气体定压比热容的测定

合集下载

气体定压比热测定试验

气体定压比热测定试验

空气的定压比热 cp
t2 t1
[J/(kg·K)]
(t1 + t2 ) / 2 (℃)
气体定压比热测定实验数据记录表
1
2
3
hPa。
备用
备注
估算 实测 实测 实测 实测 实测 查表或式(2-9) 式(2-10) 式(2-11) 式(2-13) 式(2-14) 式(2-16)
三、主要计算公式
气体定压比热测定实验
( ) P=2 Pa2 + Pv2 + ∆P= cpQma2 t2 − t1 + Pv2 + ∆P
两式相减消去 ∆P 项,得到
( ) ( ) c = t2 ( ) ( ) p t1
P1 − P2 − Pv1 − Pv2 Qma1 − Qma2 t2 − t1
[J/(kg·K)]
(2-17)
六、实验注意事项
破裂; 5.停止实验时,应先切断电热器电源,稍开大节流阀,待比热仪出口温度与环境温度
的差值小于10℃时再关闭风机。
气体定压比热测定实验
气体定压比热测定实验报告
姓名:
学号:
任课教师:
实验日期:
一、 简述实验目的及原理
二、 实验数据记录及计算
天气情况:
; 室温 tb =
℃; 当地大气压 pb =
工况
加热功率估算值 P′ (W)
比热仪出口温度便开始上升。在温升过程中,加热功率会有所变化(常是缓慢渐增),
这并非异常;
5.待出口温度稳定后(出口温度约在2分钟之内无变化或有微小起伏即可视为稳定,若
要精确测量稳定时间应更长些),测量10升气体通过流量计(流量计指针转5圈)所需时
间τ ,比热仪进口温度 t1 ,出口温度 t2 ,流量计中气体表压(U型管压力表读数)∆h , 电热器的功率 P 。并将数据填入表2-1中。

气体比热容比的测定实验报告及数据

气体比热容比的测定实验报告及数据

气体比热容比的测定实验报告及数据一、实验目的1、学习用绝热膨胀法测定空气的比热容比。

2、观测热力学过程中状态变化及基本物理规律。

3、学习使用数字压力计和温度计等热学实验仪器。

二、实验原理气体的比热容比γ定义为定压比热容Cp与定容比热容Cv之比,即γ = Cp / Cv。

对于理想气体,γ值只与气体分子的自由度有关。

本实验采用绝热膨胀法测定空气的比热容比。

实验中,通过让一定量的气体在绝热条件下进行膨胀,测量膨胀前后气体的压强和温度,从而计算出比热容比。

根据绝热过程方程:P1V1^γ =P2V2^γ ,其中 P1、V1 为绝热膨胀前气体的压强和体积,P2、V2 为绝热膨胀后气体的压强和体积。

又因为理想气体状态方程 PV = nRT ,在实验中,气体的物质的量n 和常数 R 不变,所以可以得到:P1T1^γ /P2T2^γ = 1 ,整理可得:γ = ln(P1 / P2) / ln(T2 / T1) 。

三、实验仪器1、比热容比测定仪:主要由储气瓶、打气球、压力传感器、温度传感器等组成。

2、数字压力计:用于测量气体的压强。

3、数字温度计:用于测量气体的温度。

四、实验步骤1、打开数字压力计和数字温度计的电源,预热一段时间,使其读数稳定。

2、用打气球向储气瓶内缓慢打气,直至数字压力计显示的压强达到一定值(例如 120kPa 左右)。

3、关闭打气球的阀门,等待储气瓶内的气体与外界充分热交换,使温度稳定。

记录此时的压强 P1 和温度 T1 。

4、迅速打开放气阀,让气体绝热膨胀,当压强降至一定值(例如80kPa 左右)时,迅速关闭放气阀。

5、等待储气瓶内的气体与外界再次充分热交换,使温度稳定。

记录此时的压强 P2 和温度 T2 。

6、重复上述步骤,进行多次测量,以减小误差。

五、实验数据记录与处理|测量次数| P1(kPa)| T1(K)| P2(kPa)| T2(K)|γ 计算值||::|::|::|::|::|::|| 1 | 1185 | 3015 | 782 | 2892 | 142 || 2 | 1203 | 3021 | 798 | 2903 | 140 || 3 | 1198 | 3018 | 801 | 2898 | 141 || 4 | 1212 | 3025 | 789 | 2901 | 143 || 5 | 1195 | 3016 | 795 | 2895 | 142 |平均值:γ =(142 + 140 + 141 + 143 + 142)/ 5 = 142六、误差分析1、实验过程中,气体与外界的热交换不能完全避免,导致温度测量存在误差。

空气定压比热测定实验报告

空气定压比热测定实验报告

空气定压比热测定实验报告实验目的:1. 理解热容量的概念;2. 熟悉空气定压比热的测定实验方法;3. 掌握不同物质的空气定压比热的测定方法。

实验原理:在常压条件下,气体的温度升高 1 K 时,流经气体的热量为 Q,气体的空气定压比热容量定义为:$C_p=\frac{Q}{m\Delta T}$,其中,m 为气体的质量,$\Delta T$ 为气体温度的变化量。

实验仪器及材料:1. 恒温水槽2. 数字温度计3. 外径不同的玻璃管和橡胶管4. 热水5. 实验气瓶6. 大气压计7. 线性规8. 秤盘实验步骤:1. 将玻璃管垂直地插入坩埚中,用粘土将其封住;2. 将实验气瓶接在玻璃管上,用橡胶管连接管子和气瓶;3. 用热水调节恒温水槽的温度为30℃,将玻璃管浸入水槽中,调节玻璃管内的空气温度;4. 记录恒温水槽的温度和大气压力;5. 制备一个称重纸,将其置于秤盘上;6. 打开气瓶上的活门,用线性规的一端钳紧玻璃管口,用另一端在称重纸上挂重物,拉起玻璃管口使活门关闭;7. 记录下线性规的测量读数,用数码温度计测量水槽中的温度,记录大气压力;8. 将秤盘放入水槽中,用数码温度计测量秤盘的温度;9. 将水槽中的温度升高十度左右,重复上述操作直到气体温度升高十度左右;10. 记录实验数据。

实验数据记录:空气气瓶重量:m1 = 51.23g瓶子和气瓶的总重量:m2 = 255.70g秤盘重量:m3 = 2.56g线性规示值:L1 = 0.931cm恒温水槽温度:t1 = 30℃水槽中的温度:t2 = 42.3℃秤盘的温度:t3 = 41.8℃大气压力:P = 100.3kpa数据计算:1. 空气瓶质量:m = m2 - m1 = 204.47g2. 称重纸上的重物质量:m' = L1 * S,其中,S 为重物的比重,这里取 S = 8.96,得到 m' = 8.33g;3. 空气瓶内空气质量:m_air = m' - m3 = 5.77g;4. 空气定压比热容量:$C_p=\frac{Q}{m_{air}\Delta T}$,其中,$\Delta T=t2-t1=12.3℃$,$Q=\frac{g \cdotT_1}{S}=\frac{(m2+m){C_p}(t2-t3)}{S}$;5. 计算空气定压比热容量,得到 $C_p=1.01J/g·K$。

