高效液相色谱(HPLC)
高效液相色谱法
2.高效液相色谱法与气相色谱法的比较
(l)气相色谱法:分析对象仅占有机物总数的20%。 高效液相色谱法:分离和分析占有机物总数近80%的那些 高沸点、热稳定性差、离子型化合物及摩尔质量大的物质。
(2)气相色谱:流动相与组分不产生相互作用力,仅起运 载作用。 高效液相色谱法:流动相对组分可产生一定亲和力,并参与 固定相对组分作用的剧烈竞争,流动相对分离起很大作用, 相当于增加了一个控制和改进分离条件的参数;
高压输液泵应符合下列要求:密封性好,输出 流量恒定,压力平稳,可调范围宽,便于迅速 更换溶剂及耐腐蚀。
高压输液泵
常用的输液泵分为恒流泵和恒压泵两种。 恒流泵特点是在一定操作条件下,输出流量保持恒定而与色谱 柱引起阻力变化无关; 恒压泵是指能保持输出压力恒定,但其流量则随色谱系统阻力 而变化,故保留时间的重视性差。 目前主要使用恒流泵,又称机械泵,它又分机械注射泵和机械 往复泵两种,应用最多的是机械往复泵。
(四)检测系统
两种基本类型的检测器: 溶质型检测器:它仅对被分离组分的物理或化学特性有响应, 属于这类检测器的有紫外、荧光、安培检测器等。 总体检测器:它对试样和洗脱液总的物理或化学性质有响应, 属于这类检测器的有示差折光,电导检测器等。 (l)紫外检测器 (2)荧光检测器 (3)示差折光率检测器 (4)电化学检测器
高效液相色谱法
High Performance Liquid Chromatography,HPLC
§1
概 述
Introduction
一、高效液相色谱法概述
高效液相色谱法(HPLC)吸取了气相色谱与经典液相色谱优 点,并用现代化手段加以改进。
引入了气相色谱的理论;
在技术上采用了高压泵、高效固定相和高灵敏度检测器; 具备速度快、效率高、灵敏度高、操作自动化的特点;
hplc高效液相色谱
hplc高效液相色谱HPLC高效液相色谱简介高效液相色谱(High Performance Liquid Chromatography,HPLC),也被称为液相色谱法(Liquid Chromatography),是一种广泛应用于药物分析、环境监测、食品检测等领域的分离技术。
HPLC色谱技术通过物质在液体流动相和固定相之间的相互作用,实现对分子化合物的分离、检测和定量。
相对于传统的柱层析技术,HPLC具有分离效率高、分析灵敏度高、分析速度快等特点,被广泛应用于科学研究和工业生产。
HPLC的基本原理HPLC色谱技术是建立在分配系数理论的基础上。
它通过固定填料上溶解物质与流动相中溶解物质之间的分配与再分配,实现目标化合物在固定相中的分离。
HPLC色谱法的基本步骤包括:样品制备、装柱、选择流动相、进样、洗脱分离、检测及数据处理等。
HPLC的主要组成部分HPLC主要由一系列组成部分组成,包括:溶剂输送系统、无菌进样器、色谱柱、检测器和数据处理系统等。
其中,溶剂输送系统用于控制流动相的输送速率和压力,确保流动相以一定速率通过色谱柱;无菌进样器用来将样品进样并转送到色谱柱中;色谱柱是分离目标化合物的关键组成部分,根据所分离物质的化学性质和目标要求选择合适的色谱柱;检测器用来检测溶质的浓度,并将信号转换为电信号输出;数据处理系统用来处理和分析检测到的信号,得出结果。
HPLC的种类和应用领域根据不同的分离机制和柱填料,HPLC可以分为很多不同的类型,包括:反相色谱、离子交换色谱、分子筛色谱等。
反相色谱是最常用的一种HPLC技术,其应用领域非常广泛。
例如,在药物研究领域,HPLC被广泛应用于药物分析、药代动力学研究、质量控制等方面。
在环境监测领域,HPLC被用来检测土壤和水体中的有机污染物、重金属和农药等化学物质。
在食品安全检测领域,HPLC被用来检测食品中的添加剂、农药残留和重金属等有害物质。
HPLC的发展和进展自HPLC技术在20世纪60年代首次提出以来,随着科学技术的不断发展,HPLC技术也在不断进步和改进。
高效液相色谱-HPLCppt课件.ppt
色谱法的分类
按固定相的形态分:
平面色谱 o 纸色谱
o 薄层色谱
柱色谱
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
色谱法的分类示意图
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
▪ 高压梯度洗脱(高压混合,高压进柱,2个 泵。)
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
▪安捷伦泵:小视频 ▪色谱学堂:泵
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
色谱法原理及分类
