轧钢机电气控制系统设计

合集下载

PLC课程设计轧钢机床的PLC控制系统设计

PLC课程设计轧钢机床的PLC控制系统设计

PLC课程设计说明时间:3月30日至4月10日设计题目:轧钢机床的PLC控制系统设计课程设计要求:阅读参考资料及有关图样,了解一般电气控制装置的设计原则、方法、步骤;上网调研电气控制的新技术、新产品,使设计结果具有先进性;分析课题的控制要求,画出轧钢机床工艺流程;确定控制方案,设计电气控制装置主电路和控制系统。

需要上交的内容:报告书(通知后统一上交)梯形图程序(上机课上交)关于报告书内容:第一章概述:1.1相关背景材料(有关先进技术、产品的资料)(字数要求:500-600字);1.2课程设计要求:(见上课程设计要求);1.3轧钢机工艺流程及控制要求(配外形结构图。

字数要求:300-400字);第二章轧钢机的硬件系统:2.1主回路电气连接图(有说明,说明字数在200字以上);2.1.1短路保护(短路保护部分单独作图做说明);2.1.2过载保护(要求同2.1.1);(2.1.1和2.1.2两部分说明的字数在500字以上);2.2PLC连接图(说明内容要包括PLC的简介、选型信息);2.3PLC的I/O资源分配表第三章轧钢机软件系统:3.1梯形图编程(分开不同的部分进行编写);3.2调试结果(截图或者文字说明)第四章总结:内容包括此次课设所完成的任务,课设中所用到资料的来源要予以说明,此次课设的心得体会;此章字数要求在300字以内。

参考文献关于报告书的格式:标题:1级标题格式:宋体小二号字体,加粗,左对齐,段前0.5行,段后0.5行;2级标题:宋体三号字体,加粗,左对齐,段前0.5行,段后0.5行;3级标题宋体小三号字体,加粗,左对齐,段前0.5行,段后0.5行;正文:宋体小四号字体,1.5倍行间距,首行缩进2字符;从正文起标页码,页码格式:阿拉伯数字,页面底部,居中;完成全文后自动生成目录;封皮模版见教务网站;装订:用拉杆夹在打印出的报告左侧夹装;上交作业时间:报告书:4月10日15:00前梯形图程序:上机课上交。

轧钢机PLC控制系统设计

轧钢机PLC控制系统设计

轧钢机PLC控制系统设计1 问题分析及解决方案1.1 问题描述在冶金企业中轧钢机是重要的组成部分,运用PLC实现对轧钢机的模拟,如右图。

当起始位置检测到有工件时,电机M1、M2开始转动M3正转,同时轧钢机的档位至A档,将钢板轧成A档厚度,当钢板运行到左检测位,电磁阀得电动作将左面滚轴升高,M2停止转动,电机M3反转将轧钢板送回起始侧。

此时起始侧再检测到有钢板,轧钢机跳到B档,把钢板轧成B档厚度,电磁阀得电,将滚轴下降,M3正转,M2转动,当左侧检测到钢板时M2停止转动,电磁阀得电将滚轴抬高M3反转,将钢板运到起始侧。

如此循环直到ABC三档全部轧完,钢板达到指定的厚度,轧钢完成。

1.2 分析过程该工作过程分为三个时序,当起始位置第一次检测到信号时,A档轧钢;起始位置第二次检测到信号时,B档轧钢;起始位置第三次检测到信号时,C档轧钢。

由于每个档位都要工作一段时间才能切换,可以用两个定时器来实现。

2 PLC选型及硬件配置PLC选型及硬件配置如图1。

图13 分配I/O地址表I/O地址表如图2。

图2 4 主电路图及PLC外部接线图4.1 主电路图主电路图如图3。

图34.2 PLC外部接线图PLC外部接线图如图4。

图45 控制流程图及梯形图程序5.1 控制流程图控制流程图如图5。

图5开始起始位置检测起始位置检测起始位置检测左侧位置检测左侧位置检测左侧位置检测A档轧钢B档轧钢C档轧钢回起始位回起始位结束YNYYYYYN NNNN5.2 T型图程序6 程序调试6.1 问题调试为了解决A、B、C三个档位的时序问题,我选择用三条T型图程序来实现,但输出有重复,导致T型图程序运行正确但仿真出现错误。

