三极管种类和三极管的种类分法
三极管种类与定义
三极管种类与定义三极管是一种重要的电子器件,广泛应用于电子电路中。
根据不同的工作原理和结构特点,可以分为多种类型的三极管。
本文将介绍几种常见的三极管种类及其定义。
1. NPN型三极管NPN型三极管是一种常见的三极管类型。
它由三个掺杂不同类型的半导体材料组成,中间的P型区域被夹在两个N型区域之间。
NPN 型三极管的基极(B)连接到一个输入信号源,发射极(E)连接到地,而集电极(C)连接到输出负载。
当输入信号施加在基极时,控制电流将流经基极-发射极结,从而控制从集电极到发射极的电流,实现信号放大功能。
2. PNP型三极管PNP型三极管是另一种常见的三极管类型。
与NPN型三极管相比,PNP型三极管的掺杂类型相反。
PNP型三极管的基极(B)连接到一个输入信号源,发射极(E)连接到电源正极,而集电极(C)连接到输出负载。
当输入信号施加在基极时,控制电流将流经基极-发射极结,从而控制从集电极到发射极的电流,实现信号放大功能。
PNP型三极管与NPN型三极管在工作原理上相反,但其放大功能原理相同。
3. MOSFET三极管MOSFET(金属-氧化物-半导体场效应晶体管)是一种基于金属氧化物半导体技术的三极管。
它由金属栅极、绝缘氧化层和半导体基底组成。
MOSFET的工作原理是通过调节栅极电压来控制源极和漏极之间的电流。
MOSFET具有输入电阻高、功耗低、速度快等优点,广泛应用于各种电子设备中。
4. JFET三极管JFET(结型场效应晶体管)是一种基于PN结的三极管。
它由P型或N型半导体材料形成的两个反向偏置的PN结组成。
JFET的工作原理是通过控制栅极-源极电压来控制源极和漏极之间的电流。
JFET 具有输入电阻高、噪音低、线性度好等特点,广泛应用于放大、开关和稳压等电路中。
5. IGBT三极管IGBT(绝缘栅双极型晶体管)是一种结合了MOSFET和双极型晶体管特点的三极管。
它具有MOSFET的输入电阻高、功耗低和速度快的特点,同时又具有双极型晶体管的控制性好和承受大电流的特点。
3极管pnp和npn
3极管pnp和npn三极管是一种重要的电子元件,具有电流放大、开关等功能,同时还可以用于模拟信号的放大和数字信号的驱动。
其中,PNP型和NPN 型的三极管是较为常见的两种类型。
本文将围绕“三极管PNP和NPN”两个主题展开讲述,详细介绍它们的定义、工作原理以及应用等相关方面。
一、PNP型三极管PNP型三极管的工作原理:三极管由三个掺杂不同种类的半导体材料构成,从而形成了PNP和NPN两种型号。
PNP型三极管由两个N型半导体夹一个P型半导体而成,常用的符号为“↑P↓N↓N”。
PNP型三极管的基极区域和集电极区域都是N型半导体,这两个区域之间有一个P型半导体的发射区。
当基极极性为负,它的区域就会变窄,发射结逆偏导致少量的电子流会到达基区,从而发生电子注入,在中心区域可以形成N型掺杂杆,这里是PNP三极管的发射结。
此时的少量载流子从发射结流向集电极的区域,对应地就产生了比基极少很多,但比整个三极管大得多的电流流动。
这样,PNP型三极管就实现了从集电极到发射极传导的电流放大作用。
PNP型三极管的应用:PNP型三极管常用于直流放大器、稳压器、调节器、交替开关以及大功率开关等方面。
在放大器电路中,PNP型三极管可以用于共射级、共集级和共基级放大器中。
在开关电路中,PNP 型三极管可以用于其他器件的控制,例如,在交流电源中,PNP型三极管可以与NPN型三极管组成Darlington对来控制气动线路等。
二、NPN型三极管NPN型三极管的工作原理:NPN型三极管由两个P型半导体夹一个N型半导体而成,常用的符号为“↓N↑P↑P”。
NPN型三极管的基极区域和集电极区域都是P型半导体,这两个区域之间有一个N型半导体的发射区。
当基极极性向前偏压,它的区域就会加宽,发射结正向导通导致大量的电子流进入基极区,进而形成电子空穴注入,从而构成PNP三极管的发射结。
此时,由基极流进的少量电流,就能够在中心区域形成N型掺杂杆,这里是NPN三极管的发射结。
三极管的研究范文
三极管的研究范文三极管,又称晶体三极管,是一种常见的半导体器件,由Ge、Si等材料制成。