什么是色谱法 色谱法溯源 Tswett(茨维特)的实验 色谱法原理 色谱法的分类
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
什么是色谱法
色谱法是一种现代的分离分析方法 1906年正式命名(见诸文献) 20世纪30年代开始广泛研究和应用 高效液相色谱法的广泛应用始于20世纪70年代
1. 紫外—可见光度检测器:
①固定波长:254nm , 低压汞 灯。
② 可 调 波 长 : 190 ~ 800mm , 钨灯,氘灯。
UV
③光电二极管矩阵检测器: 190~700nm。
接色谱柱 石英窗 光电倍增管
废液
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
高效液相色谱和超高效液相色谱
高效液相色谱和超高效液相色谱高效液相色谱(HighPerformanceLiquidChromatography,HPLC)和超高效液相色谱(Ultra High Performance Liquid Chromatography,UHPLC),是现代分析化学中常用的分离技术。
它们可以对复杂的混合物进行分离和定量分析,广泛应用于药物分析、食品分析、环境分析、生物分析等领域。
本文将从原理、仪器、方法和应用等方面,介绍高效液相色谱和超高效液相色谱的基本知识。
一、原理高效液相色谱和超高效液相色谱的原理基本相同,都是利用样品在流动相中的分配系数差异,通过固定相和流动相的作用,将混合物中的化合物分离出来。
不同的是,超高效液相色谱采用了更小的颗粒固定相,使得流动相可以更快地通过固定相,从而提高了分离效率和分离速度。
在高效液相色谱和超高效液相色谱中,样品首先被注入流动相中,然后通过固定相的柱子。
固定相通常是一种多孔的固体材料,如硅胶、C18等。
样品中的化合物在流动相中的分配系数不同,因此在通过固定相时,会被分离出来。
分离出来的化合物,会在检测器中被检测到,从而实现分离和定量分析。
二、仪器高效液相色谱和超高效液相色谱的仪器基本相同,主要由注射器、流动相泵、柱子、检测器和计算机控制系统等组成。
(一)注射器注射器是将样品引入流动相中的关键部分。
常用的注射器有手动注射器和自动进样器。
手动注射器通常用于小样品量的分析,而自动进样器可以实现高精度、高效率的样品进样。
(二)流动相泵流动相泵是将流动相送入柱子中的装置。
其主要功能是控制流动相的流速和流量,并确保流动相的稳定性。
常用的流动相泵有恒压流量泵和梯度流量泵。
恒压流量泵可以保持恒定的流量,适用于等浓度的流动相。
梯度流量泵可以实现不同浓度的流动相混合,从而实现更好的分离效果。
(三)柱子柱子是高效液相色谱和超高效液相色谱的核心部分,用于固定相的分离。
常用的柱子材料有硅胶、C18、C8等。
高效液相色谱HPLC基本原理
Take peak spectrum
Match: 998
Compare with library
250 300 250 300 W a v e l e n g t h (nm)
W a v e l e n g t h (nm)
*Library Searching may be performed in an automated fashion.
一、 概述 高效液相色谱 (HPLC) 是以溶剂液体为流动相的色谱方法。按照固定相 不同可分为:液液分配色谱;吸附色谱(液固色谱);离子交换色谱;尺寸排
阻色谱(凝胶渗透色谱)。
早期液相色谱,包括Tswett的工作,都是在直径1~5cm, 长50~500cm的玻 璃柱中进行的。为保证有一定的柱流速,填充的固定相颗粒直径多在 150~200m范围内。即使这样,流速仍然很低(<1mL/min),分析时间仍然很
2)荧光检测器
许多有机物具荧光活性,尤其是芳香族化合物具有很强的活性。荧光检测 器是一种选择性很强的检测器,其灵敏度比UV检测器高2~3个数量级。
3)示差折光检测器 原理:利用两束相同角度的光照射溶剂相和样 品+溶剂相,利用二者对光的折射率不同,其中一 束(通常是通过样品+溶剂相)光因为发生偏转造 成两束光的强度差发生变化,将此差示信号放大并 记录,该信号代表样品的浓度。 为通用型检测器,灵敏度为10-7g/mL。但对温 度变化敏感,且不适于梯度淋洗。
串联泵 单元泵原理
单元泵工作原理
Damper阻尼器
Outlet Ball Valve出口 单向阀
Purge valve 冲洗阀
Active Inlet Valve入 口单向阀
hplc高效液相色谱法
HPLC高效液相色谱法简介高效液相色谱法(HPLC)是一种利用液体作为流动相,通过高压输液系统,将样品中的各组分在固定相和流动相之间进行分配或吸附等作用而实现分离和检测的色谱技术。
