第05章__刚体力学基础补充
刚体力学基础
mA
第5章 刚体力学基础
2.7
刚体力学基础
解:研究对象:A、B、圆柱 用隔离法分别对各物体作受力 分析,如图所示。
mB
N
mA
f
mB m Bg
TB
TA
mA
aB T 'B
aA
mAg
T 'A
第5章 刚体力学基础
2.7
刚体力学基础
N
f
mB m Bg
TB
TA
T 'B
T 'A
mA mAg
aA
aB
A: mA g TA mAaA TB f mB aB B: N mB g 0
2.7
定点转动:
刚体力学基础
运动中刚体上只有一点固定不动,整个刚体绕过该
固定点的某一瞬时轴线转动. 如:陀螺的运动
i3
(转轴方向(2),绕轴转角(1))
第5章 刚体力学基础
2.7
刚体力学基础
二 刚体定轴转动的运动学描述 定轴转动:刚体上任意点都绕同一 轴在各自的转动平面内作圆周运动
特征:刚体各个部分在相同时间内绕 转轴转过的角度(角位移)都相同 引入角量描述将非常方便。
oo mi vi 垂直于z轴。
i
th
刚体 mi
oo mi vi ri mi vi
z
我们只对z方向的分量感兴趣:
Liz ri mi vi mi ri 2
Lz Liz mi ri
2
ω,α vi
△ mi
ri O’ × 刚体 × O
刚体定轴转动的动能=绕质心转动的动能+
刚体携总质量(质心)绕定轴作圆周运动的动能
《刚体力学基础》课件
2
刚体在作用力学和运动学中的应用
说明刚体在作用力学和运动学研究中的应用,如力的分析和刚体的运动分析。
3
刚体力学与其他学科的关系
探讨刚体力学与其他学科的关系,如力学、工程学和物理学等的联系。
六、总结
1 刚体力学基础的重要性
总结刚体力学基础的重要性,强调其在物体运动研究中的价值。
2 接下来的深入研究方向
介绍刚体力学研究中所采用 的基本假设和运动条件,以 便准确描述刚体的运动。
二、刚体的运动学
1
刚体的平动运动和定点运动
讲解刚体的平动运动和定点运动,包括平移和旋转的概念以及运动轨迹。
2
刚体的旋转运动和欧拉角
解释刚体的旋转运动和欧拉角的概念,阐明旋转的自由度和描述方法。
3
刚体的复合运动
讲述刚体的复合运动,即平动和旋转运动的组合,展示不同运动方式的例子。
ห้องสมุดไป่ตู้
刚体静力学的经典问题
介绍刚体的平衡和力的平衡条件, 解释如何使刚体保持静止。
探讨刚体静力学中的经典问题, 如杠杆原理和平衡木问题。
牛顿第三定律在刚体上的 应用
讲解牛顿第三定律在刚体运动中 的应用,如碰撞和反作用力。
五、实际应用
1
刚体在机械和结构工程中的应用
展示刚体在机械和结构工程中的应用案例,如建筑物和机械装置。
提出刚体力学研究中的深入方向,如刚体动力学和非线性刚体力学。
3 刚体力学研究的意义
归纳刚体力学研究的意义,展示其对工程和科学领域的贡献。
三、刚体的动力学
牛顿第二定律在刚体 上的应用
探讨牛顿第二定律在刚体力学 中的应用,包括力和加速度的 关系。
刚体的角动量和角动 量定理
第05章刚体力学基础学习知识补充
第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。
那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
05.刚体力学
全加速度——即切向、法向加速度的矢量和. 全加速度——即切向、法向加速度的矢量和 ——即切向 矢量和
6.4 如图 已知某瞬时曲柄的角速度 ω = 4rad / s, 如图. 角加速度 ε = 2rad / s2 ;曲柄长为 r = 20cm 。 托架上重物重心G的轨迹 速度、加速度。 的轨迹、 求:托架上重物重心 的轨迹、速度、加速度。
F 1
z
F 2
r
dF t
dm
ω
ε
F n
F i
M z = I zε
—— 刚体定轴转动 刚体定轴转动 动力学基本方程 基本方程. 的动力学基本方程
作用在刚体上的所有外力对转轴之合力矩等于 作用在刚体上的所有外力对转轴之合力矩等于 刚体 刚体对于转轴的转动惯量与其角加速度的乘积。 刚体对于转轴的转动惯量与其角加速度的乘积。
ρ dm b C θx
(推导用图) 推导用图)
y
Iz = Ix + I
z r
——无限薄刚体板对任一垂直 无限薄刚体板 无限薄刚体 的转动惯量, 于它的坐标轴 z 的转动惯量, 等于该薄板 薄板刚体对另两坐标轴 等于该薄板刚体对另两坐标轴 的转动惯量之和。 的转动惯量之和。
x
y
x
y
(推导用图) 推导用图)
ω
B
如图: 曲柄作 平面运动. 连 如图: OA曲柄作定轴转动,也是平面运动.AB连 曲柄 定轴转动,也是平面运动 杆作平面运动 平面运动. 活塞作直线运动,也是平面运动 活塞作直线运动 平面运动. 杆作平面运动 B活塞作直线运动,也是平面运动
在刚体上有无限多 平面图形始终作平面 个平面图形始终作平面 运动, 这样的一个 一个平面 运动 这样的一个平面 图形的运动 的运动, 代表了 图形的运动,就代表了 平面运动。 整个刚体的平面运动 整个刚体的平面运动。 因此, 因此 只需研究其中的 一个平面图形的运动. 平面图形的运动 一个平面图形的运动 2. 平面运动的分解 平面运动的分解 将复杂的平面运动, 分解成简单的 平动” 成简单的“ --- 将复杂的平面运动, 分解成简单的“平动” 转动(定轴) 应用合成运动的概念, 合成运动的概念 与“转动(定轴)” ;应用合成运动的概念 求刚体上各点的速度 加速度. 速度和 求刚体上各点的速度和加速度 如上: 杆的运动可分解成“ 如上: AB杆的运动可分解成“平动” 与“转 杆的运动可分解成 平动” 动”.
