有限元分析在桥梁结构中的应用PPT课件
合集下载
有限元分析及应用课件
![有限元分析及应用课件](https://img.taocdn.com/s3/m/caeb313230b765ce0508763231126edb6e1a7617.png)
参数设置
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
ANSYS有限元分析——课程PPT课件
![ANSYS有限元分析——课程PPT课件](https://img.taocdn.com/s3/m/cf7f4f5184254b35eefd34f4.png)
文档仅供参考,如有不当之处,请联系本人改正。
12.ANSYS/DesignSpace:该模块是ANSYS的低端产品, 适用与设计工程师在产品概念设计初期对产品进行基 本分析,以检验设计的合理性。其分析功能包括:线 性静力分析、模态分析、基本热分析、基本热力耦合 分析、拓扑优化。其他功能有:CAD模型读取器、自 动生成分析报告、自动生成ANSYS数据库文件、自动 生成ANSYS分析模板。产品详细分类: DesignSpace for MDT DesignSpace for SolidWorks Standalone DesignSpace : ( 支 持 的 CAD 模 型 有 : Pro/E 、 UG 、 SAT、Parasoild)
文档仅供参考,如有不当之处,请联系本人改正。
8. ANSYS/ED:该模块是一个功能完整的设计模拟程序, 它拥有ANSYS隐式产品的全部功能,只是解题规模受 到了限制(目前节点数1000)。该软件可独立运行, 是理想的培训教学软件。
9. ANSYS/LS-DYNA:该程序是一个显示求解软件,可 解决高度非线性结构动力问题。该程序可模拟板料成 形、碰撞分析、涉及大变形的冲击、非线性材料性能 以及多物体接触分析,它可以加入第一类软件包中运 行,也可以单独运行。
有限元分析的基本步骤如下: • 建立求解域并将其离散化有限单元,即将连续问题分
解成节点和单元等个体问题; • 假设代表单元物理行为的形函数,即假设代表单元解
的近似连续函数; • 建立单元方程; • 构造单元整体刚度矩阵; • 施加边界条件、初始条件和载荷; • 求解线性或非线性的微分方程组,得到节点求解结果;
文档仅供参考,如有不当之处,请联系本人改正。
6. 声学分析 ●定常分析 ●模态分析 ●动力响应分析
有限元梁单元课件
![有限元梁单元课件](https://img.taocdn.com/s3/m/ebcd4809a9956bec0975f46527d3240c8447a1d1.png)
详细描述
在桥梁结构的有限元分析中,梁单元被广泛用于模拟桥梁的横梁、纵梁等结构构件。通过将桥梁离散 化为一系列的梁单元,可以计算出各梁单元的应力、应变等力学参数,从而评估桥梁的整体性能和安 全性。
建筑结构的有限元分析
总结词
建筑结构的有限元分析是有限元梁单元的又一重要应用,通 过模拟建筑的受力行为,可以优化建筑设计并提高建筑的安 全性和稳定性。
拓展有限元梁单元的应用范围 ,将其应用于更广泛的工程领 域,如海洋工程、地质工程等 。
结合智能优化算法和机器学习 技术,实现有限元梁单元的自 动建模和参数优化,提高设计 效率。
加强与实验研究的结合,通过 实验验证有限元梁单元的准确 性和可靠性,为工程实际提供 更加可靠的依据。
THANKS
01
梁单元是一种常见的有限元单元,用于模拟具有弯曲和剪切行 为的杆件。
02
在有限元梁单元的离散化过程中,将梁划分为一系列小的单元
,每个单元具有节点和内部点。
离散化后的梁可以被表示为一组节点的位移和内力的函数,通
03
过节点间的位移关系和内力平衡关系建立方程。
有限元梁单元的刚度矩阵与质量矩阵
刚度矩阵和质量矩阵是有限元分析中的两个重要概念 ,分别描述了结构的刚度和质量特性。
03 有限元梁单元的实现
有限元方法概述
