26.1.1反比例函数教学设计新部编版

合集下载

人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
2.教师点评:对学生的总结进行点评,强调重点知识。
教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

人教版九年级数学下册26.1.1反比例函数教学设计

人教版九年级数学下册26.1.1反比例函数教学设计
作业要求:
1.学生需独立完成作业,不得抄袭。
2.解题过程要求书写工整,步骤清晰。
3.小组合作作业需体现每个成员的参与和贡献。
4.作业完成后,请认真检查,确保无误。
3.教师揭示这种数量关系即为反比例关系,进而导入新课——反比例函数。
(二)讲授新知,500字
1.教师引导学生回顾正比例函数、一次函数的定义,然后提出反比例函数的定义:形如y=k/x(k≠0)的函数称为反比例函数。
2.教师通过实例解释反比例函数的定义,如:当速度v一定时,路程s与时间t的关系可以表示为s=v*t,若时间t变化,路程s与时间t的乘积s*t保持不变,即s*t=v*t^2=k(k为常数),这就是一个反比例关系。
7.课后作业:布置具有针对性和实用性的课后作业,巩固学生对反比例函数的理解,提高学生的应用能力。
具体教学设想如下:
(1)导入新课:通过展示实际生活中的反比例关系,引导学生思考反比例函数的定义。
(2)新课讲解:
1)讲解反比例函数的定义,引导学生理解y=k/x(k≠0)的含义。
2)演示反比例函数图像的绘制方法,引导学生观察、分析图像性质。
三、教学重难点和教学设想
(一)教学重点
1.反比例函数的定义及其一般形式y=k/x(k≠0)。
2.反比例函数图像的性质,如对称性、渐进线等。
3.反比例函数在实际问题中的应用。
(二)教学难点
1.学生对反比例函数图像的理解和性质的把握。
2.在实际问题中建立反比例函数模型,运用函数知识解决问题的能力。
3.对反比例函数与一次函数、正比例函数等函数之间的联系和区别的理解。
二、学情分析
九年级学生在学习反比例函数之前,已经掌握了正比例函数、一次函数等基本初等函数的概念及其图像性质,具备了一定的函数基础知识。在此基础上,学生对反比例函数的学习将更具挑战性。由于反比例函数在形式上与之前学习的函数有所不同,学生对y=k/x(k≠0)的理解和运用可能会存在一定的困难。此外,在解决实际问题时,如何将反比例函数与问题情境有效结合,对学生的抽象思维和建模能力提出了更高要求。

人教版数学九年级下册26.1.1《反比例函数》教学设计

人教版数学九年级下册26.1.1《反比例函数》教学设计

人教版数学九年级下册26.1.1《反比例函数》教学设计一. 教材分析《反比例函数》是人教版数学九年级下册第26章第一节的内容,主要介绍了反比例函数的定义、性质及图象。

这一节内容是学生在学习了正比例函数和一次函数的基础上进行的,是进一步深化函数知识的重要环节,也为后续学习函数的应用打下了基础。

二. 学情分析九年级的学生已经具备了一定的函数知识,能够理解正比例函数和一次函数的概念和性质。

但是,对于反比例函数这一概念,学生可能较难理解,需要通过具体实例和生活实际来帮助学生理解和掌握。

三. 教学目标1.了解反比例函数的定义和性质。

2.能够绘制反比例函数的图象。

3.能够运用反比例函数解决实际问题。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的绘制。

五. 教学方法1.采用问题驱动法,通过设置问题引导学生思考和探索。

2.利用信息技术手段,如多媒体演示和数学软件,帮助学生直观理解反比例函数的性质和图象。

3.结合实际例子,让学生感受反比例函数在生活中的应用。

六. 教学准备1.多媒体演示文稿。

2.数学软件。

3.实际例子和问题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60千米/小时的速度行驶,行驶1小时后,剩余路程与速度之间的关系是什么?”引导学生思考和讨论。

2.呈现(10分钟)利用多媒体演示文稿,呈现反比例函数的定义和性质,引导学生直观理解。

同时,利用数学软件,展示反比例函数的图象,让学生感受反比例函数的特点。

3.操练(10分钟)让学生利用数学软件,自己绘制一些反比例函数的图象,加深对反比例函数性质的理解。

同时,让学生解答一些与反比例函数有关的问题,巩固所学知识。

4.巩固(10分钟)通过一些练习题,让学生进一步巩固反比例函数的概念和性质。

5.拓展(10分钟)让学生思考和讨论反比例函数在实际生活中的应用,如广告宣传、经济分析等,引导学生将所学知识运用到实际中。

26.1《反比例函数》教学设计

26.1《反比例函数》教学设计

⑤xy = 3 ⑥ y 1
⑦ y 3
x 1
x
④ y 2x 3
⑧y 3 2x
2.已知 y 与 x2 成反比例,并且当 x=3 时,y=2.
通过设置达标测 评,进一步巩固所 学新知,同时检测 学习效果,做到 “堂堂清
(1)求 y 与 x 的函数关系式;
(2)求 x=1.5 时,y 的值;
注重课堂小结,激
(3)求 y=18 时,x 的值.
发学生参与的主
3.当 m 为何值时,函数 y=(m-3)x2-|m|是反比 动性,为每一个学
生的发展与表现
例函数?
创造机会
学生进行当堂检测,完成后,教师进行批阅、点评、
讲解.
1.课堂总结:
教师与学生一起回顾所学主要内容: (1)本课时主要学习了反比例函数的哪些知识?如 何获得反比例函数的概念?
有面积 S(单位: km2/人)随全市总人口 n(单位:
人)的变化而变化.
师生活动:教师提出问题,学生思考、交流、
回答问题,初步感知反比例函数模型中的变化
与对应思想.
(续表)
1.反比例函数的概念:
1.通过对问题的
(1)问题:列出上述问题的函数解析式,并观察 讨论分析,让学生
活动 各个函数解析式有什么共同特点?(从基本形式, 学会用函数的观
的三种形式解决
(2)求函数的解析式
问题.
例 3.若 y (m1)xm2 2 是 y 关于 x 的反比例函数,
求 m 的值。
教师重点关注:学生对反比例函数三种形式的理解 与把握;学生是否熟练掌握了一元二次方程的解 法.
活动 四: 课堂 检测 总结
【达标测评】
1、下列函数中哪些是反比例函数?

