计算机组成原理实验-移位运算一1-2
计算机组成原理移位运算
![计算机组成原理移位运算](https://img.taocdn.com/s3/m/7f3a21b14793daef5ef7ba0d4a7302768e996f82.png)
计算机组成原理移位运算
移位运算是计算机组成原理中一类非常重要的运算,它可以用于对二
进制数进行位移操作。
在计算机中,移位运算通常分为左移和右移两种。
移位运算在计算机中有广泛的应用。
以下是几个常见的应用场景:
1.逻辑移位
逻辑移位是移位运算的一种常见用法,在逻辑移位中,空出的位都用
0填充。
逻辑左移可以高效地实现对二进制数进行乘2的操作,逻辑右移
可以高效地实现对二进制数进行除2的操作。
2.算术移位
算术移位是对有符号数进行移位运算的一种方式。
在算术移位中,空
出的位都用符号位进行填充。
算术左移相当于对有符号数进行乘2的操作,算术右移相当于对有符号数进行除2的操作。
3.循环移位
循环移位是对二进制数进行循环操作的一种方式,在循环移位中,左
移操作会将最高位移到最低位,右移操作会将最低位移到最高位。
循环移
位可以用于循环移动数据,实现数据的循环滚动效果。
4.位掩码
位掩码是一种常见的位操作技术,通过使用移位运算可以高效地实现
位掩码。
位掩码将一个对应于要操作的二进制数位的掩码与要操作的数进
行位与(&)运算,可以提取出特定的二进制位。
总结起来,移位运算是计算机组成原理中一类非常重要的运算,它可以用于对二进制数进行位移操作。
左移操作可以高效地实现乘2的操作,右移操作可以高效地实现除2的操作。
移位运算在逻辑移位、算术移位、循环移位和位掩码等场景中有广泛的应用。
它不仅是计算机中数据处理的基础,也是数据存储和传输中的关键操作。
移位运算实验
![移位运算实验](https://img.taocdn.com/s3/m/6de43f611eb91a37f1115cb6.png)
塔里木大学计算机专业(计算机组成原理)课程实验报告一、实验目的掌握移位控制的功能及工作原理二、实验内容输入数据,利用移位寄存器进行移位操作。
三、实验原理移位运算实验电路的功能由S1、S0、M 控制,具体功能见表2-2:四、实验步骤本实验中所有控制开关拨动,相应指示灯亮代表高电平“1”,指示灯灭代表低电平“0”。
连线时应注意:对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。
1. 按图2-4接线:图2-4 实验二开关实验接线图为了避免总线冲突,首先将控制开关电路的所有开关拨到输出高电平“1”状态,所对应的指示灯亮。
2.不带进位移位操作过程:(以左移为例)开始实验前要把所有控制开关电路上的开关置为高电平“1”状态。
拨动清零开关CLR,使其指示灯灭。
再拨动CLR,使其指示灯亮。
(1)置数:置C-G=1,299-G=1,通过数据输入电路输入要移位的数据,置D15---D0= “0000000000000001”,然后置C-G=0,数据总线显示灯显示“0000000000000001”,置S0=1,S1=1,参考功能表表2-2可见,此时为置数状态,按脉冲源及时序电路上的【单步】按钮,置C-G=1,完成置数的过程。
(2)不带进位移位:置299-G=0,S0=1,S1=0,M=0,参考功能表表2-2可见,此时为循环左移状态,数据总线显示灯显示“0000000000000001”,按【单步】,数据总线显示灯显示“0000000000000010”,再按一次【单步】,数据总线显示的数据向左移动一位。
连续按【单步】,观察不带进位移位的过程。
如想进行右移,参考表2-2可见,置S0=0,S=1,再按【单步】即可实现右移操作。
(3)带进位移位首先观察运算器电路上的进位指示灯Z的状态,灯亮表示进位为“1”,灯灭表示进位为“0”。
通电进位指示灯灭,进位为“0”状态。
掌握移位控制的功能及工作原理--实验报告
![掌握移位控制的功能及工作原理--实验报告](https://img.taocdn.com/s3/m/437d86064531b90d6c85ec3a87c24028915f852e.png)
实验二移位运算实验一、实验目的:掌握移位控制的功能及工作原理二、预习要求:1.了解8位双向移位寄存器74LS299的功能、引出端功能符号和管脚分配;2.预习移位运算电路的工作原理。
三、实验设备:EL-JY-II型计算机组成原理实验系统一套,排线若干。
四、电路组成:图2-1(a)GAL进位控制电路图2-1(b)移位电路本模块由逻辑控制单元(由一片GAL构成)U34和带三态输出的移位寄存器74LS299等组成。
74LS299具有并行接数、左移、右移、保持等功能,且具有三态输出。
其功能和管脚分配见表2-1和图2-2。
