发酵过程控制ppt课件

合集下载

发酵过程优化与控制(原理部分)220页PPT

发酵过程优化与控制(原理部分)220页PPT
Laboratory, Oak Ridge, TN, USA.) 13
《细胞大规模培养》在生物 技术产业发展中的作用
21世纪的生物技术产业究竟是一个什么样的 格局?作为生物技术产业的核心,以微生物为 代表的过程研究,在已经开始的生物经济时代 是处于一种什么状态?能起何种作用?面临怎 样的课题? 这是人们所关注的问题!
14
发酵工程的重大转折点
二十世纪四十年代初,第二次世界大战爆发, 青霉素的发现,迅速形成工业大规摸生产。 ❖ 1928年由 Fleming发现青霉素 ❖ 1941年美国和英国合作对青霉素进行生产研究 ❖ 表面培养:1升扁瓶或锥形瓶,内装200mL麦麸 培养基 ─── 40u/ml ❖ 1943年沉浸培养: 5m3 ─── 200u/ml ❖ 当今:100m3─200m3 ─── 5-7万u/ml ❖ 链霉素、金霉素、新霉索、红霉素
11
基于碳氢化合物的经济转变为基于 碳水化合物的经济
将工业革命世纪转变到生物技术世纪
只有工业微生物才能将来源于太阳能的可再生 资源碳水化合物转变为现代社会所需要的化工原 料和能源。这种能源结构和资源结构的转变直接 关系到我国经济的可持续发展,社会的稳定、和 国家安全。
12
Idealized biorefinery concept. (Image courtesy of Oak Ridge National
课程内容与参考书
▪ 内容 发酵过程优化与控制(原理部分) 发酵过程优化与控制(工艺部分) 发酵过程优化与控制(控制部分) 发酵过程优化与控制(实践部分) ▪ 参考书目
发酵过程优化原理与实践 陈坚 江南大学 多尺度微生物过程优化 张嗣良 华东理工大学 发酵过程原理 叶勤 华东理工大学
2

发酵工程--ppt课件(2024版)

发酵工程--ppt课件(2024版)
罐,中间除了空气进入和尾气排出,与外部没 有物料交换。 ➢ 传统的生物产品发酵多用此过程。
分批发酵的优缺点
➢ 优点 操作简单 操作引起染菌的概率低 不会产生菌种老化和变异问题
➢ 缺点 非生产时间较长、设备利用率低
➢ 根据不同发酵类型,每批发酵需要十 几个小时到几周时间。
➢ 全过程包括空罐灭菌、加入灭过菌的 培养基、接种、发酵过程、放罐和洗 罐,所需时间的总和为一个发酵周期。
典型的分批发酵工艺流程图
微生物分批培养的生长曲线
1.延滞期 2.加速生长期 3.指数生长期 4.减速期 5.稳定期 6.衰亡期
4.3.1.2 连续发酵
以一定的速度向发酵罐内添加新鲜培养基, 同时以相同的速度流出培养液,从而使发酵罐 内的液量维持,微生物在稳定状态(恒定的基 质浓度、恒定的产物浓度、恒定的pH、恒定的 菌体浓度、恒定的比生长速率)下生长。
4 发酵工程
【学习目的】
1. 掌握发酵工程的基本类型和基本原理。 2. 了解典型发酵产品的生产工艺。 3. 认识发酵的基本过程及常用的发酵设备。
发酵(Fermentation)
最初来自拉丁语“发泡”(fervere),是指酵 母作用于果汁或者发芽谷物产生CO2的现象。
巴斯德:酵母在无氧环境下的呼吸过程。 生物化学:微生物在无氧时的代谢过程。
草莓栽培
微生物酶发酵 酶普遍存在于动植物中,在人类生活中发挥着
非常重要的作用。
微生物代谢产物发酵 ①氨基酸、蛋白质、核酸——初级代谢产物 ②抗生素、生长因子等——次级代谢产物
微生物转化发酵 利用微生物把一种化合物转变成结构相关的更
有经济价值的产物。 葡萄糖→Grapevine
生物工程发酵 DNA重组的“工程菌”理论上可以生产出多种代 谢产物。