有限元方法是一种数值分析方法,通过将复杂的连续结构离散化为有限个 小的单元,来近似求解复杂的工程问题。
有限元方法具有灵活性和通用性,可以应用于各种形状和类型的结构分析 。
有限元方法的基本步骤包括离散化、单元分析、整体分析、求解和后处理 等。
有限元梁单元的离散化
研究梁在稳定性问题下的承载能力和 失稳过程。
梁的剪切理论
在桥梁结构的有限元分析中,梁单元被广泛用于模拟桥梁的横梁、纵梁等结构构件。通过将桥梁离散 化为一系列的梁单元,可以计算出各梁单元的应力、应变等力学参数,从而评估桥梁的整体性能和安 全性。
建筑结构的有限元分析
总结词
建筑结构的有限元分析是有限元梁单元的又一重要应用,通 过模拟建筑的受力行为,可以优化建筑设计并提高建筑的安 全性和稳定性。
拓展有限元梁单元的应用范围 ,将其应用于更广泛的工程领 域,如海洋工程、地质工程等 。
结合智能优化算法和机器学习 技术,实现有限元梁单元的自 动建模和参数优化,提高设计 效率。
加强与实验研究的结合,通过 实验验证有限元梁单元的准确 性和可靠性,为工程实际提供 更加可靠的依据。
THANKS
01
梁单元是一种常见的有限元单元,用于模拟具有弯曲和剪切行 为的杆件。
02
在有限元梁单元的离散化过程中,将梁划分为一系列小的单元
,每个单元具有节点和内部点。
离散化后的梁可以被表示为一组节点的位移和内力的函数,通
03
过节点间的位移关系和内力平衡关系建立方程。
有限元梁单元的刚度矩阵与质量矩阵
刚度矩阵和质量矩阵是有限元分析中的两个重要概念 ,分别描述了结构的刚度和质量特性。
03 有限元梁单元的实现
有限元方法概述
有限元方法是一种数值分析方法,通过将复杂的连续结构离散化为有限个 小的单元,来近似求解复杂的工程问题。
有限元方法具有灵活性和通用性,可以应用于各种形状和类型的结构分析 。
有限元方法的基本步骤包括离散化、单元分析、整体分析、求解和后处理 等。
有限元梁单元的离散化
研究梁在稳定性问题下的承载能力和 失稳过程。
梁的剪切理论
有限元分析在桥梁结构中的应用精品文档
![有限元分析在桥梁结构中的应用精品文档](https://img.taocdn.com/s3/m/2fae1f9a0242a8956bece4e2.png)
美国国家宇航局(NASA)的资助
NASTRAN:MSC. Nastran软件获得美国联邦航空管理局 (FAA)认证,成为领取飞行器适航证指定的唯一验证软 件。
2019/10/18
10
Adina: 在计算理论和求解问题的广泛性方面处于全球领 先的地位,尤其针对结构非线性、流/固耦合等复杂问题的 求解具有强大优势。近20年的商业化,被广泛应用于各个 工业领域的工程仿真计算,包括土木建筑、交通运输、石 油化工、机械制造、航空航天、汽车、国防军工、船舶、 以及科学研究等各个领域。 ADINA的最早版本出现于1975,在K. J. Bathe博士的带领下, 由其研究小组共同开发。 86年Bathe博士在美国马萨诸塞州成立ADINA R&D公司。
1
k
(1 21
)k
(1 22
)k
(1 23
)k
(1 24
)
k
(1 25
)k
(1 26
)
2
k
(1)
k
(1 31
)k
(1 32
)k
(1 33
)k
(1 34
)
k
(1 35
)k
(1 36
)
k
(1 41
)k
(1 42
)k
(1 43
)k
(1 44
)
k
(1 45
)k
(1 46
)
2019/10/18
6
3、有限元的应用领域
医学中的生物力学
有限元法在牙体修复研究领域
航天航空领域 机械制造和设计 环境 能源 气象 土建(道桥隧、工民建、水利)
NASTRAN:MSC. Nastran软件获得美国联邦航空管理局 (FAA)认证,成为领取飞行器适航证指定的唯一验证软 件。
2019/10/18
10