表2-1 74LS299的功能表图2-2(a)74LS299的管脚分配图2-2(b)74LS299引出端功能符号五、工作原理:移位运算实验电路的功能由S1、S0、M控制,具体功能见表2-2:表2-2六、实验内容:输入数据,利用移位寄存器74LS299控制进行移位。
七、实验步骤Ⅰ、单片机键盘操作方式实验。
注:在进行单片机键盘控制实验时,必须把K4开关置于“OFF”状态,否则系统处于自锁状态,无法进行实验。
实验连线:实验连线图如图2-3所示。
连线时应按如下方法:为了连线统一,对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。
2.实验过程:在监控指示灯滚动显示【CLASS SELECt】时按【实验选择】键,显示【ES--_ _ 】输入02或2,按【确认】键,监控指示灯显示为【ES02】,表示准备进入实验二程序,也可按【取消】键来取消上一步操作,重新输入。
再按【确认】键,进入实验二程序,显示为【E1E0--】,提示输入299操作指令(参考表2-2,E1E0相当于299-G,二进制,“11”为关闭输出,“00”为允许输出),输入二进制数“11”,关闭输出,在输入过程中,可按【取消】键进行输入修改。
按【确认】键,监控指示灯显示【Lo=0】,可输入二进制数“0”或“1”,此处Lo相当于表2-2的M,即控制是否带进位进行移位,默认为“0”,不带进位移位。
计算机组成原理-实验四-移位控制实验
![计算机组成原理-实验四-移位控制实验](https://img.taocdn.com/s3/m/46817274daef5ef7bb0d3c5c.png)
实验四移位控制实验一、实验目的(1)了解移位寄存器芯片(74LS299)的逻辑功能。
(2)掌握移位寄存器数据的载入、左移、右移的方法。
(3)掌握移位寄存器工作模式的设置,观察在不同工作模式下移位寄存器的逻辑功能。
二、实验原理移位操作时算术逻辑运算部件ALU众多操作中的一种,74LS181算数逻辑运算芯片不带位移功能,需要在其他芯片的配合下才能实现移位操作。
实验台选用74LS299作为移位部件,与74LS181组成具有移位功能的算术逻辑运算部件(ALU UNIT)。
移位操作有很重要的逻辑意义,对一个数据左移一个二进制位就相当于进行了一次乘2操作(Si+1=Si×2),左移和算数加结合可实现算数乘操作;右移一个二进制位就相当于进行了一次除2操作(Si+1=Si÷2),右移和算数减的结合可实现算数除操作。
1.芯片74LS299的逻辑功能4LS299是一种数据宽度为8为的多功能移位寄存器芯片,片内含有8为寄存器D7—D0,与普通寄存器芯片不同之处是D7—D0与I/O6—I/O0除了一一对应输出外还可有左右移位输出。
左移时D0对应I/O1、D1对应I/O2……以此类推;右移时D7对应I/O6、D6对应I/O5……也以此类推。
对于输出、左右移位输出功能的选择,由S1、S0的功能控制端决定。
芯片封装在具有20引脚的封装壳中,封装型式见图2-5。
S1图 2-5 74LS29974LS299芯片的主要引脚有:(1)IO7—IO0:数据输入/输出端,芯片的输入/输出共用一个引脚,不同于74LS181输入、输出端引脚是分开的。
(2)S0、S1:功能控制端,控制左移、右移等逻辑功能。
(3)OE1、OE2:输出使能端,低电平时,IO7-IO0处于输入状态,高电平时,IO7-IO0处于输入状态。
(4)CP:时钟输入端,数据的输入、位移需要在时钟脉冲的同步控制下动作。
(5)M:清零端,低电平有效,清零位移寄存器。
计算机组成原理实验报告
![计算机组成原理实验报告](https://img.taocdn.com/s3/m/9edc9f100640be1e650e52ea551810a6f524c8a1.png)
计算机组成原理实验报告实验报告运算器实验⼀、实验⽬的掌握⼋位运算器的数据传输格式,验证运算功能发⽣器及进位控制的组合功能。
⼆、实验要求完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运⽤。
三、实验原理实验中所⽤的运算器数据通路如图2-3-1所⽰。
ALU运算器由CPLD描述。
运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输⼊端分别由2个74LS574锁存器锁存,锁存器的输⼊端与数据总线相连,准双向I/O 输⼊输出端⼝⽤来给出参与运算的数据,经2⽚74LS245三态门与数据总线相连。
图2-3-1运算器数据通路图中A WR、BWR在“搭接态”由实验连接对应的⼆进制开关控制,“0”有效,通过【单拍】按钮产⽣的脉冲把总线上的数据打⼊,实现运算源寄存器A、暂存器B的写⼊操作。
四、运算器功能编码算术运算逻辑运算K23~K0置“1”,灭M23~M0控位显⽰灯。
然后按下表要求“搭接”部件控制路。
