常用应力强度因子计算方法比较.
应力强度因子的计算.doc

第二章 应力强度因子的计算K --应力、位移场的度量⇒K 的计算很重要,计算K 值的几种方法: 1.数学分析法:复变函数法、积分变换; 2.近似计算法:边界配置法、有限元法; 3.实验标定法:柔度标定法; 4.实验应力分析法:光弹性法.§2-1 三种基本裂纹应力强度因子的计算一、无限大板Ⅰ型裂纹应力强度因子的计算K Z ξ→=→ⅠⅠ计算K 的基本公式,适用于Ⅱ、Ⅲ型裂纹.1.在“无限大”平板中具有长度为2a 的穿透板厚的裂纹表面上,距离x b =±处各作用一对集中力p .Re Im x Z y Z σ'=-ⅠⅠRe Im y Z y Z σ'=+ⅠⅠRe xy y Z τ'=-Ⅰ选取复变解析函数:222()Z z b π=- 边界条件:a.,0x y xy z σστ→∞===.b.,z a <出去z b =±处裂纹为自由表面上0,0y xy στ==。
c.如切出xy 坐标系内的第一象限的薄平板,在x 轴所在截面上内力总和为p 。
y '以新坐标表示:Z=⇒lim()K Zξξ→==Ⅰ2.在无限大平板中,具有长度为2a的穿透板厚的裂纹表面上,在距离1x a=±的范围内受均布载荷q作用.利用叠加原理:微段→集中力qdx→dK=Ⅰ⇒K=⎰Ⅰ令cos cosx a aθθ==,cosdx a dθθ=⇒111sin()1cos22(cosaa aaaK daθθθ--==Ⅰ当整个表面受均布载荷时,1a a→.⇒12()aaK-==Ⅰ3.受二向均布拉力作用的无限大平板,在x轴上有一系列长度为2a,间距为2b 的裂纹.边界条件是周期的: a. ,y x z σσσ→∞==.b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内0,0y xy στ==c.所有裂纹前端y σσ> 单个裂纹时Z =又Z 应为2b 的周期函数⇒sinzZ πσ=采用新坐标:z a ξ=-⇒sin()a Z πσξ+=当0ξ→时,sin,cos1222bbbπππξξξ==⇒sin()sincos cos sin22222a a a bbbbbπππππξξξ+=+σcossin222a a bbbπππξ=+2222[sin()]()cos 2cos sin(sin)2222222a a a a a bbbbbb bπππππππξξξ+=++22[sin()](sin )2cos sin22222a a a a bbbbbπππππξξ⇒+-=sinaZ ξπσ→⇒=sinlim aK ξπσ→⇒===Ⅰ=取w M =修正系数,大于1,表示其他裂纹存在对K Ⅰ的影响. 若裂纹间距离比裂纹本身尺寸大很多(2125a b ≤)可不考虑相互作用,按单个裂纹计算.二、无限大平板Ⅱ、Ⅲ型裂纹问题应力强度因子的计算 1.Ⅱ型裂纹应力强度因子的普遍表达形式(无限大板):lim (K Z ξξ→=Ⅱ2.无限大平板中的周期性的裂纹,且在无限远的边界上处于平板面内的纯剪切力作用.τsin()zZ z πτ=sin()()a Z πτξξ+=lim ()K ξξ→⇒==Ⅱ3.Ⅲ型裂纹应力强度因子的普遍表达形式(无限大板):lim ()K ξξ→=Ⅲ4.周期性裂纹:K =§2-2 深埋裂纹的应力强度因子的计算1950年,格林和斯内登分析了弹性物体的深埋的椭圆形裂纹邻域内的应力和应变,得到椭圆表面上任意点,沿y 方向的张开位移为:1222022(1)x z y y a c=--其中:202(1)ay E μσ-=Γ.Γ为第二类椭圆积分.有φϕ= (于仁东书) 1222220[sin ()cos ]a d cπϕϕϕ=+⎰(王铎书)1962年,Irwin 利用上述结果计算在这种情况下的应力强度因子σ原裂纹面11cos ,sin z x ρϕρϕ==又222222221111221x z c x a z a c a c+=⇒+= ⇒ρ=假设:椭圆形裂纹扩展时,其失径ρ的增值r 与ρ成正比.r f ρ= (f 远小于1)r f ρ⇒==边缘上任一点(,)p x z ''',有:1()sin (1)sin (1)x r f f x ρϕρϕ'=+=+=+1()cos (1)z r f z ρϕ'=+=+11(,),(,)p x z p x z '''⇒均在0y =的平面内. 222242222(1)c x a z f a c a c ''''''⇒+=+=⇒新的裂纹面仍为椭圆.长轴(1)c f c '=+,短轴(1)a f a '=+. ⇒y 向位移22002(1)2(1)(1)(1)a f a y f y E E μσμσϕϕ'--+'===+原有裂纹面:222220()1x z ya c y ++=扩展后裂纹面:222220()1x z y a c y '''++='''以1x x '=,1z z '=,代入⇒原有裂纹面的边缘y 向位移y ',有2222211112222222011(1)(1)x z x z y y a c f a f c'=-+=--'''++。
应力强度因子的数值计算方法

应力强度因子的数值计算方法一、引言数值计算方法通过将裂纹尖端的应力场分布模拟为一个虚拟的数学模型,利用计算机进行数值求解来得到应力强度因子的数值。
数值计算方法通常分为两种类型:直接方法和间接方法。
1.直接方法直接方法是指直接通过有限元分析软件求解裂纹尖端的应力场分布,并通过一些后处理技术来计算应力强度因子。
其中最常用的方法是J积分法和节点法。
(1)J积分法:J积分法是一种常用的裂纹应力强度因子计算方法,它通过在裂纹尖端附近引入一个虚拟断裂面,将裂纹尖端附近的应力场分布(由有限元分析得到)转化为裂纹尖端处的应力强度因子。
具体计算方法较为复杂,一般需要通过数值积分的方法求解。
(2)节点法:节点法是一种基于有限元网格节点的方法,其基本思想是通过增加节点对裂纹尖端附近的应力场进行离散,利用节点处的应力场计算应力强度因子。
节点法相对于J积分法计算简单,但适用条件较为有限。
2.间接方法间接方法是指通过已知应力场的变化率来计算应力强度因子的方法。
常用的间接方法有格里菲斯准则法、欠奇性法和EOS法。
(1)格里菲斯准则法:格里菲斯准则法是最早提出的计算裂纹扩展的方法之一,基于弹性力学理论和线弹性断裂力学基本假设,通过对裂纹尖端周围应力场的分析,得到应力强度因子与裂纹尖端形状和尺寸以及应力场的关系。
(2)欠奇性法:欠奇性法是一种基于能量原理的裂纹尖端应力强度因子计算方法,通过构造合适的应变能表达式和裂纹尖端应力强度因子的定义,利用应变能的分式展开求解裂纹尖端处的应力强度因子。
(3)EOS法:EOS法是一种在裂纹尖端周围选取合适的控制体,通过求解控制体内外表面的应力分布,建立应力强度因子与表面应力之间的关系,从而计算裂纹尖端处的应力强度因子。
三、应用场景1.断裂力学:数值计算方法可以用于预测和分析裂纹扩展行为,在断裂力学领域中有着重要的应用。
通过计算裂纹尖端的应力强度因子,可以评估材料的断裂韧性和脆性。
2.疲劳分析:3.材料破坏:数值计算方法可以用于分析材料的破坏机理和破坏行为。
基于ABAQUS的两种应力强度因子计算方法对比