三极管是一种有源元件,它可以放大电流和电压信号。
本文将研究三极管的种类、工作原理、特性以及应用。
首先,三极管主要有PNP和NPN两种类型。
PNP型由两个P型半导体夹一个N型半导体构成,而NPN型则相反。
这两种类型都有三个极,分别是发射极(Emitter)、基极(Base)和集电极(Collector)。
其中,发射极和基极之间是PN结,基极和集电极之间则是NP结。
三极管的工作原理是基于半导体PN结的电流传输特性的。
当三极管中的电压或电流发生变化时,会引起PN结的电流变化。
当一个电位于基极上的电压施加在发射极上时,通过PN结的正向偏置电流会使电子从发射极注入到基极中。
这些电子的运动受到基极电压的控制,而从基极进入集电极的电流则呈指数增长关系。
由于集电极与电源正极相连接,电流总是从集电极流出,故此称为集电极电流。
根据工作原理,三极管可以用来实现放大电流和电压信号的功能。
其中,基极电流的小变化可以引起集电极电流的大变化,实现电流信号的放大。
而通过改变基极电压,可以控制集电极电流的大小,实现电压信号的放大。
因此,三极管被广泛应用于放大器、开关、振荡器等电路中。
三极管的特性包括放大倍数和工作区域。
放大倍数是指三极管在放大器电路中的增益,通常用β值表示。
β的大小决定了三极管的放大能力,一般在50至300之间。
工作区域分为截止区、放大区和饱和区。
当基极电压低于开启电压时,三极管处于截止区,即电流非常小;当基极电压高于开启电压时,三极管处于放大区,即电流放大效果明显;当基极电压过高时,三极管处于饱和区,电流基本饱和。
三极管有许多应用领域,其中最常见的是放大器电路。
放大器可以将电流或电压信号放大,使信号能够被其他电路或设备处理。
由于三极管的放大倍数较大,使其在音频放大、射频放大等领域具有广泛应用。
此外,三极管还可以用于开关电路。
(整理)贴片三极管引脚三极管的识别分类及测量
贴片三极管引脚三极管的识别分类及测量符号:“Q、VT”三极管有三个电极,即b、c、e,其中c为集电极(输入极)、b为基极(控制极)、e为发射极(输出极)三极管实物图:贴片三极管功率三极管普通三极管金属壳三极管二、三级管的分类:按极性划分为两种:一种是NPN型三极管,是目前最常用的一种,另一种是PNP型三极管。
按材料分为两种:一种是硅三极管,目前是最常用的一种,另一种是锗三极管,以前这种三极管用的多。
三极按工作频率划分为两种:一种是低频三极管,主要用于工作频率比较低的地方;另一种是高频三极管,主要用于工作频率比较高的地方。
按功率分为三种:一种是小功率三极管,它的输出功率小些;一种是中功率三极管,它的输出功率大些;另一种是大功率三极管,它的输出功率可以很大,主要用于大功率输出场合。
按用途分为:放大管和开关管。
三、三极管的组成:三极管由三块半导体构成,对于NPN型三极管由两块N型和一块P型半导体构成,如图A所示,P型半导体在中间,两块N型半导体在两侧,各半导体所引出的电极见图中所示。
在P型和N型半导体的交界面形成两个PN结,在基极与集电极之间的PN结称为集电结,在基极与发射极之间的PN结称为发射结。
图B是PNP型三极管结构示意图,它用两块P型半导体和一块N型半导体构成。
AB四、三极管在电路中的工作状态:三极管有三种工作状态:截止状态、放大状态、饱和状态。
当三极管用于不同目的时,它的工作状态是不同的。
1、截止状态:当三极管的工作电流为零或很小时,即IB=0时,IC和IE也为零或很小,三极管处于截止状态。
2、放大状态:在放大状态下,IC=βIB,其中β(放大倍数)的大小是基本不变的(放大区的特征)。
有一个基极电流就有一个与之相对应的集电极电流。
3、饮和状态:在饮和状态下,当基极电流增大时,集电极电流不再增大许多,当基极电流进一步增大时,集电极电流几乎不再增大。
