高考数学模拟复习试卷试题模拟卷1255

合集下载

高考模拟题复习试卷习题资料高考数学试卷理科附详细答案12551

高考模拟题复习试卷习题资料高考数学试卷理科附详细答案12551

高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,A P′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===.∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.高考数学高三模拟试卷试题压轴押题高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(•湖北)i为虚数单位,则()=()A.﹣i B.﹣1 C.i D.12.(5分)(•湖北)已知U={y|y=log2x,x>1},P={y|y=,x>2},则CuP=()A.[,+∞)B.(0,)C.(0,+∞)D.(﹣∞,0)∪(,+∞)3.(5分)(•湖北)已知函数f(x)=sinx﹣cosx,x∈R,若f(x)≥1,则x的取值范围为()A.{x|kπ+≤x≤kπ+π,k∈Z} B.{x|2kπ+≤x≤2kπ+π,k∈Z}C.{x|kπ+≤x≤kπ+,k∈Z} D.{x|2kπ+≤x≤2kπ+,k∈Z}4.(5分)(•湖北)将两个顶点在抛物线y2=2px(p>0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则()A.n=0 B.n=1 C.n=2 D.n≥35.(5分)(•湖北)已知随机变量ξ服从正态分布N(2,a2),且P(ξ<4)=0.8,则P(0<ξ<2)=()A.0.6 B.0.4 C.0.3 D.0.26.(5分)(•湖北)已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣a﹣x+2(a>0,且a≠0).若g(a)=a,则f(a)=()A.2B.C.D.a27.(5分)(•湖北)如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为()A.0.960 B.0.864 C.0.720 D.0.5768.(5分)(•湖北)已知向量∵=(x+z,3),=(2,y﹣z),且⊥,若x,y满足不等式|x|+|y|≤1,则z的取值范围为()A.[﹣2,2] B.[﹣2,3] C.[﹣3,2] D.[﹣3,3]9.(5分)(•湖北)若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补,记φ(a,b)=﹣a﹣b那么φ(a,b)=0是a与b互补的()A.必要不充分条件B.充分不必要的条件C.充要条件D.既不充分也不必要条件10.(5分)(•湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=()A.5太贝克B.75In2太贝克C.150In2太贝克D.150太贝克二、填空题(共5小题,每小题5分,满分25分)11.(5分)(•湖北)(x﹣)18的展开式中含x15的项的系数为_________.(结果用数值表示)12.(5分)(•湖北)在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为_________.(结果用最简分数表示)13.(5分)(•湖北)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为_________升.14.(5分)(•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.(Ⅰ)已知平面β内有一点P′(2,2),则点P′在平面α内的射影P的坐标为_________;(Ⅱ)已知平面β内的曲线C′的方程是(x′﹣)2+2y2﹣2=0,则曲线C′在平面α内的射影C的方程是_________.15.(5分)(•湖北)给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有_________种,至少有两个黑色正方形相邻的着色方案共有_________种,(结果用数值表示)三、解答题(共6小题,满分75分)16.(10分)(•湖北)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=(I)求△ABC的周长;(II)求cos(A﹣C)的值.17.(12分)(•湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(I)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v (x)可以达到最大,并求出最大值.(精确到1辆/小时).18.(12分)(•湖北)如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(Ⅰ)当CF=1时,求证:EF⊥A1C;(Ⅱ)设二面角C﹣AF﹣E的大小为θ,求tanθ的最小值.19.(13分)(•湖北)已知数列{an}的前n项和为Sn,且满足:a1=a(a≠0),an+1=rSn (n∈N*,r∈R,r≠﹣1).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断:对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差数列,并证明你的结论.20.