发酵过程优化与控制PPT课件

发酵过程优化与控制PPT课件
菌种生产性能越高,其生产条件越难满足。
.
3
发酵过程技术原理
分批发酵 补料-分批发酵 半连续发酵 连续发酵
.
4
分批发酵
几个重要参数:
为比生长速率,h-1; -qs 为比基质消耗速率,(g/g)/h; qp 为比产物形成速率,(g/g)/h 。
uX dX dt
q xX d S dt
补充养分,同时解除/消弱代谢产物的抑制。
不足:
丢失了未利用的养分和处于生长旺盛期的菌体;送去提炼 的发酵液体积更大;丢失代谢产生的前体物;利于非产生 菌突变株的生长。
实施:海洋微藻合成藻红素和EPA。
需要摸索最佳的培养基更新速率。
.
10
连续发酵
发酵过程中一面补入新鲜的料液,一面以相同的流速 放料,维持发酵液原来的体积。(恒化培养)
.
1
发酵过程优化与控制
发酵
狭义——厌氧条件下葡萄糖通过酵解途径生成 乳酸或乙醇等的分解代谢过程。
广义——微生物把一些原料养分在合适的发酵 条件下经特定的代谢途径转变成所需产物的过 程。
.
2
发酵是一个很复杂的生化过程,其好坏涉及诸多因素: 菌种性能、培养基组成、原料质量、灭菌条件、种子 质量、发酵条件和过程控制等
pH变化会影响酶活,菌对基质的利用效率和细
胞结构,从而影响菌的生长和产物的合成。
.
23
选择最适发酵pH的原则是获得最大比生产速率和
适当的菌量。
分阶段pH控制策略
如何控制发酵液pH?
基础培养基的配方;通过加酸碱或中间补料 例如,青霉素发酵,通过调节加糖速率来控制pH;链 霉素的生产,补充NH3来控制pH,同时为产物合成提 供氮源。
培养液pH可反映菌的生理状况:pH上升超过最适值,意 味着菌处于饥饿状态,可加糖调节;糖的过量又使pH下 降;用氨水中和有机酸需防止微生物中毒,可通过监测 培养液种溶氧浓度的变化来控制。

发酵过程控制课件

发酵过程控制课件
最佳状态,从而最终实现目标值,达到最大的比产物生成速率。要实现最 佳工艺必须对诸如温度、pH、溶解氧浓度、泡沫等进行控制。
发酵工艺控制最优化
明确控制目标
明确影响因素
确定实现目标值的方法
确定最佳工艺
发酵过程控制课件
实施最佳工艺
第一节 温度变化及其控制
一、温度对生长的影响
不同微生物的生长对温度的要求不同,根据它们对温 度的要求大致可分为四类:嗜冷菌适应于0~26oC生 长,嗜温菌适应于15~43oC生长,嗜热菌适应于 37~65oC生长,嗜高温菌适应于65oC以上生长
生物热与发酵类型有关
微生物进行有氧呼吸产生的热比厌氧发酵产生的热多 一摩尔葡萄糖彻底氧化成CO2和水 好氧:产生287.2千焦耳热量,
发酵过程控制课件
每种微生物对温度的要求可用最适温度、最高温 度、最低温度来表征。在最适温度下,微生物生 长迅速;超过最高温度微生物即受到抑制或死亡; 在最低温度范围内微生物尚能生长,但生长速度 非常缓慢,世代时间无限延长。在最低和最高温 度之间,微生物的生长速率随温度升高而增加, 超过最适温度后,随温度升高,生长速率下降, 最后停止生长,引起死亡。
发酵过程控制课件
2、蛋白质结构
人们采用二种方案来研究酶在低温条件下的结 构完整性和催化功能:(1)通过自然或诱导突变, 将特定残基发生改变的蛋白与其天然结构进行 对比;(2)对比同属嗜热、嗜温及嗜冷菌的蛋白 结构
通过对嗜冷酶的蛋白质模型和X一射线衍射分析表 明,嗜冷酶分子间的作用力减弱,与溶剂的作用加 强,酶结构的柔韧性增加,使酶在低温下容易被底 物诱导产生催化作用
4 .6 log K r 2
E
K r1
11
T1 T2
K与温度有关