表2.3.2 运算实验电路搭接表算术运算1.运算源寄存器写流程通过I/O单元“S7~S0”开关向累加器A和暂存器B置数,具体操作步骤如下:2.运算源寄存器读流程关闭A、B写使能,令K18=K17=“1”,按下流程分别读A、B。
3.加法与减法运算令M S2 S1 S0(K15 K13~K11=0100),为算术加,FUN及总线单元显⽰A+B的结果令M S2 S1 S0(K15 K13~K11=0101),为算术减,FUN及总线单元显⽰A-B的结果。
逻辑运算1.运算源寄存器写流程通过“I/O输⼊输出单元”开关向寄存器A和B置数,具体操作步骤如下:2.运算源寄存器读流程关闭A、B写使能,令K17= K18=1,按下流程分别读A、B。
①若运算控制位设为(M S2 S1 S0=1111)则F=A,即A内容送到数据总线。
②若运算控制位设为(M S2 S1 S0=1000)则F=B,即B内容送到数据总线。
运算器实验-计算机组成原理
![运算器实验-计算机组成原理](https://img.taocdn.com/s3/m/5381cf40ba68a98271fe910ef12d2af90242a899.png)
实验题目运算器实验一、算术逻辑运算器1.实验目的与要求:1.掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
2.掌握简单运算器的数据传送通道。
3.验算由74LS181等组合逻辑电路组成的运算功能发生器运算功能。
4.能够按给定数据,完成实验指定的算术/逻辑运算。
2.实验方案:(一)实验方法与步骤1实验连线按书中图1-2在实验仪上接好线后,仔细检查正确与否,无误后才接通电源。
每次实验都要接一些线,先接线再开电源,这样可以避免烧坏实验仪。
2 用二进制数据开关分别向DR1寄存器和DR2寄存器置数。
3 通过总线输出寄存器DR1和DR2的内容。
(二)测试结果3.实验结果和数据处理:1)SW-B=0时有效,SW-B=1时无效,因其是低电平有效。
ALU-B=0时有效,ALU-B=1时无效,因其是低电平有效。
S3,S2,S1,S0高电平有效。
2)做算术运算和逻辑运算时应设以下各控制端:ALU-B SW-B S3 S2 S1 S0 M Cn DR1 DR23)输入三态门控制端SW-B和输出三态门控制端ALU-B不能同时为“0”状态,否则存在寄存器中的数据无法准确输出。
4)S3,S2,S1,S0是运算选择控制端,有它们决定运算器执行哪一种运算;M是算术逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算;Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。
逻辑运算与进位无关;、ALU-B是输出三态门控制端,控制运算器的运算结果是否送到数据总线BUS上。
低电平有效。
SW-B是输入三态门的控制端,控制“INPUT DEVICE”中的8位数据开关D7~D0的数据是否送到数据总线BUS上。
低电平有效。
5)DR1、DR2置数完成后之所以要关闭控制端LDDR1、LDDR2是为了确保输入数据不会丢失。
6)A+B是逻辑运算,控制信号状态000101;A加B是算术运算,控制信号状态100101。
计算机组成原理操作箱的使用
![计算机组成原理操作箱的使用](https://img.taocdn.com/s3/m/b2f6e20379563c1ec5da7153.png)
所需实验环境:
EL-JY-II型计算机组成原理实验系统一套,排线若干。
实验内容及过程:
(1)按照实验连线图连接电路,仔细查线无误后,接通电源。
(2)拨动清零开关CLR使指示灯灭。再拨动CLR使其点亮。
(3)在监控滚动条显示[CLASS SELECt]时按[实验选择]键,显示[ES--_ _],输入“02”,按[确认]键,监控显示为[ES02],表示准备进入实验程序,也可按[取消]键取消上一操作,重新输入。
课程实验报告
课程名称:计算机组成原理
实验项目名称:实验二移位运算实验
专业班级:B11522
******
学号:***********
*******
完成时间:2013年03月28日
计算机科学与工程系
实验目的及要求:
1.掌握移位控制的功能及工作原理。
2.输入数据,利用移位寄存器进行移位。
3.验证移位运算控制的组合功能及用FPGA的实现方法。
指导教师意见
实验成绩:指导教师:
年月日
(6)监控指示灯显示[S0S1--],提示输入移位控制指令,输入二进制“11”,对移位寄存器进行置数操作示输入要移位数据,输入十六进制数[0001],按[确认],显示[PULSE],此时按[单步],将数据存入寄存器中可对其进行移位操作。
(8)监控指示灯显示[ES02],按[确认]进行移位操作,显示[E/E0--],提示输入操作指令,输入“00”,允许输出,按[确认]键。
