 2-8x -10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,无论m 取何值,该方程都是一元二次方程.证明:m 2-8m +17=(m -4)2+1,∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0.∴无论m 取何值,该方程都是一元二次方程.点拨精讲:要证明无论m 取何值,该方程都是一元二次方程,只要证明m 2-8m +17≠0即可.2.下面哪些数是方程2x 2+10x +12=0的根?-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.判断下列方程是否为一元二次方程.(1)1-x 2=0; (2)2(x 2-1)=3y ;(3)2x 2-3x -1=0; (4)1x 2-2x=0; (5)(x +3)2=(x -3)2; (6)9x 2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.2.若x =2是方程ax 2+4x -5=0的一个根,求a 的值.解:∵x =2是方程ax 2+4x -5=0的一个根,∴4a +8-5=0,解得a =-34. 3.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个长方形的长比宽多2,面积是100,求长方形的长x.解:(1)4x 2=25,4x 2-25=0;(2)x(x -2)=100,x 2-2x -100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式ax 2+bx +c =0(a ≠0),特别强调a ≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)。

省级优质课一元二次方程的公开课教案(精)

省级优质课一元二次方程的公开课教案(精)

省级优质课一元二次方程的公开课教案(精)第一篇:省级优质课一元二次方程的公开课教案 (精)教学目标知识技能目标:22.1 一元二次方程第一课时1、理解一元二次方程的概念;2、会把一个一元二次方程化为一般形式,会正确地判断一元二次方程的项与系数;3、通过本节课的学习,培养学生观察、比较、分析、探究和归纳的能力。

过程方法目标:1、让学生通过分析实际问题,建立数学模型列出方程,从而引导他们发现问题,然后通过自主探究和合作交流,类比出一元二次方程的概念;2、从实际问题引入新课,类比给出概念,通过巩固训练、合作探究到课外作业布置,完成本节课的教学并激发学生学习的热情和课后预习解方程的热情。

情感态度目标:通过本节课的学习使学生认识到数学来源于生活实践,又反过来作用于生活,激发学生学数学的热情和用数学的意识;重点难点1、重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2、难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程:一、新课引入数学来源于生活,服务于生活。

日常生活更是离不开数学知识,例如建筑,雕塑等。

下面我们来看相关图片。

(出示图片)它们都给人非常匀称的感觉,且充满了美感。

这些都与数学的一个重要知识黄金分割有关。

我们现在将上面的实际问题抽象为数学模型,问题如下(出示PPT)通过分析,化简,则所列方程为: x2+2x-4=0这就是我们今天要学习的一元二次方程。

通过这章的学习同学们就能解决这个问题,今天我们学习第一节,认识一元二次方程。

二、出示目标知识技能目标:1、理解一元二次方程的概念;2、会正确地判断一元二次方程的项与系数;过程方法目标:1、通过分析实际问题,建立数学模型,•类比一元一次方程概念给一元二次方程下定义.2、解决一些概念性的题目.情感态度目标:通过本节课的学习认识到数学来源于生活实践,又反过来作用于生活,激发学数学热情、用数学的意识;三、预习导学阅读教材第1至4页,并思考完成下列问题.(3分钟)1、什么是一元二次方程?2、一元一次方程与一元二次方程的的异同?3、一元二次方程的一般形式及各部分的名称是什么?4、一元二次方程的一般形式中为什么a ≠ 0?要求:学生在课本上画出来,并在关键词下做上记号。