第七章 发酵过程控制

第七章   发酵过程控制

一、初级代谢的变化 二、次级代谢的变化 三、发酵过程的主要控制参数
初级代谢变化的根本原因在于菌体的代谢活 动引起环境的变化,而环境的变化又反过来影 响菌体的代谢。 在初级代谢中,菌体生长仍显示适应期、对 数生长期、静止期和衰亡期的特征。 由于菌体的生理状态与培养条件不同,各个 时期时间长短也不尽相同,且与接种微生物的 生理状态有关。
生物热的大小随培养时间的不同而不同。 实验发现抗生素高产量批号的生物热高于低产 量批号的生物热。说明抗生素合成时微生物的新陈 代谢十分旺盛。
生物热的大小与菌体的呼吸强度有对应关系,呼 吸强度越大,所产生的生物热也越大。
在四环素发酵中,还发现 生物热和菌的呼吸强度的 变化有对应关系,特别是 在80小时以前。从此实验 中还可看到,当产生的生 物热达到高峰时,糖的利 用速度也最大。另外也有 人提出,可从菌体的耗氧 率来衡量生物热的大小。
• 蒸发热的计算: Q蒸发=G(I2-I1) G:空气流量,按干重计算,kg/h I1 、I2 :进出发酵罐的空气的热焓量,J/kg (干空气)
• 辐射热:由于发酵罐内外温度差,通过罐 体向外辐射的热量。
• 辐射热可通过罐内外的温差求得,一 般不超过发酵热的5%。
发酵热的测定
(1)通过测定一定时间内冷却水的流量和 冷却水进出口温度,由下式求得这段时间内 的发酵热。


影响酶的活性,当pH值抑制菌体中某些酶 的活性时,会阻碍菌体的新陈代谢;
H+或OH-在细胞内改变了胞内原有的中性状 态,影响到酶蛋白的解离度和电荷情况,从而 改变酶的结构和功能。

影响微生物原生质膜所带电荷的状态。改变 细胞膜的通透性,影响微生物对营养物质的吸 收和代谢产物的排泄。

发酵过程优化与控制(第五章、丙酮酸发酵)ppt课件

发酵过程优化与控制(第五章、丙酮酸发酵)ppt课件

二、蛋白胨浓度对丙酮酸发酵的影响 实验结果(图5-3)表明:初始葡萄糖浓度为80g/L,当培养 基中蛋白胨浓度为15g/L时,丙酮酸产量较高,低于15g/L时,葡 萄糖消耗速度较慢,细胞干重和丙酮酸产量也较低;而高于 15g/L时,丙酮酸产量明显下降。
三、豆饼水解液和无机氮源对丙酮酸发酵的影响
1、豆饼水解液对丙酮酸发酵的影响 实验结果(图5-4)表明:豆饼水解液浓度为5g/L时,发酵
用微生物中某一具有特定功能的酶完成由底物(如乳酸)
向丙酮酸的转化。 具体包括如下4种方法:
1、酵母直接发酵生产丙酮酸 常用的酵母有球拟酵母、嗜盐酵母、假丝酵母、得巴利酵 母等,其中球拟酵母属菌株,特别是烟酸、硫胺素、吡哆醇和 生物素4种维生素的营养缺陷型T.glabrata IFO 0005是发酵法生 产丙酮酸的首选菌株。
T.glabrata IFO 0005在只有聚蛋白胨而不添加维生素的种子培养
基上照样生长良好的实验结果表明聚蛋白胨中所含有的维生素 足以满足多重维生素营养缺陷途径中的作用显然无法得
出明确的结论,也不可能使丙酮酸产率达到很高的水平。
2、由于培养基中四种维生素的水平直接影响PDC
(丙酮酸脱羧酶)、PHD(丙酮酸脱氢酶系)、PC(丙 酮酸羧化酶)和PT(转氨酶)的活性,仅仅通过单因素
实验很难分析出烟酸、硫胺素、吡哆醇和生物素各自在丙
酮酸过量合成中的作用,也就谈不上合理优化策略的确定。 3、已有报道认为较高的溶氧有利于丙酮酸的积累, 但溶氧要高到什么程度,应当怎样控制等具体问题并没有 定论。此外,如果把生物素作为主要因素,溶氧作为次要 因素,这两种因素组合起来会对丙酮酸发酵过程产生什么 影响也未有报道。
葡萄糖 乙醇 Ⅰ 硫胺素 Ⅰ:丙酮酸脱羧酶(PDC) Ⅱ:转氨酶(PT) Ⅲ:丙酮酸羧化酶(PC) Ⅳ:丙酮酸脱氢酶系(PDH) 丙酮酸 Ⅳ Ⅱ 吡哆醇 氨基酸 硫胺素 烟酸 生物素