(4)按[确认]键,监控显示[E/E0--],提示输入操作指令(E/E0相当于G-299二进制“11”关闭输出,“00”允许输出),输入二进制数“11”关闭输出,在输入过程中,可按取消键进行输入修改,再按[确认]键。
移位运算实验报告
![移位运算实验报告](https://img.taocdn.com/s3/m/cea5be2dbfd5b9f3f90f76c66137ee06eff94ebd.png)
移位运算实验报告
位移运算是以二进制表示数据,并利用位数据来实现运算的运算方法。
它主要分为“移位”和“偏移”两种方式,分别用来实现数据的快速访问和移动。
移位运算的定义:是指把一个数的各二进制位的位置整体或个别地,右移或左移若干位,相应地把高位或低位的值舍弃并补0或丢弃,然后运算出一个新数。
左移运算:左移运算就是将数据的二进制位向左移动若干位,在低位补0,左移n位相当于乘以2的n次方,左移任意次均不改变数据的值。
我们利用一个实验来体验移位运算的使用方法:
①用户先自己定义一个变量a,这个变量的值是0x0F;
②然后,用户可以实现诸如左移运算a<<2的操作,该操作的结果值是0x3C;
③也可以执行右移运算a>>2,该操作的结果值是0x03。
上述运算实质上就是利用位移运算实现数值快速访问或移动的操作,这样可以使得后续处理和运算更加便捷和高效。
综上所述,位移运算是一种有效的运算方式,它可以有效表达二进制数据,因此在很多程序和计算机系统中都有广泛的应用。
同时,位移运算比起传统的算术运算,同样的数据处理需要的计算时间更少,因此在时间复杂度方面有很明显的优势。
移位运算实验
![移位运算实验](https://img.taocdn.com/s3/m/06008cfcb8f67c1cfbd6b805.png)
0
1
0
0
0
1
0
1
0
0
1
0
0
0
1
1
9
计 算 机 组 成 原 理 实 验
六.思考题
算出若置数10101010,进位分别为1或0时, 执行3次不带进位左移和3次带进位左移的 结果。并和实验所得结果进行比较验证。
10
计 算 机 组 成 原 理 实 验
计算机组成原理
实验一运算器实验
2、移位运算实验
计 算 机 组 成 原 理 实 验
1、算术逻辑运算实验
一、实验目的:
验证移位控制的组合功能。
2
计 算 机 组 成 原 理 实 验
2、移位运算实验
二、实验原理
使用了一片74LS299作为移位发生器,其八输入/输 出端以排针方式和总线单元连接。299—B信号控制 其使能端,T4时序为其时钟脉冲,实验时将“W/R UNIT”中的T4接至“STATE UNIT”中的KK2单脉冲发 生器,由S0、S1、M控制信号控制其功能状态。
置数,具体步骤如下:
数据开关
(01101011)
三 门
态
置 数
(01101011)
三 态 门 SW-B=1
SW-B=0
S 0 = 1 S 1 = 1 T 4 =
8
计 算 机 组 成 原 理 实 验
五、分析整理实验数据,写出实验报告 A=01101011 (6B)
299-B 0 S1 0 S2 0 M 任意 移位结果
5
计 算 机 组 成 原 理 实 验
2、移位运算实验
三、实验仪器 TDN-CM++计算机组成原理教学实验系统一 台,排线若干。
计算机组成原理移位运算实验报告
![计算机组成原理移位运算实验报告](https://img.taocdn.com/s3/m/03a66f2015791711cc7931b765ce0508763275bb.png)
计算机组成原理移位运算实验报告移位运算是计算机中非常基础的运算之一,用于将二进制数的位数进行移动。
移位运算可分为左移和右移两种,左移是将二进制数的位数向左移动,右移则是将二进制数的位数向右移动。
移位运算通常用于二进制数的乘除运算、数据压缩、程序优化等方面。
在本次实验中,我们将通过Verilog HDL 设计一个移位器,实现移位运算。
1. 实验原理和设计设计移位器需要对移位运算的原理有一定的理解。
在二进制数的移位运算中,移位的方向和位移的距离都是明确的,因此我们可以通过调整输入信号的位置,分别实现左移和右移。
具体实现方法可以采用逻辑门电路实现,也可以采用移位指令指令直接实现。
在本次实验中,我们采用逻辑门的实现方法。
移位器的设计主要分为以下几个步骤:1. 采用Verilog HDL 自定义输入端口和输出端口。
2. 采用逻辑门电路实现移位器,包括左移和右移两种方式。
3. 对移位器进行仿真调试,验证移位器的正确性。
