(完整版)实变函数与泛函分析第4章
实变函数论与泛函分析课后答案
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
实变函数论与泛函分析(曹广福)1到5章课后答案
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inf lim )(inf lim x x n nA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf 0=≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf 0=⇒=⇒∉≥x A x m nk m A nm A k χχ,故0)(inf sup =≥∈x m A nm N b χ ,即)(inf lim x n A nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ =}1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈=}1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
实变函数与泛函分析基础ppt课件
证明:不妨设f单调增,对任意a∈R
令Ia inf{ x | f (x) a}
由f单调增知下面的集合为可测集
E { [ f a]
E [ I a ,) 当I a {x| f ( x)a} E ( I a ,) 当I a {x| f ( x)a}
a
1
/ I a x1 x2
10
⒊可测函数的等价描述
定理1:设f(x)是可测集E上的广义实函数,则 f(x)在E上可测
16
⑵可测函数类关于四则运算封闭
即:若f(x),g(x)是E上的可测函数,
则f(x)+g(x) , f(x) -g(x) , f(x)g(x) , f(x)/g(x)
仍为E上的可测函数。
a-g(x) r f(x)
证明:先证: a
R, E[
f
ga]
E[ f
可测,
a g ]
猜想:E[ f ag] rQ(E[ f r] E[agr] )。
可测集E上的连续函数f(x)定为可测函数
证明:任取x∈E[f>a], 则f(x)>a,由连续性假设知,
对 f (x) a, x 0, 使得f (O(x,x ) E) O( f (x), ) (a,)
即O( x,x ) E E[ f a]
令G O xE[ f a] ( x,x )
1 , n
)
E[ f
为可测集。
]
12
注:重要方法:将集合分解为某些集合
的并、交、差等,从而利用已知条件。
如:用分解法证明:
f , g均为E上可测函数,则E[ f g]为E上可测集。
事实上,E[
f
g]
(
rQ
E[
实变函数与泛函分析要点
实变函数与泛函分析概要第一章集合根本要求:1、理解集合的包含、子集、相等的概念和包含的性质。
2、掌握集合的并集、交集、差集、余集的概念及其运算性质。
3、会求集合的并、交、差、余集。
4、了解对等的概念及性质。
5、掌握可数集合的概念和性质。
6、会判断己知集合是否是可数集。
7、理解基数、不可数集合、连续基数的概念。
8、了解半序集和Zorn引理。
第二章点集根本要求:1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。
2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。
掌握聚点的性质。
3、掌握开核、导集、闭区间的概念及其性质。
4、会求己知集合的开集和导集。
5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。
6、会判断一个集合是非是开〔闭〕集,完备集。
7、了解Peano曲线概念。
主要知识点:一、根本结论:1、聚点性质§2 中T1聚点原那么:P0是E的聚点⇔P0的任一邻域内,至少含有一个属于E而异于P0的点⇔存在E中互异的点列{Pn},使Pn →P0 〔n→∞〕2、开集、导集、闭集的性质§2 中T2、T3T2:设A⊂B,那么A⊂B,·A⊂·B,-A⊂-B。
T3:〔A∪B〕′=A′∪B′.3、开〔闭〕集性质〔§3中T1、2、3、4、5〕T1:对任何E⊂Rⁿ,Ė是开集,E´和―E都是闭集。
〔Ė称为开核,―E称为闭包的理由也在于此〕T2:〔开集与闭集的对偶性〕设E是开集,那么CE是闭集;设E是闭集,那么CE是开集。
T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。
T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。
T5:〔Heine-Borel有限覆盖定理〕设F是一个有界闭集,ℳ是一开集族{Ui}iєI它覆盖了F〔即Fс∪iєIUi〕,那么ℳ中一定存在有限多个开集U1,U2…Um,它们同样覆盖了F〔即F⊂m∪Ui〕〔iєI〕4、开〔闭〕集类、完备集类。
(新)曹广福版实变函数与泛函分析第四章答案
第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测子集A ,有0)(=⎰dx x f A ,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1k x f x E x f x E k ≥=≠∞= ,而N k ∈∀,}1)(|{kx f x E ≥}1)(|{}1)(|{kx f x E k x f x E -≤≥= .由已知,=+=-≤≥≥⎰⎰⎰kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.又因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥⎰⎰kx f x mE k dx k dx x f kx f x E kx f x E , 0}1)(|{1)1()(0}1)(|{}1)(|{≤-≤-=-≤=≥≥⎰⎰k x f x mE k dx k dx x f kx f x E kx f x E所以,0}1)(|{}1)(|{=-≤=≥k x f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE k x f x mE k x f x mE ,从而00}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k k x f x mE k x f x E m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的非负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从而,=⎰dx x f E )(dx x g E⎰)(.