第五章-发酵过程控制ppt课件(全)

第五章-发酵过程控制ppt课件(全)

第一节 发酵方式
一、概述
发酵:指在厌氧条件下葡萄糖通过酵解途径生成乳酸或乙醇 等的分解代谢过程。
广义发酵:微生物把一些原料养分在合适的发酵条件下经过 特定的代谢转变成所需产物的过程。
微生物培养:亦称微生物发酵,发酵生产按微生物培养工艺 不同可以分为固态发酵和液态发酵两种类型。两者在工艺过 程上大体相同,主要工艺过程为: 斜面菌种培养~菌体或孢子悬浮液制备~种子扩大培养~ 发酵培养~发酵产物与发酵基质分离~提纯与精制~成品。
分批培养的特点是操作简单,易于掌握,是最常见的操作方 式。
分批发酵过程一般可粗分为四期:即适应期(也有称停滞期 或延滞期的)、对数(指数)生长期、生长稳定期和死亡期;
也可细分为六期:即停滞期、加速期、对数期、减速期、静 止期和死亡(衰亡)期
分批培养中的微生物的典型生长曲线
停滞期(Ⅰ)
停滞期(Ⅰ): 刚接种后的一段时间内,细胞不生长,细胞 数目和菌量基本不变。
第五章 发酵过程及控制
学习目标
知识目标 能陈述发酵过程的影响因素(温度、溶氧、pH等); 能陈述不同发酵方式的理论及异同及优劣; 掌握发酵动力学的有关原理、发酵器的分类及发展趋势。 能力目标 能够找出发酵最适宜条件,并采取相应控制措施; 能够进行发酵终点判断; 能够进行发酵过程重要检测;
三、产物形成动力学
产物形成与生长的关系 细胞生长与代谢产物形成之间的动力学关系决定
于细胞代谢中间产物所起的作用。描述这种关系的 模式有三种,即生长联系型模式、非生长联系型模 式和复合型模式。 (1)生长联系型模式 (2)非生长联系型模式 (3)复合模式
四、生长得率与产物得率
1.生长得率和产物得率的定义 生长得率:消耗每单位数量的基质所得到的菌体,

第七章 发酵过程控制1

第七章 发酵过程控制1

各因子之间可能会产生交互作用,影响的结果准 各因子之间可能会产生交互作用, 确性
发酵过程控制
数理统计学方法: 数理统计学方法:运用统计学方法设计实验和分
析实验结果,得到最佳的实验条件.如正交设计, 析实验结果,得到最佳的实验条件.如正交设计, 均匀设计,响应面设计. 均匀设计,响应面设计. 优点 同时进行多因子试验.用少量的实验, 同时进行多因子试验.用少量的实验,经过 数理分析得到单因子实验同样的结果,甚至更准确, 数理分析得到单因子实验同样的结果,甚至更准确, 大大提高了实验效率. 大大提高了实验效率. 但生物学实验要求准确性高, 但生物学实验要求准确性高,因为实验的最佳 条件是经过统计学方法算出来的, 条件是经过统计学方法算出来的,如果实验中存在 较大的误差就会得出错误的结果. 较大的误差就会得出错误的结果.
发酵过程控制