以下是实验所采用的Verilog HDL 代码:module shifter(input [15:0] in_data,input [1:0] shift_direction,input [3:0] shift_distance,output [15:0] out_data);wire [15:0] shift_out;assign shift_out = shift_direction[0] ? (in_data << shift_distance) : (in_data >> shift_distance);assign out_data = shift_direction[1] ? (in_data << shift_distance) : (in_data >> shift_distance);endmodule代码中定义了4 个输入端口和一个输出端口,在输入端口中,`in_data` 为需要进行移位的二进制数,`shift_direction` 为移动方向(0 为右移,1 为左移),`shift_distance` 为移动的距离。
计算机组成原理实验报告说明
![计算机组成原理实验报告说明](https://img.taocdn.com/s3/m/30857e60e45c3b3566ec8b10.png)
实验一运算器组成实验一、实验目的1、掌握运算器的组成及工作原理;2、了解4位函数运算器74LS181的组合功能,熟悉运算器执行算术和逻辑操作的具体实现过程;3、验证带进位控制的运算器功能。
二、实验设备1、EL-JY系列计算机组成及系统结构实验系统一套2、排线若干。
三、工作原理:算术逻辑单元ALU是运算器的核心。
集成电路74LS181是4位运算器,四片74LS181以并/串形式构成16位运算器。
它可以对两个16位二进制数进行多种算术或逻辑运算,74LS181 有高电平和低电平两种工作方式,高电平方式采用原码输入输出,低电平方式采用反码输入输出,这里采用高电平方式。
三态门74LS244作为输出缓冲器由ALU-G信号控制,ALU-G 为“0”时,三态门开通,此时其输出等于其输入;ALU-G 为“1”时,三态门关闭,此时其输出呈高阻。
四片74LS273作为两个16数据暂存器,其控制信号分别为LDR1和LDR2,当LDR1和LDR2 为高电平有效时,在T4脉冲的前沿,总线上的数据被送入暂存器保存。
四、实验内容:验证74LS181运算器的逻辑运算功能和算术运算功能。
五、实验步骤1、按照实验指导说明书连接硬件系统;2、启动实验软件,打开实验课题菜单,选中实验课题打开实验课题参数对话窗口:1)、在数据总线上输入有效数据,按"Ldr1",数据送入暂存器1;2)、在数据总线上输入有效数据,按"Ldr2",数据送入暂存器2;3)、在S3...Ar上输入有效数据组合,按"ALU功能选择端",运算器按规定进行运算,运算结果送入数据缓冲器;4)、按"ALU_G",运算结果送入数据总线。
5)、执行完后,按"回放",可对已执行的过程回看。
6)、回放结束后,按"继续"(继续按钮在点击回放后出现),进行下次数据输入。
计算机组成原理 -实验一运算器组成实验_
![计算机组成原理 -实验一运算器组成实验_](https://img.taocdn.com/s3/m/35ca2cd481c758f5f61f6758.png)
三.实验内容
验证74LS181的算术运算和逻辑运算功能(采 用正逻辑)
改变运算器的功能设置,观察运算器的输出。
SW-B=1、ALU-B=0保持不变 在给定DR1=65、DR2=A7的情况下,改变运算器的功
能设置,观察运算器的输出,填入下表中,并和理论分 析进行比较、验证。 例如:置S3 S2 S1 S0 M CN为 1 0 0 1 0 1 运算器做加 法运算;
45
4.实验步骤
4.对源程序进行编译
在左方Source in Project栏中选中第二行ispLSI1032-70LJ84, 在右方Process for current Source栏中双击第七行JEDEC File按钮,则开始编译。如果编译正确,则生成可下载的文 件JEDEC File,即使出现警告提示,也表示已成功生成了可 下载文件。如果提示错误,则需要修改程序,然后重新编译。
40
3.实验原理
对该器件的逻辑系统设计是通过使用硬件描述 语言活原理图输入来实现的,硬件描述语言有 ABEL、VHDL等多种语言。
为了方便同学学习,这里以硬件描述语言进行 编程,描写器件功能,下面用ABEL语言编程 来实现一个加法器。
41
4.实验步骤
1.安装EDA。
打开计算机电源,进入windows系统,安装上述 ispDesignEXPERT软件,安装完成后,桌面和开始菜单中 则建有ispDesignEXPERT软件图标。
5
三.实验内容
图中已将用户需要连接的控制信号用圆圈标明(其 他实验相同,不再说明),其中除T4为脉冲信号, 其它均为电平信号。由于实验电路中的时序信号均 已连至“W/R UNIT”的相应时序信号引出端,因此, 在进行实验时,只需将“W/R UNIT”的T4接至 “STATE UNIT”的微动开关KK2的输出端,按动微 动开关,即可获得实验所需的单脉冲,而S3、S2、 S1、S0 、Cn、M、LDDR1、LDDR2、ALU-B、 SW-B各电平控制信号用“SWITCH UNIT”中的二 进制数据开关来模拟,其中Cn、ALU-B、SW-B为 低电平有效,LDDR1、LDDR2为高电平有效。
