ANSYS
ANSYS入门教程

ANSYS入门教程第一步:了解ANSYS界面打开ANSYS软件后,会看到一个包含各种功能的界面。
主要的界面区域包括:1.工具栏:包含各种工具和快捷键,可以帮助用户进行模型建立、网格划分、求解等操作。
2.操作窗口:显示软件的输出信息和错误提示,以及对模型的操作。
3.图形窗口:用于显示模型的几何形状、网格划分结果和结果解析等。
4.工作区:用于组织和管理模型、网格和结果文件等。
第二步:创建模型在ANSYS的工作区中,点击“Geometry”工具栏上的“New Geometry”按钮,进入模型创建界面。
在模型创建界面中,可以使用各种工具创建几何形状,如直线、圆弧、矩形等。
创建几何形状时,可以使用鼠标绘制,也可以输入具体的坐标和尺寸。
创建完成后,可以使用工具栏上的各种操作来对几何形状进行修整和修改。
例如,可以使用“Trim”工具删除多余的几何形状,使用“Extend”工具延长已有的几何线段等。
第三步:定义材料属性在ANSYS中,需要为模型定义材料属性。
点击工具栏上的“Engineering Data”按钮,进入材料属性定义界面。
在界面中,可以选择不同的材料类型,并输入相应的参数,如杨氏模量、泊松比等。
还可以导入外部材料库中的材料属性数据。
第四步:划分网格在ANSYS中,需要将模型划分为小的网格单元,以便进行后续的有限元分析。
点击工具栏上的“Mesh”按钮,进入网格划分界面。
在界面中,可以选择不同的网格类型,并设置相应的网格参数。
通常,可以选择“Quad”或“Tri”网格类型,并设置网格大小。
完成网格划分后,可以使用工具栏上的网格修整工具来调整和修改网格。
第五步:施加边界条件在ANSYS中,需要为模型施加边界条件和加载。
点击工具栏上的“Solution”按钮,进入边界条件设置界面。
在界面中,可以选择不同的加载类型,并设置相应的加载参数。
例如,可以选择“Force”加载,并输入加载的大小和方向。
还可以选择“Constraint”加载,并设置固定边界条件。
Ansys基础教程

Create > -Lines- Lines
Create > -Lines- Arcs
Create > -Lines- Splines
L,k1,k2
L,k1,k2,k3,radius
面
• 用由下向上的方法生成面时, 需要的关键点或线必须已经定义。 (A——关键点〔顺序〕、AL——线)
可以根据模型形状选择最佳建模途径.
下面详细讨论建模途径。
实体建模 B. 自顶向下建模
• 自顶向下建模: 首先建立高级图元(体或 面),对这些高级图元(体或面)按一定规 则组合得到最终需要的形状.
• 开始建立的体或面称为图元。 • 生成一种体素时会自动生成所有的从属于
该体素的较低级图元。 • 对几何图元进行组合计算形成最终形状的
ANSYS教程
ANSYS 结构分析
第一章 ANSYS主要功能与模块
• ANSYS是世界上著名的大型通用有 限元计算软件, 它包括热、电、磁、流体和 结构等诸多模块, 具有强大的求解器和前、 后处理功能, 为我们解决复杂、庞大的工程 项目和致力于高水平的科研攻关提供了一 个优良的工作环境, 是一个开放的软件, 支 持进行二次开发。 • 目前主流版本12.0,13.0,14.0,14.5
一、主要功能简介
• 1. 结构分析
• 1) 静力分析 – 求解静力载荷作用下结 构的位移和应力等. 可以考虑结构的线性及 非线性行为。
• ● 线性结构静力分析 (linear)
• ● 非线性结构静力分析 (nonlinear)
•
♦ 几何非线性: 大变形、大应变、
应力强化、旋转软化
•
♦ 材料非线性: 塑性、粘弹性、粘
ansys分析入门基础篇

边界条件
02
03
材料属性
设置边界条件,如固定约束、自 由约束等,以限制物体的自由度。
设置材料属性,如弹性模量、泊 松比、密度等,以模拟实际材料 的特性。
求解过程
建立模型
根据分析需求,建立相应的模型。
加载和求解
根据分析需求,加载相应的载荷和边界条件,然 后进行求解。
ansys分析入门基础篇
目录
• ANSYS软件简介 • 建立模型 • 加载与求解 • 结果后处理 • 案例分析
01 ANSYS软件简介
什么是ANSYS
综合性仿真软件
ANSYS是一款集结构、流体、电 磁、热、声等多物理场于一体的 综合性仿真软件,广泛应用于航 空航天、汽车、船舶、电子、能 源等领域。
电子
ANSYS在电子领域应用于集成电路、电子 元器件、PCB板等的设计和优化,提高产 品性能和可靠性。
船舶
ANSYS在船舶领域应用于船体结构、推进 系统、船舶设备等的设计和优化,提高船 舶性能和安全性。
ANSYS的基本功能
结构分析
流体动力学分析
ANSYS提供了强大的结构分析功能,可以 对各种材料进行静力、动力、疲劳等分析 ,模拟结构的变形、应力、应变等。
ANSYS的流体动力学分析功能可以对流体 进行稳态和瞬态分析,模拟流体流动、传 热、燃烧等过程。