HPLC具有分离效率高、灵敏度高、选择性强、分析速度快、样品适用范围广等优点,已成为化学、生物、医药、环境等领域中最重要的分析方法之一。
本文将简要介绍HPLC的基本原理、仪器组成、常用的色谱模式和应用领域,以期对HPLC感兴趣的读者有所帮助。
一、HPLC的基本原理HPLC的基本原理是利用样品中的各组分在固定相和流动相之间的不同亲和力,使其在色谱柱内以不同的速度移动,从而达到分离的目的。
固定相是填充在色谱柱内的颗粒状物质,可以是固体或涂于固体载体上的液体。
流动相是通过高压泵送入色谱柱的溶剂或溶剂混合物,可以是极性或非极性的。
样品是通过进样器注入流动相中,并随流动相进入色谱柱。
当样品中的各组分经过固定相时,会发生吸附、分配、离子交换、排阻等作用,导致它们在固定相中停留不同的时间。
这个时间称为保留时间(retention time),通常用tR表示。
保留时间是反映样品组分在色谱柱内分离程度的重要参数,不同的组分有不同的保留时间。
当样品组分从色谱柱出口流出时,会被检测器检测到,并产生一个信号。
这个信号随时间变化而变化,形成一个色谱峰(chromatographic peak)。
色谱峰的位置反映了样品组分的保留时间,色谱峰的面积或高度反映了样品组分的含量或浓度。
将检测器信号随时间变化而绘制出来,就得到了一条色谱图(chromatogram)。
色谱图上可以看到不同的色谱峰,每个峰对应一个样品组分。
通过比较保留时间和色谱峰面积或高度,就可以对样品进行定性和定量分析。
二、HPLC仪器组成HPLC仪器主要由以下几个部分组成:溶剂供给系统(solvent delivery system):负责提供恒定压力和流速的流动相,并将溶剂混合成所需比例。
高效液相色谱的简称
高效液相色谱的简称为HPLC,全称为High Performance Liquid Chromatography。
它是一种常用的分离和分析技术,广泛应用于化学、制药、环境科学、食品安全等领域。
HPLC利用液体作为流动相,在固定填充物(如柱填充剂)中进行分离。
样品溶液被注入进HPLC系统,经过柱子后,各组分根据其在填充物上的亲和性差异而被分离。
通过控制流动相的性质和梯度,可以实现对样品中不同组分的分离和定量。
HPLC具有以下特点:
1. 高效:HPLC能够在短时间内完成复杂样品的分离和分析,提高实验效率。
2. 灵敏度高:HPLC可以检测到很低浓度的物质,通常可达到ppm或ppb级别。
3. 选择性强:HPLC可以通过调整流动相的成分和条件来实现对不同化合物的选择性分离。
4. 应用广泛:HPLC可以用于分析各种样品,包括有机物、无机物、生物大分子等。
5. 自动化程度高:现代HPLC系统具有自动进样、自动分离和自动检测等功能,减少了人工操作的影响。
因为HPLC在科学研究和实验室分析中具有重要地位和广泛应用,所以被称为高效液相色谱。
1。
20-高效液相色谱
5. 离子色谱
其分离原理与离子交换色谱原理一样, 电导检测器检测。 问题:由于流动相都是强电解质,其电导率比 待测离子约高 2 个数量级,这种强背景电导会完
全掩盖待测离子信号。
1975年Small提出,在离子交换柱之后,再串结一根
抑制柱。该柱装填与分离柱电荷完全相反的离子交 换树脂。通过分离柱后的样品再经过抑制柱,使具 有高背景电导的流动相转变为低背景电导的流动相, 从而可用电导检测器检测各种离子的含量。
在反相色谱法中,通过调节流动相的pH,抑制样品组 分的解离,增加它在固定相中的溶解度,以达到分离 有机弱酸、弱碱的目的,称为离子抑制色谱法(ISC)
(1)适用范围 弱酸 3.0≤pKa≤ 7.0 弱碱 7.0≤pKa≤ 8.0
(2)抑制剂 弱酸(乙酸)、弱碱(氨水)或缓冲盐 (3)影响k的因素 a.与流动相的极性有关(同反相色谱) b.与流动相pH有关:弱酸 pH≤pKa k↑, tR↑ 弱碱 反之
由苯乙烯与二乙烯苯交联而成
21
20.4.2 化学键合相
化学键合固定相: 目前应用最广、性能最佳的固定相; 一般的键合相用硅胶为载体: a. 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C (ODS)
1. 非极性键合相 键合相表面基团为非极性烃基, 如C18 、C8、 C1 和苯基等。一般用于反相色谱
33
选择流动相时应注意的几个问题
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期累 积损坏色谱柱和使检测器噪声增加。 (2)使用前需要用微孔滤膜过滤,除去固体颗粒。
(3)流动相使用前最好脱气。
34
20.6 高效液相色谱仪
35
记录系统
输液系统
高效液相色谱法