(14分)(•湖北)平面内与两定点A1(﹣a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;(Ⅱ)当m=﹣1时,对应的曲线为C1;对给定的m∈(﹣1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.21.(14分)(•湖北)(Ⅰ)已知函数f(x)=lnx﹣x+1,x∈(0,+∞),求函数f(x)的最大值;(Ⅱ)设a1,b1(k=1,2…,n)均为正数,证明:(1)若a1b1+a2b2+...anbn≤b1+b2+...bn,则 (1)(2)若b1+b2+…bn=1,则≤…≤b12+b22+…+bn2.高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)考点:复数代数形式的混合运算.专题:计算题.分析:由复数的运算公式,我们易得=i,再根据in的周期性,我们易得到()的结果.解答:解:∵=i∴()=i=i3=﹣i故选A点评:本题考查的知识点是复数代数形式的混合运算,其中根据复数单调幂的周期性,将i转化为i3是解答本题的关键.2.(5分)考点:对数函数的单调性与特殊点;补集及其运算.专题:计算题.分析:先求出集合U中的函数的值域和P中的函数的值域,然后由全集U,根据补集的定义可知,在全集U中不属于集合P的元素构成的集合为集合A的补集,求出集合P的补集即可.解答:解:由集合U中的函数y=log2x,x>1,解得y>0,所以全集U=(0,+∞),同样:P=(0,),得到CUP=[,+∞).故选A.点评:此题属于以函数的值域为平台,考查了补集的运算,是一道基础题.3.(5分)考点:正弦函数的单调性.专题:计算题.分析:利用两角差的正弦函数化简函数f(x)=sinx﹣cosx,为一个角的一个三角函数的形式,根据f(x)≥1,求出x的范围即可.解答:解:函数f(x)=sinx﹣cosx=2sin(x﹣),因为f(x)≥1,所以2sin(x﹣)≥1,所以,所以f(x)≥1,则x的取值范围为:{x|2kπ+≤x≤2kπ+π,k∈Z}故选B点评:本题是基础题考查三角函数的化简,三角函数不等式的解法,考查计算能力,常考题型.4.(5分)考点:抛物线的简单性质.专题:计算题.分析:根据题意和抛物线以及正三角形的对称性,可推断出两个边的斜率,进而表示出这两条直线,每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形.进而可知这样的三角形有2个.解答:解:y2=2px(P>0)的焦点F(,0)等边三角形的一个顶点位于抛物线y2=2px(P>0)的焦点,另外两个顶点在抛物线上,则等边三角形关于x轴轴对称两个边的斜率k=±tan30°=±,其方程为:y=±(x﹣),每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形.故n=2,故选C点评:本题主要考查了抛物线的简单性质.主要是利用抛物线和正三角形的对称性.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:根据随机变量X服从正态分布N(2,σ2),看出这组数据对应的正态曲线的对称轴x=2,根据正态曲线的特点,得到P(0<ξ<2)=P(0<ξ<4),得到结果.解答:解:∵随机变量X服从正态分布N(2,σ2),μ=2,得对称轴是x=2.P(ξ<4)=0.8∴P(ξ≥4)=P(ξ<0)=0.2,∴P(0<ξ<4)=0.6∴P(0<ξ<2)=0.3.故选C.点评:本题考查正态曲线的形状认识,从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的.6.(5分)考点:函数奇偶性的性质.分析:由已知中定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣a﹣x+2(a>0,且a≠0),我们根据函数奇偶性的性质,得到关于f(x),g(x)的另一个方程f(x)+g(x)=a﹣x﹣ax+2,并由此求出f(x),g(x)的解析式,再根据g(a)=a求出a值后,即可得到f(a)的值.解答:解:∵f(x)是定义在R上的奇函数,g(x)是定义在R上的偶函数由f(x)+g(x)=ax﹣a﹣x+2 ①得f(﹣x)+g(﹣x)=a﹣x﹣ax+2=﹣f(x)+g(x)②①②联立解得f(x)=ax﹣a﹣x,g(x)=2由已知g(a)=a∴a=2∴f(a)=f(2)=22﹣2﹣2=故选B点评:本题考查的知识点是函数解析式的求法﹣﹣方程组法,函数奇偶性的性质,其中利用奇偶性的性质,求出f(x),g(x)的解析式,再根据g(a)=a求出a值,是解答本题的关键.7.(5分)考点:相互独立事件的概率乘法公式.专题:计算题.分析:首先记K、A1、A2正常工作分别为事件A、B、C,易得当K正常工作与A1、A2至少有一个正常工作为相互独立事件,而“A1、A2至少有一个正常工作”与“A1、A2都不正常工作”为对立事件,易得A1、A2至少有一个正常工作的概率;由相互独立事件的概率公式,计算可得答案.解答:解:根据题意,记K、A1、A2正常工作分别为事件A、B、C;则P(A)=0.9;A1、A2至少有一个正常工作的概率为1﹣P()P()=1﹣0.2×0.2=0.96;则系统正常工作的概率为0.9×0.96=0.864;故选B.。