于是我改变方案,采用了M存储器来代替输出,仿真成功。

6.2 仿真图A档运行:传送回初始位:B档运行:C档运行:7 心得体会通过这次设计实践。

我学会了PLC的基本编程方法,对PLC的工作原理和使用方法也有了更深刻的理解。

在对理论的运用中,提高了我们的工程素质,在没有做实践设计以前,我们对知道的掌握都是思想上的,对一些细节不加重视,当我们把自己想出来的程序与到PLC中的时候,问题出现了,不是不能运行,就是运行的结果和要求的结果不相符合。

PLC的轧钢机控制系统设计

PLC的轧钢机控制系统设计

封面作者:PanHongliang仅供个人学习江西理工大学本科毕业设计(论文)任务书电气工程与自动化学院电气专业级(届)班学号学生题目:基于PLC的轧钢机控制系统设计专题题目(若无专题则不填):PLC软件设计原始依据(包括设计(论文)的工作基础、研究条件、应用环境、工作目的等):工作基础:目前,我国基于PLC轧钢机系统已经不同程度得到了推广应用。

PLC轧钢机控制技术的发展主要经历了三个阶段:继电器控制阶段,微机控制阶段,现场总线控制阶段。

现阶段轧钢机控制系统设计使用可编程控制器(PLC),其功能特点是变化灵活,编程简单,故障少,噪音低,维修保养方便,节能省工,抗干扰能力强。

除此之外PLC还有其他强大功能,它可以进行逻辑控制、运动控制、通信等操作;并具有稳定性高、可移植性强等优点,因此受到广大电气工程控制技术人员的青睐。

研究条件及应用环境:本课题是基于PLC的控制系统的研究课题。

工业自动化是国家经济发展的基础,用于实现自动化控制设备主要集中为单片机和PLC。

单片机由于控制能力有限、编程复杂等缺点,现在正逐步退出控制舞台。

PLC则因为其功能强大、编程简单等优点,得到迅速发展及运用。

PLC的功能强大,可以进行逻辑控制、运动控制、通信等操作;并具有稳定性高、可移植性强等优点,因此,PLC是工业控制领域中不可或缺的一部分。

工作目的:轧钢机如控制和使用得当,不仅能提高效率,节约成本,还可大大延长使用寿命。

对轧钢机控制系统的性能和要求进行分析研究设计了一套低成本高性能的控制方案,可最大限度发挥轧钢机加工潜力,提高可靠性,降低运行成本,对提高机械设备的自动化程度,缩短与国际同类产品的差距,都有着重要的意义。

主要内容和要求:(包括设计(研究)内容、主要指标与技术参数,并根据课题性质对学生提出具体要求):1)当整个机器系统的电源打开时,电机M1和M2旋转,以待传送工件。

2)工件通过轨道从右边输送进入轧制系统。

3)感应器S1感应到有工件输送来时,输出高电位,驱动上轧辊按预定下压一定的距离,实现轧制厚度的调节,同时电机M3开始逆时针旋转,并带动复位挡板也逆时针转动,感应器S1复位。