21
50.363 2
5
282.285 291 2
25
1 411.426 456
22
49.705
5.25
285.476 037 7
27.562 5
1 498.749 198
23
49.082 3
5.5
288.533 458 1
30.25
1 586.934 019
24
48.524 8
5.75
291.667 209 7
5.062 5
740.943 363 2
11
74.684 7
2.5
295.999 907 7
6.25
739.999 769 2
12
65.193 5
2.75
270.994 561 2
7.562 5
745.235 043 2
13
59.114 6
3
256.652 390 1
9
769.957 170 4
14
,则其截距
2 ABAQUS中两种SIF计算方法的实 现[5-=]
2.1 ABAQUS内置方法计算SIF
ABAQUS 中建立半宽,=100 ??,半高-=200 mm,
厚度1 mm的平板模型( 2),该平板中心预制有一
条裂纹,其半裂纹长度 20 mm; 弹性模量 2!
105MPa,泊松 0.25的“弹性各向异性”固体材料;
31
K FACTOR ESTIMATES
CRACK CRACKFRONT
CONTOURS
(平均:75%)
NAME
NODE SET
+1.054e+03
应力强度因子的数值计算方法

应力强度因子的数值计算方法应力强度因子是用来描述裂纹尖端应力场的重要参数,它在研究裂纹扩展、断裂行为等问题中具有重要的应用价值。
本文将介绍应力强度因子的数值计算方法,包括解析方法和数值方法。
一、解析方法解析方法是指通过求解弹性力学方程,得到应力场的解析表达式,进而计算应力强度因子。
常见的解析方法有:1. 爱尔兰函数法:该方法适用于轴对称问题,通过引入爱尔兰函数,将弹性力学方程转化为常微分方程,进而得到应力强度因子的解析表达式。
2. 奇异积分法:该方法适用于不规则裂纹形状或复杂载荷情况。
通过奇异积分的性质,将应力场分解为奇异和非奇异两部分,进而得到应力强度因子的解析表达式。
3. 线性弹性断裂力学方法:该方法通过建立合适的应力强度因子与裂纹尺寸之间的关系,利用裂纹尖端应力场的奇异性,通过分析弹性力学方程的边界条件,得到应力强度因子的解析表达式。
二、数值方法数值方法是指通过数值计算的方式,求解弹性力学方程,得到应力场的数值解,从而计算应力强度因子。
常见的数值方法有:1. 有限元法:有限元法是一种广泛应用的数值方法,通过将结构离散为有限个单元,建立节点间的关系,利用数值方法求解离散方程组,得到应力场的数值解,进而计算应力强度因子。
2. 边界元法:边界元法是一种基于边界积分方程的数值方法,通过将边界上的应力场表示为边界积分方程的形式,利用数值方法对积分方程进行离散求解,得到应力场的数值解,进而计算应力强度因子。
3. 区域积分法:区域积分法是一种基于区域积分方程的数值方法,通过将应力场表示为积分方程的形式,利用数值方法对积分方程进行离散求解,得到应力场的数值解,进而计算应力强度因子。
以上介绍了应力强度因子的数值计算方法,包括解析方法和数值方法。
解析方法适用于问题简单、载荷条件规则的情况,可以得到解析表达式并具有较高的精度;数值方法适用于问题复杂、载荷条件不规则的情况,通过数值计算可以得到应力场的数值解,并利用数值解计算应力强度因子。
《断裂力学》考试题含解析

二 K i',=dxJ(a 2-x 2)10分一、 简答题(本大题共5小题,每小题6分,总计30分)1、 (1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、 有限元法;(3)实验应力分析法:光弹性法.(4)实验标定法:柔度标定法;2、 假定:(1)裂纹初始扩展沿着周向正应力;一、为最大的方向;(2)当这个方向上的周向正应力的最大值(;=)max 达到临界时,裂纹开始扩展•S3、 应变能密度:W,其中S 为应变能密度因子,表示裂纹尖端附近应力场r密度切的强弱程度。
4、 当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。
5、 表观启裂韧度,条件启裂韧度,启裂韧度。
二、 推导题(本大题10分)D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的 诸条件。
积分路径:塑性区边界。
AB 上:平行于%,有dx 2 r O’ds r d %兀》s BD 上:平行于 %,有 dx 2 = 0 , ds = d% , T 2 - sJ(WdX 2 -T 凹 ds) T 2 竺 dX !X-IAB rBDA ;「s VB =:;S (V A ' V D )三、计算题(本大题共3小题,每小题20分,总计60分)1、利用叠加原理:微段一集中力qdx — dKi = 2q ;a 2 dx 业(a-x 2)2007断裂力学考试试题 B 卷答案T 2 土 dx ,BD 2 :x,1SvZ 二.—(sin 2b -sin ( a) 2b 二(a ))2兀a 2 -(sin 2b )31 uJ-L u,cos = 12b2b JE JEJE it二 sin ——cos 一a cos 一 sin — a2b2b2bTt .. Tt二——cos ——a sin 2b 2b■ .2'- 22二[sin (a)] = () cos a 2b2b 2b—0 时,sin 2b sin =( a)二2bn a2b 仝 2b 2b - nn IT 2cos ——a sin ——a (sin — a)b 2b 2bb.在所有 裂纹 内部 应力 为零.y =0, -a ::: x ::: a, -a _ 2b ::: x ::: a _ 2b 在区间内C.所有裂纹前端;「y •匚 单个裂纹时Z - —^Z —Jz 2—a 2又Z 应为2b 的周期函数二 Z 二J 兀z 2 兀a 2 、(sin —)2- (sin —)2Y 2b 2b采用新坐标:『:=z - a令 x=acosv= \ a -x = acosv, dx 二 acosrdr 匚 K “ 2q. a :n1(a1a )咤 d 一Yu '0 a cos 日当整个表面受均布载荷时,耳-;a. K i = 2q J^s in10分2、 边界条件是周期的:a. Z 、,二y 7 一;「.兀z 二sin b10分sin A (a /a)10分当V -0时,第3页 共3页一、简答题(80分)1•断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些-: - 2 ■ ■ 2=[sin (a)] -(sin a) 2 cos asin a2b2b 2b 2b 2bZ -0 =.na二 sin 2b2“': :■. a 二acos ——sin ,2b 2b 2b二 sin -2b K I 二 lim 、尹Z =-=口0 Ji na 兀 a in ———cos 2b 2b 2b ■: a2b =匚二a 、,—tan —10分 3、当复杂应力状态下的形状改变能密度等于单向拉伸屈服时的形 状改变能密度,材料屈服,即:注 意 行 为 规 范2 2 2 2(匚1-匚2)(二2-匚3)(匚3-匚1)=2j对于I 型裂纹的应力公式:cr +cr J cr -cr nX丫 * xy二亠cos 邛一沐]2 2-2遵 守 考 场 纪律二3 =0(平面应力,薄板或厚板表面)r =cos 2[1 _3si n 2』]2 210分--平面应力下,I 型裂纹前端屈服区域的边界方 管导核字主领审签类型裂纹的受力示意图。
第三章确定应力强度因子叠加法及组合法(计)-2008