大学物理上册课件:第五章刚体力学基础
5.1.2、刚体定轴转动的角量描述 定轴转动只有两个转动方向。 规定 ox 轴逆时针转动为正方向,反之为负方向。
角位置: (t) 刚体定轴转动的运动学方程。
角位移: 2 1
平均角速度: =
t
角速度: (矢量)
=d
dt
y
rP•
•P
A
O S A
x
角加速度: (矢量)
z
o
ri
i 1
mi
则:
Ek转
1 2
J 2
o
注意:转动动能实质与平动动能相同,表达式不
Ek转
1 2
m vc2
1 2
J 2
5.2.2、转动惯量的计算:描述刚体转动惯性大小的物理量。
1、定义:刚体对转轴的转动惯量:
n
J miri 2 i 1
J r 2 d m V
SI单位:kg . m
大 小 :M Z rF sin Fd Ft r
d=rsinθ 称为力F 对转轴的力臂。
方向: 由右手螺旋定则确定。
Mr FZ有o两个方向,可用正o负表Fr示。
MZ 0
MZ 0
MZ
z
o rp
F
d
•
o
z
r
Ft P
F
d
•
Fn
2、F不在转轴平面内
把F 分解为径向Fr 、横向Ft ①Fr 对转轴的力矩为零;
5.2定轴转动刚体的功和能
5.2.1、刚体的动能
平动动能 : Ek平 转动动能 : Ek转
i i
1 2
mi v i2
1 2
mi
v
i
5第五章-刚体力学基础
①总质量; ②质量分布; ③转轴位置。
上页 下页 返回 退出
2. 转动惯量J
(1)质点 J mr2
r1
m1 O
(2)质点系 J miri2
i
例:J m1r12 +m2r22
r2
m2
(3)刚体 dJ dm r2
J dJ
r dm
上页 下页 返回 退出
dl
dm
dS
dV
线分布 面分布 体分布
一、力矩的功 M 1 2
dA F dr Fdscos Fdssin F sin rd Md
d
r
dr
F
A dA 2 Md 1
功率 P dA Md M
dt dt
上页 下页 返回 退出
二、 刚体的转动动能
第i个质点
Ek
1 2
J2
Eki
1 2
mi vi 2
1 2
mi
ri
2
2
上页 下页 返回 退出
三、 动量矩守恒定律的应用
当 M合外 0 时,L 恒量
讨论:
(1)动量矩守恒条件:
M外 0 或 M内 M外
(2)也适用于非刚体,是自然界最普遍规律之一
J 恒量 J , J ,
上页 下页 返回 退出
上页 下页 返回 退出
上页 下页 返回 退出
z
F
M rF 0
上页 下页 返回 退出
§1、2 刚体的转动定律
一、刚体和刚体的运动
1. 刚体: 形状、大小不变的理想模型。 2. 刚体的运动: (1)平动。 看作质点。
上页 下页 返回 退出
(2)转动。 定轴; 非定轴(瞬时轴)。
第5章刚体力学基础
m2lv
=
1 3
m1l 2ω
−
m2lv′
ω = 3m2 (v + v′)
m1l
vr
vr′
ω
注意:系统总动量一般不守恒,因为轴承处的外力不能忽略。
只当碰撞在打击中心时,Nx=0,系统的水平动量守恒:
m2v = m1vc − m2v′
=
1 2
m1lω
−
m2v′
(m2
2 3
lv
=
1 3
m1l 2ω
−
m2
2 3
m2u2t 2 )ω
ω0
ω
=
1+
ω0
2m2u 2 m1R2
t2
台转过的角度:
ϕ
=
∫
dϕ
=
∫ t ωdt 0
=
u(
Rω0
2m2 )1/ 2
⎢⎡ ut ( arctan ⎢
⎢
2m2 m1 R
)1/ 2
⎤ ⎥ ⎥ ⎥
m1
⎢⎣
⎥⎦
三、物体系的角动量守恒