轧钢电气自动化控制系统改造技术研究

轧钢电气自动化控制系统改造技术研究

轧钢电气自动化控制系统改造技术研究随着我国钢铁行业的发展,轧钢工艺已经逐渐向着更加智能化、自动化的方向发展。

在这样的大背景下,对轧钢电气自动化控制系统进行改造技术研究显得尤为重要。

本文将就轧钢电气自动化控制系统改造技术方面进行一定的研究和探讨。

一、轧钢电气自动化控制系统概述轧钢电气自动化控制系统主要包括PLC控制系统、DCS控制系统、变频器控制系统等。

在传统的轧钢工艺中,这些控制系统起到了至关重要的作用,对轧钢过程中的控制与调节起到了决定性的影响。

PLC控制系统作为工业自动化控制系统的核心之一,广泛应用于轧钢设备。

通过PLC控制系统,可以实现对轧钢设备的自动化控制、监控、数据采集等功能,大大提高了生产效率并降低了劳动强度。

DCS控制系统作为大型轧钢设备的控制系统,其核心功能是通过计算机集中控制各个子系统,实现全局控制。

DCS控制系统可以实现对轧钢生产线的自动化控制、实时监控、远程通信等功能,对轧钢生产线稳定运行起到了关键作用。

变频器控制系统是轧钢电气自动化控制系统中的重要组成部分,通过变频器控制系统可以实现对轧钢机械设备的精准调速,保证轧钢工艺的稳定性和一致性。

轧钢电气自动化控制系统在轧钢工艺中发挥着不可或缺的作用,对轧钢产品的质量、生产效率、能耗等方面都具有重要影响。

随着轧钢工艺的不断发展,传统的轧钢电气自动化控制系统也逐渐暴露出一些问题。

轧钢电气自动化控制系统的老化和落后导致了系统稳定性较差、故障频发、运行性能不佳等问题。

随着轧钢设备的长期运行,控制系统中的元器件、接线、传感器等设备逐渐老化,不能满足轧钢工艺对自动化控制的需求。

传统的轧钢电气自动化控制系统难以满足轧钢工艺日益增长的智能化、高效化的需求。

在现代轧钢工艺中,需要实现对轧制参数的精准控制、自动化调整、智能化优化等功能,传统的轧钢电气自动化控制系统难以满足这些需求。

轧钢电气自动化控制系统的信息化水平较低。

传统的轧钢电气自动化控制系统缺乏对生产数据的深度分析和利用,无法实现有效的生产过程监控、数据采集和分析,无法实现对轧钢工艺的自动化调整和优化。

轧钢电气自动化控制系统改造技术研究

轧钢电气自动化控制系统改造技术研究

轧钢电气自动化控制系统改造技术研究1.引言随着现代工业的迅速发展,轧钢行业作为钢铁产业链的重要环节,一直处于高速、大型、自动化程度较高的状态。

而作为轧钢生产的核心,电气自动化控制系统的质量和性能直接影响着轧钢工艺的稳定性和生产效率。

对轧钢电气自动化控制系统进行改造技术研究,以提升生产效率、降低成本、提高产品质量,具有重要的现实意义。

本文将对轧钢电气自动化控制系统改造技术进行深入研究,并介绍一些经典的改造技术,希望能对轧钢行业的发展起到一定的促进作用。

2.轧钢电气自动化控制系统的特点轧钢生产是一个高温、高压、高速的复杂生产过程,其电气自动化控制系统具有以下特点:2.1 高要求轧钢生产对自动化控制系统的要求非常高,要求系统能够实现高速响应、高精度控制、高可靠性和稳定性。