第三章确定应力强度因子叠加法及组合法第1节概述1、应力强度因子求解的重要性应力强度因子是线弹性条件下计算带裂纹结构剩余强度和裂纹扩展寿命必不可少的基本控制参量。
由于应力强度因子在裂纹体分析中的中心地位,它的求解自断裂力学问世以来就受到了高度的重视,迄今为止,已经产生了众多的方法。
应力强度因子与裂纹几何和荷载形式有关,两者的组合可以派生出许多种情况,从而使应力强度因子的求解变得很复杂。
2、常用应力强度因子求解方法常用的应力强度因子计算方法有两大类:一)理论计算方法1)解析法复变函数法、保角变换法等特点:计算精确,但适用范围窄2)数值法有限元素法、边界元法、无网格法等特点:适用范围宽,但计算效率较差3)半解析—半数值方法边界配置法等特点:适用范围比解析法宽,计算效率比数值法高二) 实验方法电阻应变片法、光弹性法、全息干涉法、散斑干涉法等3、应力强度因子一般描述形式应力强度因子可以描述为:K a=βσπ3-1-1I式中, σ是远离裂纹处的名义应力, a是裂纹尺寸。
因子β是裂纹几何形状、结构几何形状载荷形式以及边界条件等的函数, β是无量纲的。
对于无限大板, 中心穿透裂纹, 远处均匀受拉(单向或双向),应力强度因子为:=σπ3-1-2K aI其中a为半裂纹长度。
即在此情况下, β=1, 从而, 可以将β看作是一修正系数, 它使实际应力强度因子与无限大板的中心裂纹有关。
第2节叠加法1、叠加原理由于线弹性断裂力学方法建立在弹性基础上, 故可用线性累加每种类型载荷所产生的应力强度因子来确定一种以上的载荷对裂纹尖端应力场的影响。
在相同几何形状的情况下, 累加应力强度因子解的过程称为叠加原理。
造成同一开裂方式的应力强度因子求和过程的唯一限制是应力强度因子必须以相同的几何形状(包括裂纹几何形状)为前提。
——如果结构在几种或者特殊荷载作用下,产生了复合裂纹,则各型应力强度因子是在将荷载分解后各型裂纹问题的应力强度因子本身的叠加。
应力强度因子的求解方法的综述

应力强度因子的求解方法的综述摘要:应力强度因子是结构断裂分析中的重要物理量,计算应力强度因子的方法主要有数学分析法、有限元法、边界配置法以及光弹性法。
本文分别介绍了上述几种方法求解的原理和过程,并概述了近几年来求解应力强度因子的新方法,广义参数有限元法,利用G*积分理论求解,单元初始应力法,区间分析方法,扩展有限元法,蒙特卡罗方法,样条虚边界元法,无网格—直接位移法,半解析有限元法等。
关键词:断裂力学;应力强度因子;断裂损伤;Solution Methods for Stress Intensity Factor of Fracture MechanicsShuanglin LU(HUANGSHI Power Survey&Design Ltd.)Abstract: The solution methods for stress intensity factor of fracture mechanics was reviewed, which include mathematical analysis method, finite element method, boundary collocation method and photo elastic method. The principles and processes of those methods were introduced, and the characteristics of each method were also simply analyzed in this paper.Key words: fracture mechanics; stress intensity factors0 引言断裂力学的基础理论最初起源于1920年Griffith的研究工作[1]。
Griffith在研究玻璃、陶瓷等脆性材料的断裂现象时,认为裂纹的存在及传播是造成断裂的原因。
应力强度因子

断裂与损伤力学应力强度因子数值计算方法综述2013年6月第一章应力强度因子求解方法概述含有裂纹的工程结构的断裂力学分析一直是一个重要问题,在断裂力学理论中应力强度因子是线弹性断裂力学中最重要的参量。
它是由构件的尺寸、形状和所受的载荷形式而确定。
由于裂尖应力场强度取决于应力强度因子,因此在计算各种构件或试件的应力强度因子是线弹性断裂力学的一项重要任务。
由于应力强度因子在裂纹体分析中的中心地位,它的求解自断裂力学问世以来就受到了高度的重视。
迄今为止,已经产生了众多的理论和致值解法。
70年代中期以前的有关工作在文献中已有相当全面的总结,近20年来,求解的方法又得刭了明显的发展与完善。
下文将穿透裂纹问题(二维)与部分穿透裂纹问题(三维)分开讨论。
第二章 二维裂纹问题2.1 复变函数法由Muskhelishvili 的复变函数法,应力函数为:_])()()([2/1)]()(Re[z z z z z z z z χψψχψ++=+=Φ平面应变情况下的应力与位移为: )]('Re[42222z yx y x ϕφφσσ=∂∂+∂∂=+ )]('')(''[22z z z i xy y x χϕτσσ+=+-)](')('[21)(243x z z z iv u χϕμϕμμ+--=+ 可以证明,在裂纹尖端区域:)]('lim[220z z z iK K K I ϕπ-=-=∏由上式可见。
由于k 仅与)(z φ有关,因此只需确定一个解析函数)(z φ,就能求得k I ,这一方法一般只能用来解无限体裂纹问题。
对于含孔边裂纹的无限大板,通常可利用复变函数的保角映射原理来简化解题过程。
如采用复变(解析)变分方法,则可求解具有复杂几何形状的含裂纹有限大板的应力强度因子。
2.2 积分方程法弹性边值问题可以变为求解下列形式的积分方程:)())(()().,(r f dt t b a t t P t r M -=--⎰ 由积分方程解出沿裂纹的坐标的函数,便能直接求出应力强度因子k 。
应力强度因子的求解.ppt