优质课 精品教案 (省一等奖)《一元二次方程》公开课教案

优质课 精品教案 (省一等奖)《一元二次方程》公开课教案

21.1 一元二次方程教学过程设计[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。

本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。

教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。

由于剪的方法不同,展开图的形状也可能是不同的。

学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。

通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。

24.1 圆 (第3课时)教学内容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.教学目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆〔或直径〕所对的圆周角是直角,90•°的圆周角所对的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.教学过程一、复习引入〔学生活动〕请同学们口答下面两个问题.O BAC1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:〔1〕我们把顶点在圆心的角叫圆心角.〔2〕在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚刚讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知问题:如下图的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在EF 所在的⊙O 其它位置射门,如下图的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.现在通过圆周角的概念和度量的方法答复下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系?〔学生分组讨论〕提问二、三位同学代表发言. 老师点评:1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.〞 〔1〕设圆周角∠ABC 的一边BC 是⊙O 的直径,如下图 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC=12∠AOC 〔2〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=12∠AOC 吗?请同学们独立完成这道题的说明过程.老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .〔3〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=12∠AOC 吗?请同学们独立完成证明.老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC 现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的. 从〔1〕、〔2〕、〔3〕,我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:OBACD半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD理由是:如图24-30,连接AD ∵AB 是⊙O 的直径∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD三、稳固练习1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展例2.如图,△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin c C=2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin b B =2R ,sin c C =2R ,即sinA=2aR,sinB=2b R ,sinC=2c R,因此,十清楚显要在直角三角形中进行.证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D在Rt △DBC 中,sinD=BC DC ,即2R=sin aA同理可证:sin b B =2R ,sin cC =2R∴sin a A =sin b B =sin cC=2R五、归纳小结〔学生归纳,老师点评〕 本节课应掌握: 1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.应用圆周角的定理及其推导解决一些具体问题. 六、布置作业1.教材P95 综合运用9、10、 [教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。

(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

难点:准确理解一元二次方程的意义。

三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1学习目标1、一元二次方程的求根公式的推导2、会用求根公式解一元二次方程.3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯学习重、难点重点:一元二次方程的求根公式.难点:求根公式的条件:b2 -4ac≥0学习过程:一、自学质疑:1、用配方法解方程:2x2-7x+3=0.2、用配方解一元二次方程的步骤是什么?3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、交流展示:刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?三、互动探究:一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是用求根公式解一元二次方程的方法称为公式法由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.四、精讲点拨:例1、课本例题总结:其一般步骤是:(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)(2)求出b2-4ac的值.(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.例2、解方程:(1)2x2-7x+3=0 (2) x2-7x-1=0(3) 2x2-9x+8=0 (4) 9x2+6x+1=0五、纠正反馈:做书上第P90练习。

一元二次方程优秀教案

一元二次方程优秀教案

一元二次方程优秀教案教案标题:一元二次方程优秀教案教案目标:1. 学生能够理解一元二次方程的概念和基本性质。

2. 学生能够解决一元二次方程的实际问题。

3. 学生能够应用一元二次方程解决实际生活中的问题。

教学重点:1. 一元二次方程的定义和基本性质。

2. 一元二次方程的解法。

3. 一元二次方程在实际问题中的应用。

教学难点:1. 一元二次方程的解法。

2. 一元二次方程在实际问题中的应用。

教学准备:1. 教师准备一些实际问题,涉及一元二次方程的应用。

2. 教师准备一些练习题,用于学生巩固所学内容。

教学步骤:第一步:导入新知识(5分钟)1. 教师通过一个生动有趣的例子引入一元二次方程的概念,激发学生的学习兴趣。

2. 教师提问学生,让学生尝试解决一个简单的一元二次方程。

第二步:讲解一元二次方程的定义和基本性质(10分钟)1. 教师通过幻灯片或板书的形式,讲解一元二次方程的定义和基本性质,包括系数、次数、根的概念。

2. 教师通过示例,解释一元二次方程的标准形式和一般形式。

第三步:讲解一元二次方程的解法(15分钟)1. 教师介绍一元二次方程的解法,包括因式分解法、配方法和求根公式。

2. 教师通过示例,详细讲解每种解法的步骤和注意事项。

第四步:应用一元二次方程解决实际问题(15分钟)1. 教师提供一些实际问题,涉及一元二次方程的应用,例如抛物线的运动问题、面积和周长的关系等。

2. 学生独立或小组合作解决这些问题,并将解决过程和答案呈现给全班。

第五步:巩固练习(10分钟)1. 教师提供一些练习题,让学生巩固所学内容。

2. 学生独立完成练习题,并与同学互相检查答案。

第六步:总结和拓展(5分钟)1. 教师对本节课的内容进行总结,强调一元二次方程的重要性和应用。

2. 教师提供一些拓展问题,让学生进一步思考和应用一元二次方程。

教学延伸:1. 学生可以自主寻找更多一元二次方程的应用问题,并解决。

2. 学生可以尝试用计算机软件或在线工具绘制一元二次方程的图像,进一步理解其特点。

初三数学一元二次方程教案优秀5篇

初三数学一元二次方程教案优秀5篇

初三数学一元二次方程教案优秀5篇数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

元二次方程的应用篇二12.6 一元二次方程的应用(三)一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。