若系统由几个物体组成,当系统受到的外力对轴的 力矩的矢量和为零,则系统的总角动量守恒:
第 5 章 刚体力学基础
§5.1 刚体运动的描述 §5.2 刚体的定轴转动定理 §5.3 刚体的转动惯量 §5.4 刚体定轴转动的角动量守恒定律 §5.5 刚体定轴转动的功能原理 §5.6 回转仪 进动 §5.7 刚体的平面运动
§5.4 刚体定轴转动的角动量守恒定律
定轴转动角动量定理: M = d(Jω )
的形成等。
[例5-11] 水平转台(m1 、 R ) 可绕竖直的中心轴转动,初角 速度ω0,一人(m2 )立在台中心,相对转台以恒定速度u沿
第五章刚体力学
ω,α
r v
与 着 速 的 向 沿 角 度 方
at r
at
at
刚体绕定轴转动时其速度加速度可以上式表示: r如何定义?
a n r
r是刚体上一点到转动轴的距离。
O R r
3.刚体的平动和转动动能
刚体平动动能
3.质点的角动量定理与角动量守恒定律 dL ——微分形式 M dt
t
t0
Mdt L L0 ——积分形式
若M 0
L L0
——角动量守恒定律
动量守恒与角动量守恒:角动量守恒,动量未必守恒。
3. 质点系的角动量
质点系内各质点对参考点O的角动量的矢量和叫做 质点系对O点的角动量。 质点系内各质点对参考点O的位置矢量分别为r1, r2…rn,各质点的质量分别为m1,m2…mn,各质点速度 分别为v1,v2…vn 。
o
F
0
0
mg
0
2. 质点的角动量
质点对参考点O的角动量定义为:
L r p r mv
L
质点对参考点O的角动量等于质 点的位矢与其动量的的矢积。
O
mv
r
d
大小 : L rp sin pd mvd 方向 : 沿r p方向
角动量垂直于质点位矢和速度组成的平面。
从力矩的量纲和功相同应当点乘一个无量纲矢量
dA M d
5.动能定理
刚体转动动能可以写作 质点系动能定理
Ek J
dEk dA
A dE k d ( J ) A M z d J 末 J 初
大学物理第五章刚体力学
v0
3
4J
4Ml
mv
例3 、如图所示,将单摆和一等长的匀质直杆悬挂在 同一点,杆的质量m与单摆的摆锤相等。开始时直杆
自然下垂,将单摆的摆锤拉到高度h0,令它自静止状
态下垂,于铅垂位置和直杆作弹性碰撞。求碰撞后直杆
下端达到的高度h。
l l
m
ho
h’
a
解:碰撞前单摆摆锤的速度为
c hc
h=3h0/2
b
L
mv
v o m o• L
(A) 2v 3L
(B) 4v 5L
(C) 6v 7L
8v (D) 9L
以顺时针为转动正方向
两小球与细杆组成的系统 对竖直固定轴角动量守恒
L
mv
v o m o• L
由 Lmv+Lmv=2mL2+J
及 J= mL2/3
可知正确答案为 [ C ]
6.如图所示,一均匀 细杆长为 l ,质量为 m,平放在摩擦系数
速度。
用功能定理重解该题
取起始位置为零势能参考点 O
0 mgl sin / 2 1 J2
2
A mg
3g sin
l
?棒端A的速度 vA 3gl sin
例2.已知:均匀直杆m,长为l,初始水平静止,
轴光滑,AO4l 。 求:杆下摆角后,角速度 ?
解:杆+地球系统, ∵只有重力作功,∴ E守恒。
1 (1 ml 2 ) 2 1 mgl(1 cos )
23
2
3
arccos23
例4、一飞轮以角速度0绕轴旋转,飞轮对轴的
转动惯量为J1,另一静止飞轮突然被啮合到同一 个轴上,该飞轮对轴的转动惯量为前者的两倍。 啮合后整个系统的角速度 (1/3)0 .