人教版数学九年级下册教学设计26.1.1《反比例函数》

人教版数学九年级下册教学设计26.1.1《反比例函数》

人教版数学九年级下册教学设计26.1.1《反比例函数》一. 教材分析人教版数学九年级下册第26.1.1节《反比例函数》是本册教材的重要内容之一,主要介绍了反比例函数的定义、性质及图象。

本节内容是在学生已经掌握了函数概念、正比例函数的基础上进行的,为后续学习比例函数、二次函数等奠定了基础。

二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解。

但学生在学习过程中,可能对反比例函数的定义和性质理解不够深入,对反比例函数图象的认识和应用能力有待提高。

因此,在教学过程中,要注重引导学生从实际问题中抽象出反比例函数模型,培养学生运用函数知识解决实际问题的能力。

三. 教学目标1.知识与技能:使学生理解反比例函数的定义,掌握反比例函数的性质,会画反比例函数的图象。

2.过程与方法:通过观察、分析、归纳等方法,引导学生发现反比例函数的规律,培养学生的抽象思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.反比例函数的定义及其性质。

2.反比例函数图象的特点及应用。

五. 教学方法1.情境教学法:通过生活实例引入反比例函数,使学生感受到数学与生活的紧密联系。

2.启发式教学法:引导学生从实际问题中抽象出反比例函数模型,培养学生运用函数知识解决实际问题的能力。

3.小组合作学习:让学生在小组内讨论、探究,培养学生的团队协作精神。

六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质、图象等内容。

2.教学素材:准备一些实际问题,用于引导学生从实际问题中抽象出反比例函数模型。

3.黑板、粉笔:用于板书反比例函数的重要性质和图象特点。

七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数,如已知正方形的面积为25平方厘米,求其边长。

引导学生从实际问题中抽象出反比例函数模型。

2.呈现(10分钟)呈现反比例函数的定义、性质及图象,让学生初步感知反比例函数的特点。

《反比例函数》教案新部编本

《反比例函数》教案新部编本

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《反比例函数》教案教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念. (二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学过程本节课设计了五个教学环节:第一环节:创设问题情境,引入新课;第二环节:新课讲解;第三环节:课堂练习;第四环节:课时小结;第五环节:课后作业.第一环节:创设问题情境,引入新课 活动目的给学生设置疑问,激发学生学习兴趣. 活动过程我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y =kx +b 其中k ,b 为常数且k ≠0,正比例函数的表达式为y =kx ,其中k 为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如从A 地到B 地的路程为1200km ,某人开车要从A 地到B 地,汽车的速度v (km /h )和时间t (h )之间的关系式为vt =1200,则t =v1200中,t 和v 之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.第二环节:新课讲解 活动目的在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型.活动过程引入我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义在某变化过程中有两个变量x ,y .若给定其中一个变量x 的值,y 都有唯一确定的值与它对应,则称y 是x 的函数.能举出实例吗?(要求学生完成)例如,购买单价是0.4元的铅笔,总金额y (元)与铅笔数n (个)的关系是y =0.4n ,这是一个正比例函数.又如,等腰三角形的顶角的度数y 与底角的度数x 的关系为y =180-2x ,y 是x 的一次函数.等2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.问题1:电流I ,电阻R ,电压U 之间满足关系式U =IR ,当U =220V 时. (1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:(3)变量I 是R 的函数吗?为什么? 请学生大家交流后回答.答案为(1)能用含有R 的代数式表示I .由IR =220,得I =R220. (2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R 越来越大时,电流I 越来越小;当R 越来越小时,I 越来越大.(3)变量I 是R 的函数. 由IR =220得I =R220.当给定一个R 的值时,相应地就确定了一个I 值,因此I 是R 的函数. 舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请学生互相交流后回答. 答案为:根据I =R220,当R 变大时,I 变小,灯光较暗;当R 变小时,I 变大,灯光较亮.所以通过改变电阻R 的大小来控制电流I 的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.问题2:京沪高速公路全长约为1262 km ,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t (h )与行驶的平均速度v (km /h )之间有怎样的关系?变量t 是v 的函数吗?为什么?经过刚才的例题讲解,学生可以独立完成此题.如有困难再进行交流. 答案:由路程等于速度乘以时间可知1262=vt ,则有t =v1262.当给定一个v 的值时,相应地就确定了一个t 值,根据函数的定义可知t 是v 的函数.从上面的两个例题得出关系式 I =R 220和t =v1262.它们是函数吗?它们是正比例函数吗?是一次函数吗?能否根据两个例题归纳出这一类函数的表达式呢?一般地,如果两个变量x 、y 之间的关系可以表示成y =xk (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.从y =xk中可知x 作为分母,所以x 不能为零. 活动效果及注意事项在教学中,引导学生体会,定义中非零常数K 及变量x ,y 已经不在局限于只取正值而允许取任意非零数值.这里不宜使用“定义域”和“值域”等名词.3.做一做 活动目的前两个问题旨在强化函数和反比例函数的实际意义,在此基础上,第三个问题进一步明确:确定一个反比例函数关系的关键是求得K 的值.活动内容1.一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?3.y 是x 的反比例函数,下表给出了x 与y 的一些值:(2)根据函数表达式完成上表.活动效果及注意事项学生加强了对概念的理解,并初步体会函数表达式与函数表格的相互转化. 第三环节:课堂练习 活动目的巩固反比例函数概念的理解 活动过程 学生自主完成练习 第四环节:课时小结 活动目的培养学生总结归纳的能力 活动内容本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y =xk(k 为常数.k ≠0),自变量x 不能为零.还能根据定义和表达式判断某两个变最之间的关系是否是函数,是什么函数.活动效果及注意事项在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,通过举例,说理,讨论等活动,使学生体验如何用数学眼光来审视某些实际问题第五环节:课后作业 教材习题教学反思在教学反比例的定义时,我首先通过复习,巩固学生对正比例函数的理解.然后安排从中发现不成正比例,从而引入学习内容和学习目标.这通过复习、比较,不成正比例,那么它成不成比例呢?又会成什么比例?通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了条件并激发了积极的情感态度.在教学时,我以学生学习的正比例的意义为基础,在学生之间创设了一种自主探究、相互交流、相互合作的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自主探究的能力.。

26.1.1反比例函数的图像与性质(教案)

