工程地质学第四章土力学性质

合集下载

土力学的研究内容与学科发展

土力学的研究内容与学科发展

土力学的研究内容与学科发展土力学是工程地质学的一个重要分支,它研究的是土的力学特性和行为问题,主要涉及地质结构、地表地质灾害、岩土工程、岩土动力学和新型结构材料等研究领域。

它与其它的岩土力学研究学科有着密切的联系,深入研究土的物理特性、力学特性和变态特性,以及研究这些特性对岩土工程及其它相关地质工程的影响。

土力学的研究内容可以归纳为两个部分:一是土的力学性质研究,包括土的物理性质、力学性质、变形性质以及变形机制的研究;二是土的工程行为研究,包括土的变形和土的应力应变特性,以及土的地质结构和工程行为的研究。

研究者可以从实验、分析和仿真模型三个方面综合探讨土力学的相关问题,从而改善和完善现有的土力学概念和理论,为优化和设计土、岩土工程提供技术支持。

土力学作为一门新兴学科,近年来得到了广泛的关注和应用,取得了较为明显的发展和进步。

首先,土力学的研究内容得到了扩大的视野,从传统的静态力学理论走向研究动态力学和波动力学,探讨震、地质构造等活动性地质作用下的土的行为规律,取得重要突破;其次,工程地质勘察范围扩大,而土力学研究也从最初的单一工程地质规律进化到更复杂的各种地质结构,勘察技术取得了重大突破;此外,土力学技术也逐渐成熟,相关研究方法得到了不断改进,科学实用化水平不断提高,开发出更多有效的计算机软件,可以更加快速、准确地研究和分析土力学问题,为解决复杂工程现场难题提供有益的参考。

土力学的发展也为地质工程的建设和生态环境保护提供了可靠的技术支持,比如地质灾害的处理、深基础设计和文物保护等。

未来,土力学仍然将是一个重要和广阔的学科,有望取得更大的成果和进步。

综上所述,土力学是工程地质学的一个重要分支,它致力于研究土的物理特性、力学特性和变态特性,以及这些特性对岩土工程及其它相关地质工程的影响。

它的研究内容主要是土的力学性质研究和土的工程行为研究,有利于改善和完善现有的土力学概念和理论,并可从实验、分析和仿真模型来研究相关问题。

土力学-物理性质及分类

土力学-物理性质及分类

沉降
不均匀沉降会导致建筑物开裂、倾 斜等问题。为了减小沉降,可以采 取加强基础、设置沉降缝等方法。
地震液化
地震液化会导致土壤失去承载力, 影响建筑物安全。为了解决地震液 化问题,可以采取振实、排水、换 填等方法。
05
结论
土力学物理性质及分类的重要性
土力学物理性质及分类是工程设计和施工的重 要依据,能够提供土的强度、变形和渗透等特 性,从而确保工程的安全性和稳定性。
了解土的物理性质和分类有助于预测土的行为, 为工程提供科学依据,避免因对土的性质了解 不足而导致的工程事故。
土的物理性质和分类对于地质工程、环境工程、 岩土工程等领域的研究和应用具有重要意义, 能够为相关领域提供基础数据和理论支持。
对未来研究的展望
随着科技的发展和研究的深入,未来对土的物理性质和分类的研究将更加精细和全面,有望揭示更多 土的内在规律和特性。
颗粒组成
土是由固体颗粒、水和空气组成的混合物。固体颗粒的成分和大小对土的性质 有重要影响。根据颗粒的大小和成分,土可以分为砂土、壤土和粘土等类型。
结构
土的结构是指固体颗粒之间的排列和相互关系。土的结构对土的强度、压缩性 和渗透性等性质有显著影响。
土的含水量
含水量
指土中水的质量与土的固体颗粒 质量的比值,通常以百分比表示 。含水量对土的力学性质和工程 性质有重要影响。
03
土的分类
按颗粒大小分类
粗粒土
粒径在2~0.1mm 之间的颗粒占优势 的土。
极细粒土
粒径在0.01~ 0.005mm之间的颗 粒占优势的土。
巨粒土
大于2mm的颗粒占 优势的土。
细粒土
粒径在0.1~ 0.01mm之间的颗 粒占优势的土。