证明:我们证f ,g 是同一个简单函数序列∞=1){m m ψ的极限函数.N m ∈∀及12,,1,0-=m m k ,令}21)(2|{,mm k m k x f k x E E +≤≤=,并且 })(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m ,21== ,定义简单函数∑==mk m m k E m m x kx 20)(2)(,χψ. 下面证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈∀0,若+∞=)(0x f ,则N m ∈∀,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥∀时,}21)(2|{})(0|{1210m m m k k x f k x E m x f x E x m +<≤=<≤∈-= .故,存在)120(-≤≤mm k k , }21)(2|{0m m k x f k x E x +<≤∈.即,m m k x f k 21)(20+<≤,m m k E m m k x k x mk m 2)(2)(20,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-mm m m m m k k k x f x x f x x f ψψ,从而, )()(lim 00x f x m n =∞→ψ.同理,N m ∈∀,定义简单函数列∑==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,mm k m k x g k x E E +<≤=,12,,1,0-=mm k .})(|{*,m x g x E E k m ≥=.同上一样可证明:)()(lim 0x g x m n =∞→ψ,E x ∈.因为R a '∈∀,有})(|{})(|{a x g x mE a x f x mE ≥=≥.故R a '∈∀,})(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,)120(-≤≤∀mm k k ,有k m m m m m k m mE k x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=m m m m m m mE m x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=.即,N m ∈∀,=)(x m ψ)(x m ϕ.因此)()(lim )(lim )(x g x x x f m m m m ===∞→∞→ϕψ.3.若⎪⎩⎪⎨⎧=为有理数,当为无理数,当x x x x x f 31)(,计算⎰1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=⎰⎰1)()(]1,0[E dx x f dx x f⎰]1,0[)(dx x f ⎰⎰⎰+==111E EE dx xdx xdx x=+==⎰⎰⎰1111E E E dx xdx xdx x2]2[11101]1,0[====⎰⎰x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每一点至少属于n 个集中的q个集,证明:21,,E E 中至少有一个测度不小于nq.证明:令∑==ni E x x f i1)()(χ,其中iEχ为i E 上的特征函数]1,0[∈∀x ,有q x x f ni E i≥=∑=1)()(χ,所以q qdx dx x f =≥⎰⎰]1,0]1,0[)(.∑∑⎰∑∑⎰⎰⎰========≤ni ni i E ni E ni E mE dx x dx x dx x f q i i 11111,0]1,0[]1,0[)()()(χχ.如果每个n qmE i <,则∑∑===⋅=>n i n i i q n q n n q mE 11.这与∑=≤ni i mE q 1矛盾.从而,)1(n i i ≤≤∃使得nqmE i ≥. 5.设f ,g 都是E 上的可积函数,试证明:22g f+也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈∀,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤⎰⎰⎰EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m mS E E=,}||||{∞<=x x S m .从而∞=⎰1})}({{l l E dx x F m是单调递增有上界⎰Edx x F )(的数列,故:⎰⎰⎰≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因为⎰∞=mE m dx x f 1})({单调递增有上界,所以⎰∞→mE l dx x f )(lim存在,并且⎰⎰⎰+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(,即⎰∞→∞→mE ll m dx x f )}({lim lim+∞<≤⎰dx x f E)(.所以)(x f 在E 可积.(2)再证:22g f+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从而||f +||g 在E 上可积. 又因为||||22g f g f+≤+,由(1)。
泛函分析答案 第四章习题第一部分(1-18)
第四章习题第一部分(1-18)1. 在 1中令ρ1(x , y ) = (x - y )2,ρ2(x , y ) = | x - y |1/2,,问ρ1, ρ2是否为 1上的距离? [解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性. 但ρ1不满足三角不等式:取点x = -1, y = 0, z = 1,则 ρ1(x , z ) = 4 > 2 = ρ1(x , y ) + ρ1(y , z ),所以ρ1不是 1上的距离。