26.1.1反比例函数的图像与性质(教案)
举例:分析反比例函数在定义域内的单调性,解释其在实际生活中的应用,如价格与数量的关系。
2.教学难点
(1)反比例函数图像的绘制:学生对反比例函数图像的绘制方法掌握不足,容易在图像的准确性和细节上出现问题。
解决方法:教师可通过示范、指导,让学生动手实践,逐步掌握图像绘制的方法和技巧。
(2)反比例函数性质的推导:学生对反比例函数性质的理解和推导存在困难,如单调性、奇偶性等。
举例:通过实际例子(如速度与时间的关系)引导学生理解反比例函数的定义,突出k值对函数图像的影响。
(2)反比例函数的图像:掌握反比例函数图像的绘制方法,了解图像在坐标平面上的分布特点。
举例:利用数形结合的方法,让学生动手绘制反比例函数图像,观察并总结图像在第一、第三象限的分布情况。
(3)反比例函数的性质:理解反比例函数的单调性、奇偶性等性质,并能应用于实际问题。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的定义和图像性质这两个重点。对于难点部分,如反比例函数图像的绘制和性质的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过改变变量,观察反比例函数图像的变化,从而验证反比例函数的性质。
解决方法:教师可以通过问题引导、小组讨论等方式,帮助学生理解反比例函数的性质,并学会推导方法。
(3)反比例函数在实际问题中的应用:学生在将反比例函数应用于实际问题时,容易忽略条件限制,导致解题错误。
解决方法:教师需提供丰富的实际案例,让学生在练习中学会分析问题、解决问题,提高应用能力。
(4)反比例函数与一次函数、二次函数等其他函数的联系与区别:学生容易混淆不同类型函数的性质和图像。

部审人教版九年级数学下册26.1.1 《反比例函数》教学设计

部审人教版九年级数学下册26.1.1 《反比例函数》教学设计

部审人教版九年级数学下册26.1.1 《反比例函数》教学设计一. 教材分析人教版九年级数学下册第26.1.1节《反比例函数》是初中数学的重要内容,主要让学生了解反比例函数的定义、性质及图象。

通过本节的学习,为学生进一步学习高中数学打下基础。

本节内容较为抽象,需要学生具备一定的函数观念和几何想象力。

二. 学情分析九年级的学生已具备一定的函数知识,对正比例函数有一定的了解。

但在学习本节内容时,仍需克服对反比例函数概念和性质的理解困难。

此外,学生对于函数图象的绘制和分析能力有待提高。

三. 教学目标1.理解反比例函数的定义,掌握反比例函数的性质。

2.能够绘制反比例函数的图象,并分析反比例函数图象的特点。

3.能够运用反比例函数解决实际问题。

四. 教学重难点1.反比例函数的定义及性质。

2.反比例函数图象的特点及绘制方法。

五. 教学方法1.采用问题驱动法,引导学生主动探究反比例函数的定义和性质。

2.利用数形结合法,让学生通过绘制反比例函数图象,加深对函数性质的理解。

3.采用案例分析法,让学生运用反比例函数解决实际问题。

六. 教学准备1.准备反比例函数的相关案例,用于课堂分析和练习。

2.准备反比例函数的图象示例,用于讲解和展示。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)利用一个实际问题引入反比例函数的概念,如:一辆汽车以60千米/小时的速度行驶,行驶1小时后,离出发点的距离是多少?引导学生思考距离与时间的关系,从而引出反比例函数。

2.呈现(10分钟)讲解反比例函数的定义,示例说明反比例函数的表示方法,如y=k/x (k为常数)。

通过示例,让学生了解反比例函数的性质,如x越大,y越小;x越小,y越大等。

3.操练(10分钟)让学生绘制几个反比例函数的图象,并分析图象的特点。

期间,教师可引导学生运用数形结合的思想,加深对反比例函数性质的理解。

4.巩固(10分钟)分析一些实际问题,让学生运用反比例函数解决。

26.1.1反比例函数教案

26.1.1反比例函数教案

26.1.1反比例函数教案篇一:九年级下册数学26.1反比例函数教学设计26.1反比例函数板书设计:反比例函数定义:等价形式:篇二:26.1.1反比例函数教案第26章反比例函数26.1.1反比例函数【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。

从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。

因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。

【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定【学法指导】自主、合作、探究篇三:26.1反比例函数教案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如y?k(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量xx栏建一个面积为另一边长y(m)与的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数?y?k(k≠0)?xy=k(k≠0)?变量y与x成反比例,比例系数为k.x第1页k(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,x 123分母不能是多项式,只能是x的一次单项式,如y?,y?等都是反比例函数,但y?就不是关1xx?1x2拓展(1)在反比例函数y?于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数y?k中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上x一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式y?k(k≠0).x(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.第2页(3)反比例函数y?k(k≠0)的图象的两个分支关于原点对称.x(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0. k的图象是由两支曲线组x(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数y?成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。

人教版九年级数学下册26.1.1:反比例函数 教案设计设计

人教版九年级数学下册26.1.1:反比例函数 教案设计设计

26.1.1反比例函数
教学过程
(1).写出这个反比例函数的表达式;
(2).根据函数表达式完成上表.
练习:二、
1、.y 是x 的反比例函数,当x=3时,y=-6.
(1)写出y 与x 的函数关系式.
(2)求当y=4时x 的值.
2、y 是x-2 的反比例函数,当x=3时,y=4.
(1)求y 与x 的函数关系式.
(2)当x=-2时,求y 的值.
四、课后练习
1、苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为
2、若函数28)3(m x m y -+=是反比例函数,则m 的取值是
3、矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为
4、已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 ,当x =-3时,y =
5、已知函数y =y 1+y 2,y 1与x +1成正比例,y 2与x 成反比例,且当x =1时,y =0;当x =4时,y =9,求当x =-1时y 的值是多少?
6、当m = 时,关于x 的函数22)1(-+=m x
m y 是反比例函数? 7、已知3)2(-+=m x
m y 是反比例函数,则m 是什么? 五、学生作业
六、板书设计
如果两个变量x,、y 之间
的关系可以表示成 )0(≠=k k x
k y 为常数,的形式,那么y 是x 的反
比例函数。

例1 例2
课堂总结与反思:
课堂小结:
1、反比例函数的意义
2、反比例函数解析式的求法课后反思:。

人教版九年级数学下册:26.1.1《反比例函数》教学设计

人教版九年级数学下册:26.1.1《反比例函数》教学设计

人教版九年级数学下册:26.1.1《反比例函数》教学设计一. 教材分析人教版九年级数学下册第26.1.1节《反比例函数》是学生在学习了正比例函数之后,进一步探索函数的性质和应用。

本节内容通过引入反比例函数的概念,让学生理解反比例函数的定义、性质及其在实际生活中的应用。

教材通过丰富的例题和练习,帮助学生掌握反比例函数的图象和解析式,提高解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解。