G
K
2 I
K
2 II
K2 III
E * 2
• 介绍了应力强度因子的求解方法—权函数法和有限单元法
P*(x)
=
+
T
1
*
由叠加原理
K (1) K K *
1
T
2
(
A
pi
pi* )(ui
ui* )dA
1 2
1 A piuidA 2
A
pi*ui*dA
1 2
( piui* pi*ui )dA
A
T
1
*
1 2
( piui* pi*ui )dA 1 * piui*dA
A
A
利用能量释放率的定义 G / S
将所有单元组装,可得
[K]{u} {F}
广义节点力矢量
总刚度矩阵
节点总位移矢量
常规单元
• 裂纹尖端应力场的奇异性要求网格划分足够细,网格尺寸一般为裂纹 尺寸的1/1000~1/100
• 求解平衡方程,得到各节点位移,取裂纹附近节点位移,根据
u1(r,
)
(1 )KII 2
r
2
, u2 (r,
)
(1 )KI 2
应变
du dr
1 l
2
3 2
l r
u1
4
2
l r
u2
2
1 2
l r
u3
四分一奇异单元
本次课程小结
• 分别利用复变函数法和分离变量法求解了裂纹尖端场,表 明裂纹尖端应力具有负平方根奇异性。其强度即为应力强 度因子
• 从能量角度得到了能量释放率的概念,它与应力强度因子
应力强度因子的计算.

以1x x '=, 1z z '=,代入⇒原有裂纹面的边缘y向位移y ',有
22222
11112222222
011(1 (1 x z x z y y a c f a f c
'=-+=--'''++
222222
1111112222221(12 (12 12( x z x z x z f f f a c a c a c
r f ρ= (f远小于
1
r
f ρ
⇒=
=
边缘上任一点(, p x z ''',有:
1(sin (1 sin (1 x r f f x ρϕρϕ'=+=+=+
1(cos (1 z r f z ρϕ'=+=+
11(, , (, p x z p x z '''⇒均在0y =的平面内. 222242222(1 c x a z f a c a c ''''''⇒+=+=
a. , 0x y xy z σστ→∞===.
b. , z a <出去z b =±处裂纹为自由表面上0, 0y xy στ==。
c.如切出xy坐标系内的第一象限的薄平板,在x轴所在截面上内力总和为p。
y '
以新坐标表示:
Z =
⇒( K Z ξ→==
Ⅰ
2.在无限大平板中,具有长度为2a的穿透板厚的裂纹表面上,在距离1x a =±的范围内受均布载荷q作用.
⇒新的裂纹面仍为椭圆.长轴(1 c f c '=+,短轴(1 a f a '=+. ⇒y向位移
论述实测应力强度因子的方法

第二章应力强度因子的计算K--应力、位移场的度量 K的计算很重要,计算K值的几种方法:1.数学分析法:复变函数法、积分变换;2.近似计算法:边界配置法、有限元法;3.实验标定法:柔度标定法;4.实验应力分析法:光弹性法.论述实测应力强度因子的方法应力强度因子是反映裂纹尖端弹性应力场强弱的物理量。
它和裂纹大小、构件几何尺寸以及外应力有关。
应力在裂纹尖端有奇异性,而应力强度因子在裂纹尖端为有限值。
网格法是以网格为制图单元,反映制图对象特征的一种地图表示方法。
其制图精度取决于网眼大小,网眼越小,精度越高。
网眼大小的确定,取决于制图目的、比例尺和掌握制图资料的详细程度等。
网格法既可表示制图对象的数量特征,也可表示其质量特征。
使用该法编图时,首先把制图区域按照一定原则,用规定的网眼尺寸画出格网,然后根据掌握的制图资料、野外考察得到的制图对象的分布特征,分别用每个网眼赋值。
当表示数量差异时,填入分级级别;表示质量特征时,填入类型代码等。
最后用色彩或面状网线符号区分它们。
这种方法在计算机辅助制图、统计制图中得到广泛应用。
实验应力分析方法的一种。
网格法是在试件表面印制或刻划网格,则当试件受载而发生变形时,网格随之变形,通过测量网格因变形而引起的位移,以确定试件的位移场或应变场。
它适用于测量5%以上的大应变,而用于测量较小的应变时,精度很低。
此法于20世纪40年代开始应用,后来在较大程度上被云纹法所取代。
光弹性法应用光学原理研究弹性力学问题的一种[[实验应力分析]]方法。
将具有双折射效应的透明塑料制成的结构模型置于偏振光场中,当给模型加上载荷时,即可看到模型上产生的干涉条纹图。
测量此干涉条纹,通过计算,就能确定结构模型在受载情况下的应力状态。
20世纪初,E.G.科克尔和L.N.G.菲伦用光弹性法研究桥梁结构等的应力分布。
40年代,M.M. 弗罗赫特对光弹性的基本原理、测量方法和模型制造等方面的问题,作了全面系统的总结,从而使光弹性法在工程上获得广泛的应用。
单位分解有限元方法求解应力强度因子

单位分解有限元方法求解应力强度因子
一、有限元法的基本概念
有限元法(Finite Element Method,FEM)是一种应用于结构力学、流体力学以及固
体力学等众多研究领域的数值计算方法,是建立在离散一阶相对论基础上的数学解析方法。
其基本思路是:将对象划分成若干小的有限域,然后对每个有限域建立起离散的误差限制
条件,把原本的等价边界条件经过离散化处理后作为这些有限域的边界条件,将未知的空
间量化,然后分别针对这些有限元的非线性函数建立数学模型,最后求解出各元素的空间量,从而得到对象的总体函数解析模型。
二、应力强度因子有限元法求解
1、基本原理
应力强度因子(Stress Intensity Factor, SIF)是用于分析结构力学中弯曲、压缩、扭转、拉伸等力学载荷情况下结构的破坏程度,它的基本原理是根据St. Venant-
Kirchhoff理论,建立起材料应力应变关系和对应的力学载荷,并计算在周边某点结构的
分析结果,从而得出该点的SIF值。
2、有限元法求解
有限元法可以很好地用于求解应力强度因子。
若要求解某个结构的应力强度因子,首
先应当将其划分成多个相互交错的有限域,每个有限域内进行逐一求解,并使用对应的离
散构件模型与约束条件,得出不同结点的截断应力和截断应变的变化规律,最终归并各节
点的解析结果,从而计算出相应结构的应力强度因子。
应力强度因子的计算