工作状态定义电流特征解流截止状态集电极与发射极之间电阻很大IB=0或很小,IC或IE为零或很小因为IC=βIB利用电流为零或很小特征,可以判断三极管已处于截止状态放大状态集电极与发射极之间内阻受基极电流大小控制,基极电流大,其内阻小IC=βIBIE=(1+β)IB有一个基极电流就有一个对应的集电极电流和发射极电流,基极电流能有效地控制集电极电流和发射极电流饱和状态集电极与发射之间内阻很小各电极电流均很大,基极电流已无法控制集电极电流和发射极电流电流放大倍数β已很小,甚至小于1(用直流电控制信号的一种方式)五、三极管的作用:放大、调制、谐振、开关1、电流放大:三极管是一个电流控制器件,它用基极电流IB来控制集电极电流IC和发射极电流IE,没有IB就没有IC和IE,只要有一个很小的IB,就有一个很大的IC。
常用三极管的种类及区别
2SA812 PNP 50V 100mA 200mW 180MHz 放大倍数M490-180 ; M5 135 -270 ; M6 200 -400; M7 300-600
2SC1623 NPN 50V 100mA 200mW 180MHz 放大倍数L490-180 ; L5 135 -270 ; L6 200 -400; L7 300-600
PE8050 硅 NPN 30V 1.5A 1.1W
3DG8050 硅 NPN 25V 1.5A FT=190 K
2SC8050 硅 NPN 25V 1.5A FT=190 K
MC8050 硅 NPN 25V 700mA 200mW 150MHz
CS8050 硅 NPN 25V 1.5A FT=190 K
耗散功率 0.625W
结温 150℃
特怔频率 最小 150MHZ
放大倍数:D64-91 E78-112 F96-135 G122-166 H144-220 I190-300
9013 结构:NPN
集电 5V
集电极电流 0.5A
耗散功率 0.4W
结温 150℃
特怔频率 平均 370MHZ
放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-198
9012 结构:PNP
集电极-发射极电压 -30V
集电极-基电压 -40V
射极-基极电压 -5V
集电极电流 0.5A
和8050(NPN)相对
主要用途:
开关应用
射频放大
三极管8050
8050是常用的NPN小功率三级管
8050三级管参数类型开关型; 极性NPN; 材料硅; 最大集存器电流(A)0.5 A; 直流电增益10 to 60; 功耗625 mW; 最大集存器发射电(VCEO)25; 频率150 KHz
概述三极管的分类、符号、识别和检测方法等内容
概述三极管的分类、符号、识别和检测方法等内容三极管是一种重要的电子元件,广泛应用于各种电子设备中。
它是由三个掺杂不同材料的半导体层组成的,具有放大电流、开关控制等功能。
根据不同的工作原理和结构,三极管可以分为晶体管、双极型三极管、场效应管等几种类型。
本文将对三极管的分类、符号、识别和检测方法等内容进行详细介绍。
一、三极管的分类1. 晶体管晶体管是最早被发明的一种三极管,通常由P型半导体和N型半导体组成。
晶体管分为NPN型和PNP型两种,其中NPN型的结构是先N材料后P材料,PNP型的结构则是先P材料后N材料。
晶体管主要用于放大电路中,可以通过控制基极电流来控制集电极和发射极之间的电流。
2. 双极型三极管双极型三极管是一种特殊的晶体管,其结构和工作原理与晶体管类似,但是其基极、发射极和集电极之间的结构略有不同。
双极型三极管主要包括晶体管、功率三极管、双极锁相环等几种类型,广泛应用于各种机电设备中。
3. 场效应管场效应管是一种应用最为广泛的三极管,其结构包括栅极、漏极和源极三个部分。
场效应管主要包括MOS场效应管、JFET场效应管等几种类型,其工作原理是通过控制栅极电压来调节漏极和源极之间的电流。
以上是三极管的主要分类,不同类型的三极管在电子设备中具有不同的应用场景和性能特点,了解各种类型的三极管对于电子工程师来说是十分重要的。
二、三极管的符号三极管的符号通常由一个三角形和三根线组成,分别代表基极、发射极和集电极。
对于NPN型的晶体管,三角形的底边为一个实线,表示N型材料,细线表示P型材料,而对于PNP型的晶体管,则相反。
在电路图中,三极管通常使用符号来表示其类型和连接方式,方便工程师们快速识别和设计电路。
三、三极管的识别方法1. 外观识别三极管的外观通常是一个黑色的小型元件,表面标有型号、生产厂商等信息,通过这些信息可以初步确定其类型和参数。
