人教版数学八年级上册12.3角平分线的性质教案
人教版八年级上册12.3角的平分线的性质2)教学设计
3.引入新课,明确学习目标。
-介绍本节课将学习角的平分线的性质及其应用。
-强调掌握这一性质对于解决几何问题的重要性。
(二)讲授新知
1.系统讲解角的平分线的定义。
-解释角的平分线是“将一个角平均分成两个相等的角的线段”。
-通过动态演示,让学生直观理解角的平分线的概念。
2.能够运用数学符号和语言表达角的平分线性质,形成严密的逻辑推理能力。
-学生能够用数学语言描述角的平分线性质,如“角的平分线上的任意一点到角的两边的距离相等”。
-学生能够通过几何证明,运用逻辑推理证明角的平分线性质的准确性。
3.能够在综合问题中,灵活运用角的平分线性质,解决多步骤几何问题。
-学生能够将角的平分线性质与其他几何知识综合应用,解决复合几何问题。
-对于基础较好的学生,设计具有挑战性的问题和证明任务,提高他们的逻辑推理能力。
3.探索实践,促进深度学习。
-组织学生进行小组讨论和合作探究,共同解决角的平分线性质的相关问题。
-鼓励学生动手实践,通过尺规作图等方式,加深对性质的理解。
4.精讲精练,提高教学效率。
-教学过程中,教师应精讲性质的本质和证明的关键步骤,避免冗长的解释。
-将学生分成小组,针对角的平分线性质进行讨论。
-鼓励学生提出问题,分享解题思路,共同解决疑惑。
2.教师巡回指导,给予反馈。
-在小组讨论过程中,教师观察学生的讨论情况,适时给予指导和鼓励。
-针对不同层次的学生,提出不同难度的问题,引导他们深入思考。
3.小组汇报,分享成果。
-每个小组选派代表汇报讨论成果,展示解题过程。
-通过展示几何图形的美,让学生体会数学的和谐与对称美。
人教版数学八年级上册12.3角平分线的性质优秀教学案例
人教版数学八年级上册12.3角平分线的性质优秀教学案例
一、案例背景
本节内容为人教版数学八年级上册12.3角平分线的性质。在学习了角的概念、角的计算等相关知识后,学生已具备一定的逻辑思维能力和空间想象力。角平分线的性质是数学中的重要概念,对于学生理解角的本质、提高几何证明能力具有重要意义。
本节课的内容与实际生活密切相关,学生可以通过观察和思考实际问题,发现并理解角平分线的性质。在教学过程中,我将以生动的生活实例引入,激发学生的学习兴趣,接着引导学生发现并证明角平分线的性质,最后通过练习巩固所学知识。
2.强调角平分线在几何学习和实际生活中的重要性,激发学生继续学习的动力。
3.布置课后作业,巩固学生对角平分线性质的理解和应用。
(五)作业小结
1.设计具有层次性的作业,让学生在实践中运用角平分线的性质,提高学生的动手操作能力和解决问题的能力。
2.鼓励学生对自己的作业进行自我评价,反思自己在解决问题过程中的优点和不足。
(二)问题导向
1.引导学生发现并提出问题:角平分线有哪些性质?如何证明这些性质?
2.引导学生通过观察、分析、推理等方法,自主探索角平分线的性质,培养学生的问题解决能力。
3.在学生探索过程中,适时提供提示和引导,帮助学生建立角平分线性质的逻辑体系。
(三)小组合作
1.组织学生进行小组讨论,鼓励学生分享自己的观点和思考,培养学生的团队协作能力和沟通能力。
(三)学生小组讨论
1.设计具有挑战性的小组讨论任务,如:请你设计一个三角形,并利用角平分线的性质解决其中一个问题。
2.组织学生进行小组讨论,鼓励学生分享自己的观点和思考,培养学生的团队协作能力和沟通能力。
人教版数学八年级上册教学设计12.3《角的平分线的性质》
人教版数学八年级上册教学设计12.3《角的平分线的性质》一. 教材分析《角的平分线的性质》是人教版数学八年级上册的教学内容。
本节课主要让学生掌握角的平分线的性质,即角的平分线上的点到角的两边的距离相等。
这一性质是几何中的基本概念,对于学生理解和掌握几何知识体系具有重要意义。
教材通过引入角的平分线,引导学生探究角的平分线的性质,从而培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了角的概念、线段的概念以及一些基本的几何性质。
但是,对于角的平分线的性质,学生可能较为陌生。
因此,在教学过程中,教师需要从学生的实际出发,通过引导、探究、实践等方式,帮助学生理解和掌握角的平分线的性质。
三. 教学目标1.知识与技能:使学生理解和掌握角的平分线的性质,能够运用角的平分线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:角的平分线的性质。
2.难点:如何运用角的平分线的性质解决实际问题。
五. 教学方法1.引导法:教师通过提问、设疑等方式,引导学生思考和探究角的平分线的性质。
2.实践操作法:学生通过实际操作,观察和总结角的平分线的性质。
3.合作交流法:学生分组讨论,共同解决问题,培养团队合作意识。
六. 教学准备1.教师准备:教材、PPT、几何模型等教学资源。
2.学生准备:笔记本、尺子、圆规等学习工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本的课题,如:“在平面上有两个点A和B,如何找到一点C,使得AC=BC?”引导学生思考和探讨。
2.呈现(10分钟)教师通过PPT展示角的平分线的性质,引导学生观察和总结。
同时,教师可以通过实际操作,让学生直观地感受角的平分线的性质。
3.操练(10分钟)学生分组讨论,运用角的平分线的性质解决实际问题。
人教版八年级上册12.3《角的平分线的性质》优秀教学案例
一、案例背景
本节内容为人教版八年级上册12.3《角的平分线的性质》。在之前的学习中,学生已经掌握了角的概念、分类以及角的计算方法,了解了直线、射线、线段的基本性质。在此基础上,学习角的平分线的性质,既是对已有知识的巩固,也是为后续学习几何图形的对称性、角的平分线定理等知识打下基础。
4.结合学生的评价和反思,教师总结本节课的教学效果,对后续教学进行调整和改进,以提高教学质量和学生的学习效果。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入角的平分线概念。例如,展示一张图片,图片中有一辆汽车在转弯处,转弯处的角被一条线段平分,使学生感受到角的平分线在现实生活中的应用。