工程地质课后思考题汇总与答案

工程地质课后思考题汇总与答案

第一章绪论1.1 工程地质学的研究内容和任务是什么?研究内容:(1)岩土工程性质的研究(2)工程动力地质作用的研究(3)工程地质勘察理论和技术方法的研究(4)区域工程地质研究研究任务:1、查明和分析评价建筑场地的工程地质条件2、论证和预测发生工程地质问题的可能性,提出防范措施3、提出及建议改善、防治或利用有关工程地质条件的措施,加固岩土体和防治地下水的方案。

4、研究岩体、土体分类和分区及区域性特点5、研究人类工程活动与地质环境之间的相互作用与影响。

1.2 说明人类工程活动与地质环境的关系?人类的工程活动和自然地质作用会改变地质环境,影响工程地质的变化。

1.3 什么是工程地质条件和工程地质问题?工程地质条件:工程地质条件是与工程建筑有关的地质条件的总称。

它包括工程建设物所在地区的地质环境要素:地层岩性、地质结构与构造、水文地质条件、地表地质作用、地形地貌、天然建筑材料等六个方面的因素。

工程地质问题:工程地质条件不能满足工程建筑上稳定和安全的要求时,工程建筑物与工程地质条件之间所存在的矛盾。

常见几类:地基稳定性问题——变形、强度;斜坡稳定性问题——地质灾害;洞室围岩稳定性问题——地质体受力和变形;区域稳定性问题——地震、震陷、液化、活断层。

1.4 说明工程地质学在土木工程建设中的作用?工程地质工作在土木工程建设中是很重要的,是设计之先驱。

没有足够考虑工程地质条件而进行的设计,是盲目的设计,都会给工程带来不同程度的影响。

轻则修改设计方案、增加投资、延误工期;重则是建筑物完全不能使用,甚至突然破坏,酿成灾害。

1.5 分析图1-7和图1-8在不同工程地质下的建筑物安全稳定问题。

第二章 地质学基础知识2.1 岩层产状包括哪些要素?岩层产状包括3要素:走向、倾向、倾角。

2.2 在野外如何识别褶皱?识别的褶皱方法:(1)地质方法:① 首先必须基本搞清楚一个地区的岩层顺序、岩性、厚度、各露头产状等,才能正确地分析和判断褶曲是否存在;然后根据新老岩层对称重复出现的特点判断是背斜还是向斜;再根据轴面产状、两翼产状以及枢纽产状等判断褶曲的形态,包括横剖面、纵剖面和水平面。

土力学课件PPT课件

土力学课件PPT课件
第15页/共139页
(三)其它沉积物 除了上述四种成囚类型的沉积物外,还有海洋沉积物
(Q”)、 湖泊沉积物(Q‘)、 冰川沉积物(Q”)及风积物(Q”‘)等,它们是分别由海洋, 湖泊、冰川及风等的地质作用形成的.
第16页/共139页
1-3 土 的 组 成
一 土的固体颗粒 · 土中的固体颗粒(简称土粒)的大小和形状、 矿物成分及其组成情况是决定土的物理力学性 质的重要因素。
第13页/共139页
(二)冲积物(Q) 冲积物是河流流水的地质作用将两岸基岩及其上部覆盖 的坡积、洪积物质剥蚀后搬运、沉积在河流坡降平缓地 带形成的沉积物。
第14页/共139页
1平原河谷冲积物 平原河谷除河床外,大多数都有河漫滩及阶地等地貌单元 (图1—7)。
2.山区河谷冲积层 在山区,河谷两岸陡削,大多仅有河谷阶地(图1-8)。
形成电场,在土粒电场范围内的水分子和水溶液中的阳离
子(如Na’、Ca”、A1”等)一起吸附在土粒表面。因为水分
子是极性分子(氢原子端显正电荷,氧原子端显负电荷),
它被土粒表面电荷或水溶液中离子电荷的吸引而定向排列
(图1—13)。
双电子层
第22页/共139页
第23页/共139页
(1)强结合水 强结合水是指紧靠土粒表面的结合水 (2)弱结合水 弱结合水紧靠于强结合水的外围形成一层结合水膜。 2自由水 自由水是存在于土粒表面电场影响范围以外的水。它 的性质和普通水一样,能传递静水压力,冰点为0℃,有 溶解能力。 自由水按其移动所受作用力的不同,可以分为重力水 和毛细水。 (1)重力水 重力水是存在于地下水位以下的透水层中的地下水, 它是在重力或压力差作用下运动的自由水,对土粒有浮 力作用。
三 地质年代的概念 地质年代--地壳发展历史与地壳运动,沉积环境 及生物演化相对应的时代段落。 相对地质年代--根据古生物的演化和岩层形成的 顺序,所划分的地质年代。 在地质学中,根据地层对比和古生物学方法把地 质相对年代划分为五大代(太古代、元古代、古生代、 中生代和新生代),每代又分为若干纪,每纪又细分为 若干世及期。在每一个地质年代中,都划分有相应的地 层(参见表1-6) 在新生代中最新近的一个纪称为第四纪,由原岩 风化产物(碎屑物质),经各种外力地质作用(剥蚀、 搬运、沉积)形成尚未胶结硬化的沉积物(层),通称