指导书-17气体比热容比的测定

指导书-17气体比热容比的测定

气体比热容比的测定气体的定压比热容p c 与定容比热容V c 之比V p c c /=γ称为气体的比热容比。

气体的比热容比γ是热力学理论及工程技术中常用而且重要的物理量,对它的准确测量也是物理学基本测量之一。

常用的测量气体比热容比γ的方法有很多。

如振动法、超声法和绝热膨胀法等等。

其中振动法是最常用的方法之一,其原理是通过实现热力学中的准静态过程(等温、等容及绝热),小钢球以小孔为中心上下作简谐振动,通过测定振动周期来计算结果。

本实验用振动法测量气体的比热容比γ。

该方法原理简单,操作方便。

通过本实验,有助于大家加深对热力学过程中状态变化的理解。

【实验目的】1、理解气体比热容比的物理意义; 2. 掌握测定空气比热容比的原理及方法2、掌握物理天平、螺旋测微器、数字计时仪的使用方法。

【实验仪器】气体比热容比测定仪、物理天平、螺旋测微器、数字计时仪等仪器。

气体比热容比测定仪的结构及连接方法如图6.2-1所示。

图6.2-1 气体比热容比测定仪整机结构示意图1、底座2、储气瓶I3、储气瓶II4、气泵出气口5、FB213型数显计数计时毫秒仪6、气泵及气量调节旋钮7、橡皮管8、调节阀门9、系统气压动平衡调节气孔 10、钢球简谐振动腔 11、光电传感器 12、钢球【实验原理】实验基本装置如图6.2-2所示,振动小球的直径比玻璃管直径仅小mm 02.0~01.0。

它能在此精密的玻璃管中上下移动,在瓶子的壁上有一小口,并插入一根细管,各种气体通过它可以注入到储气瓶中。

当瓶子内压强P 满足2r mgP P L π+=时,钢球A 处于受力平衡状态,式中L P 为大气压强,m 为钢球A 的质量,r 为钢球的半径(直径为d )。

在精密玻璃管B 的中央开设有一个小孔。

当钢球A 处于小孔下方的半个振动周期时,注入气体使储气瓶的内压力增大,引起钢球A 向上移动,而当钢球A 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使钢球下沉。

空气定压比热测定实验报告

空气定压比热测定实验报告

空气定压比热测定实验报告一、实验原理及过程简述实验原理:气体的定压比热定义为:在没有对外界作出功的气体的等压流动过程中,,则气体的定压比热可表示为: 式中 —气体的质量流量,—气体在定压流动过程中的吸热量,低压气体的定压比热容通常用温度的多项式表示,例如空气的定压比热容的实验关系式:在与室温相近的温度范围内,空气的定压比热容与温度的关系可近似看为线性的,可近似表示为:由T 1加热到T 2的平均比热容大气是含水蒸气的湿空气,当湿空气气流由T 1加热到T 2时,其中水蒸气的吸热量可用下式计算: 式中,为气流中的水蒸气质量,。

于是,干空气的平均定压比热容由下式确定:为湿空气气流的吸热量。

实验过程:1、用温湿度计表测量空气的干球温度及相对温度,由湿空气的焓-湿图确定含湿量,并计算出水蒸气的容积成分。

2、调节加热器功率,使出口温度升高至一定温度,当实验工况稳定后测定每10升气体通过流量计所需时间;比热仪进口温度和出口温度;当地大气压力和流量计出口处的表压;电热器的功率W 。

实验中需要计算干空气的质量流量、水蒸气的质量流量,电加热器的放热量,水蒸气吸收热量等数据并记录。

pT h Cp ⎪⎭⎫⎝⎛∂∂=mQ d dh g=)(1221T T mQ CpmgT T -=m s kg gQ s kJ 263101658.01006791.09705.0T T C p --⨯+⨯-=K kg kJ ⋅bT a Cp +=2)(12122121T T ba T T dtbT a C T T T Tpm ++=-+=⎰Kkg kJ ⋅dT m Q T T w w⎰-⨯+=21)105345.06878.1(3 )](102672.0)(6878.1[2122312T T T T mw -⨯+-=- s kJ w ms kg )()(121221T T m Q Q T T m Q Cpm g wg g T T --=-= K kg kJ ⋅wQ),(0K T ϕw r ),(s τ),(1K T ),(2K T ),(Pa B ),(2O mmH h ∆g m w m图二4.根据上式计算得到的实验结果以如下形式表示出:(1)列表表示平均比热容与温度的关系;(2)用作图法或最小二乘法确定常数a和b值,用方程式表示空气的定压比热容与温度的关系。

热力学-实验指导书

热力学-实验指导书

实验一 气体定压比热容测定实验一、实验目的1、了解气体比热容测定装置的基本原理和构思;2、掌握本实验热工参数温度、压力、湿度、热量、流量的测量方法。

二、实验原理可将本实验装置的本体部分简化为一开口稳定流动系统,本体部分保温非常好,近似无散热损失,且系统对外并无功的输出,当系统达到平衡时,工质的焓变等于电热器的放热量。

即:()Q t t c q P m =-12()[]12t t q Q c m P -=式中:c p 为空气的定压比热容,kJ/(kg ·℃)t 1为空气在本体部分的入口温度,℃ t 2为空气在本体部分的出口温度,℃ Q 为电加热器的放热量,kW q m 为空气的质量流量,kg/s本实验测定干空气的定压比热容,因此需额外测定湿空气的参数。

将水蒸气的影响从总量中除去,则利用上式可计算干空气的热容。

实验过程中要求测定三个不同温度下的定压比热容值。

测量与计算过程涉及参数较多,具体过程如下:1、根据流量计出口空气的干球温度和湿球温度,从湿度空气的焓湿图查出含湿量(d,g/kg 干空气),并根据下式计算出水蒸气的容积成分:622/1622/d d r w +=(1)2、电热器消耗的功率可由功率表读出,则单位时间电热器的放热量为:Q=kW IV 310⨯ (2)3、干空气流量为:s kg t h P r T R q p q b w og v g mg /)15.273(06.872100010)81.9)(1(0+⨯∆+-==τ (3)4、水蒸汽流量为:s kg to h P r T R q P q b w w vw mw /)15.273(51.614100010)81.9(0+⨯∆+==τ (4)5、水蒸汽吸收的热量为:()()[]kWt t t t q dtt q Q mw mw w 2122122100021.0850.1)00042.0850.1(-+-=+=⎰ (5)6、干空气的定压比热容为:⋅--=-=kg kJ t t q Q Q t t q Q cmg wmg g t t pm ()()(121221℃) (6)三、实验设备1、整个装置由风机、流量计、比热仪本体、电功率调测量系统组成,如图1所示。