发酵过程工艺控制的目的
有一个好的菌种以后要有一个配合菌种生长 的最佳条件, 的最佳条件,使菌种的潜能发挥出来 目标是得到最大的比生产速率和最大的生产 率
发酵过程控制
发挥菌种的最大生产潜力需考虑的要点 生长速率,呼吸强度, 菌种本身的代谢特点 生长速率,呼吸强度, 营养要求(酶系统), ),代谢速率 营养要求(酶系统),代谢速率 温度, , 菌体代谢与环境的相关性 温度,pH,渗透 离子强度,溶氧浓度, 压,离子强度,溶氧浓速度(r/min) 3 搅拌速度(r/min) 搅拌器在发酵过程中的转动速度. 搅拌器在发酵过程中的转动速度. 其大小影响发酵过程氧的传递速率, 其大小影响发酵过程氧的传递速率,受醪液的流变学性质影 还受发酵罐的容积限制(见下表) 响,还受发酵罐的容积限制(见下表)
发酵罐容积(L) 发酵罐容积(L) 3 10 50 200 10000 50000 搅拌转速范(r/min) 搅拌转速范(r/min) 200~2000 150~1000 100~800 50~400 25~200 25~160 备注 实验室研究 实验室, 实验室,小试 中试 中试或生产 生产 生产

发酵工艺过程及控制介绍课件(129页)

发酵工艺过程及控制介绍课件(129页)
1、影响发酵温度的因素
产热因素:生物热 搅拌热 散热因素:蒸发热 辐射热
27
发酵热
发酵热就是发酵过程中释放出来的净热量。 Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射
28
✓ 生物热:生物热是生产菌在生长繁殖时产 生的大量热量。培养基中碳水化合物,脂 肪,蛋白质等物质被分解为CO2,NH3时释放 出的大量能量。
• 蒸发热的计算: Q蒸发=G(I2-I1) G:空气流量,按干重计算,kg/h I1 、 I2 :进出发酵罐的空气的热焓量,J/kg (干空气)
33
• 辐射热:由于发酵罐内外温度差,通过罐体 向外辐射的热量。
• 辐射热可通过罐内外的温差求得,一般不超 过发酵热的5%。
34
发酵热的测定
(1)通过测定一定时间内冷却水的流量和冷 却水进出口温度,由下式求得这段时间内的 发酵热。
22
2、连续发酵的优缺点
• 优点
– 能维持低基质浓度; – 可以提高设备利用率和单位时间的产量; – 便于自动控制。
• 缺点
– 菌种发生变异的可能性较大; – 要求严格的无菌条件。
23
3、连续发酵的类型
• 恒化培养
– 使培养基中限制性基质的浓度保持恒定
• 恒浊培养
– 使培养基中菌体的浓度保持恒定
43
1、pH值对微生物的生长繁殖和产物合成的影响
• pH影响酶的活性 • pH影响微生物细胞膜所带电荷的状态 • pH影响培养基某些组分和中间代谢产物的离
解 • pH不同,往往引起菌体代谢过程的不同,使
代谢产物的质量和比例发生改变
44
2、发酵过程中pH的变化
❖生长阶段 ❖生成阶段 ❖自溶阶段
45
这节介绍分批发酵、补料分批发酵及连续发酵三种

发酵工程与设备第八章第二讲发酵过程控制

发酵工程与设备第八章第二讲发酵过程控制
● 温度除了直接影响发酵过程中各种反应速率外,还通过改 变发酵液的物理性质,间接影响菌的生物合成。
发酵工程与设备第八章第二讲发酵 过程控制
2)温度可能会影响终产物的质量
例如: 苏云金杆菌的发酵,一般在30-31℃进行,这样形成的晶体
毒力强。若发酵温度提高到37℃以上,虽然菌体生长繁殖较快, 最终含菌数也较高,但生物毒力较低,直接影响产品的质量。
K值可由下式求得: K = (MCp)发酵液 + (MCp)容器 + (MCp)附件 M — 以每升发酵液计的发酵液、容器、附件的重量 Cp — 代表各自的比热
一般微生物发酵过程中的最大发酵热约为 4.186× (3000~8000) kJ / m3 ·h
发酵工程与设备第八章第二讲发酵 过程控制
三、温度与发酵的关系
发酵工程与设备第八章第二讲发酵 过程控制
A 温度;B 开始时机;C 冲击时间
发酵工程与设备第八章第二讲发酵 过程控制
A比B好
发酵工程与设备第八章第二讲发酵 过程控制
五、温度的控制
方法: 罐壁调温
夹层调温 罐内调温
发酵工程与设备第八章第二讲发酵 过程控制
发酵工程与设备第八章第二讲发酵 过程控制
发酵工程与设备第八章第二讲发酵 过程控制
变温培养的正交设计
发酵工程与设备第八章第二讲发酵 过程控制
发酵工程与设备第八章第二讲发酵 过程控制
结论:前60h按31℃控制,缩短了适应期使发酵提前转入
生产阶段,同时菌丝体已有相当量的积累,为大量分泌抗 生素提供了物质基础 60小时后将罐温降至3O℃使与抗生素合成有关的酶的活性 增强,抗生素分泌量有所增加,同时因分泌期的延长有利 于进一步积累抗生素 发酵进入后期罐温再回升至31℃ 使生产菌在生命的最后阶 段最大限度的合成和排出次级代谢产物。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