但是,对于反比例函数的概念和性质,学生可能较为抽象,难以理解。

因此,在教学过程中,需要结合学生的实际情况,采用生动形象的实例,引导学生理解反比例函数的定义和性质。

三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。

2.学会反比例函数的解析式,并能灵活运用。

3.提高解决实际问题的能力,培养学生的数学思维。

四. 教学重难点1.反比例函数的概念和性质。

2.反比例函数的解析式的运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生探索反比例函数的性质;以实际案例为例,让学生理解反比例函数的应用;小组讨论,培养学生的合作精神和数学思维。

六. 教学准备1.准备相关的案例和实际问题。

2.准备反比例函数的图象和解析式的资料。

3.准备教学课件和板书设计。

七. 教学过程1.导入(5分钟)通过提问方式复习正比例函数的知识,然后引导学生思考:如果两个量的乘积为定值,这两个量之间是什么关系?从而引出反比例函数的概念。

2.呈现(15分钟)呈现反比例函数的定义和性质,让学生初步了解反比例函数的概念。

通过展示反比例函数的图象,让学生直观地感受反比例函数的性质。

3.操练(15分钟)让学生分组讨论,根据反比例函数的性质,找出实际生活中的反比例关系。

每组选取一个实例,并用反比例函数的解析式表示。

4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对反比例函数的理解和运用。

反比例函数的意义教学设计

反比例函数的意义教学设计
26.1.1反比例函数的意义
【学习目标】
1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式
3、让学生经历在实际问题中探索数量关系的中的作用
【学习重点】理解反比例函数的意义,确定反比例函数的解析式
【学习难点】反比例函数的解析式的确定
【学法指导】自主、合作、探究
教学互动设计
方法
导引
【自主学习,基础过关】
一、自主学习:
(一)复习巩固
1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的.
2.一次函数的解析式是:;当时,称为正比例函数.
3、已知函数 是正比例函数,则m=
已知函数 是反比例函数,则m=
例2:(课本P3例1)已知 是 的反比例函数,当 时,
⑴写出 与 的函数关系式。
⑵求当 时, 的值
变式训练
1、已知y是x的反比例函数,并且当x=3时,y=-8。
(1)写出y与x之间的函数关系式。
(2)求y=2时x的值。
2、y是x的反比例函数,下表给出了x与y的一些值:
3.一条直线经过点(2,3)、(4,7),求该直线的解析式.
以上这种求函数解析式的方法叫:.
(二)自主探究
提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
9、已知y是x²的反比例函数,并且当x=3时,y=4。

初中数学人教版九年级下册同步教学设计26-1-1 《反比例函数》

初中数学人教版九年级下册同步教学设计26-1-1 《反比例函数》

初中数学人教版九年级下册同步教学设计26-1-1 《反比例函数》一. 教材分析人教版九年级下册第26页的《反比例函数》是本节课的主要内容。

这部分教材主要向学生介绍反比例函数的定义、性质及其图象。

通过这部分的学习,学生能够理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。

二. 学情分析九年级的学生已经掌握了函数的基本概念和一次函数、二次函数的知识,具备了一定的函数思维。

但反比例函数的概念和性质相对于一次函数、二次函数来说较为抽象,学生可能难以理解和接受。

因此,在教学过程中,需要引导学生通过观察、思考、操作等活动,逐步理解和掌握反比例函数的知识。

三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质,能够绘制反比例函数的图象。

2.过程与方法:通过观察、操作、思考等活动,培养学生的观察能力、动手能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的特点。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过问题引导学生思考,案例让学生直观感受反比例函数的性质,小组合作学习法培养学生的团队合作意识。

六. 教学准备1.准备相关的教学案例和图片。

2.准备反比例函数的图象软件。

3.准备练习题和学习任务单。

七. 教学过程1.导入(5分钟)通过提出问题引导学生思考:“在我们的日常生活中,有哪些现象符合反比例关系?”让学生联系生活实际,发现反比例关系。

然后,教师给出反比例函数的定义,并解释反比例函数的概念。

2.呈现(15分钟)教师通过展示反比例函数的图象,让学生直观感受反比例函数的特点。

同时,教师引导学生观察反比例函数的图象,总结出反比例函数的性质。

3.操练(15分钟)教师给出一些反比例函数的例子,让学生运用所学知识解决问题。

在此过程中,教师引导学生运用反比例函数的性质,提高学生的动手操作能力。

26.1.1反比例函数教学设计(3)

26.1.1反比例函数教学设计(3)

26.1.1反比例函数教学设计石河子师范学校 郭蕊1 教学目标(1)知识与技能:了解反比例函数概念,能够根据已知条件确定反比例函数解析式;(2)过程与方法:通过实际问题中的条件确定反比例函数解析式,体会反比例函数的意义;(3)情感态度与价值观:从现实情境和和已有知识经验出发,研究两个变量之间的相互关系,进一步体验数学来源于生活又服务于生活,激发学生的学习兴趣.2 教学重难点教学重、难点:了解并掌握反比例函数的概念,能根据问题中的已知条件确定反比例函数的解析式;3 教学过程3.1复习导入静止是相对的,运动是绝对的,世界处于永远的运动变化过程中,我们已经掌握了一种用来刻画同一变化过程中两个变量之间一一对应关系的数学模型,这个模型就是函数,对于函数这个大家族,在我们前面的学习中已经认识了一些成员,请大家在脑海中回忆已经学过的函数知识,一提到函数,大家首先会想到什么呢?已学过的几类函数的定义是什么?(学生可能回答一次函数、二次函数、正比例函数、解析式、图像、性质、解决实际问题、区间、最值等)(已学过的函数定义都是形式化的定义,复习这些形式化定义)正比例函数y (k k 0)kx =≠为常数,一次函数y (k,b k 0)kx b =+≠为常数,二次函数2y (a,b,c a 0)ax bx c =++≠为常数,设计意图:温故知新,反比例函数的学习过程需要类比一次函数和二次函数的学习过程,因此设计复习环节,为后面的学习做铺垫.3.2问题情境今天我们继续来研究函数.情境1 李狗蛋赶路问题(洋葱数学)李狗蛋的女神要拉一群朋友去游乐园玩儿,也邀请了他,李狗蛋喜出望外心里一直在倒计时,可到了这天,出事儿了,大家约的9点从学校出发,结果狗蛋儿前一天晚上忘记设闹钟,一觉醒来八点五十,还有不到10分钟,家离学校3公里路,迟到了让大家等,女神也会觉得他不靠谱,因此狗蛋想了各种各样的办法来赶路,这些方法有快有慢,因此时间长短不一。