2.引导学生回顾已学过的角的概念、分类以及角的计算方法,为新课的学习打下基础。
2.采用小组讨论、合作交流的方式,让学生在探讨中思考,培养团队合作能力和自主学习能力。
3.利用几何画图工具,让学生动手实践,加深对角的平分线性质的理解和运用。
4.设计不同难度的题目,针对不同程度的学生进行针对性训练,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生探索数学奥秘的热情。
3.教师提出问题:“你们认为角的平分线有什么特殊性质?”,让学生思考并发表自己的观点。
(二)讲授新知
1.介绍角的平分线的定义:角的平分线是将一个角平分成两个相等角的线段。
2.讲解角的平分线的性质,如:角的平分线上的任意一点,到角的两边的距离相等;角的平分线与角的两边垂直等。
3.结合几何画图工具,如直尺、圆规等,演示角的平分线的画法,让学生直观地理解角的平分线的性质。
4.通过示例题,讲解如何运用角的平分线性质解决实际问题,如在几何图形中,如何找到一点,使这点到图形两边的距离相等。
及反思人教版数学八年级上册12.3角的平分线的性质优秀教学案例
在总结归纳环节,我会邀请几名学生代表分享他们小组的讨论成果,通过学生的讲解,总结出角的平分线的性质以及应用方法。我还会对学生的讲解进行点评,补充和强调重点知识点,确保每位学生都能对角的平分线有清晰的认识。
(五)作业小结
为了巩固学生对本节课知识的学习,我会布置以下作业:
1.完成课本上的练习题,巩固角的平分线的性质。
(二)过程与方法
1.采用自主探究、小组合作的学习方式,引导学生主动发现角的平分线的性质,培养他们的观察、分析、归纳能力。
2.通过问题引导,让学生在解决具体几何问题时,学会运用角的平分线性质,提高解题效率。
3.设计丰富的教学活动,如讨论、展示、练习等,让学生在实践中掌握角的平分线相关知识,提高他们的实际操作能力。
4.注重数学方法的传授,让学生在学习过程中掌握几何图形的基本分析方法,培养他们的几何思维。
(三)情感态度与价值观
1.激发学生对数学几何学科的兴趣,使他们感受到数学学习的乐趣,培养他们的学习自信心。
2.培养学生面对几何问题时,勇于挑战、积极思考的良好品质,使他们养成独立解决问题的习惯。
3.通过对角的平分线的学习,让学生认识到几何知识在实际生活中的广泛应用,增强他们的学习责任感。
(二)问题导向
在教学过程中,我将采用问题导向的教学方法,引导学生主动探究角的平分线性质。设计一系列具有启发性的问题,如:“角的平分线是什么?”“角的平分线有什么性质?”“如何运用角的平分线性质解决实际问题?”等。通过这些问题,激发学生的好奇心,让他们在解决问题的过程中,掌握角的平分线相关知识。
(三)小组合作
(二)问题导向,激发学生思维
本案例采用问题导向的教学方法,引导学生主动探究角的平分线性质。设计具有启发性的问题,激发学生的好奇心,培养他们的逻辑思维和几何直观。在解决问题的过程中,学生能够逐步掌握角的平分线相关知识,提高解决问题的能力。
人教版数学八年级上册12.3角的平分线的判定教学设计
(二)过程与方法
1.采用探究式教学方法,引导学生从实际操作中发现角的平分线的判定定理,培养学生的观察能力和逻辑思维能力。
2.通过小组合作、讨论交流等形式,让学生在合作中学习,提高解决问题的能力和团队协作精神。
3.设计具有梯度性的练习题,使学生在巩固基础知识的同时,逐步提高解题能力,培养良好的学习习惯。
(三)学生小组讨论
1.教学活动:教师给出几个实例,让学生分组讨论如何找出这些角的平分线。
2.小组讨论:学生在小组内分享自己的思考过程,讨论如何运用角的平分线判定定理解决问题。
3.教师指导:教师巡回指导,对学生的疑问进行解答,引导学生运用角的平分线性质解决问题。
(四)课堂练习
1.教学内容:教师布置以下练习题,让学生独立完成。
a.判断题:判断下列各题中,哪个是角的平分线。
b.解答题:已知一个角的度数,求这个角的平分线。
c.应用题:运用角的平分线性质解决实际问题。
2.解答与讲解:教师选取部分学生的答案进行展示和讲解,指出解题过程中的关键步骤和注意事项。
(五)总结归纳
1.教学内容:教师引导学生回顾本节课所学内容,总结角的平分线的定义、性质和判定定理。
1.学生在空间想象力方面的发展水平,引导他们通过实际操作,将抽象的角的平分线概念具体化、形象化。
2.学生在逻辑推理能力上的差异,针对不同水平的学生设计不同难度的问题,使他们在解决问题的过程中逐步提高推理能力。
3.学生在团队合作中的表现,鼓励他们积极参与讨论,学会倾听他人意见,提高沟通能力和团队协作精神。
4.培养学生的创新意识,鼓励他们敢于尝试、勇于探索,形成独立思考的能力。
12.3角的平分线的性质第2课时角平分线的判定教案人教版数学八年级上册
12.3角的平分线的性质第2课时角平分线的判定教学目标:1.探究并证明角平分线的判定方法.2.会用角的平分线的判定解决实际问题.3.熟练掌握角的平分线的性质和角的平分线的判定的综合运用.教学重难点:重点:角平分线的判定.难点:三角形的内角平分线的应用.教学过程:课堂导入我们知道,角的平分线上的点到角的两边的距离相等,反过来,到角的两边的距离相等的点是否在这个角的平分线上呢?这节课我们来对这个问题进行探究.讲授新课知识点1角平分线的判定定理角的内部到角的两边的距离相等的点在角的平分线上吗?也就是交换角的平分线的性质中的已知和结论.下面我们证明这个命题的正确性.已知:如图所示,PD⊥OA,PE⊥OB,PD=PE.求证:点P在∠AOB的平分线上(OP平分∠AOB).证明:因为PD⊥OA,PE⊥OB(已知),所以∠PDO=∠PEO=90°.在Rt△PDO和Rt△PEO中,{PO=PO,PD=PE,所以Rt△PDO≌Rt△PEO(HL).所以∠POD=∠POE.即点P在∠AOB的平分线上.[归纳]角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.注意:(1)使用该判定定理的前提是这个点必须在角的内部;(2)角的平分线的判定定理是证明两角相等的重要办法.几何语言:如图所示,因为点P 是∠AOB 内的一点,PD ⊥OA,PE ⊥OB,垂足分别为D,E,且PD=PE, 所以点P 在∠AOB 的平分线OC 上.