刚体动力学的基本概念
刚体动力学的基本概念第二篇动力学第五章刚体动力学的基本概念一、目的要求 1.深入地理解力、刚体、平衡和约束等重要概念。
2.静力学公理(或力的基本性质)是静力学的理论基础,要求深入理解。
3. 能正确地将力沿坐标轴分解和求力在坐标轴上的投影,对合力投影定理有清晰的理解。
4. 理解力对点之矩的概念,并能熟练地计算。
5.深入理解力偶和力偶矩的概念,明确力偶的性质和力偶的等效条件。
6.明确和掌握约束的基本特征及约束反力的画法。
7.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。
二、基本内容 1.重要概念 1)平衡:物体机械运动的一种特殊状态。
在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。
2)刚体:在力作用下不变形的物体。
刚体是静力学中的理想化力学模型。
3)约束:1/ 11对非自由体的运动所加的限制条件。
在刚体静力学中指限制研究对象运动的物体。
约束对非自由体施加的力称为约束反力。
约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。
4)力:物体之间的相互机械作用。
其作用效果可使物体的运动状态发生改变和使物体产生变形。
前者称为力的运动效应或外效应,后者称为力的变形效应或内效应,理论力学只研究力的外效应。
力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。
5)力的分类:集中力、分布力;主动力、约束反力 6)力系:同时作用于物体上的一群力称为力系。
按其作用线所在的位置,力系可以分为平面力系和空间力系,按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。
7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。
8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。
9)力的合成与分解:若力系与一个力FR等效,则力FR称为力系的合力,而力系中的各力称为合力FR的分力。
第五章 刚体力学基础
§5.1
刚体和刚体的基本运动
一、什么是刚体?
橡皮泥
不锈钢
刚体:受力时形状和体积都不发生改变的物体
大学物理 第三次修订本
第5章 刚体力学基础 动量矩
刚体可以看作是由许多质 点组成的,每一个质点叫 做刚体的一个质元,刚体 这个质点系的特点是: 在外力作用下各质元之间 的相对位置保持不变。
mj
mi
w w0 t 4π rad/s
飞轮边缘上一点 线速度:
v rw 2.5m/s
2
切向加速度:a r 0.105m s
2 2
法向加速度:an v / r rw 31.6m s
大学物理 第三次修订本
2
15
第5章 刚体力学基础 动量矩
例2 设圆柱型电机转子由静止经300s后达 18000r/min已知转子的角加速度α与时间成 正比。 求: 转子在这段时间内转过的圈数。 解: 因角加速度α 随时间而增大, ct 设
在刚体转动过程中,如果转轴固定不动,则称这种 转动为定轴转动。
特点:
① 各质元的线速度、加速度 不同。 ② 由于各质元的相对位置保持 不变,且都绕同一转轴作圆 周运动,因此具有相同的角 速度和角加速度;在相同的 时间内有相同的角位移。
大学物理 第三次修订本
第5章 刚体力学基础 动量矩 大小: 方向:
大学物理 第三次修订本
h θ
F Fn
F
23
第5章 刚体力学基础 动量矩
力不在垂直于轴的平面内
z
r
F//
M z ( F ) F r sin F h Fτ r
2.力对点的力矩
h θ
F
大学物理第五章刚体力学1
机械能守恒定律是物理学中的基本定律之一,对于刚体而言同样适用。如果一个刚体在 运动过程中不受外力矩作用,则其动能和势能之和保持不变。这意味着,如果刚体的动
能增加,则其势能必定减少,反之亦然。
05
刚体的振动和波动
简谐振动
简谐振动定义
物体在平衡位置附近做周期性往复运动的现象。
简谐振动方程
x=A*sin(ωt+φ),其中A为振幅,ω为角频率,φ为初相角。
THANK YOU
感谢聆听
转动惯量的计算
对于细长均匀杆,转动惯量I=mr^2/2;对于质量均匀分布的圆盘, I=mr^2/4。
03
刚体的角动量守恒定律
角动量守恒定律
角动量守恒定律
一个不受外力矩作用或者所受 外力矩的矢量和为零的刚体, 其角动量保持不变。
角动量
刚体绕某一定点的转动惯量与 刚体相对该点的角速度的乘积 。
角动量守恒的条件
刚体定义与特性
80%
刚体定义
刚体是一个理想化的物理模型, 在实际中并不存在。
100%
刚体特性
刚体具有不变形、不可压缩、无 摩擦等特性。
80%
刚体运动
刚体的运动可以用质点和刚体的 运动学来描述,其动力学则由牛 顿第二定律和转动定律来描述。
02
刚体的转动定律
刚体的角速度和角动量
角速度
描述刚体绕固定点转动的速度,用矢 量表示,单位为弧度/秒。
总结词
刚体的动能在数值上等于刚体 转动惯量与刚体角速度平方乘 积的一半。
详细描述
除了平动运动外,刚体还可以 进行转动运动。在转动运动中 ,刚体的动能等于刚体的转动 惯量与刚体角速度平方乘积的 一半。
刚体的势能
第05章__刚体力学基础
第五章 刚体力学基础一、选择题1、一刚体以每分钟60转绕z 轴做匀速转动(ω沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为:(A) k j i157.0 125.6 94.2++=v(B) j i8.18 1.25+-=v(C) j i8.18 1.25--=v(D) k4.31=v [ B ]2、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .<βB . (D) 开始时βA =βB ,以后βA <βB . [ C ]3、几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 转速必然改变. (B) 转速必然不变.(C)必然不会转动. (D) 转速可能不变,也可能改变. [ D ] 4、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω(A) 增大. (B) 减少.