人教版九年级数学下册:26.1.1《反比例函数》教学设计3

人教版九年级数学下册:26.1.1《反比例函数》教学设计3

人教版九年级数学下册:26.1.1《反比例函数》教学设计3一. 教材分析《人教版九年级数学下册:26.1.1》是九年级数学的重要内容,是学生学习函数知识的最后一部分,也是学生对函数知识的深化和拓展。

本节课主要介绍了反比例函数的定义、性质及其图象。

通过本节课的学习,使学生能理解反比例函数的概念,掌握反比例函数的性质,会画反比例函数的图象,为后续学习打下基础。

二. 学情分析九年级的学生已经学习了正比例函数和一次函数,对函数的概念和性质有一定的了解。

但反比例函数与正比例函数和一次函数有很大的不同,学生可能难以理解和接受。

因此,在教学过程中,要注重引导学生通过已学的正比例函数和一次函数的知识来理解和掌握反比例函数的知识。

三. 教学目标1.知识与技能:理解反比例函数的概念,掌握反比例函数的性质,会画反比例函数的图象。

2.过程与方法:通过观察、分析、归纳等方法,探索反比例函数的性质。

3.情感态度与价值观:培养学生的团队合作意识,激发学生对数学的兴趣。

四. 教学重难点1.重点:反比例函数的概念、性质和图象。

2.难点:反比例函数的性质的理解和应用。

五. 教学方法1.情境教学法:通过生活实例引入反比例函数,使学生能更好地理解和接受。

2.合作学习法:引导学生分组讨论,培养学生的团队合作意识。

3.启发式教学法:引导学生通过观察、分析、归纳等方法,自主探索反比例函数的性质。

六. 教学准备1.准备反比例函数的生活实例和图片,用于导入和呈现。

2.准备反比例函数的性质和图象的PPT,用于讲解和展示。

3.准备一些反比例函数的练习题,用于巩固和拓展。

七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,如“汽车以60公里/小时的速度行驶,行驶1小时,行驶的距离是多少?”引导学生思考,引出反比例函数的概念。

2.呈现(10分钟)利用PPT呈现反比例函数的性质和图象,引导学生观察和分析,通过已学的正比例函数和一次函数的知识来理解和掌握反比例函数的知识。

人教版九年级数学下册26.1.1:反比例函数 教案设计

人教版九年级数学下册26.1.1:反比例函数 教案设计

九年级数学自学指导课教案反比例函数课题:反比例函数课型:自学+指导自学目标:1、了解反比例函数的定义。

2、理解反比例函数的一般形式。

3、掌握用待定系数法确定反比例函数的解析式。

4、灵活运用反比例函数的解析式解决生活实际背景问题。

指导目标:1、帮助学生理解反比例函数的一般形式。

(重点)2、指导学生用待定系数法确定反比例函数的解析式。

(重点)3、帮助学生灵活运用反比例函数解决生活实际问题。

(难点) 自学评价:*1、下列函数是反比例函数的是_________。

A.13+=x yB.x x y 22+=C.2x y =D.xy 2= **2、已知y 是x 的反比例函数,且x =-3时,y =7,求y 关于x 的函数解析式.***3、一定质量的二氧化碳,当其体积V =5m 3时,它的密度ρ=1.98kg/ m 3.(1)求ρ与V 的函数解析式.(2)当V =9 m 3时,求二氧化碳的密度.课堂指导:1、由章前图内容引入课题。

2、学生看教材完成“思考”中的三个问题。

3、展示结果:(1)V=t 1463,(2)xy 1000=,(3)S =n 41068.1⨯ 4、小结:(1)反比例函数的定义式;(2)反比例函数的解析式:)0(≠=k x k y ,)0(≠=k k xy ,)0(1≠=-k kx y .5、完成评价中的1、2题。

6、阅读教材中的例1,强调其解题思路及过程,自己试一试完成自评中的第3题。

7、小结:用反比例函数解析式解决实际问题应注意两个量之间的关系。

自评矫正:1、用函数解析式表示下列问题间的对应关系:(1)一个游泳池的容积为2000 m 3,游泳池注满水所用时间t 随着注水速度V 的变化而变化;(2)某长方体的体积为1000 m 3,长方体的高h 随底面积S 的变化而变化:(3)一个物体重100N ,物体对地面的压强P 随物体与地面的接触面积S 的变化而变化.2、下列哪些关系式中的y 是x 的反比例函数?x y 4=,3=x y ,x y 2-=,16+=x y ,12-=x y ,21xy =,123=xy . 3、已知y 与x 2成反比例,并且当x =3时,y =4.(1)写出y 关于x 的函数解析式;(2)当x =1.5时,求y 的值;(3)当y =6时,求x 的值.课内自结:1、本节课你收获了什么?2、运用反比例函数解析式解决实际问题时应注意什么?3、谈一谈你对本节课的感想?课外自补:1、当k 为何值时,322)(-+-=k k xk k y 是关于x 的反比例函数. 2、已知y 是x 的反比例函数,当x =5时,y =-1,则当x =3时,y =__________. 3、已知y 与x -1成反比例,且当x =51时,y =61. (1)写出y 关于x 的函数解析式;(2)当y =-41时,求x 的值. 板书设计:自学指导后的得与失:_______________________________________ ______________________________________________________________________________________________________________________。

人教版九年级数学下册:26.1.1《反比例函数》教学设计2

人教版九年级数学下册:26.1.1《反比例函数》教学设计2

人教版九年级数学下册:26.1.1《反比例函数》教学设计2一. 教材分析《反比例函数》是人教版九年级数学下册第26章的第一节内容,本节主要让学生了解反比例函数的定义、图象和性质。

通过本节的学习,为学生进一步学习其他函数打下基础。

二. 学情分析九年级的学生已经学习了正比例函数和一次函数,对函数的概念和图象有了一定的认识。

但反比例函数与正比例函数和一次函数有很大的区别,学生可能难以理解和接受。

因此,在教学过程中,要注重引导学生从已知知识出发,逐步探索反比例函数的性质。

三. 教学目标1.知识与技能:使学生了解反比例函数的定义,掌握反比例函数的图象和性质,能运用反比例函数解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,让学生探索反比例函数的性质,培养学生的观察能力和思维能力。

3.情感态度与价值观:激发学生学习函数的兴趣,培养学生勇于探索、积极思考的科学精神。

四. 教学重难点1.反比例函数的定义及其意义。

2.反比例函数的图象和性质。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.准备反比例函数的相关案例和图片。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备练习题和测试题。