范例应用例1 如图所示,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路和铁路的交叉处500 m.这个集贸市场应建于何处(在图上标出它的位置,比例尺为1∶20 000)? 解:因为图上距离500=120000, 所以图上距离=0.025 m=2.5 cm.如图所示,P 点即为所求.理由:P 点在这个交叉口的角平分线上,所以P 点到公路与铁路的距离相等.知识点2 角的平分线的性质定理与判定定理的关系点在角的平分线上(角的内部)点到角的两边的距离相等.正确理解两个定理的条件和结论,性质定理和判定定理的条件和结论是相反的,性质定理是证明两条线段相等的依据,判定定理是证明两个角相等的依据.知识点3 三角形三个内角平分线的性质1.如图所示,三角形的三个内角的角平分线已画出,从位置上你能观察出什么结论? 答案:三角形三个内角的平分线的交点位于三角形的内部.2.如图所示,过交点分别作三角形三边的垂线,根据角平分线的性质定理你能得出什么结论? 答案:过交点作的三角形三边的垂线段相等.范例应用例2 如图所示,△ABC 的角平分线AD,BE,:点P 到△ABC 三边AB,BC,CA 的距离相等. 证明:如图所示,过点P 作PM ⊥BC ,PN ⊥AC ,PO ⊥AB ,垂足分别为M ,N ,O.因为AD为△ABC的角平分线,所以PN=PO.因为BE为△ABC的角平分线,所以PM=PO.因为CF为△ABC的角平分线,所以PM=PN.所以PM=PN=PO,即点P到△ABC三边AB,BC,CA的距离相等.课堂训练1.判断题:(1)如图(1)所示,若QM=QN,则OQ平分∠AOB.(×)(2)如图(2)所示,若QM⊥OA于点M,QN⊥OB于点N,则OQ平分∠AOB.(×)2.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有(D)处处处处第2题图第3题图3.如图所示,O是△ABC内一点,O到三边AB,BC,CA的距离分别为OF,OD,OE,且OF=OD=OE,若∠BAC=70°,则∠BOC=125°.4.如图所示,:AP平分∠BAC.证明:如图所示,作PQ⊥BC,PM⊥AE,PN⊥AF,垂足分别为Q,M,N.因为P点在∠CBE和∠BCF的平分线上,所以PM=PQ,PN=PQ.所以PM=PN.又PM⊥AE,PN⊥AF,所以AP平分∠BAC.课堂小结1.三角形的三条角平分线的交点有且只有一个,且一定在三角形的内部.2.证明三线共点的思路:先设其中的两线交于一点,再证明该交点也在第三条直线上.3.在三角形内部,要找一点到三边距离相等时,只要作出两个角的平分线,其交点即是.4.角平分线的判定与性质的关系:由角平分线的判定方法知这个结论的逆命题也是正确的,即在三角形内,到三角形三边的距离相等的点是三角形三条角平分线的交点.板书设计第2课时角平分线的判定角平分线的判定{学会用添加辅助线的方法解题判定定理——角的内部到角的两边的距离相等的点在角的平分线上应用——综合利用角的平分线的性质和判定来解决实际问题教学反思本课时教学应重视以下几点:(1)由定理得到它的逆命题,并证明它的正确性,把两个定理正确地运用;(2)尽力体现数学与生活的联系,从实际中学习新知,使学生认识这种学习方法.(3)课堂中,可采用口答、动手做等方式组织学生比赛,教师依据具体情形予以点评指点,查缺补漏,使学生从本质上理解知识.。
2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形角的平分线的性质(第2课时)教案
第十二章全等三角形12.3角的平分线的性质第2课时一、教学目标【知识与技能】掌握角平分线性质的逆定理,并能利用这些方法解决简单的数学问题和实际问题.【过程与方法】经历探究角平分线性质逆定理的过程,发展学生合情推理能力和演绎推理能力.【情感、态度与价值观】结合实际,创造丰富的情境,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】角平分线性质和判定的应用.【教学难点】运用角平分线性质和判定证明及解决实际问题.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是什么?(出示课件2)(二)探索新知1、师生互动,探究角平分线的判定定理教师问1:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺1∶20000)?(出示课件4)师生共同讨论得出答案:这个点应该在角的平分线.教师问2:刚才大家对上述问题进行了讨论,并且得出了做法,我们进而从做法中总结出了新的结论:到角的两边距离相等的点在角的平分线上.这个新结论正确吗?(出示课件5)师生讨论后认为需要证明.问题证明:已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,PD=PE.求证:点P 在∠AOB的平分线上.教师问3:你能证明上边的问题吗?学生小组讨论并回答:(出示课件7)证明:作射线OP,∵PD⊥OA,PE⊥OB.∴∠PDO=∠PEO=90°,在Rt△PDO和Rt△PEO中,OP=OP(公共边),PD=PE(已知),∴Rt△PDO≌Rt△PEO(HL).∴∠AOP=∠BOP(全等三角形的对应角相等).∴点P在∠AOB的平分线上.教师讲解:由此我们又可以得到一个性质:角的内部到角的两边距离相等的点在角的平分线上.总结点拨:(出示课件8)判定定理:角的内部到角的两边的距离相等的点在角的平分线上.应用所具备的条件:(1)位置关系:点在角的内部;(2)数量关系:该点到角两边的距离相等.定理的作用:判断点是否在角平分线上.应用格式:∵PD⊥OA,PE⊥OB,PD=PE.∴点P在∠AOB的平分线上.教师问4:这个结论与角的平分线的性质在应用上有什么不同?学生讨论得出结论:叫的判定定理可以判定角的平分线,而角的平分线的性质可用来证明线段相等.教师问5:让我们回到刚上课时的问题:怎样找到集贸市场所在点?师生共同解答如下:1.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500m处.(出示课件9)2.