气体比热容比CPCV的测定

气体比热容比CPCV的测定

气体比热容比C P/C V的测定实验目的:1、测定多种气体(单原子、双原子、多原子)的定压比热容C P与定容比热容C V之比。

2、练习使用物理天平、螺旋测微计、数字计时仪、大气压力计等仪器。

实验仪器与用具:振动主体、多功能数字记时仪(分50次、100次两档)、微型气泵、大气压力计、缓冲瓶、螺旋测微计、物理天平、镊子等。

实验原理:气体由于受热过程不同,有不同的比热容。

对应于气体受热的等容和等压过程,气体的比热容有定容比热容C V和定压比热容C P。

定容比热容是单位质量某种气体在保持体积不变的情况下,温度升高1K时所需的热量。

而定压比热容则是单位质量某种气体在保持压强不变的情况下,温度升高1K所需的热量。

显然,后者由于有对外作功而大于前者,即C P>C V。

因此,比值γ=C P/C V>1。

一般说来,在实验中测定C V是比较困难的,故C V通常是通过测定 C P及γ值来获得。

本实验将用测定物体在特定容器中的振动周期来计算γ值。

比玻璃管直径仅小0.01~0.02mm它能在此精密的玻璃管中上下移动。

在烧瓶的壁上有一小孔C,并插入一根细管,通过它各种气体可以注入到烧瓶中。

为了补偿由于空气阻尼引起振动物体A 振幅的衰减,因此通过C 管一直注入一个小气压的气流,在精密玻璃管B 的中央开设一个小孔。

当振动物体A 处于小孔下方的半个振动周期时注入气体使容器的内压力增大。

引起物体A 向上移动,而当物体A 处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使物体下沉,以后重复上述过程。

只要适当控制注入气体的流量,物体A 能在玻璃管B 的小孔上下作间谐振动。

振动周期可利用光电计时装置来测量。

钢球A 的质量为m ,半径为r (直径为d ),当烧瓶内压强P 满足下面条件时钢球A 处于平衡状态:2r mgP P L π+= (1) 式中:P L 为大气压强若物体偏离平衡位置一个较小距离x ,则容器内的压力变化πr 2dp 物体的运动方程为:dp r dtx d m 222π= (2) 因为物体运动过程相当快,所以可以看作是绝热过程,绝热方程为:常数=γPV (3)将(3)式求导数得出:VdVP dp γ-= (4) 容器内体积的变化:x r dV 2π= (5)由(2)、(4)、(5)三式可得:04222=+x mVP r dt x d γπ (6) 此式即为熟知的简谐振动的微分方程,它与式(7)比较:0222=+x dtx d ω (7) 可得: mV P r γπω422=(8)又因 Tπω2=所以 TmVP r πγπω242==即 424264Pr 4Pd T mVT mV ==γ (9)式中各量均可方便测得,因而可算出γ值,由气体运动论可以知道,γ值与气体分子的自由度数f 有关。

气体比热容比的测定实验报告

气体比热容比的测定实验报告

气体比热容比的测定实验报告气体比热容比的测定实验报告引言:气体比热容比是描述气体在不同温度下热量变化的重要物理量。

本实验旨在通过测量气体的压强和体积随温度的变化,来确定气体的比热容比。

通过实验,我们可以深入了解气体的热力学性质,并验证理论公式。

实验原理:根据理想气体状态方程PV=nRT,当气体温度不变时,气体的压强和体积成正比,即P1V1=P2V2。

根据理论公式,气体比热容比γ=Cp/Cv,其中Cp为定压比热容,Cv为定容比热容。

通过测量气体在不同温度下的压强和体积,可以计算出气体的比热容比γ。

实验器材:1. 气体采样器2. 温度计3. 压力计4. 水浴5. 计时器6. 数据记录表实验步骤:1. 将气体采样器连接到压力计和温度计上,确保连接处密封。

2. 将气体采样器放入水浴中,使其温度保持恒定。

3. 记录气体采样器的初始压强和体积。

4. 将气体采样器放入不同温度的水浴中,等待一段时间,使气体温度均匀分布。

5. 记录不同温度下气体采样器的压强和体积。

6. 根据实验数据,计算出不同温度下气体的比热容比γ。

实验结果与分析:根据实验数据,我们计算出了不同温度下气体的比热容比γ。

通过绘制γ与温度的关系曲线,我们可以观察到气体比热容比随温度的变化情况。

实验结果显示,当温度较低时,气体的比热容比γ较接近1。

随着温度的升高,气体的比热容比逐渐增大,最终趋于无穷大。

这与理论预期相符合,因为在高温下,气体分子的运动更加剧烈,分子间相互作用的影响较小,故气体的比热容比接近于无穷大。

实验中可能存在的误差主要来自以下几个方面:1. 气体采样器的密封性可能存在漏气现象,导致压强和体积的测量不准确。

2. 气体温度在不同位置可能存在差异,影响了温度的均匀分布。

3. 实验过程中,水浴的温度变化可能不够稳定,导致气体的温度变化不准确。

为减小误差,我们可以采取以下改进措施:1. 确保气体采样器的连接处密封良好,避免气体泄漏。

2. 使用更加精确的温度计,提高温度测量的准确性。

空气比定压热容的测定

空气比定压热容的测定

空气比定压热容的测定气比定压热容的测定一、实验目的(1)了解比热容测定装置的设备组成及各设备的作用,掌握比热容测定方法。

(2)掌握本实验中的温度、压力、流量、热量等的测定方法。

(3)掌握计算比热值和求得比热容公式的方法,并计算空气的比定压热容。

(4)列表示平均比热容与温度的关系,并用方程表示。

二、实验原理实验台通过在定压条件下加热空气,根据空气温度的变化和流量的大小测出空气的定压比热容,即根据()()[]K kg /kJ 1221•-=t t m Q c p t t p 确定,式中:m 为气体的质量流量,kg/s ;p Q 为气体在等压流动过程中的吸热量,kJ/s 。

在距室温不很远的温度范围内,空气的比定压热容与温度的关系可近似认为是线性的,即可近似表示为bt a c p +=,由1t 加热到2t 的平均比热容为2)(21122121t t ba t t bt a c t t t t p ++=-+=⎰,因此,若以221t t +为横坐标,p c 为纵坐标,则可根据不同温度范围内的平均比热容确定截距a 和斜率b ,从而得出比热容随温度变化的近似关系式。

(1)空气中水蒸气容积成分iv ϕ的确定。

大气是含有水蒸气的湿空气,当湿空气的温度由1t 加热到2t 时,根据布置在流量计出口的干湿球温度计读数t 、w t ,从干湿球温度计的湿度表中查的空气的相对湿度ϕ,再由ϕ和干球温度t 从湿空气的焓湿图查出含湿量d ,则可用下式计算出空气中水蒸气的容积成分(也称为体积分数) %100622/1622/iv ⨯+=d d ϕ式中:d 为含湿量,g (水蒸气)/kg (干空气)。

(2)湿空气的吸热量p Q 的确定。

当比热议出口空气温度稳定时,湿空气吸收的热量即为电热器消耗的电功率。

功率的测定方法有两种,一种是根据测量的电压和电流计算;另一种由功率表直接测量。

吸热量的单位为kJ/s 。

(3)干空气质量流量m 的确定)(15.27305.287/1000/10)1()8.9(iv 0+⨯⨯-⨯∆+==t h p T R V p m a a a a τϕ 式中:0p 为当地的大气压力,Pa ;a p 为干空气的压力,Pa ;a V 为干空气的体积,m 3;a R 为干空气的气体常数,)(K kg J/•;h ∆为流量计出口处的表压力,mmH 2O ;t 为流量计出口处的温度,℃;τ为每10L 气体通过流量计所需的时间,s 。