电磁场分析
声场分析
ANSYS的电磁场分析功能可以对电磁设备 进行磁场、电场、电磁力的分析和优化, 提高设备的性能和效率。
ANSYS的声场分析功能可以对声音传播、 噪声产生等进行模拟和分析,优化产品的 声学性能。
02 建立模型
ANSYS常用命令大全

ANSYS常用命令大全ANSYS是目前广泛应用于工程仿真领域的软件之一。
在使用ANSYS进行仿真分析时,熟练掌握ANSYS的常用命令是非常重要的。
下面是ANSYS常用命令的大全:文件操作•/CLEAR:清除内存中所有的ANSYS对象。
•/TITLE:定义模型的名称。
•/SAVE,file.ans:将模型保存到指定的文件中。
•/RESUME,file.ans:恢复保存的模型。
•/EXIT:退出ANSYS。
几何模型操作•PLANEXX,n:建立以全局坐标系为基准的平面。
•N,x,y,z:在坐标值为x,y,z的点处创建一个节点。
•LINE,n1,n2:创建两个节点n1,n2之间的线段。
•AREA,n1,n2,n3,...:创建由n1,n2,n3等节点构成的面。
•LSEL,all:将所有线段选中。
•ASEL,all:将所有面选中。
•VSOL,all:将所有体单元选中。
材料操作•MP,EX,1,100E9:定义弹性模量为100GPa的材料属性。
•MP,NUXY,1,0.3:定义泊松比为0.3的材料属性。
•MP,DENS,1,7800:定义密度为7800kg/m3的材料属性。
•MP,ALPX,1,1E-5:定义线膨胀系数为1E-5/℃的材料属性。
•ET,1,SOLID185:定义实体单元类型为SOLID185。
网格操作•SMESH,ON:启用网格自适应功能。
•SMRTSIZE,1E-6:设置最小网格尺寸为1E-6m。
•LMESH,all:将所有线段用有限元网格划分。
•AMESH,all:将所有面用有限元网格划分。
•VMESH,all:将所有实体用有限元网格划分。
模拟操作•SOLVE,LS:使用线性静力分析方法求解结果。
•SOLVE,NH,SUBSTEP,5:使用非线性静力分析方法,步长为5进行求解结果。
•ANTYPE,0:定义进行静力分析的类型。
•ANTYPE,1:定义进行瞬态分析的类型。
•ANTYPE,2:定义进行谐响应分析的类型。
ANSYS的基本使用方法

ANSYS的基本使用方法1.启动ANSYS:以管理员权限打开ANSYS软件。
在启动界面选择工作目录,创建或加载一个现有的工作区。
2.几何建模:在ANSYS中,可以使用几何工具直接创建几何模型,也可以导入外部CAD文件。
几何模型的创建可以通过绘制几何实体、创建参数化模型等方式进行。
3.材料属性定义:在ANSYS中,应定义材料的物理性质。
这些属性可以是材料的弹性模量、泊松比、密度等。
4.网格划分:ANSYS对几何模型进行网格划分,将其离散为有限元网格。
网格的划分应根据模型的几何特性和分析要求进行选择。
5.载荷和边界条件定义:在ANSYS中,应定义作用在模型上的载荷和边界条件。
载荷可以是力、热、压力、电场等;边界条件可以是约束、固支条件等。
6.求解器选择:根据要求选择合适的求解器,并进行设置。
ANSYS提供多种求解器,如静力学求解器、动力学求解器、流体力学求解器等。
7.求解器设置:设置求解器的参数,如收敛准则、时间步长等。
根据需要,可以进行自适应网格划分、计算过程监控等。
8.模型求解:运行求解器,对模型进行求解。
求解过程中,ANSYS将根据所设置的参数和条件,在每个时间步计算模型的响应。
9.结果后处理:求解完成后,可以对结果进行后处理和分析。
ANSYS 提供了丰富的后处理工具,可以绘制应力、位移、温度等分布图;进行模态分析、瞬态分析、热分析等。
10.结果评估及优化:根据后处理结果,对模型的性能进行评估,如强度、刚度、稳定性等。
根据需要,可以进行优化分析,改进设计。
11.报告和分享:根据模型的分析结果,生成报告和图表,将模型的设计和分析结果分享给相关人员。
除了上述基本使用方法,还有一些高级功能可以扩展ANSYS的应用,如多物理场耦合分析、参数化设计、优化算法等。
1.模型的建立要尽量符合实际情况,准确描述实际问题。
2.确定求解器和求解参数时,应根据问题的特点和分析要求进行选择。
3.网格划分需要合理选择网格类型和密度,避免网格过于粗糙或过于细密。
ANSYS的基本步骤讲解

ANSYS的基本步骤讲解1.创建几何模型:ANSYS提供了多种几何建模工具,可以通过绘制、导入或其他方式创建几何模型。
几何模型是仿真分析的基础,它必须准确地表示所研究的物体的形状和尺寸。
2.网格划分:在几何模型上进行网格划分是进行模拟和分析的关键步骤。
ANSYS提供了强大的网格生成工具,可以将几何模型划分成小网格单元,以便进行数值计算。
网格的划分质量直接影响仿真结果的准确性和计算速度。
3.定义物理属性和材料属性:在进行仿真分析之前,需要定义模型中各个部分的物理属性和材料属性。