在纸上画图时,我们经常以厘米为单位,而题中距离是以米为单位,这就涉及一个单位换算问题.1m=100cm,所以比例尺为1∶20000,其实就是图中1cm 表示实际距离200m的意思.如图:第一步:尺规作图作出夹角的角平分线OC.第二步:在射线OC上截取OD=2.5cm,确定D点,D点就是集贸市场所建地了.总结点拨:根据角平分线的判定定理,要求作的点到两边的距离相等,一般需作这两边直线形成的角的平分线,再在这条角平分线上根据要求取点.教师总结:应用角平分线的性质,可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.例1:如图,BE⊥AC,CF⊥AB,BE与CF交于点D,DE=DF,连接AD.求证:(1)∠FAD=∠EAD;(2)BD=CD.师生共同解答如下:证明:(1)∵BE⊥AC,CF⊥AB,DE=DF,∴AD是∠BAC的平分线,∴∠FAD=∠EAD.(2)∵△ADF与△ADE是直角三角形,DE=DF,AD=AD,∴Rt△ADF≌Rt△ADE(HL),∴∠ADF=∠ADE,∵∠BDF=∠CDE,∴∠ADF+∠BDF=∠ADE+∠CDE,即∠ADB=∠ADC,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴BD=CD.总结点拨:要证明一点在角平分线上,只要证明这点到角两边的距离相等即可.2.师生讨论,探究三角形内角平分线的性质教师问6:我们在学习三角形时,知道三角形的三条内角平分线有怎样的特征吗?学生回答:都在三角形的内部并且交于一点.教师问7:请同学分别画出锐角三角形、直角三角形和钝角三角形的三条内角平分线,看是否交于一点呢?(出示课件11)学生做图后回答:三角形的三条角平分线相交于一点.教师问8:分别过交点作三角形三边的垂线,用刻度尺量一量,每组垂线段,你发现了什么?学生测量后回答:过交点作三角形三边的垂线段相等.(出示课件12)教师问9:你能证明这个结论吗?师生共同解答如下:(出示课件13)已知:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE.同理PE=PF.∴PD=PE=PF.即点P到三边AB,BC,CA的距离相等.教师问10:点P在∠A的平分线上吗?这说明三角形的三条角平分线有什么关系?学生回答:点P在∠A的平分线上.教师问11:如何证明呢?学生口答证明过程.结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.(出示课件14)总结点拨:(出示课件17)1.应用角平分线性质:存在角平分线条件涉及距离问题2.联系角平分线性质:距离面积S=12ch周长例2:如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC的度数为()(出示课件18)师生共同解答如下:解析:由已知,O到三角形三边的距离相等,即三条角平分线的交点,AO,BO,CO 都是角平分线,所以有∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∠ABC+∠ACB=180°-40°=140°,∠OBC+∠OCB=70°,∠BOC=180°-70°=110°.故选A.总结点拨:(出示课件19)由已知,O 到三角形三边的距离相等,得O 是三角形三条内角平分线的交点,再利用三角形内角和定理即可求出∠BOC 的度数.归纳总结:(出示课件20)角平分线的性质角的平分线的判定图形已知条件OP 平分∠AOB PD⊥OA 于DPE⊥OB 于E PD=PE PD⊥OA 于D PE⊥OB 于E结论PD=PEOP 平分∠AOB (三)课堂练习(出示课件23-27)1.如图,某个居民小区C附近有三条两两相交的道路MN,OA,OB,拟在MN上建造一个大型超市,使得它到OA,OB的距离相等,请确定该超市的位置P.2.如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.3.如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE 的平分线上.4.如图,直线l1、l2、l3表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可选择的地址有几处?画出它的位置.l1l3l2参考答案:1.解答如下图:2.解:AD平分∠BAC.理由如下:∵D到PE的距离与到PF的距离相等,∴点D在∠EPF的平分线上.∴∠1=∠2.又∵PE∥AB,∴∠1=∠3.同理,∠2=∠4.∴∠3=∠4,∴AD平分∠BAC.3.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M.∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC.∴FG=FM.又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC,∴FM=FH,∴FG=FH.∴点F在∠DAE的平分线上.4.答案如下图:(四)课堂小结今天我们学了哪些内容:角的平分线的性质(2)性质:角的内部到角的两边距离相等的点在角的平分线上.(五)课前预习预习下节课(13.1.1)的相关内容。
12.3 角的平分线的性质(1) 人教版八年级数学上学期教案