气体定压比热测定实验报告

气体定压比热测定实验报告

气体定压比热测定实验报告实验目的,通过实验测定气体在定压条件下的比热容。

实验仪器与设备,气体比热容测定装置、气源、温度计、压力计等。

实验原理,在定压条件下,气体吸收的热量与其温度的升高成正比,即Q = nCpΔT,其中Q为吸收的热量,n为气体的物质量,Cp为定压比热容,ΔT为温度的升高。

通过测定气体吸收的热量和温度的变化,可以求得气体的定压比热容。

实验步骤:1. 将气体比热容测定装置连接好,确保密封性良好。

2. 打开气源,让气体充满测定装置。

3. 用温度计和压力计分别测定气体的温度和压力。

4. 在恒定压力下,加热气体,记录下气体温度的变化。

5. 根据测得的数据,计算气体的定压比热容。

实验数据与结果:实验中我们选择了氧气作为实验气体,通过测定得到的数据如下:初始温度,25°C。

初始压力,1 atm。

最终温度,45°C。

最终压力,1 atm。

根据实验数据,我们可以计算得到氧气的定压比热容为 0.21 J/g·°C。

实验分析与讨论:通过本次实验,我们成功测定了氧气在定压条件下的比热容。

在实际应用中,定压比热容是一个非常重要的物理量,它可以帮助我们更好地理解气体在加热过程中吸收的热量和温度的变化关系,对于工业生产和科学研究有着重要的意义。

结论:通过本次实验,我们成功测定了氧气在定压条件下的比热容为 0.21 J/g·°C。

实验结果与理论值基本吻合,实验过程顺利进行,达到了预期的目标。

实验总结:本次实验通过测定气体在定压条件下的比热容,加深了我们对气体热力学性质的理解,提高了实验操作能力和数据处理能力。

同时也增强了对实验原理的理解和应用能力,为今后的学习和科研工作打下了良好的基础。

通过本次实验,我们对气体定压比热的测定方法有了更深入的了解,也为今后的实验工作提供了宝贵的经验。

希望今后能够继续努力,不断提高实验技能,为科学研究和工程技术的发展贡献自己的力量。

化工专业实验操作及思考题

化工专业实验操作及思考题

实验步骤 (1)以 39%(水) ,61%(乙醇)为原料,以乙二醇为萃取剂,采用连续操作进 行萃取精馏。在计量管内注入乙二醇,另一计量管内注入水-乙醇混合液 体。
(2)向釜内注入含少量水的乙二醇(大约 60ml) ,此后可进行升温操作。同时 开预热器升温,当釜开始沸腾时,开保温电源,通塔顶冷凝水,并开始加 料。控制乙二醇的加料速度为 100 ml hr (1 分钟 45 滴) ,水-乙醇液约为 1 分钟 15 滴,不断调节转子流量计的转子,使其稳定在所要求的范围。 (3)当塔顶开始有液体回流时,打开回流电源,给定回流值在 4:1 并开始用量 筒收集流出物料。 (4)当塔顶和塔底的温度不再变化时,进行取样分析。 (5)关闭各部分开关,无蒸汽上升时停止通冷却水。 思考题: 1、用普通精馏能否得到无水乙醇,萃取精馏是如何实现的? 答案:由于乙醇和水形成恒沸物,因此在常压下进行普通精馏无法得到无水 乙醇。 萃取精馏中加入的萃取剂可改变乙醇与水之间的相对挥发度,从而可得到 无水乙醇。 2、萃取剂为何在塔的上部加入? 答案:因萃取剂的沸点较高,挥发度小,在塔的上部加入可保证萃取剂在整个塔 内均有一定的浓度分布。 3、在一定回流比操作时,如何判断过程达到稳定,可进行取样分析? 答案:在一定回流比操作时,当塔顶与塔釜的温度一段时间内不再变化时, 可断定过程已经稳定。 4、选择萃取剂的原则是什么?本实验选择何种物质作为萃取剂? 答案:选取萃取剂的原则有(1)选择性要高(2)用量要少(3)挥发度要 小(4)容易回收(5)价格低廉。 本实验采用乙二醇为萃取剂。 5、乙醇含量由塔底至塔顶有何变化? 答案:乙醇含量由塔底至塔顶逐渐增加。 6、回流比对塔顶冷凝负荷及产物纯度有何影响? 答案:回流比增大,塔顶冷凝负荷增大,产品纯度增加。 7、萃取剂为何不在塔顶加入? 答案:为了尽可能降低塔顶馏出液中萃取剂的含量。

2气体定压比热测定实验指导书

2气体定压比热测定实验指导书

气体定压比热测定实验指导书气体定压比热容的测定实验是工程热力学基本实验之一,实验中涉及温度、压力、热量(电功率)、流量等基本量的测量,计算中用到比热及混合气体(湿空气)方面的基本知识。

本实验的目的是增加热物性实验研究方面的感性认识,促进理论联系实际,有利于培养分析问题和解决问题的能力。

.一、实验要求1. 了解气体比热测定装置的基本原理和构思。

2. 熟悉本实验中测温、测压、测热、测流量的方法。

3. 掌握由基本数据计算出比热值和比热公式的方法。

4. 分析本实验产生误差的原因及减小误差的可能途径。

二、实验装置介绍1、实验所用的设备和仪器仪表由风机、流量计,比热仪本体、电功率调节测量系统共四部分组成,实验装置系统如图1所示。

2、装置中采用湿式流量计测定气流流量,流量计出口的恒温槽用以控制测定仪器出口气流的温度。

装置可以采用小型单级压缩机或其它设备作为气源设备,并用钟罩型气罐维持供气压力稳定。

气流流量用调节阀1调整。

3、比热容测定仪本体(图2)由内壁镀银的多层杜瓦瓶2,进口温度计1和出口温度计8(铂电阻温度计或精度较高的水银温度计)电加热器3和均流网4,绝缘垫5,旋流片6和混流网7组成。

4、气体自进口管引入,进口温度计4测量其初始温度,离开电加热器的气体经均流网4均流均温,出口温度计8测量加热终了温度,后被引出。

5、该比热仪可测300℃以下气体的定压比热。

三、实验方法及数据处理实验中需要测定干空气的质量流量g m 、水蒸气的质量流量w m 、电加热器的加热量(即气流吸热量)'p Q 和气流温度等数据,测定方法如下:1.干空气的质量流量g m 和水蒸气的质量流量w m电加热器不投入,摘下流量计出口与恒温槽连接的橡皮管,把气流流量调节到实验流量值附近,测定流量计出口的气流干球温度0t 和湿球温度w t 温度(或由流量计上的温度计测量和相对湿度ϕ),根据0t 与w t (或0t 与ϕ值)由湿空气的焓-湿图确定含湿量d (g /k g ),并计算出水蒸气的容积成分水蒸气的容积成分计算式:622/1622/d d y w += (1)d --- 克水蒸汽/千克干空气. 图1测定空气定压比热容的实验装置系统1-节流阀;2-流量计;3-比热仪本体;4-温控仪;5功率表;6开关;7-风机。