此外,三极管的引脚也是区分不同类型的关键因素之一,一般来说,晶体管的引脚排列为基、发、集的顺序,而场效应管则为栅、漏、源的顺序。
三极管
第5章 三极管及基本放大电路半导体三极管是一种最重要的半导体器件。
它的放大作用和开关作用促使电子技术飞跃发展。
场效应管是一种较新型的半导体器件,现在已被广泛应用于放大电路和数字电路中。
本章介绍半导体三极管、绝缘栅型场效应管以及由它们组成的基本放大电路。
5.1 半导体三极管半导体三极管简称为晶体管。
它由两个PN 结组成。
由于内部结构的特点,使三极管表现出电流放大作用和开关作用,这就促使电子技术有了质的飞跃。
本节围绕三极管的电流放大作用这个核心问题来讨论它的基本结构、工作原理、特性曲线及主要参数。
5.1.1 三极管的基本结构和类型三极管的种类很多,按功率大小可分为大功率管和小功率管;按电路中的工作频率可分为高频管和低频管;按半导体材料不同可分为硅管和锗管;按结构不同可分为NPN 管和PNP 管。
无论是NPN 型还是PNP 型都分为三个区,分别称为发射区、基区和集电区,由三个区各引出一个电极,分别称为发射极(E )、基极(B )和集电极(C ),发射区和基区之间的PN 结称为发射结,集电区和基区之间的PN 结称为集电结。
其结构和符号见图5-1,其中发射极箭头所示方向表示发射极电流的流向。
在电路中,晶体管用字符T 表示。
具有电流放大作用的三极管,在内部结构上具有其特殊性,这就是:其一是发射区掺杂浓度大于集电区掺杂浓度,集电区掺杂浓度远大于基区掺杂浓度;其二是基区很薄,一般只有几微米。
这些结构上的特点是三极管具有电流放大作用的内在依据。
(a ) (b)图5-1 两类三极管的结构示意图及符号基极BT C EBT C EB基极B发射极E发射极E集电极C集电极C N 集电区P 基区 N 发射区P集电区 N 基区 P 发射区5.1.2 三极管的电流分配关系和放大作用现以NPN 管为例来说明晶体管各极间电流分配关系及其电流放大作用,上面介绍了三极管具有电流放大用的内部条件。
为实现晶体三极管的电流放大作用还必须具有一定的外部条件,这就是要给三极管的发射结加上正向电压,集电结加上反向电压。
什么是三极管-三极管的作用是什么-三极管分类和三极管的主要参数
什么是三极管?三极管的作用是什么?三极管分类和三极管的主要参数
晶体三极管是电子电路中最重要的器件之一。
它最主要的功能是电流放大和开关作用。
三极管内有两个PN结,引出三个电极,其中,共用的一个电极成为三极管的基极(用字母b表示),其他的两个电极成为集电极(用字母c表示)和放射极(用字母e表示),三极管是电流掌握元件,利用基区窄小的特别结构,通过载流子的集中和复合,实现了基极电流对集电极电流的掌握,使三极管有更强的掌握力量。
晶体三极管在电路中可以用作放大器、振荡器、开关掌握器等。
常见三极管如图1所示。
◆三极管分类:
◆按三极管材料分,可分为硅三极管,锗三极管;
◆按导电类型分,可分为PNP型和NPN型;
◆按三极管工作频率分,可分为高频、中频、低频和开关三极管;三极管在电路中的符号和内部结构如图2所示。
图 1 三极管实物图图 2 三极管符号和内部结构图◆三极管的主要参数:
◆电流放大系数β、集电极-放射极击穿电压和工作频率。
电流放大系数β,它描述的是三极管对电流信号放大力量的大小。
β值越高,对小信号的放大力量越强,反之亦然;
◆集电极-放射极击穿电压指基极开路时,所允许加在集电极与放射
极之间的最大电压。
假如三极管工作时超过此电压,三极管将可能被击穿。
◆工作频率是三极管的一个重要的参数,三极管的β值与工作频率有关,只是在肯定的工作频率范围内β值才保持不变,假如超过频率范围,它们就会随着频率的上升而急剧下降。
三极管的识别一是通过晶体三极管的b、e和c三极识别;二是通过万用表测量识别;三是依据型号识别。
三极管简介
半导体双极型三极管又称晶体三极管,通常简称晶体管或三极管,它是一种电流控制电流的半导体器件,可用来对微弱信号进行放大和作无触点开关。
它具有结构牢固、寿命长、体积校、耗电省等一系列独特优点,故在各个领域得到广泛应用。
基本介绍双极性晶体管(英语:bipolar transistor),全称双极性结型晶体管(bipolar junction transistor, BJT),俗称三极管,是一种具有三个终端的电子器件。