应力强度因子的计算应力强度因子(Stress Intensity Factor)是应用于裂纹尖端的一个参数,用于描述裂纹尖端应力场的强度和分布情况,是计算裂纹扩展速率和破裂韧性的重要参数。
本文将详细介绍应力强度因子的计算方法。
一、引言在构件中存在裂纹时,应力场的分布将发生变化,通常存在一个应力集中区域,即裂纹尖端。
在裂纹尖端附近,裂纹两侧的应力强度具有很大的梯度,因此需要引入应力强度因子来准确描述和分析裂纹尖端的应力状态。
二、应力强度因子的定义应力强度因子可以描述裂纹尖端应力场的强度和分布情况。
对于模式I或拉应力模式下的裂纹,应力强度因子K是一个标量,具有长度的物理意义。
对于一种给定的应力场,应力强度因子K与应力强度因子K对应的应力场是相似的。
此外,由于应力强度因子K的引入,裂纹尖端附近的应力场能够用一个等效应力来代替,从而使裂纹尖端的破坏准则能够使用等效应力来描述。
三、常用的计算方法1.解析方法解析方法是通过对裂纹尖端附近应力场的数学分析,推导出裂纹尖端的应力强度因子。
常用的方法有:格里菲斯公式、韦尔奇定理、赵万江公式等。
这些方法通常需要对裂纹尖端应力场进行严格的数学推导和分析,适用于简单几何形状的裂纹。
2.应力分析方法应力分析方法是通过有限元分析、边界元分析等数值方法,对裂纹附近的应力场进行数值模拟,进而计算应力强度因子。
通过数值模拟可以得到更为复杂的几何形状下的应力强度因子。
通常需要使用计算机软件进行模拟和计算。
3.基于实验的方法基于实验的方法是通过实验测定裂纹尖端的应力强度因子,从而得到一种实验估算的方法。
常用的实验方法有高约束比压缩试验法、断口法、几何函数法等。
与解析方法和数值方法相比,实验方法具有直接、可靠、全面的优点,但通常对实验设备和技术要求较高。
四、应力强度因子的应用应力强度因子的计算在材料科学、工程结构分析和破坏力学等领域具有广泛的应用价值。
它可用于计算裂纹扩展速率、破断韧性、疲劳寿命等。
应力强度因子的数值计算方法

应力强度因子的数值计算方法引言一、理论计算方法1.弹性理论解法弹性理论解法是应力强度因子计算中最常用的一种方法。
它假设材料是弹性线性的,并忽略了材料的塑性变形。
常用的解法有Westergaard解和Westergaard-Hankel解。
2.能量解法能量解法是一种基于弹性力学的解法,通过计算裂纹尖端处的应力场能量和应变能量来计算应力强度因子。
常用的解法有Line-spring法和Irwin法。
3.有限元法有限元法是一种数值计算方法,通过将复杂的问题离散化为多个小区域,并在每个小区域上建立适当的数学模型进行计算。
通过求解离散化的方程组,可以得到裂纹尖端处的应力强度因子。
有限元法可以处理各种复杂的边界条件和几何形状的问题,并且可以考虑非线性和塑性变形。
这使得它成为计算应力强度因子的一种重要方法。
二、实验计算方法实验计算方法主要是通过设计和进行试验来测量裂纹尖端区域的应力和应变场,然后根据测量数据计算应力强度因子。
常用的方法有:1.发光全场法发光全场法是一种全场应变测量技术,通过在被测结构表面涂覆一层发光材料,然后利用高速摄像机记录结构在加载过程中的应变分布。
通过分析图像数据,可以得到裂纹尖端区域的应力和应变场,进而计算应力强度因子。
2.特征裂纹法特征裂纹法是一种利用疲劳试验得到应力强度因子的方法。
通过在试样上开几何形状确定的裂纹,然后在加载过程中观察裂纹的扩展行为,通过测量裂纹长度和加载荷载的关系,可以计算应力强度因子。
3.数值模拟法数值模拟法是一种将实验和数值计算相结合的方法。
通过建立几何和材料特性相似的数值模型,并在模型中模拟加载过程,可以得到裂纹尖端区域的应力和应变场,进而计算应力强度因子。
三、应力强度因子的应用1.疲劳断裂评估基于应力强度因子的计算结果,可以对工程结构在疲劳载荷下的断裂寿命进行评估和预测。
这对于提高结构的可靠性和安全性具有重要意义。
2.材料断裂韧性评定3.裂纹扩展行为研究通过分析应力强度因子的变化规律,可以研究裂纹在不同加载条件下的扩展行为,揭示断裂的机理和规律。
断裂力学的关键参数-应力强度因子