实验一 气体定压比热的测定

实验一  气体定压比热的测定

实验一 气体定压比热容的测定一、实验目的1. 掌握气体比热容测定装置的基本原理,了解辐射屏蔽绝热方法的基本思路; 2. 进一步熟悉温度、压力和流量的测量方法;3. 测定空气的定压比热容,并与文献中提供的数据进行比较。

二、实验原理按定压比热容的定义, Tq c pp d δ=T c q p p d ⋅=δ⎰⋅=21d T T p p T c m Q气体定压比热容的积分平均值: Tm Q T T m Q c p p pm ∆=-=)(12 (1)式中,Q p 是气体在定压流动过程中由温度T 1被加热到T 2时所吸收的热量(W ),m 是气体的质量流量(kg/s ),△T 是气体定压流动受热的温升(K )。

这样,如果我们能准确的测出气体的定压温升△T ,质量流量m 和加热量Q ,就可以求得气体的定压比热容c pm 。

在温度变化范围不太大的条件下,气体的定压比热容可以表示为温度的线性函数,即 c p =a +bT不难证明,温度T 1至T 2之间的平均比热容,在数值上等于平均温度T m =( T 1+T 2)/2下气体的真实比热容,即c pm =c p [(T 1+T 2)/2]=a+b T m (2)据此,改变T 1或T 2,就可以测出不同平均温度下的比热容,从而求得比热容与温度的关系。

三、实验设备实验所用的设备和仪器主要有风机、流量计、比热仪主体、调压变压器、温度计等。

实验时,被测气体由风机经流量计送入比热仪主体,经加热、均流、旋流、混流后流出。

在此过程中,分别测定:在流量计出口处的干、湿球温度T 0和T w ,气体流经比热仪主体的进出口温度T 1和T 2;气体的体积流量V ;电加热功率P 以及实验时的大气压p b 和流量计出口处的表压p e 。

气体的流量由节流阀控制,气体出口温度由输入电加热器的功率来调节。

本比热仪可测300℃以下气体的定压比热容。

前已指出,提高测量精度的关键是提高Q p 、ΔT 和m 的测量精度,设电加热器的功率为P ,则,P=Q g +Q ζ (3)其中,Q g 是气体所吸收的热量,Q ζ是损失到环境中的热量。

气体定压比热的测定实验报告

气体定压比热的测定实验报告

气体定压比热的测定实验报告
《气体定压比热的测定实验报告》
实验目的:
本实验旨在通过测定气体在定压条件下的比热容,验证气体的热力学性质,并探究气体的分子结构和运动规律。

实验原理:
根据理想气体定压过程的热力学公式,可得出气体的定压比热公式为
Cp=(∆Q)/(n∆T),其中Cp为定压比热,∆Q为吸收的热量,n为气体的摩尔数,∆T为温度的变化量。

通过测定气体在定压条件下的温度变化,可以计算出气体的定压比热。

实验步骤:
1. 将一定量的气体装入定容的容器中,并用活塞固定容器的体积。

2. 将容器浸入恒温水槽中,使其与水槽内的水温相同。

3. 在容器内加热气体,使其温度升高,同时用温度计记录气体的温度变化。

4. 根据温度的变化量和加热所需的热量计算出气体的定压比热。

实验数据:
通过实验测得气体在定压条件下的温度变化量为∆T=10℃,加热所需的热量为∆Q=100J,气体的摩尔数为n=0.1mol。

实验结果:
根据实验数据计算得出气体的定压比热为
Cp=1000J/(0.1mol*10℃)=100J/(mol·℃)。

实验结论:
通过本实验的测定,验证了气体在定压条件下的比热容是一个恒定值,与气体
的种类无关。

同时,通过比热的测定,可以推断出气体的分子结构和运动规律。

本实验为研究气体热力学性质提供了重要的实验数据和理论依据。

总结:
气体定压比热的测定实验为我们提供了了解气体热力学性质的重要途径,通过
实验数据的测定和分析,可以深入理解气体的热力学特性,为相关研究提供了
重要的实验依据。

气体比热容比的确定

气体比热容比的确定

气体比热容比的确定气体的定压摩尔热容C p,m 与定容摩尔热容C v,m 之比VmPmC C v =为气体的比热容比,也叫泊松比。

它在热力学过程特别是绝热过程(const pV m v =)中是一个很重要的参量。

通过对v 的测定,能对绝热过程中的泊松方程(const pV m v =)和泊松比v 进一步理解。

一、试验目的1.了解用共振法测量气体比热容比的原理; 2.掌握比热容比的测量方法; 3.加深对共振现象的理解;4.进一步理解绝热过程的泊松方程(const pV m v =)和泊松比ν的含义。

二、仪器设备ν测定仪、游标卡尺、物力天平、气压计。

三、试验原理 泊松比 VmPm C C v =(8-1)理想气体有R iC vm 2=(8-2 ) R i R C C Vm pm22+=+= (8-3 )式中 R ——摩尔气体常数,R=8.31J/mol ·K;i ——气体分子的自由度。

单原子分子i=3;双原子分子i=5;多原子分子i=6。

将(8-2 )和(8-3 )式代入(8-1 )式,得ν=(i+2)/i (8-4)由此可见,理想气体的比热容比ν,仅仅与气体分子的自由度i 有关。

对单原子分子的气体,ν=5/3=1.67,对双原子分子的气体,ν=7/5=1.40,对多原子分子气体,ν=8/6=1.33。

现在假设有一个容器,内装待测气体,由一个质量为m 的活塞将其与外界隔绝,且与外界处于平衡状态。

外界的压强为ρ0,气体长为l 0,活塞截面积为S 。

此时气柱的体积为S l V 00=。

建立坐标,如图8-1所示,当活塞产生一个小位移时,气柱体积变为 S x l V )(00-=如果这是一个绝热过程,则有 c o n s t pV v =即 v v v S x l p S l p )()(000-= 化简得 vl x p p --=)1(00 由于x 是小位移,故x/ l 0<<1。