而∀x , y , z ∈ 1,ρ2(x , y ) =||||2||||||||||y z z x y z z x y z z x y x -⋅-+-+-≤-+-≤-||||)||||(2y z z x y z z x -+-=-+-==ρ2(x , z ) + ρ2(z , y ); 所以ρ2是 1上的距离.2. 设(X , ρ)是距离空间,令ρ1(x , y ) =ny x ),(ρ,∀x , y ∈X .证明(X , ρ1)也是距离空间.[证明] 显然ρ1满足距离空间定义中的非负性和对称性, 故只需证明ρ1满足三角不等式即可. 实际上∀x , y , z ∈X ,nny z z x y x y x ),(),(),(),(1ρρρρ+≤=nnnn ny z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤),(),(),(),(11y z z x y z z x n n ρρρρ+=+=.3. 设(X , ρ)是距离空间,证明| ρ(x , z ) - ρ(y , z ) | ≤ ρ(x , y ),∀x , y , z ∈X ;| ρ(x , y ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ),∀x , y , z , w ∈X .[证明] ∀x , y , z , w ∈X ,由三角不等式有- ρ(x , y ) ≤ ρ(x , z ) - ρ(y , z ) ≤ ρ(x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式:| ρ(x , y ) - ρ(z , w ) | ≤ | ρ(x , y ) - ρ(y , z ) | + | ρ(y , z ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ).4. 用Cauchy 不等式证明(| ζ1 | + | ζ1 | + ... + | ζn | )2 ≤ n (| ζ1 |2 + | ζ1 |2 + ... + | ζn |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | ζi |,b i = 1,∀i = 1, 2, ..., n 即可.5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做.6. 设(X , d )是距离空间,A ⊆ X ,int(A )表示A 的全体内点所组成的集合.证明int(A )是开集.[证明] 若A = ∅,则int(A ) = ∅,结论显然成立. 若A ≠ ∅,则∀x ∈ A ,∃r > 0使得S (x , r ) ⊆ A .对∀y ∈ S (x , r ),令s = r - d (x , y ),则s > 0,并且S (y , s ) ⊆ S (x , r ) ⊆ A ; 所以y ∈ int(A ).故S (x , r ) ⊆ int(A ),从而int(A )是开集.7. 设(X , d )是距离空间,A ⊆ X ,A ≠ ∅.证明:A 是开集当且仅当A 是开球的并. [证明] 若A 是开球的并,由于开球是开集,所以A 是开集.若A 是开集,∀x ∈A ,存在r (x ) > 0,使得S (x , r (x )) ⊆ A . 显然A = ⋂x ∈A S (x , r (x )).8. 举例说明对于一般的距离空间X ,并不是总有),(),(r x S r x S =,∀x ∈X ,r > 0. [例] 设X = {a , b },定义d : X ⨯ X → 为d (a , a ) = d (b , b ) = 0,d (a , b ) = 1. 则(X , d )是距离空间.当r = 1时,不论x 为a 还是b ,总有),(}{),(r x S X x r x S =≠=.9. 设(X , d )是距离空间,X B A ⊆,.证明:B A B A ⋃=⋃,B A B A ⋂⊆⋂. [证明] 由于A A ⊆,B B ⊆,故B A B A ⋃⊆⋃.由于A 和B 都是闭集,所以B A ⋃也是闭集,所以B A B A ⋃⊆⋃.另一方面,由B A B A ⋃⊆,,得B A B A ⋃⊆,,所以B A B A ⋃⊆⋃; 这样就证明了第一个等式.由B A B A ,⊆⋂得B A B A ,⊆⋂,所以B A B A ⋂⊆⋂。
实变函数与泛函分析要点
实变函数与泛函分析要点第一章集合基本要求:1、理解集合的包含、子集、相等的概念和包含的性质。
2、掌握集合的并集、交集、差集、余集的概念及其运算性质。
3、会求已知集合的并、交、差、余集。
4、了解对等的概念及性质。
5、掌握可数集合的概念和性质。
6、会判断己知集合是否是可数集。
7、理解基数、不可数集合、连续基数的概念。
8、了解半序集和Zorn引理。
第二章点集基本要求:1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。
2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。
掌握聚点的性质。
3、掌握开核、导集、闭区间的概念及其性质。
4、会求己知集合的开集和导集。
5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。
6、会判断一个集合是非是开(闭)集,完备集。
7、了解Peano曲线概念。
主要知识点:一、基本结论:1、聚点性质§2中T1聚点原则:P0是E的聚点P0的任一邻域内,至少含有一个属于E而异于P0的点存在E中互异的点列{Pn},使Pn→P0(n→∞)2、开集、导集、闭集的性质§2中T2、T3··--T2:设AB,则AB,AB,AB。
T3:(A∪B)′=A′∪B′.3、开(闭)集性质(§3中T1、2、3、4、5)――T1:对任何ER,是开集,E′和E都是闭集。
(称为开核,E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。
T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。
T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。
T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,是一开集族{Ui}iI∪它覆盖了F(即FсiIUi),则中一定存在有限多个开集U1,U2…Um,它们同样覆盖了F(即Fm(iI)∪Ui)4、开(闭)集类、完备集类。
开集类:R,Φ,开区间,邻域、、Pо闭集类:R,Φ,闭区间,有限集,E、E、P完备集类:R,Φ,闭区间、P二、基本方法:1、判断五种点的定义;2、利用性质定理,判断导集、邻域等;3、判断开集、闭集;4、关于开闭集的证明。
实变函数与泛函分析基础完整版
bi
ai
bi ai
f(x), 当xF,
g(x)f(ai)
f(bbi)i afi(ai( ) xai),当x(ai,bi),ai,bi有限 ,,
f(ai), 当x(ai,bi),bi , f(bi), 当x(ai,bi),ai .