(C) 不会改变.(D) 如何变化,不能确定. [ A ] 5、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大. [ A ]6、关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ C ]7、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ C ]8、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ C ]9、如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小(A) 为41mg cos θ. (B) 为21mg tg θ(C) 为mg sin θ. (D) 不能唯一确定. [ B ]10、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ B ]11、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ C ] 12、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零. 在上述说法中, (A) 只有(1)是正确的. (B) (1) 、(2)正确,(3) 、(4) 错误. (C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ B ]13、将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ C ]14、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C)3 ω0. (D) 3 ω0. [ D ]15、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A) L 32v . (B) L 712v(C) L 76v . (D) L98v.[ C ]16、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v. (B)ML m 23v. (C) MLm 35v. (D)MLm 47v . [ B ]17、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A)12v l . (B) l 32v . (C) l 43v . (D) lv3. [ C ]18、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒. (B) 机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都不守恒.[ C ]O v俯视图俯视图19、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ A ]20、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 减小.(C)不变. (D) 不能确定. [ B ]21、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 机械能守恒. (B) 动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ C ]22、刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ B ]23、一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ B ]24、如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑(A) 2ω 0. (B)ω 0. (C) 21 ω 0. (D)041ω. [ D ]m m25、一个物体正在绕固定光滑轴自由转动,(A) 它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变大,遇冷时角速度变小.(C) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变小,遇冷时角速度变大.[ D ]二、填空题1、一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s,再转60转后角速度为ω2=30π rad /s,则角加速度β=_____________ rad/s2.答案:6.542、一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s,再转60转后角速度为ω2=30π rad /s,则转过上述60转所需的时间Δt=_____________ s.答案:4.83、利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为0.1m的轮子,真空泵上装一半径为0.29m的轮子,如图所示.如果电动机的转速为1450 rev/min,则真空泵上的轮子的边缘上一点的线速度为v≈________ m/s .答案:15.24、利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为0.1m的轮子,真空泵上装一半径为0.29m的轮子,如图所示.如果电动机的转速为1450 rev/min,则真空泵的转速为n2=_________ rev /min.答案:5005、半径为r=1.5 m的飞轮,初角速度ω 0=10 rad·s-1,角加速度β=-5 rad·s-2,则在t=___________ s时角位移为零.答案:46、半径为r=1.5 m的飞轮,初角速度ω 0=10 rad·s-1,角加速度β=-5 rad·s-2,则此时边缘上点的线速度v=___________ m·s-1.答案:-157、可绕水平轴转动的飞轮,直径为1.0 m,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s内绳被展开10 m,则飞轮的角加速度为__________ rad / s2.