气体定压比热容的测定

气体定压比热容的测定

气体定压比热容的测定测定气体定压比热容的根本测量工程,是测量巳知流量的气体的吸热量(或放热量) 和温度改变值.根本方法可以分为了两类.一类称为了混合法 ,即预先将气体加热,让它流过量 热器时受冷却(到达与量热器热平衡),由量热器测定气体的放热量.另一类称为了定流法 , 即让气体流过量热器时被加热,由量热器测定气体的吸热量,因此,除了要准确测定气体在 量热器人口和出口的温度之外,还必须仔细消除量热器热损失的影响或确定它的修正值 , 才能准确地测定气体的吸热量或放热量.本实验采用定流法测定空气的平均定压比热容.一、实验原理气体的定压比热容定义为了(2-1)在没有对外界作功的气体的等压流动过程中,dh —dQ p , 那么气体的定压比热容可以表小为了1 :Q _ ~c P (-7)P (2-2)m ;T当气体在此等压过程中由温度t i 加热至温度t 2时,气体在此温度范围内的平均定压比热 容值可以由下式确定:式中,m -------- 气体的水平流量kg/s ;Q P ——气体在等压流动过程中的吸热量,kJ/s低压气体的定压比热容通常用温度的多项式表示,例如下面空气的定压比热容的实验 关系式: C P = 1.02319-1.76019 X 10-4T+4.02402X 10 -7T 2 -4.87268 x lO -10T 3 kJ/ (kg K )式中T 为了绝对温度,K .该式用丁 250〜600 K ,平均偏差为了0.03%,最大偏差为了0.28%.在离开室温不很远的温度范圈内,空气的定压比热容与温度的关系可近似认为了是线性 的,即可近似表示为了c a bt p由t 1加热到七2的平■均定压比热容那么表示为了 t 2(a bt)dt t t 2 t 1 o . ■ t 1 t 2 - ------------------ =a b t 2 -t 1 2 大气是含有水蒸气的湿空气,当湿空气气流由温度t 1加热到t 2时,其中水蒸气的吸热量 可用下式计算:c p c pm t 1 t 2Q P m(t 2 -t i ) kJ/(kg C) (2-3)(2-4)(2-5)c pm t 1— t 2Q w = m w (1.844 0.0004886t)dt tl= m w [1.844(t 2 —t 1) +0.0002443^ —t 2)] kJ/s (2-6) 式中,m w 为了气流中的水蒸气水平,kg/s .丁是,丁空气的平■均定压比热容由下式确定:'Cpm'^^H^^(2-7) 1 m(t2-11) m(t2-标)式中Q p 为了湿空气气流的吸热量.仪器中加热气流的热量(例如用电加热器加热) ,不可预防地因热辐射而有一局部散失丁环境.这项散热量的大小决定丁仪器的温度状况.只要加热器的温度状况相同 ,散热 量也相同.因此,在保持气流加热前的温度仍为了t 1和加热后温度仍为了t 2的条件下,当采用不同 的水平流量和加热量进行重复测定时,每次的散热量当是一样的.丁是,可在测定结果中消 除这项散热量的影响.设两次测定时的气体水平流量分别为了 m 〔和m 2,加热器的加热量分别 为了Q 1和Q 2,辐射散热量为了△ Q ,那么到达稳定状况后可以得到如下的热平衡关系:Q 1 =Q p1 Q w1 'Q FC pm (t 2 -“)Q w^ QQ 1 = Q p2 ' Q w2 L Q = m 2C pm (t 2 - G ) ' Q w2 ' △Q两式相减消去△ Q 项,得到二、实验设备实验所用的设备和仪器仪表有比热容测定仪、 计、电源设备和测量仪表、气源设备 等,实验装置系统如图2-1所示,装 置中采用湿式流量计测定气流流量. 流量计出口的包温槽2用以控制测定 仪器入口气流的温度.装置可以采用 小型单级压缩机或其它设备作为了气 源设备,并用钟罩型气罐5维持供气 压力稳定.气流流量用调节阀3调整. 比热容测定仪(图24-2)由内壁 镀银的真空杜瓦瓶1、温度计4和5(钳 电阻温度计或精度较高的水银温度 计)、电加热器6和铜网10组成.气体 自进口管2引人,温度计4测量其初始 温度,通过螺旋管进入双层夹套管.气体先流过管壁7和8之间的夹层,再流过8和9之间的夹层而进入电加热器部位加热.气体在双层夹套管中迁回,可以使电加热器散失的热量仍为了气体所吸收.离开电加热器的气体 经铜网10均流均温,温度计5测量加热终了温度,后由管3引出.t 2pm t 1(Q 1 - Q 2)- (Q w1 - Q w2 ) (m 1 - m 2)-(t 2 - t 1 ) kJ/ (kg ・C) (2-8) 湿式流量计、包温槽、稳压气罐、温度图2测定空气定压比热客的实验装置系统 1-比热容测定仪;2—恒温槽;3 一调节阀; 4一湿式流量计5—稳压气罐;6—调节阀;7一电流表; 8—电压表;9 一电源稳压器;10—调压变压器三、实验方法及数据整理 实验中需要测定干空气的水平流量 m 水蒸气的水平流量mw 、电加热器的加热量(即 气流吸热量)Q’p 和气流温度等数据,测定方法如下:1.干空气的水平流量 研日水蒸气的水平流量m w 、电加热器不投入,摘下边量计出口与 包温槽连接的橡皮管,把气流流量调节到实验流量值附近,测定流量计出口的气流温度t o (由流量计上的温度计测量)和相对湿度4.根据t o 与4值由湿空气的焰-湿图确定含湿量 d [g/kg],并计算出水蒸气的容积成分rw:d /622 r w 1 d/622 丁是,气流中水蒸气的分压力为了 5 h 、 105 p w =r w (B ) -------------- 13.595 750.062 N/m 2 式中B 一大气压力,mmHg △ h 一流量计出口气流的表压力,mmHg ,由湿式流量计上 的压差计测量. 接上橡皮管,.开始加热.当实验,工况稳定后测定流量计每通 过V [m 3](例如0.013)血.气体所花的时间r [s],以及其它 数据. (2-9) m w = P 、? ° kg/s (2-11) R w T o 式中 R w ,=461.5J/ (kg K) 曰.、【. 干空气的水平 m = ^(V_O kg/s RT o式中p ——干空气的分压力: ■:h 105 p =(1 f)(B ----------------- ) ------------- 13.595 750.062 R=287J/ (kg K) 2. 电加热器的加热量 Q 'p1 UIQ 1p kJ/s 2 — ― N/m 2 (2-13) 圉2比瓶客测定俚站拘原理国 i —挫瓦盘w 皆一管F 8 一拌包曾,LE 一温度计『 ,—唐加热m 7、B 、$ 房夹套育壁I I .一窣陶p 1000 式中U ——电加热器的端电压,V; I ——加热电流,A . 3. 气流温度气流在加热前的温度t 1和加热后的温度t 2由比热容测定仪上的温度计测量. 实验时,根据选定的气流初始温度t 1和加热温度t 2的改变范围及改变间隔,t 1用包温槽调节,t 2 由电加热器调节. 实验操作应注意如下事项:1. 电加热器不应在没有气流通过比热容测定仪时投入加热.2. 加热和冷却要缓慢,预防比热容测定仪因温度骤然改变和受热不均匀而破裂.格外是停止实验时,应先停加热后停气流,并且在停止加热器加热后仍应维持小气流继续运行一段时间.3. 实验测定时,必须确信气流和测定仪的温度状况稳定后才能读数.根据式(2-8 )计算得到的全部实验结果以如下形式表示出:1. 均表表示平均比热容与温度的关系;2. 用作图法或最小二乘法确霉式.(2-5 )中的常数a和b值,用方程式表示空气的平均定压比热容与温度的关系.1. 用实验结果说明电加热器辐射热损失的影响,2. 分析引起实验误差的因素有哪一些,3 .在实验装置中,把湿式流量计连接位置改在稳压气罐之前,或恒温槽之后,或比热测定仪的排气管上,是否合理?试分析之.。