则g(x)满足要求,且在R上连续.(参见课本p91)
0 ,及 E i , 每 E i中 作 个 的 F i , m ( 闭 E i 使 F i) n 子 ( i 1 ,2 , 集 ,n
当x∈Ei时,f(x)=ci,所以f(x)在Fi上连续,而Fi为两
两不交闭集,故f(x)在 n 上连续,显然F为闭集,
且有
F
i 1
Fi
m ( i n 1 E i i n 1 F i) m ( i n 1 ( E i F i) )i n 1 m ( E i F i) i n 1 n
kj
若 fk:Ek R为连续f函 (x)数 fk(x), :xE 令 k,f则 (x): k 1Ek R上的连
事实上x0, k 1, 由 Ek, 于 x0为开 (k 1, 集 Ek)c的内点,
kk0
kk0
20,使U 得 (x0,: 2) (k 1, Ek)c,即 U(x: 0,2) k 1, Ek。
注2:鲁津定理的逆定理成立。
设f(x)为E上几乎处处有限的实函数,若 0,闭F 集 E,
使得 m(E-F)<ε且f(x)在F上连续,则f(x)在E上为可 测函数。
证明: 1n,则闭集 Fn F,使得m: (EFn)1n, f(x)在Fn上连续(可测函数
k
,必有
4.2-4实变函数与泛函分析 可测函数
进一步 f(x)在
E ( E E ) ( En )
n 1
上可测。
第四章 可测函数
第四节 可测函数的收敛性 依测度收敛
子列 Riesz定理
f n f a.e.于E
叶果洛夫 逆定理
叶果洛夫定理 mE<+∞
Lebesgue定理
mE<+∞ f n f于E
子列
f n f a.u.于E
1 n
, 存在闭集
En E
1 m ( E E ) 使 且 n n f(x)在En 连续,当
令E En, 然 f(x)在 En上可测, n1
从而m( E E) 0
则m( E E) m( E En ) 1 n 0(n )
从而 f(x)在 E E 上可测,
若f n f a.e.于E ,则f n f 于E
Riesz定理
若 f n f于E 于E,则必有{fn}的子列 {fnk} ,使得 f nk f a.e.于E
子列 Riesz定理
f n f a.e.于E
叶果洛夫 逆定理 叶果洛夫定理 mE<+∞
Lebesgue定理
mE<+∞
f n f于E
1
一致收敛是函数列很重要的性质, 能保证极限过程和一些运 算的可交换性。但一般而言,收敛的函数列不一定一致收敛, 然而是基本上(a.e.)一致收敛的(叶果洛夫定理) 。
几乎处处收敛与一致收敛(叶果洛夫定理)
Th:设mE<+∞,fn在E上可测,f几乎处处有限,
若f n f a.e.于E ,则fn在E上a.e.一致收敛于f.
实变函数与泛函分析全册精品完整课件
University of science & Technology of China
五大论:
集合论-着重介绍 Cantor 关于集合的势论的知识.
测度论-讲解 Lebesgue 测度的思想与方法.
积分论-讲解 L 积分的定义、性质、极限定理和 L 可积函数空间,积分与微分的关系.
空间论-主要讲述无穷维赋范空间和内积空间,以 及与共轭空间有关的知识. 算子论-主要讲述三大基本定理(共鸣定理、开映 射定理、闭图像定理),共轭算子以及算子谱理
论.
University of science & Technology of China
教学目的
使学生掌握 L 测度与 L 积分的基本理论、基本思想 与方法,为今后进一步使用现代分析普遍应用的这 一基本工具打下基础。
使学生掌握有关空间和算子的基本理论和思想方法 . 认识和理解现代数学中公理化、抽象与具体、理 论和应用密切联系的特点并加以应用.