双极性晶体管是电子学历史上具有革命意义的一项发明,其发明者威廉·肖克利、约翰·巴丁和沃尔特·布喇顿被授予了1956年的诺贝尔物理学奖。
这种晶体管的工作,同时涉及电子和空穴两种载流子的流动,因此它被称为双极性的,所以也称双极性载流子晶体管。
这种工作方式与诸如场效应管的单极性晶体管不同,后者的工作方式仅涉及单一种类载流子的漂移作用。
两种不同掺杂物聚集区域之间的边界由PN结形成。
双极性晶体管由三部分掺杂程度不同的半导体制成,晶体管中的电荷流动主要是由于载流子在PN结处的扩散作用和漂移运动。
以NPN晶体管为例,按照设计,高掺杂的发射极区域的电子,通过扩散作用运动到基极。
在基极区域,空穴为多数载流子,而电子为少数载流子。
由于基极区域很薄,这些电子又通过漂移运动到达集电极,从而形成集电极电流,因此双极性晶体管被归到少数载流子设备。
双极性晶体管能够放大信号,并且具有较好的功率控制、高速工作以及耐久能力,所以它常被用来构成放大器电路,或驱动扬声器、电动机等设备,并被广泛地应用于航空航天工程、医疗器械和机器人等应用产品中。
工作原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。
而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
NPN管它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。
三极管种类及符号
三极管种类及符号一、三极管的种类1.半导体三极管:由半导体材料制成,是电子电路中最常用的三极管。
2.真空三极管:在真空封装下,利用控制栅极电压来控制阴极和阳极之间的电流,适用于高频和真空环境。
3.晶体三极管:由晶体材料制成,具有高频率、低噪声等特性,适用于高频放大和振荡电路。
4.金属氧化物半导体管:由金属氧化物半导体材料制成,具有高速度、低功耗等优点,适用于数字电路和大规模集成电路。
5.绝缘栅场效应管:通过控制栅极电压来控制源极和漏极之间的电流,具有高输入阻抗、低噪声等优点,适用于模拟电路和数字电路。
6.其他类型三极管:如光电三极管、磁敏三极管等,根据特殊应用需求而设计。
二、三极管的符号三极管的符号通常表示其类型和结构,常用符号有以下几种:1.E型符号:表示半导体三极管,其中E表示电气特性,也是电子电路中最常用的三极管符号。
2.V型符号:表示真空三极管,其中V表示真空封装。
3.jon图标:表示晶体三极管,其中j表示晶体,o表示有机物。
4.FET 图标:表示绝缘栅场效应管,其中F表示场效应管,E表示电子型,T表示三端型。
5.其他类型三极管的符号根据其类型和结构进行设计。
三、三极管封装形式三极管的封装形式是指其安装方式和使用方法,常用的封装形式有以下几种:1.TO-92封装:是一种塑料封装,由两个引脚通过塑料支架与外壳相连,使用时将外壳固定在印制板上。
2.TO-126封装:是一种大型塑料封装,适用于功率较大的三极管。
3.TO-251/252封装:是一种小型的金属封装,适用于高频和高灵敏度的应用。
4.SOT-23封装:是一种小型塑料封装,具有短引脚和扁平形状,适用于表面贴装技术。
3.1,三极管
mA
vi
RB
+ –
A
+ + vBE vCE +
RL
输入回路 输出回路 – – – + EB 共发射极放大电路
–
EC
发射极是输入回路、输出回路的公共端
3.1.3 BJT的特性曲线
本节介绍共发射极接法三极管的特性曲线,即 输入特性曲线—— iB=f(vBE) vCE=const 输出特性曲线—— iC=f(vCE) iB=const
(3) 与的关系
1
或
1
3.1.3 BJT的特性曲线
即管子各电极电压与电流的关系曲线,是管子 内部载流子运动的外部表现,反映了晶体管的性能, 是分析电路放大信号的依据。
为什么要研究特性曲线: 1)直观地分析管子的工作状态 2)合理地选择偏置电路的参数,设计性能良好的 电路 重点讨论应用最广泛的共发射极接法的特性曲线
三.三极管特性曲线及工作状态(重点)
1.BJT放大电路三个 电流关系 ?