小刘-LZP08-07原文材料或构件中存在宏观裂纹,这些裂纹产生的原因一般为如下几个方面:应力强度因子是表征材料断裂的重要参量,是表征外力作用下弹性物体裂纹尖端附近应力场强度的一个参量。
1957年, 欧文(Irwin,G.R.)建立了以应力强度因子为参量的裂纹扩展准则——应力强度因子准则,从而成功地解释了低应力脆断事故。
应力强度因子的概念:应力强度因子是断裂力学在研究应力作用下考虑应力和裂纹尺寸这两个因素对裂纹扩展影响而引入的新参数,记为K,它反映了裂纹顶端附近应力强弱程度。
对于普通的构件,一般形状的裂纹应力强度因子属于KⅠ型。
应力强度因子与作用在构件裂纹顶端处的名义应力σ及裂纹尺寸α之间存在如下的普遍关系。
上式中的Y为表征含裂纹构件几何形状的一个无因次系数。
应力强度因子的分类:对于不同的裂纹扩展类型有不同的应力强度因子。
可以用下图表示:K1,K2,K3,分别对应于张开型,滑开型和撕开型裂纹的应力强度因子。
张开型(Ⅰ型)裂纹应力强度因子KⅠ是线弹性断裂力学中一个重要断裂参量.设外载和结构均以裂纹2a为对称。
工程上Ⅰ型裂纹出现的最多,最危险,研究最深入。
是低应力脆断的主要原因。
应力强度因子的应用:由张开型的应力强度因子表达式可以看出,KⅠ仅由裂纹长度和名义应力确定。
若已知裂纹长度和名义应力,则KⅠ为定值,并确定了裂纹能否扩展。
由此,我们可以用KⅠ来建立某个条件并判断构件的裂纹是否扩展。
比如,某一有一个2α长度的穿透裂纹的平板,在均匀拉应力作用下,KⅠ值随外应力增大。
当外应力σ增大到一定程度时,裂纹达到失稳状态,此时,即使外力不再增加,裂纹也会迅速扩展,直到断裂。
这说明此时材料已达到KⅠ的极值。
这个极值称为材料的断裂韧性,记为KⅠc。
可见,KⅠc 表示的是材料的一种力学性能,它与试件的几何形状、受力情况、试验环境以及加载方式等有关,其值可以用试验测定。
显而易见,带裂纹的零部件产生脆断的临界条件为:上式称为脆性断裂判断式,即说明当带张开型裂纹的机械零件的应力强度,因子KⅠ达到断裂韧性KⅠc时,零件即断裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27th ICAF Symposium – Jerusalem, 5 – 7 June 2013The Pursuit of K:Reflections on the Current State of the Art inStress Intensity Factor Solutions forPractical Aerospace ApplicationsR. Craig McClung,1 Yi-Der Lee,1 Joseph W. Cardinal,1 and Yajun Guo2 1Southwest Research Institute, San Antonio, Texas, USA2Jacobs ESCG, Houston, Texas, USAAbstract: The stress intensity factor (K is the foundation offracture mechanics analysis for aircraft structures. This paperprovides several reflections on the current state of the art in Ksolution methods used for practical aerospace applications,including a brief historical perspective, descriptions of somerecent and ongoing advances, and comments on some remainingchallenges. Examples are selectively drawn from the recentliterature, from recent enhancements in the NASGRO andDARWIN software, and from new research, emphasizingintegrated approaches that combine different methods to createengineering tools for real-world analysis. Verification andvalidation challenges are highlighted.INTRODUCTIONThe stress intensity factor (commonly denoted K is the foundation of fracture mechanics (FM analysis for aircraft structures. This parameter describes the first-order effects of stress magnitude and distribution as well as the geometry of bothstructure/component and crack. Hence, the calculation of K is often the most significant step in fatigue crack growth (FCG life analysis. This paper provides several reflections on the current state of the art in K solution methods used for practical aerospace applications, including a brief historical perspective, descriptions of some recent and ongoing advances, and comments on some remaining challenges. No attempt is made to be exhaustive in this review—that would be a daunting task—but key citations are woven into the practical experiences of the authors.HISTORICAL SURVEYHandbooksThe early compilations of K solutions in handbooks by Tada, Paris, and Irwin [1] and Rooke and Cartwright [2] were invaluable contributions. Those compilers collected many different published K solutions available at the time while alsoR. C. McClung, Y.-D. Lee, J. W. Cardinal, and Y. Guo 2contributing new solutions from their own research. However, these handbooks had some practical limitations. First of all, many of the solutions were presented in graphical form based on complex numerical computations (without any corresponding closed-form equations, and so they could not be immediately incorporated into engineering software for production use. Second, many of the solutions were for configurations without immediate practical value: infinite bodies, point loads, out-of-plane loading modes, etc. While many of these solutions unquestionably provided essential foundations for laterwork, they were often not accessible to the everyday practitioner who needed to analyze real cracks in real structures, and do so quickly.Closed-Form Equations Derived From Finite Element ResultsNewman and Raju (NR made significant early contributions to practical structural analysis by developing closed-form K equations for surface and corner cracks in simplified finite geometries, often based on empirical fits of finite element (FE solutions. For example, a landmark Raju-Newman (RN paper [3] summarized the FE calculation of K values for semi-elliptical surface cracks in finite-thickness rectangular plates under uniform tension. Stretching the state of the art of that time, they employed FE models using up to 6900 degrees of freedom (!. Noting that previously published solutions for the same geometry exhibited large variations, they carefully verified their modeling techniques and compared their results against other reliable sources where available. Their key result was a summary table of correction factors for a simple matrix of normalized crack shapes and crack depths at various angular positions around the crack front. Newman-Raju [4] then used these discrete data to derive an empirical equation that could be used to calculate K quickly and accurately for any crack shape and normalized size (relative to plate dimensions within the scope of the original FE matrix, which now included both tension and bending. This simple equation has remained in widespread use to the present day.A later paper [5] summarized additional work by RN to develop K equations for elliptical embedded, surface, and corner cracks in plates, and surface and corner cracks at holes under uniform remote tension, again building on previously published tabulations of FE results. In some cases, the K equations included additional correction factors for finite geometry effects (finite width, one crack vs. two symmetric cracks based on theoretical considerations or other published work. NR later published slightly modified versions of these equations [6].The NR solutions began to be more widely disseminated and used after they were incorporated into early versions of the NASA/FLAGRO computer code, which was originally developed to support fracture control for the space shuttle orbiter and other space structures [7]. The FLAGRO team also began to expand and amend the original NR solutions to accommodate other loading modes and geometric variations, as well as to address some perceived accuracy issues. Other researchers and computer codes have subsequently contributed their own derivatives of theseThe Pursuit of K3 solutions. It is a remarkable testimonial to these solutions that they are still in widespread use over thirty years later, even though the original FE models were very coarse by current standards.Recent Finite Element MethodsComputational power has increased dramatically over the last thirty years, of course, and so the prospect of using this power to generate improved K solutions has grown more and more attractive. The ideal situation would be to be able to generate the exact K solution for each problem of interest using a faithful FE model of the actual configuration of interest (and to update the crack model as the crack grows. It is certainly possible to do this today, and in fact several commercial computer codes offer the capability. This can be an attractive option for solving very specific problems (such as a critical field cracking issue, but the resource requirements (including the computation time itself still render this approach impractical as a general design tool for complex structures with many fracture-critical locations.However, the increased computational power is being used to update the older engineering approaches (e.g., NR. At the least, the original matrices of FE solutions can be revisited with finer meshes, or expanded to wider geometry limits. Furthermore, the new power can be coupled with automated mesh construction and solution methods to generate much large numbers of solutions for a much wider range of parameters. Therecent leaders in this area have been Fawaz and Andersson (FA, who have used the p-version FE method. They began by revisiting the basic corner-crack-at-hole geometry, moving on to develop a large database of solutions for two unequal corner cracks at holes [8]. “Large” is something of an understatement in this case: their single (or symmetric corner-crack-at-hole database contained 7150 combinations of the non-dimensional ratios R/t, a/t, and a/c. The different combinations of diametrically-opposed unequal corner cracks (under tension, bending, or bearing load pushed the total number of solutions over five million (not to mention that each K solution was obtained at a large number of positions around the perimeter of the crack.This wealth of information could be used in several different ways. Initially, FA used it to evaluate the legacy RN solutions and NR equations. They found that the older solutions were remarkably good in many places and not so good in a few others. This prompted some efforts to develop empirical corrections (based on the new FE database to the original empirical fits to the original FE database. Unfortunately, the product of two necessarily inaccurate empirical fits is itself necessarily still inaccurate.However, the availability of such a dense matrix of reliable new FE solutions suggested that it might be preferable to use this matrix directly as a master table from which local interpolation could be performed, hence eliminating any inaccuracies of empirical multi-variable fits. Unfortunately, the size of the matricesR. C. McClung, Y.