前言
课程的重要性 课程讲授的主要内容 教学目的 难易程度 考核方式
University of science & Technology of China
《实变函数与泛函分析》的重要性 在20世纪初期产生并发展起来的学科,是整 个分析数学中最年轻的学科之一 从“经典理论”向“现代理论”转折的关口 是联系各门课程的纽带
通过与其他学科的联系,加强学生对于数学思想方 法的内在联系和一致性的认识,从整体上提高学生 的数学素养
University of science & Technology of China
课程难度与考核方式
内容抽象,难度较大 平时表现分+考试分数, 比例 认真学习则无须担心考核
曹广福版实变函数与泛函分析第四章答案
曹广福版实变函数与泛函分析第四章答案第四章习题参考解答1.设)(x f 是E 上的可积函数,如果对于E 上的任意可测子集A ,有0)(=?dx x f A ,试证:)(x f ,].[.E e a证明:因为}1)(|{}0)(|{1k x f x E x f x E k ≥=≠∞= ,而N k ∈?,}1)(|{kx f x E ≥}1)(|{}1)(|{k x f x E k x f x E -≤≥= .由已知,=+=-≤≥≥kx f x E kx f x E kx f x E dx x f dx x f dx x f 1)(|{1)(|{1|)(|{)()()(000=+.又因为0}1)(|{11)(0}1)(|{}1)(|{≥≥=≥=≥≥??kx f x mE k dx k dx x f kx f x E kx f x E , 0}1)(|{1)1()(0}1)(|{}1)(|{≤-≤-=-≤=≥≥??k x f x mE k dx k dx x f kx f x E kx f x E所以,0}1)(|{}1)(|{=-≤=≥k x f x mE k x f x mE .故,0}1)(|{}1)(|{}1|)(|{=-≤+≥=≥kx f x mE k x f x mE k x f x mE ,从而00}1|)(|{}1|)(|{[}0)(|{111==≥≤≥=≠∑∑∞=∞=∞=k k k k x f x mE k x f x E m x f x mE .即,0)(=x f ,].[.E e a .2.设f ,g 都是E 上的非负可测函数,并且对任意常数a ,都有})(|{})(|{a x g x mE a x f x mE ≥=≥,试证:)()(x g x f =,从而,=?dx x f E )(dx x g E)(.证明:我们证f,g 是同一个简单函数序列∞=1){m m ψ的极限函数.N m ∈?及12,,1,0-=m m k ,令}21)(2|{,mm k m k x f k x E E +≤≤=,并且})(|{2,m x f x E E m m m ≥=.则k m E ,是互不相交的可测集,并且k m m k E E m ,21== ,定义简单函数∑==mk m m k E m m x kx 20)(2)(,χψ. 下面证明:)()(lim x f x m m =∞→ψ,E x ∈.E x ∈?0,若+∞=)(0x f ,则N m ∈?,m m m E x 2,0∈,所以)()(0∞→∞→=m m x m ψ,即)()(lim 00x f x m n =∞→ψ;若+∞<)(0x f ,则可取正整数)(00x f m >,0m m ≥?时, }21)(2|{})(0|{1210m m m k k x f k x E m x f x E x m +<≤=<≤∈-= .故,存在)120(-≤≤mm k k ,}21)(2|{0m m k x f k x E x +<≤∈.即,m m k x f k 21)(20+<≤,m m k E m m kx k x mk m 2)(2)(20,==∑=χψ.所以,0212212)()()(|)()(|00000→=-+<-=-=-m m m m m m k k k x f x x f x x f ψψ,从而,)()(lim 00x f x m n =∞→ψ.同理,N m ∈?,定义简单函数列==mkm m k E m m x kx 20)(2)(*,χψ,其中:}21)(2|{*,m m k m k x g k x E E +<≤=,12,,1,0-=m m k .})(|{*,m x g x E E k m ≥=.同上一样可证明:)()(li m 0x g x m n =∞→ψ,E x ∈.因为R a '∈?,有})(|{})(|{a x g x mE a x f x mE≥=≥.故R a '∈?,})(|{b x f a x mE <≤})(|{b x g a x mE <≤=.从而,)120(-≤≤?mm k k ,有k m m m m m k m mE k x g k x mE k x f k x mE mE ,*,}21)(2|{}21)(2|{=+<≤=+<≤=m m m m m m mE m x g x mE m x f x mE mE 2,*2,})(|{})(|{=≥=≥=.即,N m ∈?,=)(x m ψ)(x m ?.因此)()(lim )(lim )(x g x x x f m m m m ===∞→∞→?ψ.3.若=为有理数,当为无理数,当x x x x x f 31)(,计算?1,0[)(dx x f .解:设x x E |]1,0[{0∈=为有理数},01]1,0[E E -=,则+=1)()(]1,0[E dx x f dx x f]1,0[)(dx x f ?+==111E EE dx xdx xdx x=+==1111E E E dx xdx xdx x2]2[11101]1,0[====x dx xdx x.4.设21,,E E 是]1,0[中n 个可测集,若]1,0[内每一点至少属于n 个集中的q个集,证明:21,,E E 中至少有一个测度不小于nq.证:令∑==ni E x x f i1)()(χ,其中i E χ为i E 上的特征函数]1,0[∈?x ,有q x x f ni E i ≥=∑=1)()(χ,所以q qdx dx x f =≥??]1,0]1,0[)(.