七. 教学过程1.导入(5分钟)通过回顾正比例函数和一次函数的知识,引导学生思考:函数的图象和性质有哪些特点?从而引出本节内容——反比例函数。

2.呈现(10分钟)展示反比例函数的定义和图象,让学生观察并分析反比例函数的特点。

同时,通过具体案例,使学生了解反比例函数在实际生活中的应用。

3.操练(10分钟)让学生分组讨论,探索反比例函数的性质。

每组选择一个实例,分析反比例函数的图象和性质,并填写实验报告。

4.巩固(10分钟)根据实验报告,引导学生总结反比例函数的性质。

通过课堂提问,检查学生对反比例函数的理解程度。

5.拓展(10分钟)让学生运用反比例函数解决实际问题,如计算某些商品的售价、分析某些现象的变化规律等。

人教版九年级数学下册:26.1.1《反比例函数》教学设计5

人教版九年级数学下册:26.1.1《反比例函数》教学设计5

人教版九年级数学下册:26.1.1《反比例函数》教学设计5一. 教材分析《反比例函数》是人教版九年级数学下册第26.1.1节的内容,本节主要让学生了解反比例函数的定义,理解反比例函数的图像和性质,并能够运用反比例函数解决实际问题。

本节课的内容是学生在学习了正比例函数和一次函数的基础上进行的,为后续学习更复杂函数打下基础。

二. 学情分析九年级的学生已经具备了一定的函数基础,对于正比例函数和一次函数的概念和性质已经有了一定的了解。

但是,反比例函数的概念和性质相对较为抽象,学生可能难以理解和接受。

因此,在教学过程中,需要引导学生通过观察、思考、操作、交流等活动,逐步理解和掌握反比例函数的概念和性质。

三. 教学目标1.了解反比例函数的定义,理解反比例函数的图像和性质。

2.能够运用反比例函数解决实际问题。

3.培养学生的观察能力、思考能力和交流能力。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,通过案例让学生理解反比例函数的性质,通过小组合作学习让学生交流和分享学习心得。

六. 教学准备1.准备相关的教学案例和实际问题。

2.准备多媒体教学设备,如投影仪、电脑等。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾正比例函数和一次函数的概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)利用多媒体展示反比例函数的图像,让学生观察并描述反比例函数的特点。

同时,给出反比例函数的定义,解释反比例函数的概念。

3.操练(10分钟)让学生通过小组合作学习,探讨反比例函数的性质,如单调性、奇偶性等。

教师给予适当的引导和指导,帮助学生理解和掌握反比例函数的性质。

4.巩固(10分钟)通过解决实际问题,让学生运用反比例函数的知识。

教师可以设置一些具有挑战性的问题,激发学生的思考和探究欲望。

5.拓展(10分钟)让学生进一步探究反比例函数在实际中的应用,如流量问题、速度问题等。

26.1.1 反比例函数(教学设计)九年级数学下册同步备课系列(人教版)

26.1.1 反比例函数(教学设计)九年级数学下册同步备课系列(人教版)

26.1.1 反比例函数教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级下册(以下统称“教材”)第二十六章“反比例函数”26.1.1 反比例函数,内容包括:从实例中归纳出反比例函数的概念及反比例函数的辨析.2.内容解析教材中本课时的主要内容是通过对三个实际问题列方程,得到三个不同于以前学过的函数解析式,给学生以疑问.让学生通过观察、探究与归纳,得到反比例函数的概念.本节内容体现了由特殊到一般、数学建模、从具体到抽象以及分类讨论等思想方法.这样安排的目的有两个,一是让学生体会生活中处处有数学,数学源于生活、又服务于生活的教学理念,体会数学就在我们身边的道理;二是从简单的实际问题入手,激发学生学习数学的兴趣.基于以上分析,确定本节课的教学重点是:理解反比例函数的概念.二、目标和目标解析1.目标1.理解反比例函数的概念;2.根据题目条件会求对应量的值,能用待定系数法求反比例函数的关系式.3.能利用反比例函数的意义分析简单的问题.2.目标解析达成目标1)的标志是:理解反比例函数的概念,需要注意的地方是自变量x的取值范围是不等于0的一切实数,及会判别反比例函数.达成目标2)的标志是:用待定系数法求反比例函数的关系式.达成目标3)的标志是:能利用反比例函数的意义分析简单的问题.三、教学问题诊断分析学生在思考1)v=1463t 2)y=1000x3)S=1.68×104n的共同特征时,发现函数的特征不容易统一,所以引导学生找解析式中变量和常量的位置,这三个解析式结构都是:变量= 常量变量,进而得出反比例函数的概念.基于以上分析,本节课的教学难点是:从实例中归纳出反比例函数的概念及反比例函数的辨析.四、教学过程设计(一)复习巩固【提问一】什么是正比例函数?【提问二】什么是一次函数?【提问三】什么是二次函数?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾之前所学内容,为接下来学习反比例函数打好基础.(二)探究新知下列问题中两个变量间具有函数关系吗?如果有,请直接写出解析式.[情景一]京沪线铁路全程为1463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.[情景二]某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.[情景三]已知北京市的总面积为1.68×104 km2 ,人均占有面积S(单位:km2 /人)随全市总人口n (单位:人)的变化而变化.师生活动:学生积极回答问题.【设计意图】以学生比较熟知的,贴近学生生活的例子引入课题,一方面可以提高学生的兴趣,另一方面可以降低学生理解的难度.【问题一】观察以下三个解析式,你发现了什么?1)v=1463t 2)y=1000x3)S=1.68×104n师生活动:先由学生尝试回答,之后由教师引导学生共同归纳:这三个解析式结构都是:变量= 常量变量,从而归纳得出反比例函数的概念:一般地,形如y= kx(k为常数,且k≠0)的函数,叫做反比例函数,其中x是自变量,y是函数.【提问】请说出自变量x的取值范围?师生活动:学生观察反比例函数解析式的结构,得出自变量x的取值范围是不等于0的一切实数.【提问】尝试说出反比例函数的等价变形形式?师生活动:学生观察反比例函数解析式的结构,得出:y= kx⇔ y=kx-1⇔ k=xy(x≠0)⇔y是x的反比例函数.【设计意图】让学生经历合作探究过程,通过观察、发现、归纳,理解反比例函数的概念.再通过提问环节,引导学生初步思考、回顾已有的知识,主动参与到本节课的学习中来.(三)典例分析与针对训练例1 判断下列函数是不是反比例函数,如果是请指出比例系数.【针对训练】1.下列函数中哪些是反比例函数?哪些是一次函数?①y=3x-1 ①y = 2x ①y= 32x ① y= −1x① y= x2①-xy=2 ①y=6x-12. 已知反比例函数的解析式为y=|a|−2x,则a的取值范围是() A.a≠2B.a≠−2C.a≠±2D.a=±2【设计意图】考查学生对反比例函数概念的掌握.例2 若函数①=(m+1)x|m|﹣2是反比例函数,则①=()A.±1B.±3C.﹣1D.1【针对训练】1.函数y=(m﹣1)x m2−m−1是反比例函数,求m的值.例3 已知y是x的反比例函数,当x=2时,y=6.1)写出y与x的函数关系式;2)求当x=4时,y的值.【针对训练】1. 已知y与x2 成反比例,且当x=3时,y=4.1)写出y关于x的函数解析式;2)当x=1.5时,求y的值;3)当y= 6时,求x的值.2. y是x的反比例函数,下表给出了x与y的一些值1)写出这个反比例函数的解析式.2)根据函数表达式完成上表.【问题二】简述利用待定系数法求反比例函数解析式的具体方法?【设计意图】考查学生对利用待定系数法求反比例函数解析式的掌握.例4 矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数【针对训练】1. 直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系式为_________.2. 已知菱形的面积是12cm2,菱形的两条对角线长分别为x和y,则y与x之间的函数关系是________________.3.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式_____.【设计意图】考查学生利用反比例函数描述数量关系的能力.例5 反比例函数y=k+1x的图象经过点(﹣1,2),则k=_____.【针对训练】1 已知反比例函数y= kx(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点()A.(2,6)B.(-1,-12)C.(0.5,24)D.(-3,8)【设计意图】考查学生对求反比例函数系数的掌握.(四)能力提升1. 已知反比例函数的解析式为y=√2k−1x,则最小整数k=______.2. 当m为何值时,函数y=(m﹣3)x2﹣|m|是反比例函数?当m为何值时,此函数是正比例函数?【设计意图】考查学生对求反比例函数概念的掌握.(五)直击中考1.(2020·广西贺州·统考中考真题)在反比例函数y=2x中,当x=−1时,y的值为()A.2B.−2C.12D.−122.(2023·重庆·统考中考真题)反比例函数y=−4x的图象一定经过的点是()A.(1,4)B.(−1,−4)C.(−2,2)D.(2,2)3.(2022·黑龙江哈尔滨·统考中考真题)已知反比例函数y=−6的图象经过点(4,a),则a的值x为.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(六)归纳小结1.通过本节课的学习,你学会了哪些知识?2.你知道反比例函数的三种形式吗?3.简述利用待定系数法求反比例函数解析式的具体方法?(七)布置作业P3:练习第1题、第2题.五、教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校26.1.1反比例函数的教学设计小茴一中汪付敏一、教材分析本节课是“反比例函数”的第一节,是继正比例函数、一次函数、二次函数之后的又一类型函数,本节课主要通过丰富的生活事例分析,从中引出反比例函数并概括出它的概念.然后通过举例和例题丰富对反比例函数的认识,理解反比例函数的意义.并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。