IE =IC+IB
2.BJT的输入、输出特性曲线?
3.BJT工作状态如何判断?
IC IB
I E 1 )I B (
uCE = 0V uCE 1V
uBE /V
3.1 双极型半导体三极管
3.1.1 双极型半导体三极管的结构 3.1.2 双极型半导体三极管电流的分配 与控制 3.1.3 双极型半导体三极管的电流关系 3.1.4 双极型半导体三极管的特性曲线 3.1.5 半导体三极管的参数 3.1.6 半导体三极管的型号
截止
反偏 反偏
放大
正偏 反偏
贴片三极管引脚_三极管的识别分类及测量[1]
贴片三极管引脚三极管的识别分类及测量符号:“Q、VT”三极管有三个电极,即b、c、e,其中c为集电极(输入极)、b为基极(控制极)、e为发射极(输出极)三极管实物图:贴片三极管功率三极管普通三极管金属壳三极管二、三级管的分类:按极性划分为两种:一种是NPN型三极管,是目前最常用的一种,另一种是PNP型三极管。
按材料分为两种:一种是硅三极管,目前是最常用的一种,另一种是锗三极管,以前这种三极管用的多。
三极按工作频率划分为两种:一种是低频三极管,主要用于工作频率比较低的地方;另一种是高频三极管,主要用于工作频率比较高的地方。
按功率分为三种:一种是小功率三极管,它的输出功率小些;一种是中功率三极管,它的输出功率大些;另一种是大功率三极管,它的输出功率可以很大,主要用于大功率输出场合。
按用途分为:放大管和开关管。
三、三极管的组成:三极管由三块半导体构成,对于NPN型三极管由两块N型和一块P型半导体构成,如图A所示,P型半导体在中间,两块N型半导体在两侧,各半导体所引出的电极见图中所示。
在P型和N型半导体的交界面形成两个PN结,在基极与集电极之间的PN结称为集电结,在基极与发射极之间的PN结称为发射结。
图B是PNP型三极管结构示意图,它用两块P型半导体和一块N型半导体构成。
AB四、三极管在电路中的工作状态:三极管有三种工作状态:截止状态、放大状态、饱和状态。
当三极管用于不同目的时,它的工作状态是不同的。
1、截止状态:当三极管的工作电流为零或很小时,即IB=0时,IC和IE也为零或很小,三极管处于截止状态。
2、放大状态:在放大状态下,IC=βIB,其中β(放大倍数)的大小是基本不变的(放大区的特征)。
有一个基极电流就有一个与之相对应的集电极电流。
3、饮和状态:在饮和状态下,当基极电流增大时,集电极电流不再增大许多,当基极电流进一步增大时,集电极电流几乎不再增大。
工作状态定义电流特征解流截止状态集电极与发射极之间电阻很大IB=0或很小,IC或IE为零或很小因为IC=βIB利用电流为零或很小特征,可以判断三极管已处于截止状态放大状态集电极与发射极之间内阻受基极电流大小控制,基极电流大,其内阻小IC=βIBIE=(1+β)IB有一个基极电流就有一个对应的集电极电流和发射极电流,基极电流能有效地控制集电极电流和发射极电流饱和状态集电极与发射之间内阻很小各电极电流均很大,基极电流已无法控制集电极电流和发射极电流电流放大倍数β已很小,甚至小于1(用直流电控制信号的一种方式)五、三极管的作用:放大、调制、谐振、开关1、电流放大:三极管是一个电流控制器件,它用基极电流IB来控制集电极电流IC和发射极电流IE,没有IB就没有IC和IE,只要有一个很小的IB,就有一个很大的IC。
半导体三极管的识别与检测
DTA114E
DTA123Y DTA143X
P
P P
100 k/100 k
2.2 k/2.2 k 4.7 k/22 k
DTC124E
DTC114 DTC114WK
N
N N
22 k/22 k
47 k/47 k 47 k/22 k
DTC143X
DTC363E
N
N
4.7 k/10 k
1.3 半导体三极管
1.3.1 半导体三极管的基本结构与分类
1.结构及符号 PNP 型及 NPN 型三极管的内部结构及符号如图所示。 三区:发射区、基 区、集电区。 三极:发射极 E 、 基极 B、集电极 C。 两结:发射结、集 电结。 实际上发射极箭头 方向就是发射结正向电 流方向。
1.3 半导体三极管
1.3 半导体三极管
1.3 半导体三极管