∑∑?∑∑??========≤n i ni i E n i E n i E mE dx x dx x dx x f q i i 11111,0]1,0[]1,0[)()()(χχ.如果每个n q mE i <,则∑∑===?=>n i n i i q n qn n q mE 11.这与∑=≤ni i mE q 1矛盾.从而,)1(n i i ≤≤?使得nqmE i ≥. 5.设f ,g 都是E 上的可积函数,试证明:22g f+也是E 上可积函数.证明:(1)先证:设)(x f 与)(x F 都是E 上的可测函数且)()(0x F x f ≤≤ ].[.E e a ,若)(x F 在E 可积,则)(x f 在E 可积.事实上,N m l ∈?,,因为)()(0x F x f ≤≤ ].[.E e a ,故l l x F x f )}({)}({0≤≤,即+∞<≤≤≤EE llE ldx x f dx x F dx x F dx x f mm)()}({)}({)}({,其中:m m S E E =,}||||{∞<=x x S m .从而∞=?1})}({{l l E dx x F m是单调递增有上界?Edx x F )(的数列,故:≤=∞→EE ll E dx x F dx x f dx x f mm)()}({lim )(.又因为?∞=mE m dx x f 1})({单调递增有上界,所以?∞→mE l dx x f )(lim存在,并且+∞<≤=∞→EE ll Edx x F dx x f dx x f m)()}({lim )(,即?∞→∞→mE ll m dx x f )}({lim lim+∞<≤?dx x f E)(.所以)(x f 在E 可积.(2)再证:22g f+在E 上可积.事实上,因为f ,g 在E 上可积,所以||f 与||g 在E 上可积,从而||f +||g 在E 上可积. 又因为||||22g f g f+≤+,由(1)。
实变函数与泛函分析
实变函数的定义
实变函数是定义在实 数集上的函数,其值
域也是实数集。
实变函数具有连续性、 可微性、可积性等性
质。
实变函数的定义域可 以是有限区间、无限 区间或者整个实数轴。
实变函数的值域可以 是有限区间、无限区 间或者整个实数轴。
实变函数的性质
实变函数是一类特殊的数学函数,具 有连续性、可微性和可积性等性质。
实变函数的连续性
实变函数的连续性与极限存 在性有关
实变函数在定义域内是连续 的
实变函数的连续性是函数的 一种基本性质
实变函数的连续性与可微性 密切相关
03 实变函数的应用
实变函数在数学物理方程中的应用
实变函数在求解偏微分方程中的应用 在解决波动方程、热传导方程等数学物理方程中的作用 实变函数在数值分析中的重要地位 实变函数在解决物理问题中的应用实例
求解中。
添加标题
05 泛函分析的应用
泛函分析在微分方程中的应用
微分方程的求解:通过泛函分析中的变分法,求解微分方程的近似解。 稳定性分析:利用泛函分析中的算子谱理论,研究微分方程解的稳定性。 近似方法:利用泛函分析中的逼近理论,构造微分方程的近似解。 数值计算:通过泛函分析中的数值分析方法,对微分方程进行数值模拟和计算。
添加标题
随机积分与微分 方程:在概率论 中,随机积分与 微分方程是非常 重要的研究方向, 而泛函分析中的 积分和微分理论 为此提供了重要
的数学基础。
添加标题
泛函分析在量子力学中的应用
描述了量子力学中的波函数和 概率幅
提供了量子力学中算子的表示 和分类方法
揭示了量子力学中的一些重要 定理和原理,如不确定性原理 和量子纠缠
研究对象:实变函数研究的是具体的、有限的、离散的数学对象,而泛函分析则研究 的是抽象的、无限的、连续的数学对象。
实变函数与泛函分析基础课件4-2
称
→ f n (x) 在E上依测度m收敛与f:记为: f n ( x ) 上依测度m收敛与f
m
f ( x).
或者记为: f n ( x ) ⇒
f ( x).
注1. 依测度收敛是数列的收敛. 即: 依测度收敛是数列的收敛.
∀σ > 0和ε > 0, ∃N (ε ,σ ),当n ≥ N (ε ,σ )时,有 (| f n − f |≥ σ ) < ε . m
k =1 N =1 n = N
∞
∞
∞
1 [| f n − f | ≥ ] k
).
2)
f n → f a.e.于E ⇔ m( E[ f n → f ] ) = 0 ⇔ m( ∪ ∩ ∪ E[| f n − f |≥ 1 ] ) = 0
k =1 N =1 n = N
k
∞
∞
∞
⇔ m ( ∩ ∪ E [| f n − f | ≥ 1 ] ) = 0
是否成立,如果成立,应该具备怎样的条件?先看下例。
回顾:{f 回顾:{fn}点点收敛,但 fn不近一致收敛于f。 不近一致收敛于f
∃δ > 0, ∀ 可测子集 Eδ ⊂ E , m ( Eδ) δ , < ∃ε > 0, ∀N > 0, ∃n ≥ N , ∃x ∈ Eδ) , 使 | f n ( x ) − f ( x ) |≥ ε (
∀δ > 0, ∃可测子集 Eδ ⊂ E , m ( Eδ) δ , < ∀ε > 0, ∃N ε δ > 0, ∀n ≥ N εδ , ∀x ∈ E − Eδ , 有 | f n ( x ) − f ( x ) |< ε
《实变函数论与泛函分析(曹广福)》1到5章课后习题答案
第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。
若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注鲁津定理推论:若 为 上几乎处处有限的可测函数,则
及 上的连续函数 使得在 上 且 (对 维空间也成立)
(在某个小测度集上改变取值并补充定义变成连续函数)
鲁津定理(限制定义域)(即:去掉某个小测度集,在留下的集合上连续)
§4依测度收敛
教学目的可测函数列可以定义各种收敛性.本节讨论几乎处处收敛,依测度收敛和几乎一致收敛.几种收敛性之间存在一些蕴涵关系.通过本节的学习,可以使学生对可测函数列的几种收敛性和相互关系有一个较全面的了解.