二、学情分析对九年级学生来说,虽然他们已经对函数:正比例函数,一次函数和二次函数的概念、图象、性质以及应用有所掌握,但他们面对新的反比例函数时,还可能存在一些思维障碍,如:学生不能准确地找出变量之间的自变量和因变量,及不能准确的设函数关系式,在运用函数方法解决实际问题仍存在较多困难。

三、学习目标:1. 理解并掌握反比例函数的意义.2.会判别反比例函数,体会反比例函数的不同表示方法.3..能够根据已知条件用待定系数法求函数解析式.四、学习重、难点:重点:1.反比例函数的概念 .2.确定反比例函数表达式.难点:用待定系数法求反比例函数解析式.五、教学流程:一、创设情境,问题引入:问题1:前面我们已经学习了函数,大家还记得什么叫函数?一共学习了哪些函数吗?函数的定义:在某变化过程中有两个变量x、y.,若给定其中一个变量x 的值,y都有唯一确定的值与它对应,则称y是x的函数。

在前面我们已经学过一次函数和正比例函数、二次函数。

但是在现实生活中,并不是只有这几种类型的函数。

问题2:如把一张一百元换成50元的人民币,可得几张?换成10元的人民币可得几张?依次换成5元,2元,1元的人民币,各可得几张?换得的张数y 与面值x之间有怎样的关系呢?y和x之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘。

师生活动:教师出示问题,学生先独立思考回顾,再指名回答,在学生回答问题(1)的过程中教师应让学生注意谁是自变量,谁是因变量。

设计意图:通过学生身边的具体的情境问题的设置,可以很好地调动学生学习的积极性和学习数学的兴趣,从而把学生顺利地引入到学习新知的情境中,使他们能愉快地进行新知的学习。

二、合作交流、探究新知:(一)、生活情景,构建新知:在下列实际问题中,变量间的对应关系可用怎样的函数关系式表示?(1)一辆以60km/h匀速行驶的汽车,它行驶的距离S(单位:km)随时间t(单位:h)的变化而变化。

(2)一辆汽车的油箱中现有汽油50升,如果不再加油,平均每千米耗油量为0.1升,油箱中剩余的油量y(单位:升)随行驶里程 x (单位:千米)的变化而变化。

(3)正方形的面积S 随边长x 的变化而变化。

(4)京沪线铁路全程为1463km ,某次列车的平均速度v (单位:km/h )随此次列车的全程运行时间t (单位:h )的变化而变化。

(5)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长y (单位:m )随宽x (单位:m )的变化而变化。

(6)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S (单位:平方千米/人)随全市总人口n (单位:人)的变化而变化。

1、想一想:a 、函数关系式分别是:(1)S=60t (2)y=50-0.1x (3)y=x 2 (4)v t 1463= (5)x y 1000= (6)n s 41068.1⨯=b 、哪些函数关系式是我们学过的函数?c 、这些函数分别是什么函数?它们的一般形式你还记得吗?师生活动:先让学生思考,再进行全班性的问答或交流, 最后列出正确的函数关系式,让学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式. 老师要给适当的指导。