-D. Lee, J. W. Cardinal, and Y. Guo 4can result in very substantial penalties for computer memory (gigabytes of storage for only one family of crack geometries and, to a lesser extent, for processing time as well. FA have continued to generate even more solutions (literally millions and millions for other geometry families in work that is largely unpublished at this writing. While the promise of such bounty is exciting, it is not yet clear how the information could best be put to practical use, given the memory burden.This “FE database” approach to K solutions also retains two other disadvantages. First of all, even the dense matrices of automatically-generated FE solutions cannot capture all of the finite geometry effects, such as the influence of narrow plate width or hole offset / short edge distance (neither of which was addressed in the five million unequal corner crack solutions. Therefore, additional correction factors (of perhaps questionable accuracy or generality are still required for practical use. Second, the huge numbers of results make the task of verification difficult, if not impossible. How do we really know that all of those solutions are actually correct? The numerical method itself may claim that numerical convergence is a guarantee of success, but a careful inspection of the original Fawaz-Andersson database by the current authors found some zeros or even negative (! values where they should not occur. Further work is ongoing to address these concerns.Compounding MethodsCompounding approaches—multiplying together various geometry correction factors—are among the earliest building blocks of K solution development for more complex geometries. The old handbook K solutions were frequently used as compounding factors, and in fact this was exactly how the handbook solutions led to practical solutions for practical geometries in many cases. For example, this is how one of the classic early solutions for the corner crack at a hole was developed [9]. Even the FE-derived NR solutions themselves depended on additional compounding factors to address some finite geometry effects.The compounding approaches are attractive because of their low computational cost and conceptual robustness. In this sense they are the opposite of the brute-force FE methods. However, their accuracy is often in question, since the generality of the compounding is almost always limited to some extent. However, the compounding approaches can also be an intriguing complement to the numerical methods: as thegeneration of FE solutions becomes easier, it becomes easier to generate the necessary solutions to calibrate or verify the more general compounding approaches.In recent years, researchers at NRC–Canada have published some remarkable results using compounding approaches to generate accurate solutions for very difficult problems. For example, they have developed a very elaborate framework for multi-site damage (MSD—multiple unequally-sized cracks at multiple unequally-sized and unequally-spaced holes—and have employed advanced FEThe Pursuit of K5 methods to demonstrate the accuracy of the resulting solutions [10]. Even the building-block K solutions that provide the foundation for the MSD method are themselves interesting studies in the use of compounding approaches to solve multi-dimensional problems. For example, Bombardier and Liao [11] have recently published a powerful new K solution for unequal through cracks at an offset hole under tension, bend, or pin loading. This solution has been extended and refined by the current authors and recently implemented in the NASGRO® computer code. Figure 1 indicates the accuracy of the new compounding-based NASGRO TC23 solution for one or two cracks in comparison to K solutions from independent BE or FE solutions for specific geometries, over a range of geometry parameters for center and off-center holes under tension.This success prompted attempts to develop a similar compounding solution for the problem of unequal quarter-elliptical corner cracks at a hole, as an alternative to the brute-force FA database solution for the same geometry. The results to date are acceptable for some solutions but errors (relative to the benchmark Fawaz-Andersson solutions are greater than 10% for many other solutions. See Figure 2. This failure may indicate that further work is needed, or it may indicate that the problem contains too many interrelated geometry parameters to admit a simple compounding solution.Figure 1. Comparison of geometry factors for two unequal through cracks at a hole based on compounding methods versus independent BE or FE solutionsFigure 2. Comparison of geometry factors for two unequal corner cracks at a holeestimated from compounding versus Fawaz-Andersson FE solutionsWeight Function MethodsAll of the closed-form, tabulated numerical, and compounding solutions discussed so far (and many others like them share the characteristic of simple remote loading (uniform tension, bend, or pin load with simple load paths to the crack in a uniform geometry. However, many significant cracks in real-world components and structures occur in complex stress gradient fields that are not accurately approximated by uniform tension or bending loads. This is a job for weight function (WF methods, where the arbitrary stress distribution on the crack plane in the corresponding uncracked body (typically determined using FE methods is employed to determine K . The weight function method itself has been around since the earliest days of fracture mechanics analysis, but there have been a number of significant advances in the practical application of WF methods in recent years.Lee [12] combined the Glinka WF formulations with a large database of reference solutions for various finite geometries generated using the FADD3D boundary element (BE software to develop several new WF solutions that accommodate univariant stress gradients (stresses varying in one dimension only. Lee [13, 14] later adapted the Orynyak WF formulation to develop a new WF formulation for cracks in two-dimensional (bivariant stress fields. He again employed a large matrix of FADD3D reference solutions to develop new bivariant WF K solutions for surface, corner, and embedded cracks in plates and surface and corner cracks atcircular holes in plates. Due to the very large reference solution matrices, the geometry ranges of several of these new WF solutions are considerably wider than in the corresponding legacy NR solutions. For example, the surface-crack-in-plate solutions allow 0 ≤a/c≤ 8, 0 ≤a/t≤ 0.9, and off-center offsets up to 90%. Figure 3 demonstrates the accuracy of the bivariant WF solution for a corner crack at a hole at the two extreme tipsin comparison to independent 3D BE solutions. Figure 4 shows how the WF formulation can also be used to determine the K values around the entire crack front for a surface crack in a plate under various bivariant stress fields, with verification against independent FE and BE solutions.Figure 3. Comparison of normalized WF K solutions with independent FADD3D BE solutions at surface tip (top left and deepest tip (top right for quarter-elliptical corner crack at hole (bottom right under a bivariant stress gradient (bottom left and many different sets of geometry parameters.Figure 4. Evaluation of normalized WF K solutions around the perimeter of a semi-elliptical surface crack in a plate under three different bivariant stress fields in comparison to independent BE and FE solutionsWF solutions are much faster than FE or BE solutions, but can still be much slower than closed-form solutions, especially for bivariant solutions that require 2D numerical integration. Novel pre-integration and dynamic tabular methods [14] have been developed that substantially increase the speed of these advanced WF solutions. Portions of the numerical integration are performed in advance, so that the numerical integration step can be replaced with a simple series summation. In some cases, a limited matrix of K solutions is tabulated in advance so that the K calculation during crack growth is merely an interpolation from the table, and the tabulated matrix of solutions is dynamically updated as the crack grows beyond the bounds of the initial matrix.One of the advantages of WF K solutions is that they can be used to determine K for nearly any geometry by employing FE stress analysis results on the crack plane in the component of interest without the crack being explicitly modeled (the crack-free stress distribution, as long as the crack itself does not cause redistribution of the external structural load. The crack plane is typically identified as the plane of maximum principal stress at the crack origin. Combined loading modes can often be characterized in terms of the combined stress field, or the different K values arising from the different loading modes can be determined independently and then summed. The WF approach can also be used to determine K arising from residual stresses, either from a FE analysis of the residual stress field, or from directexperimental measurements of the residual stresses.Another great power of the basic WF methods is that they support solutions for an unlimited number of different stress profiles within a given geometric framework. This has recently been exploited to develop a large family of accurate K solutions for corner, surface, and through cracks at internal or external notches with very wide ranges of shapes, sizes, acuities, and offsets [the external notch solutions are illustrated in Figure 5]. Schjive [15] pointed out long ago that the K solution for a crack emanating from an arbitrary notch was an approximate function of the notch root radius and the peak