教学要点本节引进的几种收敛是伴随测度的建立而产生的新的收敛性.特别是依测度收敛是一种全新的收敛,与熟知的处处收敛有很大的差异.Egorov定理和Riesz定理等揭示了这几种收敛之间的关系.Riesz定理在几乎处处收敛和较难处理的依测度收敛之间架起了一座桥梁.
例1依测度收敛,但处处不收敛的函数列.
处处不收敛
但子列 处处收敛于
例2不依测度测度收敛但收敛的函数列:
尽管两种收敛区别很大,一种收敛不能包含另一种收敛,但下面定理反映出他们还是有
密切联系的.
定理2(Riesz)若 ,则必有 的子列 ,使得 于
证明:由 于 可知
从而可取得 ,使得
故对 ,当 时,有
从而
近似地说一致连续是函数图象陡的程度能有个控制
例:函数列 在(0,1)上处处收敛到 ,但不一致收敛,但去掉一小测度集合(1-δ,1),在留下的集合上一致收敛
⑶几乎处处收敛:记作 于 (almost everywhere)
即:去掉某个零测度集,在留下的集合上处处收敛
所以 在 上 收敛于 .
注:叶果洛夫定理中条件 不可少.
例 在 上处处收敛于 =1 ,但 不几乎一致收敛于 于 .
几乎一致收敛:去掉某个小(任意小)测度集,在留下的集合上一致收敛
可测子集
有
不几乎一致收敛:去掉任意小(适当小)测度集,在留下的集合上任不一致收敛
任意可测子集
有
任意可测子集
使得
注:叶果洛夫定理中的结论 不能加强到 .
对 有 ,则称函数列 依测度收敛于 .度量收敛到 ,记为: .
语言: 当 时, .
2.测度收敛的性质(唯一性和四则运算)
定理1令 , 于 , 于 ,则
(1)若又有 于 ,则 a.e.于 .
于
于
于
注:(1),(2),(4)当 时,也成立;条件 对(3)来说不可少.
3.依测度收敛与几乎处处收敛的关系
依测度收敛与处处收敛或几乎处处收敛的概念是有很大区别的.
若 是 上的可测函数,则 仍为 上的可测函数.
证明:首先 在 上可测,因为对任意
再利用 即可
作业:若 是 上的可测函数,则 , 为 上的可测函数
⑶可测函数类关于确界运算和极限运算封闭.
若若 是 上的可测函数,则下列函数仍为 上的可测函数.
推论:可测函数列的极限函数仍为可测函数(连续函数列的极限函数不一定为连续函数)。
3从函数 或 可测能否推出 在 上可测?
4由 可否推出 、 都可测?
5能否断定“零集上任何函数均可测”?
§2叶果洛夫定理
教学目的1、深刻理解“几乎处处收敛”,“近一致收敛”(由叶果洛夫定理结论引出)
等概念,弄清它们之间的区别与联系.
2、理解叶果洛夫定理,了解定理的证明.
教学要点“几乎处处收敛”,“近一致收敛”的概念及叶果洛夫定理的内容.
(*)
故 于
注:其实从证明中的(*)式我们可看出 于 .
定理3(Lebesgue) , , 在 上几乎处处有限且可测,若 于 ,则 于
二、函数列几种收敛之间的关系
先归纳一下几种收敛的定义.
1.函数列的几种收敛定义
⑴点点收敛:记作 于
有
⑵一致收敛:
有
注:近似地说一致收敛是函数列收敛慢的程度能有个控制.
而 为两两不交闭集,故 在 上连续
显然 为闭集,且有
(2)当 为有界可测函数时,
存在简单函数列 在 上一致收敛于 ,利用(1)的结果知
及每个 ,存在闭集 ,使
且 在 上连续.
令 ,则 且
由 在 连续及一致收敛于 ,易知 在闭集 上连续.
(3)当 为一般可测函数时,作变换
则 为有界可测函数,应用(2)即得我们的结果.
设 ,则 处处收敛于f(x)=0,但 不一致收敛于 ,即使去掉任意一零测度集,在留下的集合上 仍不一致收敛于 .
说明:去掉任意一个零测度集 ,留下的集合 仍然以1为聚点从而可找到 中一点列 ,使得 收敛到1,故: 有
从而 上 不一致收敛于 .
练习题
1叶果洛夫定理的条件“ ”是否可以取消?
2叶果洛夫定理的结论能否改为“ ,使 在 上一致收敛于 ”?