Adina: 在计算理论和求解问题的广泛性方面处于全球领 先的地位,尤其针对结构非线性、流/固耦合等复杂问题的 求解具有强大优势。近20年的商业化,被广泛应用于各个 工业领域的工程仿真计算,包括土木建筑、交通运输、石 油化工、机械制造、航空航天、汽车、国防军工、船舶、 以及科学研究等各个领域。 ADINA的最早版本出现于1975,在K. J. Bathe博士的带领下, 由其研究小组共同开发。 86年Bathe博士在美国马萨诸塞州成立ADINA R&D公司。
1
k
(1 21
)k
(1 22
)k
(1 23
)k
(1 24
)
k
(1 25
)k
(1 26
)
2
k
(1)
k
(1 31
)k
(1 32
)k
(1 33
)k
(1 34
)
k
(1 35
)k
(1 36
)
k
(1 41
)k
(1 42
)k
(1 43
)k
(1 44
)
k
(1 45
)k
(1 46
)
2019/10/18
6
3、有限元的应用领域
医学中的生物力学
有限元法在牙体修复研究领域
航天航空领域 机械制造和设计 环境 能源 气象 土建(道桥隧、工民建、水利)
有限单元法ppt课件
![有限单元法ppt课件](https://img.taocdn.com/s3/m/0c8b4217ac02de80d4d8d15abe23482fb5da0259.png)
06
有限单元法的发展趋势和展 望
发展趋势
工程应用领域拓展
随着科技的发展,有限单元法在解决 复杂工程问题上的应用越来越广泛, 不仅局限于结构分析,还涉及到流体 动力学、热传导等领域。
与其他方法的结合
有限单元法正与其他数值方法(如有 限差分法、边界元法等)进行交叉融 合,形成更为强大的数值分析工具。
05
有限单元法的优缺点
优点
灵活性
有限单元法允许对复杂的几何形状进 行离散化,适用于解决各种形状和大 小的问题。
高效性
有限单元法能够处理大规模问题,通 过使用计算机技术,可以快速求解。
广泛的应用领域
有限单元法被广泛应用于工程、物理 、生物等领域,是一种通用的数值分 析方法。
易于理解和实现
有限单元法的基本概念直观易懂,且 实现起来相对简单。
01
利用线性代数方法,将 各个单元的数学模型和 节点信息组合成整体方
程组。
03
将节点的未知量返回到 原问题中,得到问题的
解。
05
根据问题的物理性质和 边界条件,建立单元的 数学模型和节点信息。
02
解整体方程组,得到节 点的未知量。
04
有限单元法的特点
适用范围广
可以用于解决各种类型的问题,如弹性力学 、流体力学、传热学等。
高精度与高效率
研究者们致力于开发更高效、精确的 算法,以解决大规模、非线性、动态 等复杂问题。
并行化与云计算应用
随着计算资源的丰富,有限单元法的 计算过程正逐步实现并行化,利用云 计算平台进行大规模计算已成为趋势 。
展望
理论完善与创新
随着工程实践的深入,有限单元法的理论体系将进一步完善,同时会 有更多创新性的算法和模型出现。
《有限元分析及应用》PPT课件
![《有限元分析及应用》PPT课件](https://img.taocdn.com/s3/m/a8a695596ad97f192279168884868762caaebba3.png)
41
2.3 基本变量的指标表达
指标记法的约定:
自由指标:在每项中只有一个下标出现,如
,
i,j为自由指标,它们可以自由变化;在三维ij 问题
中,分别取为1,2,3;在直角坐标系中,可表示
三个坐标轴x, y, z。
哑指标:在每项中有重复下标出现,如:
,j为哑指标。在三维问题中其变化的范ai围j x为j 1,b2i ,3
有限元方法的思路及发展过程
思路:以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、方 便,一般人员可以使用。 实现办法:
20
技术路线:
21
发展过程: 如何处理
对象的离散化过程
22
常用单元的形状
.点 (质量)
面 (薄壳, 二维实体,
.. 轴..对称实体.).......