在液液色谱中为了避免固定液的流失。对流动相的 一个基本要求是流动相尽可能不与固定相互溶, 而且流动相与固定相的极性差别越显著越好。根 据所使用的流动相和固定相的极性程度,将其分 为正相分配色谱和反相分配色谱。如果采用流动 相的极性小于固定相的极性,称为正相分配色谱, 它适用于极性化合物的分离。其流出顺序是极性 小的先流出,极性大的后流出。如果采用流动相 的极性大于固定相的极性,称为反相分配色谱。 它适用于非极性化合物的分离,其流出顺序与正 相色谱恰好相反。
流动相
离子交换色谱法所用流动相大都是一定pH和盐浓度 (或离子强度)的缓冲溶液。通过改变流动相中 盐离子的种类、浓度和pH值可控制k值,改变选择 性。如果增加盐离子的浓度,则可降低样品离子 的竞争吸附能力,从而降低其在固定相上的保留 值。 一般,对于阴离子交换树脂来说,各种阴 离子的滞留次序为: 柠檬酸离子>SO42- >C2O42- >I- >NO3- >CrO42- > Br->SCN-> Cl->HCOO->CH3C00->OH->F-
•
相平衡参数
• 分配系数(distribution coefficient,K)——在一定温度下,化合物在两 相间达到分配平衡时,在固定相与流动相中的浓度之比。 • 分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压 力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为 吸附系数,离子交换色谱法为选择性系数 (或称交换系数),凝胶 色谱法为渗透参数。但一般情况可用分配系数来表示 • 在条件(流动相、固定相、温度和压力等)一定,样品浓度很低时 (Cs、Cm很小)时,K只取决于组分的性质,而与浓度无关。这只 是理想状态下的色谱条件,在这种条件下,得到的色谱峰为正常峰; 在许多情况下,随着浓度的增大,K减小,这时色谱峰为拖尾峰;而 有时随着溶质浓度增大,K也增大,这时色谱峰为前延峰。因此,只 有尽可能减少进样量,使组分在柱内浓度降低,K恒定时,才能获得 正常峰。 在同一色谱条件下,样品中K值大的组分在固定相中滞留时间长,后 流出色谱柱;
高效液相色谱法(HPLC)
高效液相色谱法(HPLC) High Performance LiquidChromatography§3-1 高效液相色谱法概述一、定义以高压输出液体为流动相,以小粒径填料填充色谱柱的色谱分析方法。
高效液相色谱法是继气相色谱之后,70年代初期发展起来的一种以液体做流动相的新色谱技术.二、HPLC特点1、高压经典的液相色谱法,流动相在常压下输送,所用的固定相柱效低,分析周期长。
而现代液相色谱法中,流动相改为高压输送(150~350 ⨯105 Pa,最高输送压力可达450⨯105 Pa);2、高速由于流动相流速高,分析时间大大缩短,几min、十几min可完成一个分析任务。
3、高效HPLC色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万)。
4、高灵敏度利用高灵敏度的检测器,检测灵敏度大大提高。
紫外检测器10-9g荧光检测器10-11g高效液相色谱三、液相色谱分离原理及分类液相色谱分离的实质是样品分子(以下称溶质)与溶剂(即流动相或洗脱液)以及固定相分子间的作用,作用力的大小,决定色谱过程的保留行为。
根据分离机制不同,液相色谱可分为:液固吸附色谱、液液分配色谱、化学键合相色谱、离子交换色谱以及分子排阻色谱等类型。
四、液相色谱与气相色谱的比较1、相同点(1)基本原理一致:不同组分在两相中的作用力不同。
(2)基本概念一致:基本概念:保留值、塔板数、塔板高度、分离度、选择性等与气相色谱一致。
(3)基本理论一致:塔板理论与速率方程也与气相色谱基本一致。
2、不同点由于在液相色谱中以液体代替气相色谱中的气体作为流动相,而液体和气体的有性质本质不同,因此,两种方法也有不同之处:(1)仪器设备和操作条件不同;(2)应用范围不同;气相色谱仅能分析在操作温度下能气化而不分解的物质。
对高沸点化合物、非挥发性物质、热不稳定化合物、离子型化合物及高聚物的分离、分析较为困难。
高效液相色谱HPLC基本原理
色谱柱的温度控制:优化色谱柱的 温度提高分离效率
添加标题
添加标题
添加标题
添加标题
色谱柱的维护:定期清洗和维护色 谱柱保证其性能稳定
色谱柱的填充:优化色谱柱的填充 方式提高分离效果
流动相的组成:有机溶剂和水
流动相的选择原则:根据样品性质和检测器类型选择
流动相的优化方法:通过改变有机溶剂和水的比例、改变有机溶剂的种类、改变有机 溶剂的浓度等方法进行优化
流动相的优化效果:提高分离效果、提高检测灵敏度、降低检测时间等
固定相的选择: 根据样品性质 和分离要求选 择合适的固定
相
固定相的粒径: 粒径越小分离 效果越好但会 增加压力和延
长分析时间