放在角的顶点,ADBA(3)画射线AC.∴射线AC 即为所求.【三】巩固练习已知:OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E (课本图11.3─4)求证:PD=PE .证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO=∠PEO=90°在△PDO 和△PEO 中,∴△PDO ≌△PEO (AAS ) ∴PD=PE如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =120°,求∠MAB 的度数.解析:根据AB ∥CD ,∠ACD =120°,得出∠CAB =60°,再根据AM 是∠CAB 的平分线,即可得出∠MAB 的度数.解:∵AB ∥CD ,∴∠ACD +∠CAB =180°,又∵∠ACD =120°,∴∠CAB =60°,由作法知,AM 是∠CAB 的平分线,∴∠MAB =12∠CAB =30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM 是∠BAC 的角平分线是解题的关键.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是( )A .6B .5C .4D .3解析:过点D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =2,∴S △ABC =12×4×2+12AC ×2=7,解得AC =3.故选D.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.拓展延伸,巩固强化知识。
【五】布置作业1.课本练习2.同步练习对应习题OCN别为点D、E.∴ PD=PE二次备课。
人教版八年级数学上册12.3角的平分线综合运用优秀教学案例
1.培养学生对数学学科的兴趣,激发学生学习数学的内在动力。
2.培养学生勇于探究、积极思考的科学精神,使学生体验到数学学习的乐趣。
3.引导学生认识数学在生活中的应用,提高学生的数学素养,树立学生运用数学解决实际问题的信心。
在教学过程中,我会关注学生的情感需求,尊重学生的个性差异,营造轻松、和谐的学习氛围。通过鼓励学生、表扬学生的进步,使学生感受到成功的喜悦,增强学生学习数学的自信心。同时,我会结合数学学科的特点,引导学生认识数学在生活中的应用,提高学生的数学素养,使学生树立运用数学解决实际问题的信心。
(四)反思与评价
1.引导学生进行自我反思:鼓励学生对自己的学习过程进行反思,总结学习经验,提高自我认知。
2.组织学生进行互评:引导学生相互评价,取长补短,促进学生的共同进步。
3.进行总结与评价:对学生的学习过程和结果进行评价,给予肯定和鼓励,提高学生的学习积极性。
反思与评价环节是教学过程中的重要环节,通过引导学生进行自我反思、组织学生进行互评和进行总结与评价,能够帮助学生总结学习经验,提高学生的学习能力。在教学过程中,我会注重学生的个体差异,给予不同程度的学生个性化的指导,使他们在数学学习中得到充分的发展。同时,我会关注学生的情感需求,尊重学生的个性差异,营造轻松、和谐的学习氛围。通过鼓励学生、表扬学生的进步,使学生感受到成功的喜悦,增强学生学习数学的自信心。
此外,我还设计了一系列有针对性的练习题,让学生在练习中巩固角的平分线性质,提高学生的数学运用能力。在教学过程中,我关注学生的个体差异,给予不同程度的学生个性化的指导,使他们在数学学习中得到充分的发展。
本节课的设计充分体现了新课程标准的要求,注重学生的全面发展,培养学生的数学素养和实际应用能力。在教学过程中,我以学生为主体,充分发挥教师的主导作用,营造轻松、和谐的学习氛围,使学生在愉快的氛围中掌握角的平分线的性质。
及反思人教版数学八年级上册12.3角的平分线的性质教学设计
3.拓展作业:
-设计一道探索性问题,如“在等腰三角形中,角的平分线与其他线段有何关系?”鼓励学生进行深入探究,培养他们的创新意识和探究精神。
-要求学生查阅资料,了解角的平分线在生活中的应用,例如在建筑、艺术等领域中的应用,并在课堂上分享。
及反思人教版数学八年级上册12.3角的平分线的性质教学设计
教学设计:
一、教学目标
(一)知识与技能
1.理解角的平分线的概念,掌握角的平分线的表示方法。
2.掌握角的平分线的性质,能够运用性质解决相关问题。
3.能够运用角的平分线性质进行图形的折叠、剪切等操作,培养空间想象能力和动手操作能力。
(二)过程与方法
(二)过程与方法
1.通过实际操作和几何画板的演示,观察角的平分线的特点,培养观察力和直觉思维。
2.与同伴合作,通过讨论和论证来探究角的平分线的性质,锻炼逻辑推理和数学表达能力。
3.运用角的平分线性质解决一系列问题,学会运用几何直观和逻辑推理相结合的方法。
(三)情感态度与价值观
本章节的教学旨在激发学生的:
4.小组合作作业:
-分成小组,共同探讨和研究一个与角的平分线相关的问题,如“如何利用角的平分线构造特殊的几何图形?”要求小组提交一份研究报告,并在课堂上进行展示。
在布置作业时,要注意以下几点:
1.作业难度要适中,既要保证基础知识的巩固,又要激发学生的思考。
2.作业形式要多样化,既要注重学生的动手操作,又要培养他们的逻辑思维和创新能力。
3.鼓励学生在完成作业过程中相互讨论、交流,提高合作能力。
4.及时批改和反馈作业,了解学生的学习情况,为下一步教学提供参考。
12.3 角的平分线的性质 人教版八年级数学上学期教案
课题12.3角平分线的判定上课教师上课时间第周第节教学目标1、掌握角平分线的判定。
2、熟练运用角平分线的判定及性质解决问题。
3、结合实际,创造丰富的情境,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心.教学重点角平分判定的应用。
教学难点运用角平分线判定证明及解决实际问题.教学过程环节教师活动学生活动设计意图课前预习1、布置学生的课前预习任务;2、进行预习方法指导;3、对学生预习任务进行检查与评定。
1、认真阅读教材50内容,用铅笔勾画重点概念;2、完成《练习册》28-29页例1、例2。
培养课前预习习惯,提升自主学习能力。
自主学习理解新知一、师生互动、引问激思(运用教材,梳理知识)1、角平分线的判定例1:如图,BE⊥AC于点E,CF⊥AB于点F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.(练习册28页例1)2、三角形的平分线例2:如图,某市有一块由三条公路围成的三角形绿地,现准备在其中建一座小亭供人们休息吗,而且要使小亭中心到三条公路的距离相等,试确定小亭中心的位置(练习册29页例2)一、进入情境、领会所学(理解教材,领悟新知)1、在课本上用红色笔勾画角平分线判定的内容;2、分小组分享例1解答过程;3、总结证明角平分线的常见方法。
1、分小组展示例2解答;2、说出解决此类题型的方法;3、说出三角形三条角平分线的关系;4、板书写例题解答格式。