鲁津定理的第二形式:若 在 上的几乎处处有限的可测函数,则对 ,存在闭集 及整个直线上的连续函数 ( 及 依赖于 )使在 上 ,且
证明略
其实,以上两定理结果也是可测函数的本质特征,即具有上述结果的函数一定是可测函数,证明留作习题。
可测函数在一个充分接近定义域的闭集上连续这一本质特征明示我们:
尽管可测函数的范围比连续函数的范围广得多,但通过牛顿——莱布尼兹公式计算积分仍为主渠道。
(连续函数类关于四则运算封闭)
注:对 在 连续的说明:
若 在 上连续,而 为两两不交闭集,则 在 上连续
证明:任取 则存在 ,使得 , ,
又 为两两不交闭集,从而 在开集 中
所以存在 ,使得
从而
故对任意 ,有 ,故 连续
条件 为两两不交闭集必不可少,如:
函数在每一块上为常值,故在每一块上都连续,但函数在R上处处不连续.
引理:设 , , 在 上几乎处处有限且可测,若 于 则 有
证明:由于 为零测度集,故不妨令 在 上处处有限,
从而有:
从而当 时, 有
定理1(ЕгОРОВ)设 , 在 上几乎处处有限且可测,若 于 ,则 于 (即:可测函数列的收敛“基本上”是一致收敛)
于 ,即 即:去掉某个零测度集,在留下的集合上处处收敛
本节难点依测度收敛的概念及各种收敛之间的关系.
改造积分定义的目的一是为了扩展可积范围,二是为了使得操作更方便。对( )积分而言,积分与极限交换顺序需要验证一个较为苛刻的条件:“ 在 上一致收敛于 ”,将“一致收敛”削弱为“处处收敛”甚至“几乎处处收敛”是一种思路,在此介绍另一种削弱“一致收敛”条件的方法。
本节难点叶果洛夫定理的证明.
在数学分析中,我们已经知道,即使函数列在每一点收敛,也不能保证一致收敛,因此,对可能在某个零测度集上不收敛的函数列而言,更谈不上一致收敛.
例:函数列 在(0,1)上处处收敛到 ,但不一致收敛,究其原因是自变量越靠近0越收敛速度慢,只有更慢没有最慢,从而不可能一致收敛。但去掉一小测度集合 ,在留下的集合上一致收敛。著名的俄国数学家叶果落夫(ЕгОРОВ)任何可测函数都有类似结果,即有下述定理成立
从集合论的角度讲:“ 在 上一致收敛于 ”是指 , ,当 时, ,之所以我们认为“一致收敛”条件苛刻,就在于它要求 从某项以后永远为空集。能否改成允许不空,甚至允许为正测度集,但必须满足
呢?这就导致了一个新的收敛概念的产生.
一、依测度收敛
1定义: 是 上的一列 有限的可测函数.若有 上 有限的可测函数 满足下列关系:
⒌可测函数与简单函数的关系
可测函数 总可表示成一列简单函数的极限
若 是 上的可测函数,则 总可表示成一列简单函数 的极限
,而且还可办到
注:当 是有界函数时,上述收敛可做到一致收敛
练习题
1任何点集 上的常值函数 是可测函数,对吗?
2已知“若 在 上可测,则 可测”,反之,若 可测,能断定 在 上可测吗?
证明:不妨设 单调增,对任意 令 .由 单调增知下面的集合为可测集
⒊可测函数的等价描述
⒈定义:设 是可测集 上的实函数,则 在 上可测
(即(1) 可测)
可测
可测
可测
可测(充分性要求 )
证明:利用(1)与(4),(2)与(3)互为余集,以及
, ,
,
对前面等式的说明
,
,
⒋可测函数的性质
⑴可测函数关于子集、并集的性质
本节难点可测函数与简单函数的关系.
1可测函数定义
定义:设 是可测集 上的实函数(可取 ),若 可测,则称 是 上的可测函数.
2可测函数的性质
性质1零集上的任何函数都是可测函数。
注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集
性质2简单函数是可测函数
若 ( 可测且两两不交), 在每个 上取常值 ,则称 是 上的简单函数;
第四章可测函数
由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue可测函数,并讨
论其性质和结构.
§1可测函数及其性质
教学目的本节将给出可测函数的定义并讨论其基本性质
教学要点可测函数有若干等价的定义.它是一类范围广泛的函数,并且有很好
的运算封闭性.可测函数可以用简单函数逼近,这是可测函数的构造性特征.
对上式的说明:
,
比较:
例: 上的可微函数 的导函数 是可测函数
证明:由于
从而 是一列连续函数(当然是可测函数)的极限,故 是可测函数.利用了可测函数列的极限函数仍为可测函数.
例设 是可测函数列,则它的收敛点全体和发散点全体是可测集.
证明:发散点全体为 ;收敛点全体为 再利用 和 是可测函数即可
注意:函数列收敛与函数列收敛于 之间的不同
鲁津(лузин)定理:设 为 上几乎处处有限的可测函数,则
闭集 使得 且 在 上连续.(去掉一小测度集,在留下的集合上成为连续函数)