3
有限元法是最重要的工程分析技术之一。 它广泛应用于弹塑性力学、断裂力学、流 体力学、热传导等领域。有限元法是60年 代以来发展起来的新的数值计算方法,是 计算机时代的产物。虽然有限元的概念早 在40年代就有人提出,但由于当时计算机 尚未出现,它并未受到人们的重视。
4
随着计算机技术的发展,有限元法在各个 工程领域中不断得到深入应用,现已遍及 宇航工业、核工业、机电、化工、建筑、 海洋等工业,是机械产品动、静、热特性 分析的重要手段。早在70年代初期就有人 给出结论:有限元法在产品结构设计中的 应用,使机电产品设计产生革命性的变化, 理论设计代替了经验类比设计。
由此得到
考虑 X 0
xyl ym zy n Y xl yxm zxn X
考虑
Z 0 xzl yzm zn Z
应力边界条件
直梁的有限元分析ppt课件
![直梁的有限元分析ppt课件](https://img.taocdn.com/s3/m/9e2e45c2852458fb760b5682.png)
f1,1, f2,2, f3,3, f4,4 T
26
K 为结构的整体刚度矩阵,也称总刚度矩阵
12 6l 12 6l
0
0 0 0
6l
4l 2
6l
2l 2
0
0
0
0
12 6l 12 12 6l 6l 12 6l 0 0
K
2EI l3
6l 0
2l2 6l 6l 4l2 4l2 0 12 6l
1
1
2
单元编号 1 节点:1,2
2
2
3
单元编号 2 节点:2,3
3
3
4
单元编号 3
节点:3,4
7
划分单元的原则(设置节点的原则)
M
1
2
1
2
3
4
3
• 几何形状发生改变处 • 外载荷规律发生改变处(含约束) • 边界点 • 计算关心的位置 • 单元尺寸要均匀
8
二、单元分析
M
1
2
1
2
3
4
3
截面法:
qi i
6l 2l 2 6l 3l 4l 2 2l 2 3l l2
0 0 6 3l 6 3l
0 0 3l l2 3l 2l 2
f
f2 2 f3 3 4 4
0
Z
24 0 12 6l 0 f2
m0
0
2EI l3
0
12
6l
8l 2 6l 2l 2
4l 2
6l
2l 2
0
0
0 0 f1 0
0
0
0
1
0
MZZ223
Z M 0
M3
26
K 为结构的整体刚度矩阵,也称总刚度矩阵
12 6l 12 6l
0
0 0 0
6l
4l 2
6l
2l 2
0
0
0
0
12 6l 12 12 6l 6l 12 6l 0 0
K
2EI l3
6l 0
2l2 6l 6l 4l2 4l2 0 12 6l
1
1
2
单元编号 1 节点:1,2
2
2
3
单元编号 2 节点:2,3
3
3
4
单元编号 3
节点:3,4
7
划分单元的原则(设置节点的原则)
M
1
2
1
2
3
4
3
• 几何形状发生改变处 • 外载荷规律发生改变处(含约束) • 边界点 • 计算关心的位置 • 单元尺寸要均匀
8
二、单元分析
M
1
2
1
2
3
4
3
截面法:
qi i
6l 2l 2 6l 3l 4l 2 2l 2 3l l2
0 0 6 3l 6 3l
0 0 3l l2 3l 2l 2
f
f2 2 f3 3 4 4
0
Z
24 0 12 6l 0 f2
m0
0
2EI l3
0
12
6l
8l 2 6l 2l 2
4l 2
6l
2l 2
0
0
0 0 f1 0
0
0
0
1
0
MZZ223
Z M 0
M3
有限元法PPT课件
![有限元法PPT课件](https://img.taocdn.com/s3/m/751799640166f5335a8102d276a20029bc64634b.png)
和时间。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
有限元分析在桥梁结构中的应用PPT课件
![有限元分析在桥梁结构中的应用PPT课件](https://img.taocdn.com/s3/m/9b13e3c73169a4517623a33c.png)
Ui
i
Ui
x
19
2( 1,2 ,3 )
2
x
3( 4 ,5 ,6 ) x
x
x
1
3
k
(1)
1( 0 ,0 ,0 )
4( 0 ,0 ,7 )
y
1
k
(2)
2021/7/24
2
3
4
5
6
1
2 3
0 0 0
(1) (1) (1 ) (1) (1 ) (1)
k 11
k 12 k 13 k 14 k 15 k 16
的结构分析,吹响了有限元的号角,有限元这一名称在 1960 年正式提出。
有限元方法的理论和程序主要来自高校和实验室,早期有限元的主要贡献来自
于Berkeley大学。Ed Wilson发布了第一个程序,第一代的程序没有名字,第
二代线性程序就是著名的 SAP (s truc tural analysis program ) ,非线性程序就
是NONSAP。
2021/7/24
第5页/共99页
5
3、有限元的应用领域
• 医学中的生物力学
有限元法在牙体修复研究领域
• 航天航空领域
• 机械制造和设计
• 环境
• 能源
• 气象
• 土建(道桥隧、工民建、水利)
… …
2021/7/24
第6页/共99页
6
4、有限元的学术领域
• 结构(静力、动力学、运动力学、冲击动力学)
ANSYS 收购 Fluent后成为名副其实的全球最大的 CAE 软件公司,在三大洲拥有40多个全资机构,17个
研发中心,近1,400 名员工。
《有限元法及其应用》课件
![《有限元法及其应用》课件](https://img.taocdn.com/s3/m/abbaad8f9fc3d5bbfd0a79563c1ec5da51e2d659.png)
实例
某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点
某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点
[]第1篇 桥梁结构分析的有限元法_第2篇 结构承载力.ppt
![[]第1篇 桥梁结构分析的有限元法_第2篇 结构承载力.ppt](https://img.taocdn.com/s3/m/52394bfa0066f5335b8121b3.png)
单元刚度矩阵是单元特性分析的核心内容element rigid matrix is the core concept of analysis of element characteristics.