轧钢生产涉及到多种参数的控制,需要实现多变量控制,对控制系统的综合性能要求较高。

2.2 复杂性轧钢生产涉及到多种工艺参数的控制,包括轧制力、轧制温度、轧制速度等,各种参数之间相互影响,系统结构复杂。

为实现自动控制,需要设计合理的控制算法和控制策略,实现多级、多环控制。

2.3 技术更新快随着科学技术的不断进步和市场需求的变化,轧钢电气自动化控制系统需要不断更新和改进,满足新工艺的要求,降低能耗,提高生产效率,降低维护成本。

2.4 安全性轧钢生产存在一定的安全风险,电气自动化控制系统需要具备较高的安全性,能够及时发现和处理异常情况,保障生产运行的安全。

4.轧钢电气自动化控制系统改造实例介绍4.1 输送系统改造输送系统是轧钢生产的重要组成部分,其稳定性和高效运行对整个生产过程具有重要影响。

研究人员在输送系统中引入了智能传感器和大数据分析技术,实现对系统运行状态的实时监测和故障诊断,提高了系统的稳定性和安全性。

4.2 控制系统优化针对轧钢电气自动化控制系统的优化,研究人员对系统的控制算法进行了改进和优化,实现了对轧钢生产过程的高精度控制,提高了产品的质量和生产效率。

自动轧钢机的PLC控制系统设计

自动轧钢机的PLC控制系统设计

自动轧钢机的PLC控制系统设计自动轧钢机是一种用于将铁水或钢块进行加工、压制和轧制的关键设备。

它主要由温控系统、液压系统、轮辊线系统和PLC控制系统等组成。

PLC控制系统是整个轧钢机运行和控制的核心部分。

本文将详细介绍自动轧钢机的PLC控制系统设计。

一、系统框架设计自动轧钢机的PLC控制系统主要由中央控制器(CPU)、输入模块、输出模块、通信模块和用户界面组成。

其中,中央控制器用于处理和控制信号,输入模块用于接收传感器信号,输出模块用于控制执行器的操作,通信模块用于与外部设备进行数据交互,用户界面用于人机交互。

二、硬件设计1.中央控制器:选择可编程逻辑控制器(PLC)作为中央控制器,可根据实际需求选择合适的型号和规格。

PLC需要具备足够的输入和输出接口,以满足轧钢机的控制需求。

2.输入模块:根据实际需要选择合适的输入模块,用于接收传感器信号。

例如,温度传感器、压力传感器、位移传感器等。

输入模块需要具备稳定、可靠的信号传输性能。

3.输出模块:根据实际需要选择合适的输出模块,用于控制执行器的操作。

例如,液压阀、电磁阀、电动机等。

输出模块需要具备高效、可靠的控制性能。

4.通信模块:根据实际需求选择合适的通信模块,用于与外部设备进行数据交互。

例如,以太网通信模块、串口通信模块等。

通信模块需要具备稳定、可靠的数据传输性能。

5.用户界面:根据实际需要选择合适的用户界面,用于人机交互。

例如,触摸屏、按钮、指示灯等。

用户界面需要具备直观、易用的操作性能。

三、软件设计1.程序设计:根据轧钢机的工作流程和控制要求编写PLC程序。

程序包括输入信号的检测和处理、输出信号的生成和控制、故障检测和报警等功能模块。

2.控制算法设计:根据轧钢机的特点和要求设计合适的控制算法,包括温度控制、压力控制、轮辊线速度控制等。

控制算法需要满足精度要求,提高轧钢机的生产效率和产品质量。

3.系统调试和优化:在系统安装和调试过程中,根据实际情况对软件进行优化,提高系统的稳定性和可靠性。

自动轧钢机PLC控制系统设计

自动轧钢机PLC控制系统设计

《创新课程设计》报告书2016年12月课程设计报告书设计步骤一、PLC的基本组成PLC的类型繁多,功能和指令系统也不尽相同,但结构与工作原理则大同小异,通常由主机、输入/输出接口、电源扩展器接口和外部设备接口等几个主要部分组成。

PLC的硬件系统结构如图1所示。

图1 硬件系统结构二、硬件设计根据控制要求,本设计有2个检测信号,S1用于检测待加工钢板是否已在传输带上,S2用于检测待加工钢板是否到达加工点。

S1有效时,M1、M2工作,M3正转。

S2有效时,M3反转,Y1动作。

轧钢机需要重复三次,停机一分钟,将加工好的钢板放入加工后钢板存储区,因此需要计数器和定时器,并且计数达到预定值后还要复位,。

结构示意图中S1为检测传送带上有无钢板传感器,S2为检测传送带上钢板是否到位传感器。

M1、M2为传送带电动机;M3F和M3R为传送带电动机M3的正转和反转指示灯;Y1为锻压机。

结构示意图如图2。

设计步骤图2 结构示意图三、主电路设计电气原理图是根据电气控制系统的工作原理,采用电器元件展开的形式,利用图形符号和项目符号表示电路各电器元件中导电部件和接线端子连接关系的电路图。

电气原理图并不按电器元件实际布置来绘制,而是根据它在电路中所起的作用画在不同的部位上。

电气原理图具有结构简单、层次分明的特点,适合研究和分析电路工作原理,在设计研发和生产现场等方面得到广泛应用,主电路图如图3所示。

M3~M3~3~QSFU1FU2FR1FR2FR3KM1KM2KM3KM4KM5KM6M1M2M3FU3图3 主电路设计步骤四、程序流程图根据控制要求分析,按下启动开关,电动机M1、M2运行,Y1(第1次)给出向下的扎压量。

用开关S1模拟传感器,当传送带上面有钢板时,传感器S1为ON,则电动动机M3正转,钢板轧过后,S1信号消失为OFF。

检测传送带上面钢板到位的传感器S2为ON,表示钢板到位,电磁阀2动作,电动机M3反转,将钢板推回。

轧钢电气自动化控制系统改造技术研究

轧钢电气自动化控制系统改造技术研究

轧钢电气自动化控制系统改造技术研究随着工业自动化水平的不断提高,轧钢行业也在不断寻求更先进的电气自动化控制系统改造技术,以提高产品质量、生产效率和降低能耗。

本文将就轧钢电气自动化控制系统改造技术进行深入研究,探讨其技术原理、应用范围和发展趋势。

一、技术原理轧钢电气自动化控制系统改造技术是指利用先进的电子、计算机和通信技术,对传统的轧钢电气控制系统进行升级和改造,以实现对轧机、辅助设备和生产过程的智能化、自动化控制。