课堂前阶段通过师生互动,学生温故知新,初步领会角平分线判定定理。
通过例题掌握三角形三角平分线的关系。
互动交流巩固所学二、点导评析、归类拓展(运用教辅,解疑释惑)例1变式:如图,在 △ ABC 中,摆放有两个完全一样的三板,它们的一组对应直角边分别在边AB 、AC 上,且这组对应边所对的顶点重合于点M ,则点M 一定在( )A、∠A的平分线上; B、边AC的高上;C、边BC的垂直平分线上;D、边AB的中线上(练习册28页列1变式训练)例2变式:如图,已知∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC.求证:AM 平分∠DAB (练习册29页例2变式训练)二、课堂展示、体系建构(例题展示,变式操练)说出作判断的依据;1、规范快速求解;2、准确说清解题依据;3、尝试总结解题方法。
人教版八年级数学上册教学设计:12.3.角平分线的性质
2.选做题(供学有余力的学生挑战):
a.证明:如果一个角的平分线上的点距离这个角的两边相等,那么这个点一定在这个角的平分线上。
b.在一个三角形中,若两边的中点到第三边的距离相等,证明这两边平分这个角。
作业要求:
1.学生需独立完成作业,确保作业质量,培养自主学习能力。
1.尺规作图:教师示范如何用尺规作图画出角的平分线,并解释作图原理,让学生跟随操作,加深理解。
2.性质探究:引导学生通过观察、猜想、验证的方式,发现角平分线的性质,如角平分线上的点到角的两边的距离相等。
3.性质证明:教师引导学生用几何知识对角平分线的性质进行证明,强调逻辑推理和证明方法。
(三)学生小组讨论,500字
3.布置课后作业,鼓励学生运用所学知识解决实际问题,提高数学应用能力。
五、作业布置
为了巩固学生对角平分线性质的理解和应用,以及提高学生的几何推理和问题解决能力,特布置以下作业:
1.必做题:
a.根据课堂学习,完成课本第十二章第三节后的练习题1、2、3。
b.利用尺规作图,画出给定角的平分线,并简要说明作图步骤。
2.提问:什么是角平分线?如何用尺规作图画出角的平分线?
二、自主探究
1.让学生尝试用尺规作图画出角的平分线,观察并总结角平分线的性质。
2.引导学生通过合作交流,验证彼此的发现,形成共识。
三、讲解与示范
1.教师详细讲解角平分线的性质,并通过实际例题进行示范。
2.解释角平分线在实际生活中的应用,让学生认识到数学知识的实用性。
2.教师巡回指导,解答学生在练习中遇到的问题,关注学生的个体差异。
3.针对不同水平的学生,提供不同难度的练习题,使每个学生都能在原有基础上得到提高。
角的平分线的性质人教版数学八年级上册教案
角的平分线的性质人教版数学八年级上册教案角平分线是指从一个角的顶点引出一条射线,把这个角分成两个完全一样的角,这条射线叫做这个角的角平分线。
三角形三条角平分线的交点叫做三角形的内心。
以下是我整理的角的平分线的心质人教版数学八年级上册教案,欢送大家借鉴与参考!12.3角的平分线的性质教案一、创设情景,明确目标1.不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么方法?2.假如前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?二、自主学习,指向目标学习至此:请完成《学生用书》相应局部.用尺规作确定角的平分线的方法活动一:教材P48思索展示点评:相等的边有哪些?图形中隐含的条件是什么?作确定角的平分线的方法?为什么要用“大于MN的一半为半径画弧”?小组探讨:平分角的仪器的原理依据是什么?反思小结:理论依据是三角形全等的判定“SSS”.针对训练:见《学生用书》相应局部角平分线的性质与证明活动二:同学们结合折纸活动,猜测一下角平分线有怎样的性质呢?猜测:角平分线上的点到角的两边的距离相等.展示点评:请同学们证明上述猜测(写出确定、求证):通过证明我们得出角平分线性质:________.用数学语言翻译描述上述性质:小组探讨:第一次对折可以得到什么结论?其次次为什么要折出一个直角?角平分线的性质内容?确定和求证分别是什么?如何证明?如何用几何语言表达?根本图形是什么?反思小结:角平分线上的点到角两边的距离相等.针对训练:见《学生用书》相应局部角平分线的运用活动三:如图,OC平分∠AOB,点P为OC上随意一点,PD⊥OA于D,PE⊥OB于E,猜测PD与PE 的数量关系,并证明.展示点评:由角平分线可以得到哪些角相等?由垂直可以得到哪些角相等?由图形可挖掘什么条件?由三角形全等可以得到什么结论?如何写证明过程?小组探讨:此题有哪些不同的证明方法,哪种方法更简便?反思小结:用角平分线的性质证明线段相等比用全等三角形证明线段相等更便利.针对训练:见《学生用书》相应局部四、总结梳理,内化目标本节课学习了那些学问?有哪些运用?1.角平分线的性质定理:在角平分线上的点到角的两边的距离相等.2.角平分线的性质定理是证明角相等、线段相等的新途径.五、达标检测,反思目标1.三角形中,到三边距离相等的点是( C )A.三条高线交点B.三条中线交点C.三条角平分线交点D.三边垂直平分线交点12.3角平分线的性质:测试一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.12.3角的平分线的性质:精选练习7.确定Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,假设BC=32,且BD:CD=9:7,那么D到AB边的距离为( )A.18B.16C.14D. 128.如图6,AE⊥BC于E,CA为∠BAE的角平分线,AD=AE,连结CD,那么以下结论不正确的选项是( )A.CD=CEB.∠AC D= ∠ACEC.∠CDA =90°D.∠BCD=∠ACD9.在△ABC中,∠B=∠ACB,CD是∠ACB的角平分线,确定∠ADC=105°,那么∠A的度数为( )A.40°B.36°C.70°D.60°10.在以下结论中,不正确的选项是( )A.平面内到角的两边的距离相等的点必须在角平分线上B.角平分线上任一点到角的两边的距离必须相等C.一个角只有一条角平分线D.角的平分线有时是直线,有时是线段角的平分线的性质人教版数学八年级上册教案。