二、教学重点、难点1.教学重点:学会用列方程的方法解决有关增长率问题。

2.教学难点:有关增长率之间的数量关系。

下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。

三、教学步骤(一)明确目标。

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。

3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

教学重点1、一元二次方程及其它有关的概念。

2、利用实际问题建立一元二次方程的数学模型。

教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

一元二次方程教学设计(精选10篇)

一元二次方程教学设计(精选10篇)

一元二次方程教学设计(精选10篇)一元二次方程教学设计(精选10篇)作为一名教师,时常需要用到教学设计,教学设计是一个系统化规划教学系统的过程。

优秀的教学设计都具备一些什么特点呢?以下是小编整理的一元二次方程教学设计,仅供参考,欢迎大家阅读。

一元二次方程教学设计篇1教材分析本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。

本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。

学情分析1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。

2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。

3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的探究方式。

教学目标知识与技能:1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。

2、能根据具体问题的实际意义,检验结果是否合理。

过程与方法:1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。

情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。

教学重点和难点重点:利用增长率问题中的数量关系,列出方程解决问题。

难点:理清增长率问题中的数量关系。

一元二次方程教学设计篇2【教学目标】1、会根据具体问题中的数量关系列一元二次方程并求解。

2、能根据问题的实际意义,检验所得结果是否合理。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)如图,有一块矩形铁皮,长100cm,宽
50cm,在它的四
角各切去一个
同样的正方形,
然后将四周突出部分折起,就能制作一个无盖方盒。

如果要制作的无盖方盒的地面积为3600cm2,那么铁皮各角应切去多大的正方形?
(4)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?
思考讨论:(1)分清题目的数量关系,抽象出数学模型,列出方程;
(2)请你对以上所列方程比较一下,找出它们具有的共同特征;
前面排球邀请赛的问题中,我们列出的方程x2-x=56如何知道它的解?
问题:
1.什么是方程的解?
2.什么是一元二次方程的解?
3.在排球邀请赛问题中,为什么x只取8,不取-7呢?
归纳发现:
(1)使方程左右两边的值相等的未知数的值,叫做这个方程的解,一元二次方程的解也叫做一元二次方程的根。

(2)方程近似解的求法。

应用拓展2
1.下面哪些数是方程2x2+10x+12=0的根?
-4,-3,-2,-1,0,1,2,3,4。

2.你能想出下列方程的根吗?
①3x2=3
②36x2-25=0
3.已知关于x的一元二次方程
22
(3)390
m x x m
-++-=
有一个解是0,求m的值。

〖答案〗1. -3,-2 2. 1±,
5 6±
3.-3
4.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪?
设长为x cm.则宽为(x-5)cm,列方程x(x-5)=150,即x2-5x-150=0
请根据列方程回答以下问题:
①x可能小于5吗?可能等于10吗?说说你的理由。

②完成下表:
1
1
1
2
1
3
1
4
1
5
1
6 7
-5x-150
③你知道铁片的长x是多少
吗?
分析:x2-5x-150=0与上面两道例
题明显不同,不能用平方根的意义
和八年级上册的整式中的分解因式
的方法去求根,但是我们可以用一
种新的方法──“夹逼”方法求出该
方程的根。

解:(1)x不可能小于5。

理由:如果x<5,则宽(x-5)<0,
不合题意。

x不可能等于10。

理由:如果x=10,则面积x2-5x-150=-100,也不可能。

(2)
(3)铁片长x=15cm
5.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在
做这道题时,是这样做的:
设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小
明列出方程后,想知道铁片的长到
底是多少,下面是他的探索过程:第一步:
x 1 2 3
x-1 -3 -3
所以,________<x<__________
第二步:
x 3.1 3.2 3.3 3.4 x-1 -0.96 -0.36
所以,________<x<__________
请你帮小明填完空格,完成他未完成的部分;。

相关文档
最新文档