固定相的表面 处理:表面处 理可以提高固 定相的稳定性
和选择性
固定相的填充: 填充方式会影 响柱效和分离 效果常用的填 充方式有轴向 填充、径向填 充和螺旋填充
汇报人:
智能化:I技术在HPLC中的应用提 高分析效率和准确性
高通量:高通量HPLC技术的发展提 高分析速度和通量
添加标题
添加标题
添加标题
添加标题
微型绿色环保:环保型HPLC技术的发展 降低对环境的影响和污染
气相色谱-质 谱联用:提高 检测灵敏度和
准确性
样品采集:选择合适的样品采 集方法如抽样、取样等
样品预处理:对样品进行预处 理如过滤、离心、稀释等
样品保存:选择合适的样品保 存方法如冷藏、冷冻等
样品分析:对样品进行分析如 定性、定量等
进样器选择:根据样品性质 和实验要求选择合适的进样 器
样品准备:选择合适的样品 进行适当的处理和稀释
进样操作:将样品注入进样 器确保样品完全进入色谱柱
高效液相色谱法(hplc)
高效液相色谱法(HPLC)一.概述色谱法是一种应用范围相当广泛的分离分析技术,它已有近百年的发展史。
二十世纪五、六十年代石油及石油化工的突起促使了GC技术大发展,而七、八十年代生命科学、生化、制药工业的发展推动了HPLC的迅速发展。
目前除分析化学外,生物化学,石油化学,有机化学,无机化学等学科都普遍采用色谱技术。
现代高效液相色谱仪,以其高效,快速和自动化等特点成为当代分析仪器中发展最快的仪器。
HPLC已成为操作方便、准确、快速并能解决困难分离问题的强有力的分析手段。
1.HPLC的特点(1)适用范围广已知有机物中仅20%不经预先化学处理,可用GC分析;而其余80%有机物可用HPLC分析。
HPLC适于分离生物、医学大分子和离子化合物,不稳定的天然产物,种类繁多的其它高分子及不稳定化合物。
(2)流动相及固定均与样品分子作用,而GC仅固定相与样品分子作用。
(3)具有独特性能的柱填料(固定相)种类较多,具有多种分离方式,适于各种化合物分析。
(4)分离温度较低,提高了分离效率。
(5)具有一些独特的检测器:电化学,示差折光,可见紫外吸收及荧光检测器等。
(6)样品易回收。
2.HPLC分类按分离机理分为四类:吸附色谱(液固):通过试样组分对活性固体表面吸附亲合力的不同实现分离。
对具有不同官能团的化合物和异构体有较高选择性,早期应用较多,现在大多可用正相键合相色谱替代,常用硅胶柱。
分配色谱:不同溶质分子按其在固定相和流动相中分配系数不同得到分离。
现代分配色谱即化学键合相色谱,是将各种不同的有机基团通过化学反应键合到硅胶表面,具有很好的化学稳定性和热稳定性。
大部分分离问题都可用键合相色谱解决。
离子交换色谱:以离子交换剂为固定相,试样中电离组分与交换剂基体相反电荷的离解部位亲合力不同而分离。
用于分离无机或有机离子。
固定相为阴(阳)离子交换树脂,流动相为电解质溶液。
分子排阻色谱:按物质分子量大小进行分离。
不仅对高聚物,对分子量差别较大的低聚物或小分子化合物也可进行分离。
高效液相色谱HPLC简介.ppt
种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不
同而引起的排阻作用的差别使不同溶质得以分离。
2
操作过程图示
3
色谱分离的机理
分离是一个 物理的过程。
固定相(Stationary Phase) 流动相(Mobile Phase) 样品 (溶解于流动相中的溶质)
4
项目 进样方式 流动相 分离原理 检测器
14
液-液分配色谱
固定相与流动相均为液体(互不相溶); 基本原理:组分在固定相和流动相上的分配; 流动相:对于亲水性固定液,采用疏水性流动相,即流动相的极性小于固定 液的极性(正相 normal phase),反之,流动相的极性大于固定液的极性 (反相 reverse phase)。正相与反相的出峰顺序相反; 固定相:早期涂渍固定液,固定液流失,较少采用; 化学键合固定相:将各种不同基团通过化学反应键合到硅胶(担体)表面的 游离羟基上。反相键合相色谱柱最常用的就是ODS柱,也就是C18柱。
15
液相色谱类型
• 正相色谱:固定相为极性,流动相为非极性。 • 反相色谱:固定相为非极性,流动相为极性。用的最多,约占60~70%。
16
色谱柱简介
• 正相柱------固定相通常为硅胶以及其他具有极性官能团胺基团,如(NH2) 和氰基团(CN)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他极性基团极性较强,因此,分离 的次序是依据样品中各组分的极性大小,即极性较弱的组份最先被冲洗出色 谱柱。正相色谱使用的流动相极性相对比固定相低,如正已烷,氯仿,二氯 甲烷等。
9
检测器简介(二)