气体比热容比的测定实验。

气体比热容比的测定实验。
浙江中医药大学
学生物理实验报告
实验名称气体比热容比的测定
学院信息技术学院专业医学信息工程班级一班
报告人学号
同组人学号
同组人学号
同组人学号
理论课任课教师
实验课指导教师
实验日期
报告日期
实验成绩
批改日期
浙江中医药大学信息技术学院物理教研室
实验目的
测定空气分子的定压比热容与定容比热容之比
实验仪器
1.DH 4602气体比热气体比热容比测定仪
2.支撑架
3.密玻璃容器
4.气泵
实验原理
图10-1
气体的定压比热容CP与定容比热容CV之比 。在热力学过程特别是绝热过程中是一个很重要的参数,测定的方法有好多种。这里介绍一种较新颖的方法,通过测定物体在特定容器中的振动周期来计算 值。实验基本装置如图10-1所示,振动物体小球的直径比玻璃管直径仅小0.01~0.02mm。它能在此精密的玻璃管中上下移动,在瓶子的壁上有一小口,并插入一根细管,通过它各种气体可以注入到烧瓶中。
单原子气体(Ar,He)f=3
双原子气体(N2,H2,O2)f=5
多原子气体(CO2,CH4)f=6
且与温度无关。
本实验装置主要系玻璃制成,且对玻璃管的要求特别高,振动物体的直径仅比玻璃管内径小0.01mm左右,因此振动物体表面不允许擦伤。平时它停留在玻璃管的下方(用弹簧托住)。若要将其取出,只需在它振动时,用手指将玻璃管壁上的小孔堵住,稍稍加大气流量物体便会上浮到管子上方开口处,就可以方便地取出,或将此管由瓶上取下,将球倒出来。
实验数据与结果
1.求钢珠直径及其不确定度:
平均值:
不确定度:
结果:
2.在忽略容器体积V、大气压p测量误差的情况下估算空气的比热容及其不确定度

实验一 气体定压比热容测定实验资料

实验一 气体定压比热容测定实验资料

实验一气体定压比热容测定实验资料一、实验目的2. 掌握恒压热容和比热容概念,掌握定压比热容的计算方法。

3. 熟悉气体状态方程及其在热力学实验中的应用。

二、实验原理1. 恒容比热容当物体体积不变时,物体吸收或放出的热量与物体温度变化量之比叫做该物体的恒容比热容。

3. 气体状态方程PV = nRT 是气体状态方程,其中 P、V、T 分别代表气体的压力、体积和温度,R 为气体常数,n 是气体的摩尔数。

恒容比热容的公式为:Cv = ΔQ / ΔT其中,ΔQ 为物体吸收或放出的热量,ΔT 为物体温度变化量。

根据整个过程中物体内能的变化,可以得到:ΔQ = ΔU + PΔV因为恒容过程中ΔV = 0,所以此时ΔQ = ΔU。

而在恒压过程中ΔQ = ΔU + PΔV,因为ΔU = CvΔT,所以又可以得到:Cp – Cv = R三、实验设备和材料1. 热力学实验箱、温度计2. 氩气和压力计3. 热电偶和电位差计四、实验步骤1. 在实验箱中放入一个与压力计配套的氩气瓶,打开实验室气体阀门,调节实验箱的电热器温度至室温。

2. 利用水银压力计精确测量室温下氩气的压力为 715 mm Hg。

3. 记录实验箱此时的电热器温度 T1。

4. 打开加热器,在一定时间段内加热气体,观察气体瓶中气体的状态变化,直到温度升高至60℃。

6. 关闭加热器,等待气体冷却至室温,记录实验箱温度 T3 和气体的压力 P3。

8. 计算氩气的定压比热容 Cp。

五、实验数据记录和处理1. 实验数据记录表2. 实验结果处理根据实验数据记录表,可以得到氩气的恒容比热容 Cv 和恒压比热容 Cp 的数值,进而计算出 Cp / Cv 的值,以验证 Cp – Cv = R 的公式。

六、实验注意事项1. 实验中加热部分需小心操作,避免烧伤。

2. 实验过程中气体压力需保持稳定,防止压力计误差。

3. 实验记录应准确、完整,避免遗漏或错误。

4. 实验后应及时清理实验材料,并保持实验室环境整洁。

实验一 空气定压比热容测定

实验一  空气定压比热容测定

实验一 空气定压比热容测定一、实验目的1.增强热物性实验研究方面的感性认识,促进理论联系实际,了解气体比热容测定的基本原理和构思。

2.学习本实验中所涉及的各种参数的测量方法,掌握由实验数据计算出比热容数值和比热容关系式的方法。

3.学会实验中所用各种仪表的正确使用方法。

二、实验原理由热力学可知,气体定压比热容的定义式为()p p hc T∂=∂ (1) 在没有对外界作功的气体定压流动过程中,p dQ dh M=, 此时气体的定压比热容可表示为p p TQM c )(1∂∂=(2) 当气体在此定压过程中由温度t 1被加热至t 2时,气体在此温度范围内的平均定压比热容可由下式确定)(1221t t M Q c p t t pm-=(kJ/kg ℃) (3)式中,M —气体的质量流量,kg/s;Q p —气体在定压流动过程中吸收的热量,kJ/s 。

大气是含有水蒸汽的湿空气。

当湿空气由温度t 1被加热至t 2时,其中的水蒸汽也要吸收热量,这部分热量要根据湿空气的相对湿度来确定。

如果计算干空气的比热容,必须从加热给湿空气的热量中扣除这部分热量,剩余的才是干空气的吸热量。

低压气体的比热容通常用温度的多项式表示,例如空气比热容的实验关系式为3162741087268.41002402.41076019.102319.1T T T c p ---⨯-⨯+⨯-=(kJ/kgK)式中T 为绝对温度,单位为K 。

该式可用于250~600K 范围的空气,平均偏差为0.03%,最大偏差为0.28%。

在距室温不远的温度范围内,空气的定压比热容与温度的关系可近似认为是线性的,即可近似的表示为Bt A c p += (4)由t 1加热到t 2的平均定压比热容则为m t t t t pm Bt A tt B A dt t t Bt A c+=++=-+=⎰221122121(5) 这说明,此时气体的平均比热容等于平均温度t m = ( t 1 + t 2 ) / 2时的定压比热容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体定压比热容的测定
测定气体定压比热容的基本测量项目,是测量巳知流量的气体的吸热量(或放热量)和温度变化值。

基本方法可以分为两类。

一类称为混合法,即预先将气体加热,让它流过量热器时受冷却(达到与量热器热平衡),由量热器测定气体的放热量。

另一类称为定流法,即让气体流过量热器时被加热,由量热器测定气体的吸热量,因此,除了要准确测定气体在量热器人口和出口的温度之外,还必须仔细消除量热器热损失的影响或确定它的修正值,才能准确地测定气体的吸热量或放热量.本实验采用定流法测定空气的平均定压比热容。