物理属性可以包括温度、流体速度、载荷等信息,而材料属性可以包括材料的弹性模量、热传导系数等。
ANSYS提供了丰富的材料模型和物理属性设置选项。
4.定义约束条件:在仿真过程中,需要对模型施加适当的约束条件,以保持模型的真实性和可靠性。
例如,可以固定一些点或边界,或者施加一定的力或温度条件。
设定约束条件时需要考虑实际问题的边界条件。
5.定义分析类型:根据仿真分析的目的,可以选择不同的分析类型。
ANSYS提供了多种分析类型,比如静态结构分析、动态分析、热传导分析、流体力学分析等。
选择适当的分析类型对于准确地模拟和预测所研究物体的行为非常重要。
6.设定求解器和求解参数:使用适当的求解器和求解参数可以提高仿真计算的效率和准确性。
ANSYS拥有多个求解器,可根据问题的特点选择最合适的求解器。
求解参数包括收敛准则、迭代次数、收敛精度等。
7.进行仿真计算:在完成以上各项设置后,可以开始进行仿真计算。
ANSYS会根据所设定的条件和参数,对模型进行数值计算,并生成结果。
这个过程可能需要一定的时间,特别是对于复杂的模型和大规模的网格。
8.分析和解释结果:得到仿真计算结果后,需要对结果进行分析和解释。
ANSYS提供了强大的后处理工具,可以对仿真结果进行可视化分析、数据剖析、曲线绘制等。
通过分析结果,可以了解模型的物理行为,并为工程设计提供参考。
9.优化和改进设计:在分析结果的基础上,可以优化和改进设计。
ansys学习教程

ANSYS学习教程简介ANSYS是一种强大的有限元分析软件,广泛应用于工程领域。
它具有丰富的功能和强大的求解能力,可以模拟各种复杂的物理现象和工程问题。
本教程将介绍ANSYS的基本知识和使用方法,帮助初学者快速入门。
安装与配置ANSYS的安装过程比较简单,用户只需按照官方说明进行下载和安装即可。
安装完成后,需要进行一些基本的配置,以确保软件的正常运行。
这些配置包括设置工作目录、导入所需的模块和插件等。
设置工作目录在使用ANSYS之前,首先需要设置一个工作目录,用于存储工程文件和计算结果。
用户可以选择一个合适的目录,然后在ANSYS的设置中进行配置。
导入模块和插件ANSYS提供了多个模块和插件,用于不同类型的工程分析。
用户可以根据自己的需求选择相应的模块和插件,并将其导入到ANSYS中。
导入完成后,这些模块和插件将在软件中显示为可用的功能。
建模和网格生成在进行工程分析之前,需要先进行建模和网格生成。
建模就是根据实际物理对象创建虚拟模型,网格生成则是将模型划分为小的单元,以便进行数值计算。
几何建模几何建模是将物理对象抽象为几何图形的过程。
ANSYS提供了多种建模工具,包括实体建模和面建模。
用户可以使用这些工具创建复杂的几何模型,并添加相应的约束和条件。
网格生成网格生成是将几何模型划分为小的单元的过程。
ANSYS提供了多种网格生成算法,包括结构化网格和非结构化网格。
用户可以选择合适的算法,并进行参数设置,以获得高质量的网格。
边界条件和加载在进行工程分析之前,需要确定边界条件和加载。
边界条件是对系统边界的约束,加载是对系统施加的外界力或位移。
边界条件边界条件包括固支约束、自由度约束和热边界条件等。
用户需要根据具体情况设置适当的边界条件,以准确模拟实际工程问题。
加载加载是对系统施加的外界力或位移。
ANSYS提供了多种加载方式,包括点力、面力、压力和位移等。
用户可以根据实际需求设置加载方式和加载大小。
求解和后处理求解和后处理是ANSYS的核心功能之一。
ANSYS简介

ANSYS简介 6.2 网格划分的基本原则
类 别 杆 梁 形 状 和 特性 普通 双线性 普通 截 面 渐 变 塑性 考 虑 剪 切变形 普通 浸入 塑性 四边形 三角形 超 弹 性 单元 粘弹性 大应变 谐单元 P单元 块 四面体 层 各 向 异 性 超 弹 性 单元 粘弹性 大应变 P单元 四边形 轴对称 层 剪切板 P单元 单元类型
ANSYS简介 6.3 结构静力分析实例
5 )创建线。 GUI : Preprocessor > Modeling > Create > Lines > Lines > In Active Coord 依次点击关键点1和关键点2,完成线段1的定义;依次 选择其它关键点左击鼠标,建立所有线,并点击弹出菜单 中OK,完成线段的定义,如图6.10。
12)划分单元。GUI:Preprocessor > Meshing > Mesh > Lines 执行以上命令后,将打开图6.26所示对话框,点击Pick All 按钮,完成网格划分,划分后形成的单元,如图6.27所示。
图6.26 网格划分线选择对话框
图6.27 形成的单元
ANSYS简介 6.3 结构静力分析实例
ANSYS简介 6.3 结构静力分析实例
2)定义或修改工作文件名称。如果工作名称在上一步 已定义,或使用默认的名称(file)时,本步可省去。
图6.6 定义工作文件名称菜单与对话框
ANSYS简介 6.3 结构静力分析实例