工程地质第四章 土的工程地质性质

工程地质第四章 土的工程地质性质

粒径大于200mm的颗 粒含量超过全重50%
卵石 碎石
圆形及亚圆形为主 棱角形为主
粒径大于20mm的颗粒 含量超过全重50%
圆砾 角砾
圆形及亚圆形为主 棱角形为主
粒径大于2mm的颗粒 含量超过全重50%
注:定名时应根据颗粒级配由大到小以最先符合者确定
2.砂土
粒径大于2mm的颗粒含量不超过全重50%的土,且粒 径大于0.075mm的颗粒含量超过全重50%的土称为砂土
颗粒粒径级配曲线
(横坐标为粒径,用对数坐标表示;纵坐标为小于某粒径的土重含 量,用常数坐标表示)。
Cu
小于某粒径之土质量百分数P(%) 10 5.0 1.0 0.5
0.10 0.05 0.01 0.005 0.001
土的粒径级配累积曲线
200g P 100
10 5.0 10 2.0 16 1.0 18 0.5 24 0.25 22 0.1 38
筛分法:适用于0.075mm≤d≤60mm 试验方法
密度计法:适用于d<0.075mm 《土工试验方法标准》GB/T 50123-1999
《土的工程分类标准》(GB/T50145—2007)依粒径的大小将土粒划分六大粒组。
表4.1 粒组划分
粒组统称 粒组名称 粒径(d)的范围(mm)
主要特征
巨粒
漂石(块石) 卵石(碎石)
72
%
90 80
95 70 60
87 50
78 40 30
66 20
55
10 0
36
粒径(mm)
水分法
粒径(mm)
0.05 0.01 0.005
百分数P(%)
26
13.5
10