答案:2.58、绕定轴转动的飞轮均匀地减速,t=0时角速度为ω 0=5 rad / s,t=20 s时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________ rad·s-2.答案:-0.059、绕定轴转动的飞轮均匀地减速,t=0时角速度为ω 0=5 rad / s,t=20 s时角速度为ω = 0.8ω 0,则t=0到t=100 s时间内飞轮所转过的角度θ =______________ rad.答案:25010、一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s.则由静止达到10 rev/s所需时间t= s.答案:9.6111、一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s.则由静止到10 rev/s时圆盘所转的圈数N=________ rev.答案:4812、半径为30 cm的飞轮,从静止开始以0.50 rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t=________ m·s-2.答案:0.1513、半径为30 cm的飞轮,从静止开始以0.50 rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的法向加速度a n=_______________ m·s-2.答案:1.2614、半径为20 cm的主动轮,通过皮带拖动半径为50 cm的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s内被动轮的角速度达到8πrad·s-1,则主动轮在这段时间内转过了________圈.答案:2015、决定刚体转动惯量的因素是刚体的质量和质量分布以及____________________.答案:转轴的位置20、一飞轮以600 rev/min的转速旋转,转动惯量为2.5 kg·m2,现加一恒定的制动力矩使飞轮在1 s内停止转动,则该恒定制动力矩的大小M=_________ N·m.答案:15723、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r外,还受到恒定外力矩M 的作用.若M=20 N·m,轮子对固定轴的转动惯量为J=15 kg·m2.在t=10 s内,轮子的角速度由ω =0增大到ω=10 rad/s,则M r=__________ N·m。
05刚体的定轴转动习题解答
05刚体的定轴转动习题解答05刚体的定轴转动习题解答第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2 Mr J =。
3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有:()A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:JFra /21=(2) 受力分析得:===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为:()A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m 解:答案是A 。
简要提示:由定轴转动定律:α221MR FR =,得:mRFt 4212==?αθ 所以:mFM W /42=?=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为:()A .0211ωJJ J+ B .0121ωJJJ + C .021ωJ JD .012ωJ J解:答案是A 。
第5章 刚体力学基础 动量矩
5.2.2 刚体绕定轴转动微分方程
第 k个质元 Fk f k mk ak
切线方向
rk
fk
Fk
Fk f k mk ak
在上式两边同乘以 rk 对所有质元求和
k
Fk rk f k rk mk ak rk mk rk rk
k k k
Fr f r
刚体的总动能
z
O
rk
vk
P
• Δmk
1 1 1 2 E Ek Δmk rk 2 Δmk rk 2 2 J 2 2 2 2 结论 绕定轴转动刚体的动能等于刚体对转轴的转动惯量与其 角速度平方乘积的一半
Xi’an Jaotong University
第5章 刚体力学基础
本章内容:
5.1 刚体和刚体的基本运动 5.2 力矩 刚体绕定轴转动微分方程 动能定理
动量矩
5.3 绕定轴转动刚体的动能 5.4 动量矩和动量矩守恒定律
5.1 刚体和刚体的基本运动
5.1.1 刚体的概念 在力作用下,大小和形状都保持不变的物体称为刚体。 特殊的质点系, 形状和体积不变化 —— 理想化模型 在力作用下,组成物体的所有质点间的距离始终保持不变 5.1.2 刚体的平动和定轴转动 1. 刚体的平动 刚体运动时,若在刚体内 所作的任一条直线都始终 保持和自身平行
Xi’an Jaotong University
2. 刚体绕定轴的转动 刚体内各点都绕同一直线(转轴)作圆周运动 转轴固定不动 — 定轴转动 描述刚体绕定轴转动的角量 I 角坐标 角速度 角加速度
_____
刚体转动
z
f (t )
d f ' (t ) dt
刚体力学补充内容ppt
y
C
q mg O x
1 2 2 cos q m l q m glcosq m l cosq l sin q q q 3 2 cosq sin q mglcosq ml2q 1 g 2 cos q q sin q cosq q cosq 0 3 l
5 v0 0 2R
此后,质心速度为负,质心后退,但角速度仍沿原方向 质心向左加速,球转动继续减慢 摩擦力方向不变 到某个时刻t2,A点速度为零,球开始做纯滚动
5m g vA vC R v0 m gt2 0 t2 R 0 2R 2v0 R0 t2 7 mg 3 此时 vC v0 m gt2 v0 7 1 v0 R0 4
0 m
R
v0
球相对P点角动量守恒
P
(2)
2 2 mR 0 mv0 R 0 (1) 5 2 v0 R0 5 2 2 2 2 mR 0 mv0 R mvR mR 5 5 3v0 3 代入即得 以 v v0 7 7R 1 v0 R0 4
刚体力学补充内容
若外力为保守力,则机械能守恒: 不是独立方程!