① 糖含量
微生物生长和产物合成与糖代谢有密切关 系。糖的消耗反映产生菌的生长繁殖情况、产 物合成的活力。
菌体生长旺盛糖耗一定快,残糖也就降低 得快。通过糖含量的测定,可以控制菌体生长 速率,可通过补糖来调节pH,促进产物合成。
糖含量测定包括总糖和还原糖。 总糖:指发酵液中残留的各种糖的总量。如发 酵中的淀粉、饴糖、单糖等各种糖。 还原糖:指含有自由醛基的单糖,通常指的是 葡萄糖。
(5) 空气流量
• 指单位时间内单位体积发酵液通入空气的 体积。
• 它的大小与氧的传递和其它控制参数有关。 • 一般控制在0.1~1.0vvm之间
(6) 黏度
• 粘度大小可作为细胞生长或细胞形态的标 志之一。
• 在发酵过程中通常用表观粘度表示。 • 粘度的大小可改变氧传递的阻力。 • 粘度的大小可表示相对菌体浓度。
② 氨基氮和氨氮
氨基氮指有机氮中的氮(NH2-N),如氨基酸 中的氮,黄豆饼粉、花生饼粉中都有有机氮。
氨氮指无机氨中的氮(NH3-N)。 氮利用快慢可分析出菌体生长情况、含氮产 物合成情况。
但是氮源太多会促使菌体大量生长。有些产 物合成受到过量铵离子的抑制,因此必须控制适 量的氮。通过氨基氮和氨氮的分析可控制发酵过 程,适时采取补氨措施。
6.1 概述
6.1.1 发酵过程的参数检测
发酵过程的中间分析是生产控制的眼睛,它显 示了发酵过程中微生物的主要代谢变化。因为 微生物个体极微小,肉眼无法看见,要了解它 的代谢状况,只能从分析一些参数来判断。
这些代谢参数又称为状态参数,因为它们反映 发酵过程中菌的生理代谢状况,如pH,溶氧, 尾气氧,尾气二氧化碳,粘度,菌浓度等
1、代谢参数按性质分可分三类: ①物理参数:如温度、搅拌转速、空气压力、空
气流量、表观粘度、排气氧(二氧 化碳)浓度等 ②化学参数:如基质浓度(包括糖、氮、磷)、 pH、溶解氧、产物浓度、核酸量 等 ③生物参数:如菌丝形态、菌浓度、菌体比生长 速率、呼吸强度、基质消耗速率、 关键酶活力等
2、从检测手段分可分为:直接参数、间接 参数 ①直接参数:通过仪器或其它分析手段可
发酵罐的容 搅拌转速范围
积(L)
(r/min)
3
200~2000
10
200~1200
30
150~1000
50
100~800
200
50~400
500
50~300
10000
25~200
50000
25~160
(4) 搅拌功率 指搅拌器搅拌时所消耗的功率,常指每立
方米发酵液所消耗的功率(kW/m3)。 它的大小与溶氧传递系数KLa有关。
(7) 排气氧、排气CO2
排气氧的浓度表征了进气的氧被微生物 利用以后还剩余的氧。
排气CO2反映了微生物代谢的情况,因为 微生物摄入的氧并不是全部变成CO2的,有的
进入代谢中间物分子,进入细胞或产物,因
此消耗的氧并不等于排出的CO2;此外,含氧 的有机物降解后会产生CO2,使排气CO2大于
消耗的氧。
发酵后期氨基氮回升,这时就要放罐,否则 影响提取过程。
③ 磷含量
微生物体内磷含量较高,培养基中以磷酸 盐为主,发酵中用来计算磷含量的是磷酸根。