计算机组成原理移位运算实验
![计算机组成原理移位运算实验](https://img.taocdn.com/s3/m/87e416558762caaedc33d445.png)
实验4 移位运算实验一、实验目的1.掌握移位寄存器的工作原理及其应用。
2.熟悉移位寄存器的逻辑功能及实现各种移位功能的方法。
二、实验设备74LS194组件一片,单脉冲一个,开关若干,灯泡若干三、实验原理移位寄存器是一种由触发器连接组成的同步时序电路,每个触发器的输出连到下一级触发器的数据输入,所有触发器共用一个时钟脉冲源,在时钟脉冲的作用下,存储在移位寄存器中的二进制信息,逐位左移或右移。
移位寄存器原理框图如图4所示:在上图中,每一个方框A、B、C、D代表一位寄存器。
如果移位寄存器原状态为1000,A输入接地,每送一个CP时钟之后,数码“1”由A―D的方向移动一位,若逐级移动,它就实现了寄存器的串行输入――串行输出的移位工作方式。
四、实验步骤五、 1. 选择实验设备:根据实验原理图,将所需要的组件从组件列表中拖到实验设计流程栏中。
六、 2. 搭建实验流程:将已选择的组件进行连线,搭建好的实验流程图如图5所示。
3. 验证74LS194双向移位寄存器的逻辑功能。
芯片引脚如下: 0-3号引脚是4个并行输入端A~D, 4,5号是和右移输入端DSR和左移输入端DSL, 6、7号引脚是S0.S1两个控制输入端,8号是复位端RD (低电平有效)为“异步清零”输入端,9、10号引脚分别是CP时钟脉冲和电源信号,11-14号为QA~QD输出端,15号引脚是接地端。
它能实现清零,存数,移位.保持等功能.①清零:给RD一个低电平,则清除原寄存器中的数码,实现QA、QB、QC、QD 清零。
②存数:当S1=S0=1时,CP上升沿到达时,触发器被置为QAn+1=A,QBn+1=B,QCn+1=C, QDn+1=D,移位寄存器处于“数据并行输入”状态。
③移位:S1=0,S0=1,CP上升沿到达时,触发器被置为QAn+1=DSR , QBn+1=QAn, QCn+1=QBn , QDn+1= QCn,这时移位寄存器处在“右移”工作状态。
计算机组成原理实验报告3-数据输出实验移位门实验
![计算机组成原理实验报告3-数据输出实验移位门实验](https://img.taocdn.com/s3/m/73c5d360a517866fb84ae45c3b3567ec102ddcaf.png)
2.3 数据输出实验/移位门实验一.实验要求:利用CPTH 实验仪的开关做为控制信号,实验仪的开关做为控制信号,将指定寄存器的内容读到数据总线将指定寄存器的内容读到数据总线DBUS 上。
上。
二.实验目的:1、了解模型机中多寄存器接数据总线的实现原理。
、了解模型机中多寄存器接数据总线的实现原理。
2、 了解运算器中移位功能的实现方法。
了解运算器中移位功能的实现方法。
三.实验电路:CPTH 中有7 个寄存器可以向数据总线输出数据,个寄存器可以向数据总线输出数据,但在某一特定时刻只能有但在某一特定时刻只能有一个寄存器输出数据,由X2,X1,X0决定那一个寄存器输出数据。
决定那一个寄存器输出数据。
数据输出选择器原理图数据输出选择器原理图连接线表连接线表四.实验数据及步骤:实验1:数据输出实验置下表的控制信号,检验输出结果置下表的控制信号,检验输出结果实验2:移位实验ALU 直接输出和零标志位产生原理图直接输出和零标志位产生原理图ALU 左移输出原理图左移输出原理图ALU 右移输出原理图右移输出原理图直通门将运算器的结果不移位送总线。
当X2X1X0=100 时运算器结果通过直通门送到数据总线。
同时,直通门上还有判0 电路,当运算器的结果为全0 时,Z=1,右移门将运算器的结果右移一位送总线。
当X2X1X0=101 时运算器结果通过右通门送到数据总线。
时运算器结果通过右通门送到数据总线。
具体内部连接具体内部连接是:是: Cy 与 CN →DBUS7ALU7→DBUS6ALU6→DBUS5ALU5→DBUS4ALU4 → DBUS3ALU3 →DBUS2 ALU2 →DBUS1 ALU1 →DBUS0 Cy 与 CN → DBUS7当不带进位移位时(CN=0):0 →DBUS7 当带进位移位时(CN=1):Cy →DBUS7左移门将运算器的结果左移一位送总线。
当X2X1X0=110 时运算器结果通过左通门送到数据总线。
计算机组成原理实验-运算器实验报告
![计算机组成原理实验-运算器实验报告](https://img.taocdn.com/s3/m/41a390d7b9f3f90f76c61ba0.png)