其主要技术原理包括:1. 控制系统集成化:利用现代化的控制技术,将轧机、切割机、辊道、输送机等设备的控制系统进行集成,实现整个生产线的一体化控制。

2. 数据采集与分析:通过传感器、仪器和设备对生产过程中的各种数据进行实时采集和监测,利用计算机和专业软件对数据进行分析和处理,为生产过程提供准确的参数和指导。

3. 自动化监控:借助先进的控制算法和自动化设备,实现对轧机负荷、速度、张力、温度等参数的自动调节和控制,提高产品生产的一致性和稳定性。

4. 人机交互界面:通过人机交互界面,实现生产员工对生产过程的监控和管理,提升生产效率和质量。

二、应用范围轧钢电气自动化控制系统改造技术广泛应用于各类轧钢生产线和工厂,包括热轧、冷轧、钢板镀锌、带钢、型钢等不同的生产工艺和产品类型。

特别是在大型钢铁企业和国家重点的钢铁工程项目中,更是需要采用先进的电气自动化控制系统改造技术,以满足高效、高质的生产需求。

1. 热轧生产线:通过改造控制系统,可以实现对高温轧机和热轧带钢生产过程的智能化监控和控制,提高生产效率和产品质量。

3. 镀锌生产线:对镀锌带钢生产线的电气自动化控制系统进行改造,可以实现对镀锌过程稳定性和涂层质量的提高,减少废品率。

4. 型钢生产线:对型钢轧机和辅助设备的控制系统进行升级改造,可以提高型钢的成形精度和表面质量,降低生产成本。

三、发展趋势随着轧钢行业的不断发展和技术进步,轧钢电气自动化控制系统改造技术也呈现出一些明显的发展趋势:1. 智能化技术的应用:随着人工智能、大数据、云计算等技术的发展,轧钢电气自动化控制系统将更加注重数据分析和智能决策,实现生产过程的自动化优化和智能化管理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
1.课程设计目的 (2)
2.课程设计正文 (2)
2.1可编程序控制器概述 (2)
2.2控制要求 (2)
2.3轧钢机电气控制模板 (3)
2.3.1热金属检测器 (3)
2.3.2液压系统 (3)
2.3.3电机正反转 (4)
2.3.4电磁阀 (4)
2.4编制程序 (5)
2.4.1程序流程图 (5)
2.4.2 I/O地址表 (6)
2.4.3 实验梯形图 (6)
2.4.4实验程序 (10)
3.课程设计总结 (13)
4.参考文献 (13)
1.课程设计目的
通过对轧钢机的设计,深入了解轧钢机的结构和工作过程,实现轧钢机的控制,加强了解PLC的梯形图,指令表,外部接线图,PLC设计原理及其控制,和工作原理。

2.课程设计正文
2.1可编程序控制器概述
“可编程序控制器是一种数字运算操作的电子装置,专为在工业环境下应用而设计。

它采用可编程序的存储器,用来在其部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式或模拟式的输入和输出控制各种类型的机械或生产过程。

可编程序控制器及其有关的外围设备都应按易于与工业控制系统连成一个整体,易于扩充其功能的原则设计。

”可编程序控制器(Programmable Logic Controller)简称PLC,是以微处理器为基础,综合了计算机技术、自动控制技术和通讯技术而发展起来的一种新型、通用的自动控制装置。