stressat the notch root. Building on this insight, the curent authors developed and validated relationships to calculate the crack plane stresses at many different angled and elliptical notches (both internal and external. For external notches, the stress field ahead of the notch root was found to be a consistent function of the notch root radius and the total notch depth, irrespective of the notch angle or shape. Figure 6 shows six different edge notch shapes and Figure 7 shows the corresponding stress gradients for tension or bending. This relationship made it possible to estimate the stress field for any edge notch from a simple matrix of 2D FE reference solutions for various root radii and depth values. For internal slots or elliptical holes, some additional factors were derived to address theeffects of offset or shape on the stress field. For both cases, the stress gradient solutions were combined with the appropriate WF solutions for cracks in plates or cracks at holes to develop the new K solutions, which have all been recently incorporated into the NASGRO software.Figure 5. Geometries of arbitrary external notches supported bynew weight function stress intensity factor solutionsFigure 6. Different edge notch shapes (0°,15, 30, and 45 angles, and elliptical and keyhole profiles for notch stress field studyFigure 7. Comparison of near-tip stress fields for six edge notch shapes.Note that all six sets of lines are coincident.PRACTICAL IMPLEMENTATIONThe practical utility of advanced K methods, including WF and numerical methods, is greatly enhanced if the FM life analysis can be directly linked with digital models of the actual structure (e.g., FE stress analysis models. Two approaches to this linkage are described here.The first approach, which has been implemented in the DARWIN® software, directly interfaces the FM life analysis with the FE model of the uncracked component. Through a powerful graphical user interface, simplified FM life models (e.g., rectangular plate models can be constructed and visualized directly on the component FE model, as shown in Figure 8. The computer then automatically collects the geometry and stress gradient information needed to support the WF K solutions employed in the life calculation. These plate models can be sized and oriented manually by the user with the computer mouse. Alternatively, expert logic has been developed to automatically build (size/orient optimum simple geometry models at any arbitrary location in a component [16]. This algorithm can be applied to a large number of discrete locations (e. g, every node on a cross-section plane, performing the life calculation at each location from a common initial crack size to generate FCG life contour maps, all without user intervention. This paradigm has also been recently extended to the automatic calculation of fracture risk [17], considering variability in key input parameters such as initial crack size and also considering that the initial crack could occur randomly anywhere in the component (perhaps at an inherent material anomaly. The key outcome of all these developments is that engineering life analysis can be carried out with substantially improved speed (and reduced opportunities for user error without sacrificing accuracy [the advanced WF methods actually provide superior accuracy to the legacy K solutions].This framework can also be used to address comprehensively and efficiently the effects of bulk residual stresses that can arise (for example in large forged components. Figure 9 shows service stresses in a simple disk geometry with and without superimposed bulk residual stresses as calculated by manufacturing process simulation software, alongwith the corresponding FCG life contours [18]. Another new integrated approach currently under development links the component FE model and a 3D numerical fracture analysis built with the same component model to generate a table of K values at a specific location that can then be employed efficiently to perform the life calculation. This is not practical for a large number of locations but could be employed on a limited basis for engineering analysis. The interface is designed to minimize the required user intervention to build and execute the 3D numerical model, thereby streamlining the workflow and facilitating the use of the tool by non-experts.Figure 8. Geometry model for embedded crack in rectangular plate superimposed on axisymmetric FE model with hoop plane stress contoursService Stresses Only Service Stresses + Residual StressesStress ContoursFigure 9. Effect of bulk manufacturing residual stresses on FCG life contoursCONFUSION AND RESOLUTIONThis paper earlier reviewed the different approaches to the development of K solutions for practical engineering applications: simple-closed form equations, compounding, tabulated numerical solutions, and WF methods. Not surprisingly, each of these methods has been used to generate K solutions for the same common simplified geometries (e.g., corner crack at a hole in a plate. Furthermore, common methods have been used by different researchers (even by the same researchers! to generate multiple solutions. The end result has been a wealth of available solutions that ultimately produces confusion: which solution is correct? For example, a recent NASGRO version offered five different solutions for corner-crack-in-plate, each with its own unique developmenthistory, and each giving an answer that is different in at least part (if not all the solution space. Other computer codes offer still different solutions for the same simple geometry. Newer solutions usually employ newer and more powerful computer models (not always more accurate! and sometimes (not always! reveal inaccuracies in some of the older solutions. But mixing and matching these solutions is not simple, since the underlying formulations (or the ranges of geometric validity, or the types of admissible loading are often different.To make matters more complicated, there are also ambiguities about the proper application of a mathematical K solution for the calculation of FCG rates. Many researchers have shown that in order to predict correctly the growth of a semi-elliptical surface crack in a plate geometry using two degrees of freedom (a surface value and a maximum depth value of K around the crack front, the K value at the surface must somehow be adjusted downward, either multiplying the actual K value at the surface position by a correction factor on the order of 0.9 [19], or by taking the surface value from some angular position inside the surface. To make matters worse, most numerical methods exhibit some numerical instabilities when calculating K at the surface intersection of a part-through crack, and so the value at the surface itself is usually unavailable or conspicuously unreliable.This principle of adjusting the (near- surface K value seems applicable to other part-through crack geometries as well (e.g., corner cracks, or cracks at holes, but the validation is less straightforward and the supporting evidence often not available. The result is yet another dilemma: whether or not to apply a surface correction, or to use K values at some angle inside the surface, when calculating K corresponding to the surface location for some part-through crack geometry. Not surprisingly, different computer codes use different approaches for different geometries. The differences introduced are not huge—typically the K value is adjusted by about 10%--but this can still lead to a shiftof about 40% in the calculated life. This inconsistency makes it further difficult to sort out the differences in different K solutions as implemented in different software.The NASGRO team has recently been working to resolve some of the ambiguities associated with different legacy K solutions for the corner crack at hole by building a new hybrid solution with the best available technology from multiple sources. The new solution starts with the large FA database for a single/symmetric corner crack at a hole, purging anomalous results in the original database and replacing them with interpolated values from more reliable neighbors in the solution matrix. Since the FA database was generated using wide plate FE models with centered holes, correction factors are still needed for narrow plate widths and hole offsets. The legacy NR finite width (Fw correction factors were found to be inaccurate for some geometries when compared with the database of BE reference solutions generated previously by Lee to support his CC08 WF solution. The Lee database was then used to guide the development of improved Fw factors (see Figure 10. Note that the NR Fw correction was derived for the c-tip but is often used for the a-tip as well. The new Fw equations are different for the two tips. Comparisons of the AFGROW hole-offset factor with the Lee database indicated that it was acceptably accurate for B < W/2 (but not for B > W/2, so this correction factor was adopted as is, with that limit. Additional work is underway to compare the Lee WF solutions with the FA FE solutions and determine if any specific solutions need to be revisited or revised. The end result of this entire process will likely still include separate tension/bend/pin and WF solutions, since the geometry ranges of the FA solutions and the Lee WF solutions are considerably different, but the remaining solutions should be much more consistent. Studies are also underway to evaluate the use of surface correction factors for this geometry.。