◆ 电导检测器(ECD) 原理:监测溶液的电导率变化的检测器。 特点:选择性检测器、测量时要求恒温、对流动相的组成变化有明显响应、 灵敏度低(10-3g)。适用于离子型化合物。
高效液相色谱检测
高效液相色谱检测高效液相色谱法(High Performance Liquid Chromatography \ HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。
高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。
该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术应用高效液相色谱法有“四高一广”的特点:①高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。
②高速:分析速度快、载液流速快,较经典液体色谱法速度快得多,通常分析一个样品在15~30分钟,有些样品甚至在5分钟内即可完成,一般小于1小时。
③高效:分离效能高。
可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。
④高灵敏度:紫外检测器可达0.01ng,进样量在μL数量级。
⑤应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。
⑥柱子可反复使用:用一根柱子可分离不同化合物⑦样品量少、容易回收:样品经过色谱柱后不被破坏,可以收集单一组分或做制备。
此外高效液相色谱还有色谱柱可反复使用、样品不被破坏、易回收等优点,但也有缺点,与气相色谱相比各有所长,相互补充。
高效液相色谱的缺点是有“柱外效应”。
在从进样到检测器之间,除了柱子以外的任何死空间(进样器、柱接头、连接管和检测池等)中,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。
高效液相色谱检测器的灵敏度不及气相色谱。
高效液相色谱法HPLC
VS
报告结果
整理分析数据,撰写分析报告,提供各组 分的浓度、纯度等相关信息,为科研或生 产提供决策依据。
THANKS FOR WATCHING
感谢您的观看
实验操作步骤
流动相的准备与平衡
根据实验要求配制流动相,通过泵以适宜的流速 通过色谱柱进行平衡。
洗脱与检测
流动相带着样品经过色谱柱洗脱,各个组分依次 流出并进入检测器进行检测。
ABCD
进样
将样品注入进样器,通过压力将样品送入色谱柱 进行分离。
数据处理与结果分析
对检测器输出的信号进行处理,得到各组分的峰 形和峰面积,进行定性和定量分析。
01
02
03
04
进样
将样品注入色谱柱。
分离
在流动相的带动下,样品中的 组分在色谱柱中进行分离。
检测
检测器对分离后的组分进行检 测,并记录信号。
数据处理
对采集到的数据进行处理、分 析和存储。
高效液相色谱仪的维护和保养
定期清洗色谱柱
使用适当的溶剂清洗色谱柱, 以去除残留物和杂质。
维护和检查检测器
定期检查检测器的性能和准确 性,确保其正常运行。
数据处理系统
用于采集、处理、分析和存储色谱数据,通常采用色谱工 作站。
高效液相色谱仪的操作流程
01
02
03
样品准备
将样品进行适当处理,以 便注入色谱柱。
流动相制备
根据实验要求,选择合适 的流动相,并进行过滤和 脱气处理。
系统平衡
在进样之前,确保色谱系 统达到平衡状态,以提高 分离效果。
高效液相色谱仪的操作流程
样品的预处理
分离
对于复杂样品,需要进行分离操 作以去除杂质或提取目标成分。 常用的分离方法包括离心、过滤、
高效液相色谱(HPLC)简介
2. 流动相类别
按流动相组成分:单组分和多组分;
按极性分:极性、弱极性、非极性;
按使用方式分:固定组成淋洗和梯度淋洗。
常用溶剂: 己烷、四氯化碳、甲苯、乙酸乙酯、乙醇、
乙腈、水。
采用二元或多元组合溶剂作为流动相可以灵活调节流动
相的极性或增加选择性,以改进分离或调整出峰时间。
3. 流动相选择
在选择溶剂时,溶剂的极性是选择的重要依据。
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期累 积,损坏色谱柱和使检测器噪声增加。 (2)避免流动相与固定相发生作用而使柱效下降或损坏柱 子。如使固定液溶解流失,酸性溶剂破坏氧化铝固定相等。 (3)试样在流动相中应有适宜的溶解度,防止产生沉淀并 在柱中沉积。 (4)流动相同时还应满足检测器的要求。当使用紫外检测 器时,流动相不应有紫外吸收。
高效液相色谱(HPLC)简介
目
1, 液相色谱分析法的发展 2, 高效液相色谱的特点 3, 高效液相色谱仪简介 4, 液相色谱法介绍 5, 分析方法的选择 6, 实际分析操作过程
录
1、液相色谱分析法的发展