磷是核酸的组成部分,是高能化合物ATP的 组成部分,磷还能促进糖代谢。因此磷在培养 基中具有非常重要的作用,如果磷缺乏就要采 取补磷措施。
但是在某些次生代谢产物发酵过程中,磷 浓度过高会抑制产物的合成。
程中菌体量的变化,一般前期菌浓增长很 快,中期菌浓基本恒定。补料会引起菌浓 的波动,这也是衡量补料量适合与否的一 个参数。
菌浓测定方法:
• 测粘度 • 压缩体积法(离心) • 静置沉降体积法 • 光密度测定法:OD600~660 适合于细菌、
2、 化学参数
(1)pH
发酵过程中各种产酸、产碱生化反 应的综合结果,与菌体生长和产物 合成有重要的关系 。
pH的高低与菌体生长和产物合成有 着重要的关系。
(2)基质浓度
指发酵液中糖、氮、磷与重要营养物质 的浓度。
基质浓度的变化对产生菌的生长和产物 的合成有重要影响,也是提高代谢产物 产量的重要控制手段。
(2) 罐压
• 指发酵罐维持的压力。 • 罐内维持正压,可防止外界空气中杂菌的
侵入,保证纯种培养。 • 罐压的高低与氧,CO2在培养液中的溶解度
有关,间接影响菌体代谢。 • 罐压一般维持在0.02~0.05MPa。
(3)搅拌转速
是指搅拌器在发酵 罐中转动速度。
搅拌转速大小与发 酵液的均匀性和氧 在发酵液中的传递Байду номын сангаас速率有关。
■ 参数在线测定的优点及问题
优点: 主要是及时、省力,且可从繁琐操作中解脱 出来,便于用计算机控制。 问题: 发酵液的性质复杂。一般培养液中同时存在 三相,即液、气、固体不溶物或油; 发酵要求纯种培养,培养基和有关设备需用 高压蒸汽灭菌。因而要求使用的传感器能耐蒸 汽灭菌,这给各种传感器的制造带来很大的困 难。
(3) DO浓度
氧是微生物体内一系列细胞色素氧化酶催化 产能反应的最终电子受体,也是合成某些产 物的基质。
利用DO浓度的变化,可以了解微生物对氧 利用的规律,反映发酵的异常情况,是一个 重要的控制参数。
3 、生物参数
(1)菌浓度和菌形态
菌形态和菌浓度直接反映菌生长的情况。 菌形态:显微镜观察 菌浓度:是衡量产生菌在整个培养过
第6章 发酵过程控制
我们必须通过各种研究方法了解有关生产 菌种对环境条件的要求,如培养基、培养温度、 pH、氧的需求等,并深入地了解生产菌在合成 产物过程中的代谢调控机制以及可能的代谢途 径,为设计合理的生产工艺提供理论基础。同 时,为了掌握菌种在发酵过程中的代谢变化规 律,可以通过各种监测手段如取样测定随时间 变化的菌体浓度,糖、氮消耗及产物浓度,以 及采用传感器测定发酵罐中的培养温度pH、溶 解氧等参数的情况,并予以有效地控制,使生 产菌种处于产物合成的优化环境之中。
以测得的参数,如温度、 pH、残糖等 ②间接参数:将直接参数经过计算得到的参 数,如摄氧率、KLa等
3、直接参数又可分为: 在线检测参数、离 线检测参数 ①在线检测参数: 指不经取样直接从发酵罐上
安装的仪表上得到的参数, 如温度、pH、搅拌转速; ②离线检测参数: 指取出样后测定得到的参 数,如残糖、残氮、菌体浓 度。
相关文档
最新文档