2.判断三极管的好坏 (1)万用表置于“R 1 k ”挡或 “R 100”挡位。 (2)方法:分别测量三极管集电结与发射结的正向电阻 和反向电阻,只要有一个 PN 结的正、反向电阻异常,就可 判断三极管已坏。
1.3 半导体三极管
1.3.2 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功 率三极管,一般采用 SOT-23形式封装。如图所示。 1 — 基极,2 — 发射极,3 — 集电极。
1.3 半导体三极管
大功率三极管:额定功率在 1 W ~ 1.5 W 的大功率三极 管,一般采用 SOT-89 形式封装 。
2.分类 (1)按半导体基片材料不同:NPN 型和 PNP 型。
(2)按功率分:小功率管和大功率管。
(3)按工作频率分:低频管和高频管。
三极管的分类
按材质分三极管种类有:硅管、锗管。
b 按结构分三极管的种类有:NPN PNP.c 按三极管消耗功率的不同三极管的种类有小功率管中功率管和大功率管等d 按功能分三极管种类有开关管功率管达林顿管光敏管等下面是对一些三极管的简述(1)低频率小功率三极管,低频率小功率三极管一般是指特征频率在3MHz以下,功率小于1w的三极管。
一般作为小信号放大用(2)高频率小功率三极管,是指一般特征频率大于3MHz,功率小于1w的三极管。
主要用于高频振荡,放大电路中。
(3)低频率大功率三极管是指特征频率小于3MHz,功率大于1W的三极管。
主要用于通信等设备中作为调整管。
(4)高频大功率三极管是指特征频率大于3MHz,功率大于1W的三极管,主要用于通信等设备中作为功率驱动,放大。
(5)开关三极管是利用控制饱和区和截止区相互转换工作的。
开关三极管的开关过程需要一定的响应时间,开关响应的长短表示三极管开关特征的好坏。
(6)差分对管是把两只性能一致的三极管封装在一起的半导体器件。
它能以最简单的方式构成性能优良的差分放大器。
(7)复合三极管是分别选用各种极性的三极管进行复合连接。
在组成复合连接三极管时,不管选用什么样的三极管,这些三极管按照一定的方式连接后可以看成一个高频的三极管。
组合复合三极管时,应注意第一只管子的发射级电流方向必须与第二只管子的基级电流方向相同,复合三极管的极性取决于第一只管子。
复合三极管的最大特性时电流放大倍数很高、所以多用于较大功率输出的电路中半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。
它最主要的功能是电流放大和开关作用。
三极管顾名思义具有三个电极。
二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。
其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。
半导体三极管概述
4. 结电容
结电容是指PN结在结两端电压作用下形成的电容效应。 结电容主要由两部分组成:一是PN结在正向电压作用下, 扩散电流的变化形成的电容效应,称之为扩散电容,通常记 作 ,它与通过PN结的扩散电流的大小成正比例;二是PN 结在反向电压作用下,电场的变化形成的电容效应,称之为 势垒电容,通常记作 ,它与作用在PN结两侧的反向电压 的大小成反比例。结电容是造成三极管产生频率响应的主要 原因,也是影响三极管开关速度的主要原因。
实验如图,把三极管接成二个电路,基极电路和集 电极电路,发射极是公共端,这种接法称为三极管 的共发射极接法。以NPN管为例,发射结加正向电压, 集电极加反向电压,三极管才能起放大作用。
IC
mA
IB
+
A
RB
+ V UBE
V UCE
+ EC
–
+– –
–
EB
三极管电流测量数据
IB(mA) IC(mA) IE(mA)
五. 三极管的工作状态
三极管的工作状态主要由三极管的二个PN结各自所承 受的偏置电压的大小和极性所决定的。三极管有二个PN结, 而每一个偏置电压又有二种可能的极性,即正向偏置和反向
偏置,因此,可构成三极管的三种工作状态:饱和、放 大、截止。
单极型三极管