上海交通大学物理系高景jgao@
刚体力学补充内容
一圆柱质量为m,半径为R。静 止地放在摩擦系数为 m 的粗糙水平面上。若沿水平方 向过质心加恒定外力F, 求其运动。
F
[分析] 受力:外力F,重力mg,支持力N,摩擦力f
如何运动与F、f 有关,而f 又与运动情况有关
x
若应用运动定理
为
y px y qx 型方程
通解
ye
pdx
qe pdx dx c
第05章__刚体力学基础补充
第05章__刚体⼒学基础补充第五章刚体⼒学基础⼀、选择题1 甲⼄两⼈造卫星质量相同,分别沿着各⾃的圆形轨道绕地球运⾏,甲的轨道半径较⼩,则与⼄相⽐,甲的:(A)动能较⼤,势能较⼩,总能量较⼤; (B)动能较⼩,势能较⼤,总能量较⼤; (C)动能较⼤,势能较⼩,总能量较⼩;(D)动能较⼩,势能较⼩,总能量较⼩;[ C ]难度:易2 ⼀滑冰者,以某⼀⾓速度开始转动,当他向内收缩双臂时,则: (A)⾓速度增⼤,动能减⼩; (B)⾓速度增⼤,动能增⼤;(C)⾓速度增⼤,但动能不变;(D)⾓速度减⼩,动能减⼩。
[ B ]难度:易3 两⼈各持⼀均匀直棒的⼀端,棒重W ,⼀⼈突然放⼿,在此瞬间,另⼀个⼈感到⼿上承受的⼒变为:(A)3w ; (B) 2w (C) 43w ; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为⽔平光滑固定转轴,平衡时杆竖直下垂,⼀质量为m 的⼦弹以⽔平速度0v 击中杆的A端并嵌⼊其内。
那么碰撞后A 端的速度⼤⼩: (A)M m mv +12120; (B) Mm mv +330;(C) M m mv +0; (D) Mm mv +330。
[ B ]难度:中5 ⼀根质量为m 、长为l 的均匀直棒可绕过其⼀端且与棒垂直的⽔平光滑固定轴转动.抬起另⼀端使棒竖直地⽴起,如让它掉下来,则棒将以⾓速度ω撞击地板。
如图将同样的棒截成长为2l的⼀段,初始条件不变,则它撞击地板时的⾓速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的⼩球,A 球⽤⼀根不能伸长的绳⼦拴着,B 球⽤橡⽪拴着,把它们拉到⽔平位置,放⼿后两⼩球到达竖直位置时绳长相等,则此时两球L的线速度:(A)B A v v = (B) B A v v <(C) B A v v > (D)⽆法判断。
[ C ]难度:中7 ⽔平圆转台上距转轴R 处有⼀质量为m 的物体随转台作匀速圆周运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大;(B)动能较小,势能较大,总能量较大;(C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则:(A)角速度增大,动能减小;(B)角速度增大,动能增大;(C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w ; (D)4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。
那么碰撞后A 端的速度大小: (A)M m mv +12120; (B) M m mv +330;(C)Mm mv +0; (D) M m mv +330。
[ B ]难度:中5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l 的一段,初始条件不变,则它撞击地板时的角速度最接近于: (A)ω2; (B) ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:L(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
已知物体与转台间的静摩擦因数为μ,若物体与转台间无相对滑动,则物体的转动动能为:(A)mgR E k μ41≤ (B) mgR E k μ21≤ (C) mgR E k μ≤ (D)mgR E k μ2≤[ B ]难度:中8 一匀质细杆长为l ,质量为m 。
杆两端用线吊起,保持水平,现有一条线突然断开,如图所示,则断开瞬间另一条绳的张力为:(A)mg 43 (B) mg 41 (C) mg 21 (D) mg [ B ]难度:难9 一根均匀棒AB ,长为l ,质量为m ,可绕通过A 端且与其垂直的固定轴在竖直面内自由摆动,已知转动惯量为231mgl .开始时棒静止在水平位置,当它自由下摆到θ角时,B 端速度的大小为: (A)θsin gl (B) θsin 6gl (C) θsin 3gl (D) θsin 2gl [ C ]难度:中10 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A) 02ωmRJ J+. (B) ()02ωR m J J +. (C)02ωmRJ. (D) 0ω. [ A ]难度:中11 一质量为M 、半径为r 的均匀圆环挂在一光滑得的钉子上,以钉子为轴在自身平面内作幅度很小的简谐振动.已知圆环对轴的转动惯量22Mr J =,若测得其振动周期为π21s ,则r 的值为 (A) g /32. (B)216g .(C) 16/2g . (D) g /4. [A ]难度:中12、质量和长度都相同的均匀铝细圆棒A 和铁细圆棒B ,它们对穿过各自中心且垂直于棒的轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ C ]难度:易13、两个质量和厚度相等的均匀木质圆盘A 和均匀铁质圆盘B ,设两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ A ]难度:易14、两根细棒的质量、长度均相同,且都半截木质、半截钢质,一根的转动轴木质端,另一根的转动轴在钢质端。
今在棒的另一端施相同的力F ,两细棒得到的角加速度满足:(A) βA >βB . (B) βB >βA .(C) βA =βB . (D) 无法确定. [B ]难度:易15、一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上,圆盘与水平面之间的摩擦系数为,圆盘可绕通过其中心的竖直固定光滑轴转动.开始时,圆盘的角速度为0ω,当圆盘角速度变为2ω所需时间为(SI 制):(A)gRμω0. (B) g R μω20.(C)gRμω830. (D) g R μω40.[C ]难度:中16、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,开始时自然悬挂于竖直位置若给棒一水平冲力,则棒在绕轴转动过程中:(A) 角速度逐渐增大,角加速度逐渐减小; (B) 角速度和角加速度都逐渐增大; (C) 角速度和角加速度都逐渐减小;(D) 角速度逐渐减小,角加速度逐渐增大。