2.2控制要求
【1】按下启动按钮,上下两轧辊电机(主拖动电机,M1)起动运转,轧制方向为从右向左轧制。

左右侧轧道电机(M2和M3)启动逆时针运转,向左输送。

设备启动5秒后,PLC检测有无等待的轧件,即S1是否有效。

若无轧件则一直等待。

S1有效信号到来后,PLC通过某一路开出控制电磁铁动作,打开轧件挡板,让轧件进入轧机的右侧轨道。

待轧件完全进入后(设需时4秒),释放电磁铁,关闭轧件挡板。

【2】轧件在右侧辊道推动下进入轧辊下轧制,轧辊间有热金属探测仪给出正在轧制的信号,由S2仿真,高电平表示正在轧制。

S2由高电平变为低电平表示轧件已经通过轧辊。

轧件通过轧辊后PLC控制两侧辊道停止,电磁液压阀Y2动作使左侧辊道翘起。

【3】1秒后启动左侧辊道向右输送。

这时由安装在上轧辊上方的另一个热金属探测仪给出轧件通过的信号,由另一个手动开关S3仿真。

S3由高电平变为低电平表示轧件已经完全回到了轧辊右侧。

PLC 断开电磁阀Y2电源,并停止左侧辊道运转。

【4】1秒钟后左侧辊道放平,启动左右侧辊道电机向左输送,开始下一次轧制。

重复完成第二次轧制,并准备好第三次轧制。

三次轧制完成后,即热金属探测仪输出由高电平变为低电平后,左侧辊道继续向左输送3秒钟,把轧件送出轧机。

结束该轧件的轧制过程。

回到第二步但不需要5秒的延时。

按下停止按钮结束工作。

2.3轧钢机电气控制模板
2.3.1热金属检测器
热金属检测器(Hot Metal Detector)属于光电检测装置,用于识别热金属运动的前沿及方向。

热金属检测器包括光电转换线路,电子开关比较输出线路和电子补偿线路。

其工作原理:透镜将被测物体发出的红外线热辐射传送到光电转换线路转换成电信号并放大后送至电子开关比较线路,当辐射量达到触发点时(可自行设置不同温度触发点,调节最佳温度影响),电子开关输出线路就被触发。

同时特别设计的电子补偿线路能补偿高温环境和器件老化带来的变化,无需人工调节,可在恶劣环境下连续工作稳定、可靠。

热金属检测器设计特点:一般由环氧树脂完全密封在不锈钢套中的红外开关,结实耐用。

设计时就必须考虑其不受蒸汽,水,灰尘,冲击,震动以及油污的这些重工业环境影响。

它的温度补偿系统可以应付极端多变的温度环境。

同时具备部测试电路,可在正式检测之前做预检查。

可以设计成整体化的器件,也可以带远程光纤透镜系统。

加上水冷或风冷套后,还可在高温环境下工作。

另外还可以通过旋转支架来使检测器在多个不同轴向上做自由旋转。

2.3.2液压系统
液压系统的作用为通过改变压强增大作用力。

一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。

一个液压系统的好坏取决于系统设计的合理性、系统元件性能的的优劣,系统的污染防护和处理,而最后一点尤为重要。

近年来我国国液压技术有很大的
提高,不再单纯地使用国外的液压技术进行加工。

2.3.3电机正反转
电机正反转的原理:三相电机改变相序也就是改变了旋转磁场的方向。

电机正反转连接图:
2.3.4电磁阀
电磁阀是用来控制流体方向的自动化基础元件,属于执行器;通常用于机械控制和工业阀门上面,对介质方向进行控制,从而达到对阀门开关的控制。

电磁阀里有密闭的腔,在不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来挡住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞杆带动机械装置动。

这样通过控制电磁铁的电流通断就控制了机械运动。

2.4编制程序
2.4.1程序流程图
2.4.2 I/O地址表
I0.0 启动按钮
I0.1 信号检测
I0.2 热金属探测仪1
I0.3 热金属探测仪2
I0.4 结束按钮
Q0.0 主拖动电机M1
Q0.1 左侧辊道电机M3正转
Q0.2 左侧辊道电机M3反转
Q0.3 右侧辊道电机M2
Q0.4 电磁铁控制扎件挡板
Q0.5 左侧辊道翘起
Q0.6 轧钢信号灯
2.4.3 实验梯形图
2.4.4实验程序
3.课程设计总结
我们的课设题目是轧钢机电气控制系统设计。

通过这次为期两周的PLC课程设计,让我很好的锻炼了理论联系实际,以及对PLC的理论有了更深入的了解。

既让我们懂得了怎样把理论应用于实际,又让我们懂得了在实践中遇到的问题怎样用理论去解决。

在设计的制作过程中我们遇到了不少的问题,感觉到了知识面的匮乏,借助着图书馆丰富的藏书,查阅相关的资料,我们很好地借助这个好助手,很多的问题都迎刃而解了。

我们学习的知识是有限的,在以后的工作中我们肯定会遇到许多未知的领域,这方面的能力便会使我们受益非浅。

通过这次实践使我更深刻的体会到了理论联系实际的重要性,我们在今后的学习工作中会更加的注重实际。

课程设计是培养学生综合运用所学知识,发现、提出、分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。

在设计过程中,总是遇到这样或那样的问题。

有时发现一个问题的时候,需要做大量的工作,花大量的时间才能解决。

自然而然,我的耐心便在其中建立起来了。

为以后的工作积累了经验,增强了信心。

感辅导老师的细心指导,也感学校给予我们这一次宝贵的实践机会。

4.参考文献
[1]廖常初.PLC基础及应用.机械工业,2003
[2]廖常初.可编程序控制器的编程方法与工业应用.大学,2003
[3]进秋.可编程序控制器的原理及应用实例.机械工业,2004
[4]钦和.可编程序控制器应用技术与设计实例.人民邮电,2004
[5]程玉华.西门子S7-200工程应用实例分析.电子工业,2008。

相关文档
最新文档