双极型三极管是利用基极小电流去控制集电极较大电流 的电流控制型器件,因工作时两种载流子同时参与导电而称 之为双极型。单极型三极管因工作时只有多数载流子一种载 流子参与导电,因此称为单极型三极管;单极型三极管是利 用输入电压产生的电场效应控制输出电流的电压控制型器件 。
把基极电流的微小变化
能够引起集电极电流较大变
C
化的特性称为晶体管的电流 放大作用。
三极管的分类和作用
------------------------------------------------------------------1.概念:半导体三极管也称双极型晶体管,晶体三极管,简称三极管,是一种电流控制电流的半导体器件.作用:把微弱信号放大成辐值较大的电信号, 也用作无触点开关.2.三极管的分类:a.按材质分: 硅管、锗管b.按结构分: NPN 、 PNPc.按功能分: 开关管、功率管、达林顿管、光敏管等.3.三极管的主要参数:a. 特征频率fT:当f= fT时,三极管完全失去电流放大功能.如果工作频率大于fT,电路将不正常工作.b. 工作电压/电流:用这个参数可以指定该管的电压电流使用范围.c. hFE:电流放大倍数.d. VCEO:集电极发射极反向击穿电压,表示临界饱和时的饱和电压.e. PCM:最大允许耗散功率.f. 封装形式:指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在.4.判断基极和三极管的类型:先假设三极管的某极为“基极”,将黑表笔接在假设基极上,再将红表笔依次接到其余两个电极上,若两次测得的电阻都大(约几K到几十K),或者都小(几百至几K),对换表笔重复上述测量,若测得两个阻值相反(都很小或都很大),则可确定假设的基极是正确的,否则另假设一极为“基极”,重复上述测试,以确定基极.当基极确定后,将黑表笔接基极,红表笔笔接基它两极若测得电阻值都很少,则该三极管为NPN,反之为PNP.判断集电极C和发射极E,以NPN为例:把黑表笔接至假充的集电极C,红表笔接到假设的发射极E,并用手捏住B和C极,读出表头所示C,E电阻值,然后将红,黑表笔反接重测.若第一次电阻比第二次小,说明原假设成立.体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,从三个区引出相应的电极,分别为基极b发射极e和集电极c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三极管种类和三极管的种类分法
a.按材质分三极管种类有: 硅管、锗管
b.按结构分三极管的种类有: NPN 、 PNP
c.按功能分三极管种类有: 开关管、功率管、达林顿管、光敏管等
d.按三极管消耗功率的不同三极管的种类有: 小功率管、中功率管和大功率管等如图
下面是对一些三极管的简述
(1)低频小功率三极管: 低频小功率三极管一般指特征频率在3MHz以下,功率小于1W的三极管。
一般作为小信号放大用。
(2)高频小功率三极管: 高频小功率三极管一般指特征频率大于3MHz,功率小于1W的三极管。
主要用于高频振荡、放大电路中。
(3)低频大功率三极管: 低频大功率三极管指特征频率小于3MHz,功率大于1W的三极管。
低频大功率三极管品种比较多,主要应用于电子音响设备的低频功率放大电路种;用于各种大电流输出稳压电源中作为调整管。
(4)高频大功率三极管: 高频大功率三极管指特征频率大于3MHz,功率大于1W的三极管。
主要用于通信等设备中作为功率驱动、放大。
(5)开关三极管: 开关三极管是利用控制饱和区和截止区相互转换二工作的。
开关三极管的开关过程需要一定的响应时间。
开关响应时间的长短表示了三极管开关特性的好坏。
(6)差分对管: 差分对管是把两只性能一致的三极管封装在一起的半导体器件。
它能以最简单的方式构成性能优良的差分放大器。
(7)复合三极管: 复合三极管是分别选用各种极性的三极管进行复合连接,在组成复合三极管时,不管选用什么样的三极管,这些三极管按照一定的方式连接后可以看成是一个高β的三极管。
组合复合三极管时,应注意第一只管子的发射极电流方向必须与第二只管子的基极电流方向相同。
复合三极管的极性取决于第一只管子。
复合三极管的最大特
点是电流放大倍数很高,所以多用于较大功率输出的电路中。