3)定义或修改分析标题。 通过GUI(图形用户界面)输入,执行“Utility menu > File > Change Title”菜单命令,在弹出的对话框中输入 分析标题“Bridge Truss Tutorial”,如图6.7所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、施加载荷计算①、定义分析类型●如果进行新的热分析:Command: ANTYPE, STATIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state●如果继续上一次分析,比如增加边界条件等:Command: ANTYPE, STATIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) :a、恒定的温度通常作为自由度约束施加于温度已知的边界上。
Command Family: DGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperatureb、热流率热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。
如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。
注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意。
此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。
Command Family: FGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Flowc、对流对流边界条件作为面载施加于实体的外表面,计算与流体的热交换,它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流。
Command Family: SFGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Convectiond、热流密度热流密度也是一种面载。
当通过单位面积的热流率已知或通过FLOTRAN CFD 计算得到时,可以在模型相应的外表面施加热流密度。
如果输入的值为正,代表热流流入单元。
热流密度也仅适用于实体和壳单元。
热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载进行计算。
Command Family: FGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Fluxe、生热率生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热。
它的单位是单位体积的热流率。
Command Family: BFGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Generat③、确定载荷步选项对于一个热分析,可以确定普通选项、非线性选项以及输出控制。
a. 普通选项∙时间选项:虽然对于稳态热分析,时间选项并没有实际的物理意义,但它提供了一个方便的设置载荷步和载荷子步的方法。
Command: TIMEGUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substps∙每载荷步中子步的数量或时间步大小:对于非线性分析,每一载荷步需要多个子步。
Command: NSUBSTGUI: Main Menu>Solution>-Load Step Opts->Time/Frequenc>Time and SubstpsCommand: DELTIMGUI: Main Menu>Solution>-Load Step Opts->Time/Frequenc>Time-Time Step∙递进或阶越选项:如果定义阶越(stepped)选项,载荷值在这个载荷步内保持不变;如果为递进(ramped)选项,则载荷值由上一载荷步值到本载荷步值随每一子步线性变化。
Command: KBCGUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substpsb. 非线性选项∙迭代次数:本选项设置每一子步允许的最多的迭代次数。
默认值为25,对大数热分析问题足够。
Command: NEQITGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Equilibrium Iter∙自动时间步长: 对于非线性问题,可以自动设定子步间载荷的增长,保证求解的稳定性和准确性。