土力学第四版知识点

土力学第四版知识点

土力学第四版知识点土力学是土土相互作用的一门学科,研究土壤力学性质、土壤力学行为以及土壤力学应用等内容。

它在土木工程、岩土工程和地质工程等领域中起着重要的作用。

土力学的核心概念之一是土体的物理性质。

土体是由颗粒、水和气体组成的多相介质,其物理性质包括颗粒间的空隙度、颗粒大小、颗粒形状等。

这些性质决定了土体的孔隙结构和孔隙水、孔隙气体的存在形式和分布。

通过研究土体的物理性质,可以了解土体的孔隙结构和孔隙水、孔隙气体的运动行为,为土体力学行为的研究提供基础。

土力学还研究土体的力学性质。

土体是一种非饱和多相介质,其力学性质受到颗粒间的相互作用、水分的存在和分布以及孔隙气体的存在和分布的影响。

土体的力学性质可以通过试验和理论分析来研究,包括土体的强度特性、应力应变关系、变形特性等。

研究土体的力学性质可以为土木工程和岩土工程的设计和施工提供依据。

土力学中的另一个重要概念是土体的力学行为。

土体的力学行为是指土体在受力作用下的变形和破坏特性。

土体的力学行为受到颗粒间的相互作用、水分的存在和分布以及孔隙气体的存在和分布的影响。

土体的力学行为可以通过试验和理论分析来研究,包括土体的压缩性、剪切性、强度和稳定性等。

研究土体的力学行为可以为土木工程和岩土工程的设计和施工提供依据。

土力学的应用十分广泛。

在土木工程中,土力学可以用于土体的基础设计、土体的稳定性分析、土体的承载力计算等。

在岩土工程中,土力学可以用于土体的边坡稳定性分析、土体的基坑支护设计、土体的地下工程设计等。

在地质工程中,土力学可以用于土体的地震响应分析、土体的岩土工程灾害预测等。

土力学的应用可以提高土木工程、岩土工程和地质工程的设计和施工水平,保障工程的安全和可靠性。

通过对土力学的学习,我们可以深入了解土体的力学性质和力学行为,为土木工程、岩土工程和地质工程的设计和施工提供科学依据。

土力学的研究不仅在理论上对土体的行为有了更深入的认识,也在工程实践中发挥了重要的作用。

土力学知识点总结PDF

土力学知识点总结PDF

土力学知识点总结PDF土力学是土木工程领域中的一个重要分支,它研究土体物理性质、力学性质和变形规律等内容。

土力学知识的掌握对于土木工程的设计、施工和管理具有重要意义。

本文将对土力学的相关知识进行总结,包括土体力学性质、土体压缩、土体强度等内容。

一、土体力学性质1. 土的物理性质:土体的物理性质包括密度、孔隙度、含水率等指标。

其中密度是土体的质量和体积之比,孔隙度是土体含水空隙的体积占总体积的比重,含水率是土体中水分的质量占总质量的比值。

2. 土的力学性质:土的力学性质包括固体土体和饱和土体的力学性质。

固体土体的力学性质由其颗粒间的摩擦力和粘聚力决定,而饱和土体的力学性质受到孔隙水的影响。

3. 土的变形规律:土体在外力作用下会发生变形,其变形规律可以用黏弹性理论进行描述。

土体的压缩变形和剪切变形是土体力学研究的重要内容。

二、土体压缩1. 土体压缩的原因:土体在受到外力作用时会发生压缩变形,其原因主要包括土颗粒间的调配和孔隙水的排出。

2. 土体压缩指标:土体压缩的指标包括压缩系数和压缩模量。

压缩系数表示单位压力下土体的体积变化量与初始体积的比值,压缩模量表示单位压力下土体的应变与应力之比。

3. 土体压缩计算:土体压缩的计算可以采用理论模型和实测数据相结合的方法。

一般通过试验和实测数据来确定土体的压缩系数和压缩模量,然后进行压缩计算。

三、土体强度1. 土体的强度指标:土体的强度指标包括内摩擦角和粘聚力。

内摩擦角是土体颗粒之间的摩擦阻力,粘聚力是土体颗粒间粘聚的力量。

2. 土体强度计算:土体的强度计算可以采用摩擦角和粘聚力的理论模型,通过实验和实测数据来确定土体的强度指标,然后进行强度计算。

4. 土体的抗剪强度:土体在受到剪切应力作用时会发生剪切破坏,其抗剪强度是土体的重要力学性质。

抗剪强度通过直剪试验来确定,它是土体强度的重要指标之一。

四、土体稳定性分析1. 土体的稳定性分析:土体在承受外部荷载作用下可能发生破坏,其稳定性分析是土力学研究的重要内容。

高等土力学复习要点——土的性质

高等土力学复习要点——土的性质

土的性质一.土的定义、土按成因分类、土的工程分类土——土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,在原地残留或经过不同的搬运方式,在各种自然环境中形成的堆积物。