(4)建立整个结构的平衡方程equilibrium equation 两个方面:
一是将各个单元的刚度矩阵,集合are integrated成整个物体的整体刚度矩阵 the whole rigidity coefficient matrix; 二是将作用于各单元的等效结点力列阵equivalent nodal force vector,集合 成总的荷载列阵overall load vector。 常用方法the most often used method---直接刚度法
construction method 虚拟层合单元在桥梁结构分析中的应用application of combining virtual
laminated element in analysis of bridge structure
贺:选择适当的
位移函数是有限
单元法分析中的
贺:例如分析
桥梁结构有限元法的分析过程
算各单元应力,加以整理得出所要求的结果。
桁架桥结构分析
桁架桥结构一般均为空间结构,可按空间杆单元进行分析,每个桁
架杆即为一个单元。取结构坐标系( x0 , y0 , z0),单元坐标系
( x, y, z )
{}e [ui ,vi , wi ,u j ,vj , wj ]T
{F}e [Fxi , Fyi , Fzi , Fxj , Fyj , Fzj ]T
2.由平衡问题扩展到稳定问题与动力问题from equilibrium problems extends to stability problems and dynamic problems :结构地震structural seismic 、抗风与波浪力wind resistance and wave force 、动力反应dynamic response
有限单元法原理及应用简明教程ppt课件
![有限单元法原理及应用简明教程ppt课件](https://img.taocdn.com/s3/m/172af1a480c758f5f61fb7360b4c2e3f5627251f.png)
(a) 瞬变结构
(b) 分离体分析
(c) 平衡状态分析
图2-32 瞬变结构
24
第二章 结构几何构造分析
(2) 两刚片规则 两刚片用三根既不完全平行也不交于同一点的链杆 相联,所得结构是几何不变结构。
(a) 铰与链杆连接两刚片 (b) 三链杆连接两刚片 图2-33 两刚片连接规则
25
第二章 结构几何构造分析
章
生刚体位移时,称之为几何不变结构或几何稳定结构,
节
反之则称为几何可变结构或几何不稳定结构。几何可
目 录
变结构不能承受和传递载荷。对结构进行几何构造分
析也是能够对工程结构作有限单元法分析的必要条件。
11
第二章 结构几何构造分析
(a) 结构本身可变 (b) 缺少必要的约束条件 (c) 约束汇交于一点 图2-1 几何可变结构
节
何不变结构上,由增加二元体而发展的结构,是一个
目
几何不变结构。铰接三角形是最简单的几何不变结构。
录
图2-31 铰接三角形
23
第二章 结构几何构造分析
结构的特征是:当它受载荷作用时会产生微小的 位移, 但位移一旦发生后, 即转变成一几何不变结 构,但结构的内力可能为无限大值或不定值,这样的 结构称为瞬变结构。显然,瞬变结构在工程结构设计 中应尽量避免。
(5) 约束处理,求解系统方程
(6) 其它参数计算
4
第一章 概述
图1-2 工程问题有限单元法分析流程
5
第一章 概述
1.3 工程实例
返 回 章 节 目 录
(a) 铲运机举升工况测试
(b) 铲运机工作装置插入工况有限元分析
图1-3 WJD-1.5型电动铲运机