Command: AUTOTSGUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substps∙收敛误差:可根据温度、热流率等检验热分析的收敛性。
Command: CNVTOLGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Convergence Crit∙求解结束选项:如果在规定的迭代次数内,达不到收敛,ANSYS可以停止求解或到下一载荷步继续求解。
Command: NCNVGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Criteria to Stop∙线性搜索:设置本选项可使ANSYS用Newton-Raphson方法进行线性搜索。
Command: LNSRCHGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Line Search∙预测矫正:本选项可激活每一子步第一次迭代对自由度求解的预测矫正。
Command: PREDGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Predictorc. 输出控制∙控制打印输出:本选项可将任何结果数据输出到*.out 文件中。
Command: OUTPRGUI: Main Menu>Solution>-Load Step Opts-Output Ctrls>Solu Printout∙控制结果文件:控制*.rth的内容。
Command: OUTRESGUI: Main Menu>Solution>-Load Step Opts-Output Ctrls>DB/Results File④、确定分析选项a. Newton-Raphson选项(仅对非线性分析有用)Command: NROPTGUI: Main Menu>Solution>Analysis Optionsb. 选择求解器:可选择如下求解器中一个进行求解:∙Frontal solver(默认)∙Jacobi Conjugate Gradient(JCG) solver∙JCG out-of-memory solver∙Incomplete Cholesky Conjugate Gradient(ICCG) solver∙Pre-Conditioned Conjugate Gradient Solver(PCG)∙Iterative(automatic solver selection option)Command: EQSLVGUI: Main Menu>Solution>Analysis Options注意:热分析可选用Iterative选项进行快速求解,但如下情况除外:∙热分析包含SURF19或SURF22或超单元;∙热辐射分析;∙相变分析∙需要restart an analysisc. 确定绝对零度:在进行热辐射分析时,要将目前的温度值换算为绝对温度。
如果使用的温度单位是摄氏度,此值应设定为273;如果使用的是华氏度,则为460。
Command: TOFFSTGUI: Main Menu>Solution>Analysis Options⑤、保存模型: 点击ANSYS工具条SAVE_DB。
⑥、求解Command: SOLVEGUI: Main Menu>Solution>Current LS3、后处理ANSYS将热分析的结果写入*.rth文件中,它包含如下数据:基本数据:*节点温度导出数据:*节点及单元的热流密度*节点及单元的热梯度*单元热流率*节点的反作用热流率*其它对于稳态热分析,可以使用POST1进行后处理,关于后处理的完整描述,可参阅《ANSYS Basic Analysis Procedures Guide》。
进入POST1后,读入载荷步和子步:Command: SETGUI: Main Menu>General Postproc>-Read Results-By Load Step可以通过如下三种方式查看结果:*彩色云图显示Command: PLNSOL, PLESOL, PLETAB等GUI: Main Menu>General Postproc>Plot Results>Nodal Solu, Element Solu, Elem Table*矢量图显示Command: PLVECTGUI: Main Menu>General Postproc>Plot Results>Pre-defined or Userdefined*列表显示Command: PRNSOL, PRESOL, PRRSOL等GUI: Main Menu>General Postproc>List Results>Nodal Solu, Element Solu, Rea ction Solu 详细过程请参阅《ANSYS Basic Analysis Procedures Guide》。