属第四纪沉积物。

根据地质成因类型划分,可将第四纪沉积物的土体分为:残积土、坡积土、洪积土、冲积土、湖积土、海积土、风积土及冰积土等。

土的工程分类:工程上是用某种最能反映土的工程特性的指标来进行系统的分类。

影响土的工程性质的三个主要因素是土的三相组成、土的物理状态和土的结构。

GB5007一2002 《建筑地基基础设计规范》将地基土分成六大类,即岩石、碎石土、砂土、粉土、粘性土和人工填土。

二.岩石按成因分类、按风化程度分类岩石按成因可分为岩浆岩、沉积岩和变质岩。

岩石按风化程度划分为微风化、中等风化和强风化三类。

三.土的颗粒级配:1.颗粒分析试验:分为筛分法和水分法二种。

筛分法适用于粒径大于0.074mm粒组的土。

水分法适用于分析粒径小于0.074mm的土。

2.颗粒级配曲线:综合上述筛分试验和比重计试验的全部结果,可以绘制如图所示的颗粒级配累积曲线。

3.颗粒级配曲线的应用:由土的颗粒级配曲线的坡度可以大致判断土的均匀程度。

如曲线较陡,则表示粒径大小相差不多,土粒较均匀,则级配不好;反之,如曲线平缓,则表示粒径大小相差悬殊,土粒不均匀,级配良好。

四.地下水1.地下水按埋藏条件可分为:毛细水,潜水,承压水地下水在土中的渗透属于层流现象,遵循达西渗透定律。

2.渗透性:地下水通过土颗粒之间的孔隙流动,土体可被水透过的性质。

3.达西渗透定律:水在砂土中的渗流速度与试样两端间的水头差成正比,而与渗流路径成反比。

其中i——水力梯度;k——渗透系数,即当i=1时的渗透速度,m/s;h1、h2——试样两端的水头;L——试样的长度,即渗流路径。

4.渗透系数k:单位水力坡降时的渗透速度。

K值的大小与土的名称、土粒粗细、粒径级配、孔隙比及水的温度等因素有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加应力之和[k Pa];
e1 :相应于p1压缩稳定后的孔隙比;
e2 :相应于p2压缩稳定后的孔隙比;
压缩定律(压密定律):在压力范围不大时,孔隙比的减小 值与压力的增加值成正比。
2021/3/4
工程地质学第四章土力学性质
13
工程地质学概论:第四章 土的力学性质
通常用压力间p隔 1 1由00kPa到p2 200kPa时的 压缩系a数 12来作为判断土的压 的缩 标性 准: 低压缩性土a1-2 0.1MPa-1 中等压缩性0土.1MPa-1 ≤a1-2 0.5MPa-1 高压缩性土a1-2 ≥0.5MPa-1
第四章 土的力学性质
• 土的力学性质是指土在外力作用下所表现的性质,主要 包括土的压缩性、抗剪性,其次为在动荷载作用下所表 现的一些性质。土的力学性质说明了土抵抗外力变形和 破坏的能力。
• 土的力学性质主要取决于土的物质组成、结构和构造特 点,还与受力条件有关。
• 当土体作为建筑物地基时,在荷重作用下就会产生压缩 变形,从而引起建筑物基础的沉降,当沉降量过大或产 生不均匀沉降时,可能影响建筑物的正常使用,甚至引 起建筑物开裂或倒塌。
• 在土的力学性质中,最主要和最有实际意义的 是土的压缩性和抗剪性。
2021/3/4
工程地质学第四章土力学性质
4
工程地质学概论:第四章 土的力学性质
第一节 土的压缩性
一、土压缩变形的特点与机理
❖土的压缩性是指土在压力作用下发生压缩变形,体积缩小的性能。 土体的压缩变形实际上是孔隙压缩、孔隙比变小所造成的。 工程实践证明,在一般建筑物荷重作用下,土粒和水的压缩量极小,
2021/3/4
工程地质学第四章土力学性质
5
工程地质学概论:第四章 土的力学性质
对饱和土而言,空隙全被水充满,土的压缩主要是由 孔隙中的水被挤出、空隙体积缩小所致,压缩过程同 排水过程一致。压缩结果使土密度增高,含水率降低 。
非饱水土的压缩,首先是气体外逸,随时间的延续, 土的饱和度逐渐增大,当气体全部排出土达到饱和状 态后,其压缩过程与饱和土相同。
2021/3/4
工程地质学第四章土力学性质
11
工程地质学概论:第四章 土的力学性质
•压缩性曲线的形状与土样的成分、结构状态及受力历史等有关。 •压缩性不同的土,其e-p曲线的形状不同。曲线愈陡,说明压力增加时 孔隙比减小得多,土易变形,压缩性愈高;若曲线平缓,则土的压缩 性低。故压缩曲线的形状可大致说明土的压缩性的高低。
• 孔隙水排出,土的压缩随时间而增长的过程,称为土 的固结。
2021/3/4
工程地质学第四章土力学性质
6
工程地质学概论:第四章 土的力学性质
二、压缩试验与压缩定律
• 土的压缩试验是取土样放入压缩仪内进行试验 ,压缩仪的构造如下图。由于土样受到环刀和 护环等刚性护壁的约束。在压缩过程中只能发 生竖向压缩,不可能发生侧向膨胀,故又叫侧 限压缩试验。
不及土体压缩量的1/400,通常认为是不可压缩的,气体的压缩较强。 在自然界中土处于开放系统,空隙中的水和气体在压力作用下不可 能被压缩,而是被挤出。所以土的压缩变形主要是由于空隙中的水 分和气体被挤出,土的颗粒相互移动靠拢,空隙体积减少而引起的。 开始时变形速度较大,随后随颗粒间接触点的增加,变形逐渐减弱。
[e0
Vv Vs
V0 Vs Vs
V0 Vs
1,Vs
V0 ] 1 e
整理,得:h1 h0
e0 e1 1 e0
,则:e1
e0
h1 h0
1e0
2021/3/4
工程地质学第四章土力学性质
10
工程地质学概论:第四章 土的力学性质
• 通过试验,求得在各级压力Pi作用下,土样压缩稳定 之后相应的空隙比ei,根据压缩试验数据,可绘制出 e~P关系曲线,称压缩曲线。如图。压缩曲线是室内压 缩实验的成果,它是土的孔隙比e与所受压力P的关系 曲线。土的压缩曲线的形状是先陡后缓,开始加压时 ,首先是接触不稳定的土粒发生位移,空隙体积减少 得很快,故曲线的斜率较大;随压力的增大,主要是 空隙中水和气体的挤出,且空隙的体积也逐渐变小; 当水和气体不再挤出时,土的压缩逐渐停止,曲线也 逐渐趋于平缓。
2021/3/4
工程地质学第四章土力学性质
7
工程地质学概论:第四章 土的力学性质
(一)压缩试验
荷载 加压活塞
刚性护环 环刀
透 水石