20世纪初: 俄国植物学家茨维特提出经典液 相色谱法。经典液相色谱法包括柱色 谱、薄层色谱、纸色谱。 20世纪60年代末: 随着色谱理论的发展、高效细微 固定相的开发、高压恒流泵及高灵敏 度检测器的应用,高效液相色谱法得 到了突破性的发展。
a. 紫外检测器
应用最广,对大部分有机 化合物有响应。 特点: 灵敏度高;
线性范围宽;
流通池可做得很小(1mm × 10mm ,容积 8μL); 对流动相的流速和温度变化不敏感; 波长可选,易于操作; 可用于梯度洗脱。
b. 光电二极管阵列检测器
紫外检测器的重要进展;
高效液相色谱
应用
由于HPLC分离分析的高灵敏度、定量的准确性、 适于非挥发性和热不稳定组分的分析,因此,在工 业、科学研究,尤其是在生物学和医学等方面应用 极为广泛。如氨基酸、蛋白质、核酸、烃、碳水化 合物、药品、多糖、高聚物、农药、抗生素、胆固 醇、金属有机物等分析,大多是通过HPLC来完成的。
液相色谱分离原理及分类
和气相色谱一样,液相色谱分离系统由 两相——固定相和流动相组成。液相色谱的 固定相可以是吸附剂、化学键合固定相(或 在惰性载体表面涂上一层液膜)、离子交换 树脂或多孔性凝胶;流动相是各种溶剂。
被分离混合物由流动相液体推动进 入色谱柱。根据各组分在固定相及流动 相中的吸附能力、分配系数、离子交换 作用或分子尺寸大小的差异进行分离。
它与经典液相色谱法的区别是填料颗粒小而均 匀,小颗粒具有高柱效,但会引起高阻力,需 用高压输送流动相,故又称高压液相色谱法 (High Pressure Liquid Chromatography,HPLC)。 又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。也称 现代液相色谱。
敏感,且不适于梯度淋洗。
平面镜
样品
透镜
遮光板
光源
参比
光学零
光电转换 调零
放大器
记录仪
荧光检测器
许多有机物具荧光活性, 尤其是芳香族化合物具有很 强的活性。荧光检测器是一 种选择性很强的检测器,其
灵敏度比UV检测器高2~个数
量级。
电导检测器
电导检测器主要用于离子色谱的检测。 原理:基于待测物在一些介质中电离后所产生的电导(电 阻的倒数)变化来测量电离物质的含量。
流程及主要部件
流程
高效液相色谱法(HPLC)简介
高效液相色谱法分离过程
主要在于固定相的性质、形状及粒度,其次 差别: 是检测手段和输液设备。
经典液相色谱 固定相: 粒度:60~600μm(多孔) 柱长:10~200cm(d=10~50mm) n 约为 2~50/m
流动相:靠重力输送
经典液相色谱无在线检测器
缺点:
①粒度范围宽、不规则,不易填充均匀,扩散和传质阻 力大。 ②无检测设备,分析速度慢、效率低。 只能作为分离手段
(3)不能完全替代气相色谱
(4)不适于分析受压分解、变性的具有生物活性的
Hale Waihona Puke 生化样品。高效液相色谱法与其他分析方法一样,
不是尽善尽美的。
第二节 高效液相色谱法的基本理论
一、高效液相色谱参数 1.定性参数 tR 、 t 0 、 t’ R t’R= tR- t0 2.柱效参数 σ、 W1/2 、W W=4 σ 或 w=1.699W1/2 n=( tR / σ)2 H=L/n
四、高效液相色谱法的应用范围和局限性
1.应用范围 高效液相色谱法适于分析高沸点、受热不稳定易 分解、分子量大、不同极性的有机化合物;生物活性 物质和多种天然产物;合成和天然高分子化合物。 涉及石油化工产品、食品、药品、生物化工产品 及环境污染物。约占全部有机物的80%。 2.方法的局限性
(1)使用多种溶剂为流动相,成本高,污染环境 (2)缺少通用检测器
美国药典委员会(USPC)成立于1820年,至今近200 年。出版发行了25版药典。 75年(19版)将HPLC载入药典 20版-62项;21版-363项;22版-871项;23版-1188项; 24版-含量测定法:1386项 鉴别:519项 杂质检查:206项
如今:在评价世界各国药典水平时,HPLC法成为 反映各国药典先进性的重要指标之一。
高效液相色谱法(HPLC)的概述
此帖与GC版的对应,是为了让大家更好的学习和了解LC主要内容包括:1.高效液相色谱法(HPLC)的概述2. 高效液相色谱基础知识介绍(1——13楼)3. 高压液相色谱HPLC发展概况、特点与分类4. 液相色谱的适用性5.应用高效液相色谱法(HPLC)的概述以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。
其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。