[ D ]难度:易17、一个转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0.设它所受阻力矩与转动角速度成正比,即M =-k (k 为正的常数),则圆盘的角速度从变为021ω时所需的时间(SI 制):(A)21. (B) kJ . (C)k J 2ln . (D) k 21. [C ]难度:中18、一个转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0.设它所受阻力矩与转动角速度成正比,即M =-k (k 为正的常数),则圆盘的角速度从0变为021ω时,阻力距所作的功(SI 制):(A) 420ωJ . (B) 8320ωJ -.(C) 420ωJ -. (D) 820ωJ .[B ]难度:中19、一花样滑冰运动员绕通过自身的竖直轴转动,开始时以转动动能220ωJ 旋转,当他向内收缩双臂时,他的转动惯量减少为31J .这时他转动动能变为:(A) 220ωJ . (B) 62ωJ .(C) 2320ωJ . (D) 2920ωJ .[ C ]难度:中20、一人双手握着重物伸开双臂站在可绕中心轴无摩擦转动的平台上,系统的转动惯量为J ,角速度为.当此人突然将两臂收回,使系统的转动惯量减少为31J 0.则该系统:(A) 机械能和角动量守恒,动量不守恒.(B) 机械能守恒,动量和角动量不守恒.(C) 动量和机械能不守恒.角动量守恒. (D) 机械能不守恒.动量和角动量守恒. [ C ]难度:易21、一质量为M 的水平匀质圆盘可绕通过其中心的固定竖直轴转动,圆盘边缘站着一个质量为m 的人.把人和圆盘取作系统,开始时,该系统的角速度为0,接着此人沿着半径走到圆盘中心,在走动过程中(忽略轴的摩擦),此系统的(A) 转动惯量不变; (B) 角速度减小; (C) 机械能不变; (D)角动量不变。
[ D ]难度:易22、一质量为M 的水平匀质圆盘可绕通过其中心的固定竖直轴转动,圆盘边缘站着一个质量为m 的人.把人和圆盘取作系统,开始时,该系统的角速度为0,接着此人沿着半径走到圆盘中心,此系统的角速度将为: (A)02ωMm; (B) 0)21(ωMm+; (C) 0)21(ωMm+; (D)02ωMm。
[ B ]难度:中23、一飞轮从静止开始作均加速转动,飞轮边上一点的法向加速度n a 和切向加速度t a 值的变化为:(A) n a 不变,t a 为零; (B) n a 不变,t a 不变; (C) n a 增大,t a 为零; (D) n a 增大,t a 不变;。
[ D ]难度:中24、一根均匀棒,长为l ,质量为m ,一端固定,由水平位置可绕通过其固定端且与其垂直的固定轴在竖直面内自由摆动.则在水平位置时其质心C 的加速度为(已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml ) :(A)g . (B)0.(C) g 43. (D) g 21. [C ]难度:中25、一根长为l 、质量为m 的均匀细直棒在地上竖立着,如果让其以下端与地的接触处为轴自由倒下,当上端到达地面时,上端的速率为(已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml ) :(A)gl 6. (B) gl 3.(C) gl 2. (D) 23gl. [B ]难度:中26、一根长为l 、质量为m 的的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 、速度为0v 的子弹从与水平方向成角处飞来,击中杆的中点且留在杆中,则杆的中点C 的速度为:(A)20v . (B) ϕcos 730v .(C) ϕcos 430v .(D) ϕsin 730v . [B ]难度:中 27、在经典力学中,下列哪个说法是错误的:(A) 质点的位置、速度、加速度都是矢量.(B) 刚体定轴转动的转动惯量是标量. (C) 质点运动的总机械能是标量. (D) 刚体转动的角速度是标量. [ D ]难度:易1 一飞轮以角速度0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度为,O M Cφ则ωω=__________________. 答案:31 难度:中2 一电唱机的转盘以n = 78 rev/min 的转速匀速转动,则转盘上与转轴相距r = 15 cm 的一点P 的线速度v =__________________. 答案:s rad 难度:中3 一电唱机的转盘以n = 78 rev/min 的转速匀速转动,则转盘上与转轴相距r = 15 cm 的一点P 的法向加速度a n =__________________. 答案:102s m难度:中4 一电唱机的转盘开始以n = 78 rev/min 的转速匀速转动,在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,则转盘在停止转动前的角加速度=__________________. 答案:2s rad难度:中5 一电唱机的转盘开始以n = 78 rev/min 的转速匀速转动,在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,则转盘在停止转动前转过的圈数N =__________________.难度:难6 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度 rad /s 2由静止起动,轮与皮带间无滑动发生.则A 轮达到转速3000 rev/min 所需要的时间t =__________________s . 答案:40 难度:中7、圆柱体以80s rad 的角速度绕中心轴转动,对该轴转动惯量为42m kg ⋅,由于恒力矩的作用,在10s 内其角速度变为40s rad ,则力矩的大小为__________________m N ⋅。