当A=10000000,B=00110010时
F=01111111
(5)S3S2S1S0=1101时,F=A加1。例如:
当A=00110101,B=00110101时,F=00 Nhomakorabea10110
当A=11100011,B=00100010时
F=11100100
F=00100000,FC灯亮,表示有进位
(3)S3S2S1S0=1011时,F=A减B。例如:
当A=00110101,B=00110101时,
F=00000000
当A=01011011,B=00111010时
F=00100001
(4)S3S2S1S0=1100时,F=A减1。例如:
当A=00110101,B=00110101时,
计算机组成原理实验运算器实验报告基本运算器实验报告运算器的组成部分运算器实验报告运算器及移位实验计算机组成原理实验运算器运算器的主要功能是运算器的主要功能运算器的功能
1.逻辑运算
(1)S3S2S1S0=0000时,F=A,例如:
当A=00010101,B=01101001时
F=00010101;
当A=01011000时,B=01011110时
当A=11000011,B=00111100时
F=00000000
(4)S3S2S1S0=0011时,F=A+B。例如:
当A=00110101,B=11001010时,
F=11111111
当A=01011011,B=11000101时
F=11011111
(5)S3S2S1S0=0100时,F=/A。例如:
F=00011101
当A=01000111,B=00000101时
移位运算实验实验报告
![移位运算实验实验报告](https://img.taocdn.com/s3/m/06b7e0c070fe910ef12d2af90242a8956aecaa73.png)
移位运算实验实验报告移位运算实验实验报告引言移位运算是计算机中常用的操作之一,通过对二进制数进行左移或右移来改变数值的位数和位置。
本实验旨在通过实际操作和观察,深入理解移位运算的原理和应用。
实验目的1. 掌握移位运算的基本原理和操作方法;2. 了解移位运算在计算机中的应用;3. 分析移位运算对数值的影响。
实验器材和材料1. 计算机;2. 编程软件(如C++、Python等)。
实验步骤1. 准备工作:打开编程软件,创建一个新的程序文件;2. 定义变量:在程序中定义一个整数变量,并赋予一个初始值;3. 左移运算:使用左移运算符(<<)对变量进行左移操作,观察结果;4. 右移运算:使用右移运算符(>>)对变量进行右移操作,观察结果;5. 输出结果:将移位运算后的结果输出到屏幕上;6. 分析结果:根据实验结果,总结移位运算对数值的影响。
实验结果与分析在实验中,我们选择了一个整数变量x,并赋予初始值为10。
通过左移和右移运算符对x进行操作,得到以下结果:1. 左移运算:- 将x左移1位(x << 1):结果为20;- 将x左移2位(x << 2):结果为40;- 将x左移3位(x << 3):结果为80。
通过观察可以发现,每次左移操作都将x的二进制表示向左移动指定的位数,相当于将x乘以2的移位次数次方。
例如,将x左移1位相当于将x乘以2,将x左移2位相当于将x乘以4。
2. 右移运算:- 将x右移1位(x >> 1):结果为5;- 将x右移2位(x >> 2):结果为2;- 将x右移3位(x >> 3):结果为1。
通过观察可以发现,每次右移操作都将x的二进制表示向右移动指定的位数,相当于将x除以2的移位次数次方。
例如,将x右移1位相当于将x除以2,将x右移2位相当于将x除以4。
结论通过本次实验,我们对移位运算有了更深入的理解。
《计算机组成原理》实验1寄存器试验,2运算器试验
![《计算机组成原理》实验1寄存器试验,2运算器试验](https://img.taocdn.com/s3/m/46de6f5c336c1eb91a375dce.png)
实验指导书课程:计算机组成原理实验教师:班级:第一章系统概述1.1 实验系统组成第二章基础模块实验实验一寄存器实验实验目的:熟悉试验仪各部分功能。
掌握寄存器结构、工作原理及其控制方法。
实验内容:利用实验仪开关区上的开关sk23-sk16提供数据,其它开关做为控制信号,将数据通过DBUS写入OUT 寄存器,并将OUT寄存器的内容送往扩展区通过数码管和发光二极管显示。
实验原理:实验箱用74HC273 来构成寄存器。
(1)74HC273的功能如下:(2)实验箱中74HC273的连接方式:(3)实验逻辑框图12、打开实验仪电源,按CON单元的nRST按键,系统复位;如果EXEC键上方指示灯不亮,请按一次EXEC键,点亮指示灯,表示实验仪在运行状态。