侧限压缩试验
底座
图5-1 压缩仪的压缩容 器简图
2021/3/4
工程地质学第四章土力学性质
8
侧限压缩试验
• 施加荷载,静置至 变形稳定
• 逐级加大荷载
透水石
工程地质学概论:第四章 土的力学性质
2021/3/4
工程地质学第四章土力学性质
2021/3/4
工程地质学第四章土力学性质
12
工程地质学概论:第四章 土的力学性质
(二)压缩定律
1.压缩系数
e p曲线上任一点切线斜率a就表示了相应于压p力作用下的压缩性。
压缩系数
a e e1 - e2 p p2 - p1
式中: a称为压缩系数单位为MPa-1;
p1 :相当于某深度处的自应重力[k Pa]; p2 :相当于某深度处的自应重力与附
试样
百分表 加压上盖 环刀 压缩 容器
护环
测定:
• 轴向压缩应力 • 轴向压缩变形
p
P3
P2
P1
t
es
2021/3/4
e
ee
0
1
2s
工程地质学第四章土力学性质 s
2
1
s
3
e
3
9t
工程地质学概论:第四章 土的力学性质
受压前后Vs,A不变
Ah0 Ah1 A(h0 h1)
1 e0 1 e1
1 e1
2021/3/4
工程地质学第四章土力学性质
3
工程地质学概论:第四章 土的力学性质
• 当土中剪应力超过土的抗剪强度时,则土中一 部分会相对另一部分发生滑动,从而危及建筑 物安全。
且土的物理性质对建筑物的影 响,是通过力学性质的变化反映出来的。
工程地质学第四章土力学性 质
土中一点的应力状态
工程地质学概论:第四章 土的力学性质
根据隔离体上静力平衡
解mn 平面上的应力
1 2
1
3
1 2
1
3
cos
2
1
2 2021/3/4
1 3
sin 2 工程地质学第四章土力学性质
莫尔应力圆的
半径
1 2
1
3
圆心:
(1 2
1
3
,0 )
2
工程地质学概论:第四章 土的力学性质
相关文档
最新文档