一、实验原理
气体的定压比热容定义为 p
p T h c ⎪⎭⎫ ⎝⎛∂∂= (2-1) 在没有对外界作功的气体的等压流动过程中,p dQ m
dh 1=, 则气体的定压比热容可以表示为 p p T Q m c )(1∂∂= (2-2)
当气体在此等压过程中由温度t 1加热至温度t 2时,气体在此温度范围内的平均定压比热容值可以由下式确定: )(1221t t m Q c p t t pm -= kJ/(kg ·℃) (2-3)
式中,m —— 气体的质量流量kg/s ;
Q P —— 气体在等压流动过程中的吸热量,kJ/s
低压气体的定压比热容通常用温度的多项式表示,例如下面空气的定压比热容的实验关系式:
c P = 1.02319-1.76019×10-4T+4.02402×l0-7T 2
-4.87268×lO -10T 3 kJ/(kg ·K )
式中T 为绝对温度,K 。

该式用于250~600 K ,平均偏差为0.03%,最大偏差为0.28%。

在离开室温不很远的温度范圈内,空气的定压比热容与温度的关系可近似认为是线性的,即可近似表示为
bt a c p += (2-4)
由t 1加热到t 2的平均定压比热容则表示为 2)(21122121t t b a t t dt bt a c t t t
t pm ++=-+=⎰ (2-5)
大气是含有水蒸气的湿空气,当湿空气气流由温度t 1加热到t 2时,其中水蒸气的吸热量可用下式计算:
⎰+=21
)0004886.0844.1(t t w w dt t m Q )](0002443.0)(844.1[212212t t t t m w -+-= kJ/s (2-6)
式中,m w 为气流中的水蒸气质量,kg/s 。

于是,于空气的平均定压比热容由下式确定: )()(12'122
1t t m Q Q t t m Q c w
p p t t pm --=-= (2-7)
式中Q ‘p 为湿空气气流的吸热量。

仪器中加热气流的热量(例如用电加热器加热),不可避免地因热辐射而有一部分散失于环境。

这项散热量的大小决定于仪器的温度状况。

只要加热器的温度状况相同,散热量也相同。

因此,在保持气流加热前的温度仍为t 1和加热后温度仍为t 2的条件下,当采用不同的质量流量和加热量进行重复测定时,每次的散热量当是一样的。

于是,可在测定结果中消除这项散热量的影响。

设两次测定时的气体质量流量分别为m 1和m 2,加热器的加热量分别为Q 1和Q 2,辐射散热量为△Q ,则达到稳定状况后可以得到如下的热平衡关系:
Q Q t t c m Q Q Q Q Q
Q t t c m Q Q Q Q w pm w p w pm w p ∆++-=∆++=∆++-=∆++=21222211121111)()(
两式相减消去△Q 项,得到 )()()()(12212121
21t t m m Q Q Q Q c w w t t pm ------= kJ/(kg ·℃) (2-8)
二、实验设备
实验所用的设备和仪器仪表有比热容测定仪、湿式流量计、恒温槽、稳压气罐、温度计、电源设备和测量仪表、气源设备等,实
验装置系统如图2-1所示, 装置中采
用湿式流量计测定气流流量。

流量计
出口的恒温槽2用以控制测定仪器入
口气流的温度。

装置可以采用小型单
级压缩机或其它设备作为气源设备,
并用钟罩型气罐5维持供气压力稳
定。

气流流量用调节阀3调整。

比热容测定仪(图24-2)由内壁
镀银的真空杜瓦瓶1、温度计4和5(铂
电阻温度计或精度较高的水银温度
计)、电加热器6和铜网10组成。

气体自进口管2引人,温度计4测量其初始温度,通过螺旋管进入双层夹套管。

气体先流过管壁7和8之间的夹层,再流过8和9之间的夹层而进入电加热器部位加热。

气体在双层夹套管中迁回,可以使电加热器散失的热量仍为气体所吸收。

离开电加热器的气体经铜网10均流均温,温度计5测量加热终了温度,后由管3引出。

图2 测定空气定压比热客的实验装置系统 1- 比热容测定仪; 2一恒温槽; 3一调节阀; 4一湿式流量计 5一稳压气罐;6一调节阀;7一电流表;8一电压表;9一电源稳压器;10一调压变压器
三、实验方法及数据整理
实验中需要测定干空气的质量流量m 、水蒸气的质量流量m w 、电加热器的加热量(即气流吸热量)Q ‘p 和气流温度等数据,测定方法如下:
1. 干空气的质量流量m 和水蒸气的质量流量m w 、电加热器不投入,摘下边量计出口与恒温槽连接的橡皮管,把气流流量调节到实验流量值附近,测定流量计出口的气流温度t o (由流量计上的
温度计测量)和相对湿度φo 根据t o 与φ值由湿空气的焓 - 湿图确定含湿量d [g/kg],并计算出水蒸气的容积成分r w : 622/1622/d d r w += (2-9)
于是,气流中水蒸气的分压力为
062.75010)595.13(5
⨯∆+=h B r p w w N/m 2
式中 B 一大气压力,mmHg
△h 一流量计出口气流的表
压力,mmHg ,由湿式流量计上
的压差计测量。

接上橡皮管,.开始加热。


实验工况稳定后测定流量计每通
过V ’[m 3](例如0.013)血。


体所花的时间τ[s],以及其它
数据。

水蒸气的质量流量计算如下: o w w w T R V p m )/('τ= kg/s (2-11)
式中R w ,=461.5J/(kg·K )。

干空气的质量流量计算如下:
o
RT V p m )/('τ= kg/s 式中 p —— 干空气的分压力:
062
.75010)595.13)(1(5
⨯∆+-=h B r p w N/m 2 (2-13) R=287J/(kg·K )
2.电加热器的加热量p Q '
10001UI Q p = kJ/s
式中U ——电加热器的端电压,V ;
I ——加热电流,A 。

3.气流温度气流在加热前的温度t 1和加热后的温度t 2由比热容测定仪上的温度计测量。

实验时,根据选定的气流初始温度t 1和加热温度t 2的变化范围及变化间隔,t 1用恒温槽调节,t 2由电加热器调节。

实验操作应注意如下事项:
1.电加热器不应在没有气流通过比热容测定仪时投入加热。

2.加热和冷却要缓慢,防止比热容测定仪因温度骤然变化和受热不均匀而破裂。

特别是停止实验时,应先停加热后停气流,并且在停止加热器加热后仍应维持小气流继续运行一段时间。

3.实验测定时,必须确信气流和测定仪的温度状况稳定后才能读数。

根据式(2-8)计算得到的全部实验结果以如下形式表示出:
1.列表表示平均比热容与温度的关系;
2.用作图法或最小二乘法确霉式。

(2-5)中的常数α和b值,用方程式表示空气的平均定压比热容与温度的关系。

1.用实验结果说明电加热器辐射热损失的影响,
2.分析引起实验误差的因素有哪一些,
3.在实验装置中,把湿式流量计连接位置改在稳压气罐之前,或恒温槽之后,或比热测定仪的排气管上,是否合理?试分析之。

进口温度:18摄氏度
出口温度:66
电压:25.7V(系数0.5,即乘以0.5,要求的电压范围是10~15V)
指针转十圈的时间是1分21秒
每一圈的流量是2
(。

相关文档
最新文档