3、利用开关和控制信号将数据通过DBUS写入OUT寄存器,并将OUT寄存器的内容送往扩展区通过数码管和发光二极管显示。
并写出将数据5FH写入OUT寄存器的操作过程。
实验二运算器实验实验目的:了解运算器的组成结构;掌握运算器的工作原理和控制方法。
实验内容:利用实验仪提供的运算器,通过开关提供数据信号,将数据写入寄存器A和寄存器B,并用开关控制ALU的运算方式,验证运算器的功能。
实验原理:(1)实验逻辑框图:信号说明:IN0~IN7:ALU数据输入信号ALU_D0~ALU_D7:ALU数据输出信号:寄存器A写信号,低电平有效。
当T1节拍信号到来,该信号有效时,IN0~IN7数据可以写入寄存器A。
:寄存器B写信号,低电平有效。
当T2节拍信号到来,该信号有效时,IN0~IN7数据可以写入寄存器B。
:ALU计算结果读出信号,当T3节拍信号到来,该信号有效时,ALU计算结果送往ALU_D0~ALU_D7。
S3~S0,CN_I:ALU运算控制信号,控制ALU的运算方法。
T1,T2,T3:三个节拍信号,高电平有效,由con区的uSTEP按键控制,在运行状态时,依次按下uSTEP 键会依次发出T1、T2、T3节拍。
运算器移位运算实验实验报告
![运算器移位运算实验实验报告](https://img.taocdn.com/s3/m/5c85f4abf71fb7360b4c2e3f5727a5e9856a27f0.png)
(2)进行四次循环右移或者四次循环左移。
五、实验小结
敢于动手,大胆尝试。
任课教师评语:
教师签字:年月日
教师签字:年月日
上面方括号中的控制电平变化要按照从上到下的顺序来进行, 其中T4的正脉冲是通过按动一次CONTROL UNIT的触动开关START来产生的。
(2)参照表1,改变S0 S1 M 299_G的状态,按动触动开关START,观察移位结果。
表1 74LS299功能表
299_G
S1
S0
M
功能
0
0
0
任意
保持
0
1
0
0
循环右移
0
101带进位循环移001
0
循环左移
0
0
1
1
带进位循环左移
任意
1
1
任意
装数
3.实验结果
循环右移或左移的时候, 每来一次脉冲, 发光二极管亮的次序也跟着依次改变, 进位标志位一直保持亮的状态, 带进位的循环则是产生进位的时候, 进位标志位的二极管熄灭。
四、回答问题
1.X=00101011, Y=10001111, 完成如下运算: (1)X加Y→X, (2)交换X高4位与低4位, 若借助实验1与实验2电路如何实现(简述操作过程)?
信息学院
实验报告
学号:
姓名:
班级:
课程名称:计算机组成原理
实验名称:实验二运算器移位运算实验
实验性质:①综合性实验②设计性实验③验证性实验:√
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①装数; ②按运算功能,参照表 3-1 设置 S1、S0、M、299-B 的状态; ③置AR=0及CLR 101(清零)操作; ④移位,按动微动开关 KK2,记录每EH
循环右移
CY 移位次数 01H
循环左移
CY
1 2 3 4
1 2 3 4
5
6 7 8
实 验 二
移位运算实验
一、实验目的:
验证移位控制的组合功能。
二、实验设备
TDN-CM+ 计算机组成原理教学实验系统一台,排
线若干。
三、实验内容
1.实验原理 移位运算实验原理如图 3-1 所示,使用了一片 74LS299 作为 移位发生器,其八位的输入/输出端以排针方式和总线单元 连接。299- B信号控制其使能端,T4 时序为其时钟脉冲, 实验时将“ W/R UNIT” 中的 T4 连至“ STATE UNIT” 中的 KK2 单脉冲发生器,由 S1、S0、M控制信号控制其功能状
带进位循环右移
FEH CY
带进位循环左移
移位次数 01H CY
1 2 3 4
1 2 3 4
5
6 7 8
5
6 7 8
9
9
注意事项
1、所有导线使用前须测通断; 2、不允许带电接线; 3、“0”——亮 “1”——灭; 4、注意连接线的颜色、数据的高低位。
态,其列表如表3-1所示:
表3-1 74LS299的功能表
299-B S1 S0 M 功 能
0 0
0 1
0 0
任意 0
保持 循环右移
0
0 0
1
0 0
0
1 1
1
0 1
带进位循环右移
循环左移 带进位循环左移
任意
1
1
任意
装数
2.实验步骤 (1)按图3-2连接实验线路,仔细检查连线无误后接通电源。
(2)验证循环右(左)移运算功能,具体操作步骤如下:
5
6 7 8
9
9
(3)验证带进位循环右(左)移运算功能,具体操作步骤 如下: ①装数; ②按运算功能,参照表3-1设置S1、S0、M、299-B的状态; ③置AR=0及CLR 101(清零)操作; ④移位,按动微动开关 KK2,记录每次移位结果及 CY 的值,填 入表3-3。
表3-2
移位次数