教师组织学生讨论后,提问学生,师生互动.在此活动中老师应重点关注学生:能否积极主动地合作交流。

能否用语言说明两个变量间的关系。

能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。

设计意图:再通过生活中的实际问题得出三个具体的反比例函数,其目的是丰富具体的反比例函数的实例,增强学生对反比例函数的感性认识,为下面归纳、抽象反比例函数的概念做好铺垫。

d 、 函数 有什么共同点? 归纳:一般地,形如 ( )的函数是反比例函数,其中 是自变量, 是函数.师生活动:学生先进行独立思考,再进行全班交流。

教师提出问题,关注学生思考。

在活动中教师应重点关注:(1)学生是否正确理解反比例函数的意义,并了解谁是自变量谁是函数。

(2)学生是否具有数学语言表达反比例函数概念的能力。

设计意图:运用类比思维方式让学生自己归纳定义,再一次使学生感受函数研究方法的一般性.通过对定义的剖析,使学生对反比例函数的表象认识上升到本质的认识,从而深刻理解反比例函数的概念,突破难点,为后续运用概念解决问题提供扎实的理论基础.2、做一做: 对于反比例函数 ① 当x=50时,y=________②当x=-100时,y=________③X 的值能不能取0?为什么?x y 1000=t v 1463=n S 41068.1⨯=xy 1000=(1)y = 4 x (3)y=1-x (4)xy=1(5)y = x 2 (6) y=x2 (7) y=x -1 (8)y = 1 x -1 (2)y =-1 2x ④某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长y (单位:m )随宽x (单位:m )的变化而变化。

函数关系式为: 此时x 可以取-100吗?为什么? 师生活动:学生先进行独立思考,再进行全班交流,最后学生汇报讨论结果。

在活动中教师要关注:(1)学生是否注意到自变量的取值范围是不等于0的一切实数.(2)在实际问题中自变量的取值范围是否符合实际意义. 设计意图:为了让学生通过讨论得出反比例函数 (k ≠0)中自变量X 的取值范围及在实际问题中自变量的取值还需考虑它的实际意义。

3、议一议:反比例函数关系还有其它的形式吗?师生活动:教师提出问题,学生思考、讨论,然后让口述反比例函数一般形式的等价形式。

在活动中教师应重点关注:反比例函数的其他表示方法与一般形式的一致性。

设计意图:目的是让学生自已通过对反比例函数 (k ≠0)变形得到它的等价形式跟踪练习:1. 下列关系式中的y 是x 的反比例函数吗?如果是, k 是多少?师生行为:教师提出问题,学生思考,师生活动:教师提出问题,学生思考,在活动中教师应重点关注:(1)学生是否能够根据反比例函数解析式说出k 的值.(2)11y x =- 变形为 11y x+=可以说成 y+1 与X 成反比例 (3)学生是否真正掌握了反比例函数的三种表达式。

设计意图:此题比较简单,以口答的进行,目的是在于重视基础知识和面向全体学生的教学,让学生明白判断一个函数是否是反比例函数不能单从定义给出的形式来判断,还要注意它的等价形式。

2. (1)若 是反比例函数,则n =____.(2)已知函数y=3x m-7是反比例函数,则 m = ___师生活动:学生在做这两题时教师应注意学生是否真正掌握了反比例函数的三种表达式。

设计目的:通过本题练习,使学生更加深刻的理解反比例函数的概念及三种表达形521-=n x y x y k =xy 1000=x y k =式。

(二)典例精析、应用新知:例:已知y 与x 成反比例,并且当x=2时,y=6.(1)写出y 与x 之间的函数关系式;(2)求x=4时,y 的值.师生活动:先让学生自己独立思考,有疑问的在小组内交流,然后让学生板演,最后教师讲解时要注重引导学生,同时要强调解题的规范性。

设计意图:通过对课本上例题的学习,使学掌握了待定系数法求函数解析式的方法,又使学生学会了解决问题的思路和方法。

变式练习:1、已知y 是x-1反比例函数,当x=3时,y=4.(1)求y 与x 之间的函数关系式;(2)求当y=2时x 的值.2、已知y 与x 2 成反比例,并且当x=3时y=4.⑴ 写出y 和x 之间的函数关系式;⑵ 求x=2时y 的值。

师生活动:教师提出问题,让两位学生演板其余学生独立思考,教师巡视,查看学生完成的情况。

在活动中教师应重点关注:(1)学生是否深刻理解“y 是x 的反比例函数”这句话的意义。

(2)学生是否能够正确求解,书写是否规范。

设计意图: 本题是在例题的基础上更上一层楼,目的是进一步使学掌握待定系数法求反比例函数解析式的方法。

但这道题学生能否列出y 与x-1函数关系式是本题的关键。

我给予适时指导。

三、课堂检测、巩固新知:1、用函数关系式表示下列问题中变量间的对应关系:(1)一个游泳池的容积为2000m 3, 游泳池注满水所用时间表t(单位:h)随注水速度v((单位:m 3/h):的变化而变化(2)某长方体的体积为1000c m 3, 长方体高h (单位:c m )随底面积S (单位:c m 2):的变化而变化;(3)一个物体重100N ,物体对地面的压强P (单位:Pa )随物体与地面的接触面积S (单位: m 2)的变化而变化;2.下列函数y 是x 的反比例函数的是( )A .x y 36=B .x x y +=2C . 3=x y D .84+=x y3 、已知y 是x 的反比例函数,当x=3时,y=-8. 求当y=2时x 的值.(2)根据函数表达式完成上表.5、前沿课时设计第1 页前5题。

师生活动:先让学生自己独立思考,教师巡视,查看学生完成的情况。

最后指名回答前两大题,第3、4题让学生板演,并引导学生规范做题步骤。

设计意图:通过前两题的练习,使学生及时巩固了反比例函数的概念,第4题比例题更加灵活,也稍加难度,通过本题的练习使学生及时巩固用待定系数法求函数解析式。

四、课堂总结、反思提高通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。

(如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)师生活动:教师出示问题,学生先交流讨论、归纳总结,汇报本节学习情况。

在活动中教师应重点关注:(1)学生是否能够准确概括出本节课的学习内容。

(2)不同层次学生对本节知识的掌握情况。

设计意图:通过问题小结让学生自己整理本节课学习的内容,同时培养了学生的概括能力和口头表达能力。

也可以使学生对所学知识得以巩固和加深记忆,也可以使所学知识系统化,使他们更加系统的理解本节的内容,从而更好的完成学习目标. 五、布置作业、分层落实教科书习题26.1第2 、4 、5题(必做题),第6、7题(选做题)设计意图:主要针对不同层次学生对知识的理解程度,题目的设计体现层次性使学生进一步巩固所学知识的同时又能发挥学生对所掌握知识的灵活.六、 课后拓展、发散思维:已知函数 y = y1 + y2,y1与x 成正比例,y2与x 成反比例,且当x=1时,y=4;当x=2时,y=5。

相关文档
最新文档