由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用X围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有50种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。
高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。
目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。
将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。
C18(ODS)为最常使用的化学键合相。
根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。
在中药制剂分析中,大多采用反相键合相色谱法。
系统组成:(一)高压输液系统由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。
1.贮液罐由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。
贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作为色谱柱填料的凝胶表 面有许多大小不一的孔穴, 体积非常大(即分子量很 大)的溶质分子由于无法 进入任何孔穴,很快就从 色谱柱中流出;尺寸较小 的溶质分子,由于他们进 入部分尺寸较大的孔穴, 因此在色谱柱中的停留时 间较长,较迟从色谱柱中 流出。这样,溶质分子就 会按尺寸从大到小的顺序 从色谱柱中流出,被分离
反相凝胶渗透色谱(RGPC)就是将未知孔穴尺寸及分布 的试样装填色谱柱,用一系列已知分子尺寸的溶质分别流 经色谱柱,根据不同尺寸分子对应的淋出体积,推算试样 内部的孔穴尺寸及分布。 项目 正相GPC 反相GPC (流动相内) 溶质分子尺寸 未知 已知 (固定相内) 孔穴尺寸和分布 已知 未知
同系列标样种类较多,具有较宽的相对分子量分
布,且每种标样的分子量分布较窄
溶液中,标样分子不能有变化,具有已知的尺寸
大小和形状
本课题组采用的标样分子体系及其对应孔穴直径
将纤维磨成粉末装填 将纤维切碎装填 用完整的纤维装填 1.松散纤维装填 2.块状、球状、条状纤维装填 3.棉条、粗纱、纱线装填 4.棉胎装填 5.织物直接装填 本课题组将棉织物剪成2mm ×2mm左右的碎布, 再用分析研磨机处理,使之成纤维状
针对仪器、方法本身特性和本课题组实际情况,注意: 整理到织物上的化学品必须具有一定的牢度,不被轻易淋 洗下来。若被淋洗下来,会影响试验结果。若洗脱的化学 品不亲水,即油性,则可能沾在仪器上而不易去除,影响 试验结果 可测的最大孔穴为39nm。虽然有更大的分子可用于标定 更大的孔穴,但它们的淋出时间相差在误差范围内,从而 失去意义。 只有一种装柱形式。这是由本课题组的实际情况决定
分离色谱(Partition Chromatography)
离子色谱(Ion Chromatography) 亲和色谱(Affinity Chromatography) 体积排阻色谱(Size Exclusion Chromatography)或 凝胶渗透色谱(Gel Permeation Chromatography)
高效液相色谱(HPLC)是色谱法的一个重要分支,以液体为 流动相,采用高压输液系统,将具有不同极性的单一溶剂或
不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色
谱柱,在柱内各成分被分离后,进入检测器进行检测,从而 实现对试样的分析
按照分离原理的不同,HPLC可以分为以下几种
吸附色谱(Adsorption Chromatography)
本课题组的纤维装填需已制好的纤维样拿到外校由专人装填
填 料 方 法
轻叩干填法
d>20um
高压湿法 (匀浆填装技术)
下流法 上流法
用注射器将试样(即标样:溶有一定量的标样分子的超纯水)注 入进样器,由泵输入的超纯水将标样带入色谱柱。当试样进入示差 折光检测器时,由于它们与作为参比的超纯水折光指数不同,会立 即被检测到,检测器就发出信号给记录仪,从而在记录仪上显示出 淋出峰。组分收集器是由多个已知质量的试管和一个精密天平组成。 它将流出的组分分别收集、称重,用于分析时归一化计算
流动相:水(本课题组采用超纯水) 使用过的标样分子体系
1.不同分子量、麦芽糖、棉子糖、水苏糖)
和一系列多聚糖(分子量在2600~24000)
3.乙二醇、聚乙二醇和葡聚糖(本课题组采用)
标样分子必须满足的条件
标样分子不能在纤维上发生化学吸附或物理吸附