人教版数学八年级上册12.3角的平分线的性质(第2课时)优秀教学案例
3.组织小组竞赛,激发学生的团队精神和竞争意识,提高课堂活力。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习方法和经验,提高自主学习能力。
2.教师对学生的学习情况进行评价,关注学生的知识掌握程度和能力提高。
3.鼓励学生相互评价,培养学生的评价能力和团队意识。
4.教学内容的系统性与连贯性:教师在教学过程中,既有对角的平分线概念及基本性质的回顾,又有对新知识的讲解和应用。这种教学方式使得学生能够在新旧知识之间建立起联系,形成系统的知识结构,提高学习效果。
5.多元化的教学评价:教师采用过程性评价与终结性评价相结合的方式,关注学生在课堂中的表现,及时给予反馈和指导。这种多元化的教学评价方式,既有助于教师了解学生的学习情况,又能够激发学生的学习动力,提高教学质量。
本节课的教学内容主要包括两个方面:一是角的平分线的性质及其推论;二是运用角的平分线解决实际问题。在教学过程中,我注重引导学生通过观察、操作、思考、讨论等方式,发现角的平分线的性质,培养学生独立思考和合作交流的能力。同时,我还将利用多媒体课件展示角的平分线的性质,以激发学生的学习兴趣,提高课堂效果。
在教学评价方面,我将采用过程性评价与终结性评价相结合的方式,关注学生在课堂中的表现,及时给予反馈和指导,以确保每个学生都能在课堂上得到有效的学习和提高。通过本节课的教学,我希望学生能够掌握角的平分线的性质,提高解决问题的能力,为后续学习奠定坚实的基础。
(二)问题导向
1.设计一系列由浅入深的问题,引导学生通过对问题的思考,发现角的平分线的性质。
2.鼓励学生提出问题,培养学生的批判性思维和问题意识。
3.引导学生运用角的平分线性质解决实际问题,提高学生运用所学知识解决实际问题的能力。
人教版八年级上册 12.3 角平分线的性质 教案
角的平分线的性质(一)教学目标1、应用三角形全等的知识,解释角平分线的原理.2.会用尺规作一个已知角的平分线.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方法的提炼.教学过程Ⅰ.知识回顾问题1:三角形中有哪些重要线段.问题2:你能作出这些线段吗?Ⅱ.合作探究思考:右图是一个平分角的仪器,其中,.将点A放在角的顶点,和沿着角的两边放下,沿画一条射线,就是角平分线.你能说明它的道理吗?要说明是∠的平分线,其实就是证明∠∠.∠和∠分别在△和△中,那么证明这两个三角形全等就可以了.看看条件够不够在△和△.因为所以△≌△().所以∠∠.即射线就是∠的平分线.这种平分角的方法告诉了我们一种作已知角的平分线的方法。
作已知角的平分线的方法:已知:∠.求作:∠的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交、于M、N.的长为半径作弧.两弧在∠内部交(2)分别以M、N为圆心,大于12于点C.(3)作射线,射线即为所求.议一议:的长”这个条件行吗?1.在上面作法的第二步中,去掉“大于122.第二步中所作的两弧交点一定在∠的内部吗?总结:1.去掉“大于1的长”这个条件,所作的两弧可能没有交点,所以2就找不到角的平分线.2.若分别以M、N为圆心,大于1的长为半径画两弧,两弧的交点可2能在∠ 的内部,也可能在∠的外部,而我们要找的是∠内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.思考如图,任意画一角∠,做出∠的角平分线,在上任取一点O,过点O 画出的垂线,分别记垂足为。
测量并作比较,你得到什么结论?在上再取几个点试试。
通过以上测量,你发现了角的平分线的什么性质?PⅢ.课堂精讲我们猜想角的平分线有以下性质:角平分线的性质:角平分线上的点到角的两边的距离相等.下面,我们利用三角形全等证明这个性质。
12.3角的平分线的性质 教案-2022-2023学年八年级上学期数学人教版
12.3角的平分线的性质教案-2022-2023学年八年级上学期数学人教版教学目标1.知道角平分线的定义;2.掌握角平分线的性质;3.能够运用角平分线的性质解决相关问题。
教学准备1.教材《数学人教版八年级上册》;2.教学投影仪;3.墨水笔;4.平面图。
教学过程第一步:导入1.引入角平分线的概念:角平分线是指将一个角分成两个相等的角的线段;2.提问:你知道什么是角平分线吗?请举例说明。
第二步:角平分线的性质1.角平分线的性质一:角平分线上的点到角的两边距离相等;2.角平分线的性质二:角平分线把一个角分成两个相等的角;3.角平分线的性质三:角平分线是角的唯一平分线。
第三步:案例分析1.给出一个实际案例,如在一个正方形ABCDEF中,连接对角线BD并延长,以BD为平分线,求证AC和EF的交点在BD上;2.引导学生分析如何运用角平分线的性质证明该结论。
第四步:讲解案例解法1.给出案例解法的步骤:a.画出正方形ABCDEF和对角线BD;b.延长BD并标记延长线上的一点P;c.证明∠BAC ≌ ∠BPF(角平分线的性质二);d.证明∠BDA ≌ ∠BPF(角平分线的性质三);e.得出结论:AC和EF的交点在BD上。
2.逐步解释每一步的操作和理由。
第五步:讲解案例解法的步骤1.角平分线的性质一的证明:a.根据角平分线的定义,平分线上的点到角的两边距离相等;b.假设P在BD上,连接PA和PB,利用三角形的边长关系,得出PA ≌ PB;c.类似地,假设Q在BD上,连接QA和QB,也可以得出QA ≌ QB;d.综上所述,平分线上的点到角的两边距离相等。
2.角平分线的性质二的证明:a.根据角平分线的定义,角平分线将一个角分成两个相等的角;b.假设Q在BD上,连接QA和QB,利用三角形的边长关系,得出∠BAQ ≌∠BQC;c.类似地,假设R在BD上,连接RA和RB,也可以得出∠BAR ≌ ∠BRC;d.综上所述,角平分线把一个角分成两个相等的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.3角平分线的性质
教学内容
本节课首先介绍作一个角的平分线的方法,然后用三角形全等证明角平分线的性质定理.教学目标
1.知识与技能
通过作图直观地理解角平分线的两个互逆定理.
2.过程与方法
经历探究角的平分线的性质的过程,领会其应用方法.
3.情感、态度与价值观
激发学生的几何思维,启迪他们的灵感,使学生体会到几何的真正魅力.
重点难点
1.重点:领会角的平分线的两个互逆定理.
2.难点:两个互逆定理的实际应用.
教具准备
投影仪、制作如课本图11.3─1的教具.
教学方法
采用“问题解决”的教学方法,让学生在实践探究中领会定理.
教学过程
一、创设情境,导入新课
【问题探究】(投影显示)
如课本图11.3─1,是一个平分角的仪器,其中AB=AD,BC=DC,将
点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?
【教师活动】首先将“问题提出”,然后运用教具(如课本图11.3─1•)直观地进行讲述,提出探究的问题.
【学生活动】小组讨论后得出:根据三角形全等条件“边边边”课本图11.3─1判定法,可以说明这个仪器的制作原理.
【教师活动】
请同学们和老师一起完成下面的作图问题.
操作观察:
已知:∠AOB.
求法:∠AOB的平分线.
作法:(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.(2)分别以M、N
为圆心,大于MN 的长为半径作弧,两弧在∠AOB 的内部交于点C .(3)作射线OC ,射线OC•即为所求(课本图11.3─2).
【学生活动】动手制图(尺规),边画图边领会,认识角平分线的定义;同时在实践操作中感知.
【媒体使用】投影显示学生的“画图”.
【教学形式】小组合作交流.
二、随堂练习,巩固深化
课本P19练习.
【学生活动】动手画图,从中得到:直线CD 与直线AB 是互相垂直的.
【探研时空】(投影显示)
如课本图,将∠AOB 对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
【教师活动】操作投影仪,提出问题,提问学生.
【学生活动】实践感知,互动交流,得出结论,“从实践中可以看出,第一条折痕是∠AOB 的平分线OC ,第二次折叠形成的两条折痕PD 、PE 是角的平分线上一点到∠AOB 两边的距离,这两个距离相等.”
论证如下:
已知:OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E (课本图11.3─4)
求证:PD=PE .
证明:∵PD ⊥OA ,PE ⊥OB ,
∴∠PDO=∠PEO=90°
在△PDO 和△PEO 中,
∴△PDO ≌△PEO (AAS )
∴PD=PE
【归纳如下】
角的平分线上的点到角的两边的距离相等.
【教学形式】师生互动,生生互动,合作交流.
三、情境合一,优化思维
【问题思索】(投影显示)
如课本图11.3─5,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,•离公路与铁路交叉处500米,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20 000)?
1
2
,,,PDO PEO AOC BOC OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩
【学生活动】四人小组合作学习,动手操作探究,获得问题结论.从实践中可知:角平分线上的点到角的两边距离相等,将条件和结论互换:到角的两边的距离相等的点也在角的平分线.
证明如下:
已知:PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E ,PD=PE .
求证:点P 在∠AOB 的平分线上.
证明:经过点P 作射线OC .
∵PD ⊥OA ,PE ⊥OB
∴∠PDO=∠PEO=90°
在Rt △PDO 和Rt △PEO 中,
∴Rt △PDO ≌Rt △PEO (HL )
∴∠AOC=∠BOC ,
∴OC 是∠AOB 的平分线.
【教师活动】启发、引导学生;组织小组之间的交流、讨论;帮助“学困生”.
【归纳】到角的两边的距离相等的点在角的平分线上.
【教学形式】自主、合作、交流,在教师的引导下,比较上述两个结论,弄清其条件和结论,加深认识.
四、范例点击,应用所学
【例】 如课本图11.3─6,△ABC 的角平分线BM ,CN 相交于点P ,求证:点P•到三边AB ,BC ,CA 的距离相等.
【思路点拨】因为已知、求证中都没有具体说明哪些线段是距离,而证明它们相等必须标出它们.所以这一段话要在证明中写出,同辅助线一样处理.如果已知中写明点P 到三边的距离是哪些线段,那么图中画实线,在证明中就可以不写.
【教师活动】操作投影仪,显示例子,分析例子,引导学生参与.
证明:过点P 作PD 、PE 、PF 分别垂直于AB 、BC 、CA ,垂足为D 、E 、F .
∴BM 是△ABC 的角平分线,点P 在BM 上.
∴PD=PE
同理 PE=PF
∴PD=PE=PF
即点P 到边AB 、BC 、CA 的距离相等.
【评析】在几何里,如果证明的过程完全一样,只是字母不同,可以用“同理”二字概括,省略详细证明过程.
,,
OP OP PD PE =⎧⎨=
⎩
【学生活动】参与教师分析,主动探究学习.
五、随堂练习,巩固深化
课本P50练习1、2.
六、课堂总结,发展潜能
1.学生自行小结角平分线性质及其逆定理,和它们的区别.
2.说明本节例子实际上是证明三角形三条角平分线相交于一点的问题,•说明这一点是三角形的内切圆的圆心(为以后学习设伏).
七、布置作业,专题突破
课本P51习题12.3第1、2、3题.
板书设计
把黑板分成三部分,左边部分板书概念、定理等,中间部分板书探究,右边部分板书例题,重复使用时,中间部分和右边部分板书练习题.。