高三数学高考模拟试题及答案.doc-人教版[原创]

高三数学高考模拟试题及答案.doc-人教版[原创]

高三数学高考模拟试题一、选择题(每小题5分;共60分)1.非空集合A 、B 满足≠⊂B A ;U 是全集;则下列式子;①B B A = ;②A B A = ;③(A U) B=U ;④(A U) (B U)=U 中成立的是( ).A .①;②B .③;④C .①;②;③D .①;②;③;④2.已知OM =(3;-2);ON =(-5;-1);则21MN 等于( ). A .(8;1) B .(-8;1) C .(-8;-1) D .4(-;21)3.函数)3(log 1sinl x y -=的定义域是( ).A .(2;3)B .[2;)3C .(2;]3D .(2;+∞) 4.如果数列}{n a 的前n 项和))(49(41*N ∈-=n S n nnn ;那么这个数列( ). A .是等差数列而不是等比数列 B .是等比数列而不是等差数列 C .既是等差数列又是等比数列 D .既不是等差数列又不是等比数列5.锐二面角βα--l 的棱l 上一点A ;射线α⊂AB ;且与棱成45°角;又AB 与β成30°角;则二面角βα--l 的大小是( ).A .30°B .45°C .60°D .90°6.有6个人分别来自3个不同的国家;每一个国家2人。

他们排成一行;要求同一国家的人不能相邻;那么他们不同的排法有( ).A .720B .432C .360D .2407.直线经过点A (2;1);B (1;2m )两点)(R ∈m ;那么直线l 的倾斜角取值范围是( ).A .[0;)πB .[0;2π(]4π;)π C .0[;]4π D .4π[;2π()2π ;)π 8.下列函数中同时具有性质;(1)最小正周期是π;(2)图象关于3π=x 对称;(3)在6π[-;]3π上是增函数的是( ). A .)6π2sin(+=x y B .)3π2cos(+=x y C .)6π2sin(-=x y D .)6π2cos(-=x y 9.设双曲线12222=-by a x 的右准线与两条渐近线交于A 、B 两点;右焦点为F ;且F A ⊥FB ;则双曲线的离心率为( ).A .2B .3C .2D .332 10.设下表是某班学生在一次数学考试中数学成绩的分布表那么分数在[100;110]中和分数不满110分的频率和累积频率分别是( ).A .0.18;0.47B .0.47;0.18C .0.18;1D .0.38;1 11.已知)3π2sin(3)(+=x x f ;则以下选项正确的是( ). A .f (3)>f (1)>f (2) B .f (3)>f (1)>f (2) C .f (3)>f (2)>f (1) D .f (1)>f (3)>f (2) 12.下列各组复合命题中;满足“p 或q ”为真;“p 且q ”为假;“非p ”为真的是( ). A .p ;0=∅;q ;0∅∈B .p ;过空间一点有且仅有一条直线与两异面直线a ;b 都相交;q ;在△ABC 中若B A 2cos 2cos =;则A =BC .p ;不等式x x >||的解集为(-∞;0);q ;y =x sin 在第一象限是增函数D .p ;01cos 1sin >-;q ;椭圆13422=+y x 的一条准线方程是x =4二、填空题(每小题4分;共16分) 13.已知一个球的半径为1;若使其表面积增加到原来的2倍;则表面积增加后球的体积是______________. 14.函数59323+--=x x x y 的单调递减区间是______________.15.已知α、β是实数;给出下列四个论断;(1)||||||βαβα+=+;(2)||||βαβα+≤-;(3)22||>α;22||>β;(4)5||>+βα.以其中的两个论断为条件;其余两个论断作为结论;写出你认为正确的一个命题;________.16.一天内的不同的时刻;经理把文件交由秘书打字。

2024-2025学年山东省高考数学适应性训练仿真模拟卷

2024-2025学年山东省高考数学适应性训练仿真模拟卷

2024-2025学年山东省高考数学适应性训练仿真模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题:本题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合,集合,则( )A. B. C. D. 2. 若,则( )A. B. C. D. 3. 已知向量,若,则( )A. B. C. D. 4. 若将2至2022这2021个整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,则此数列的项数是( )A. 95B. 96C. 97D. 985. 为促进中学生综合素质全面发展,某校开设5个社团,甲、乙、丙三名同学每人只报名参加1个社团,则不同的报名方式共有( )A. 60种B. 120种C. 125种D. 243种6. 克罗狄斯·托勒密是希腊数学家,他博学多才,既是天文学权威,也是地理学大师.托勒密定理是平面几何中非常著名的定理,它揭示了圆内接四边形的对角线与边长的内在联系,该定理的内容为圆的内接四边形中,两对角线长的乘积等于两组对边长乘积之和.已知四边形是圆的内接四边形,且,.若,则圆的半径为( ){}24A x x =≤<{}2320B x x x =-+<A B ⋃=∅{}12x x <<{}24x x ≤<{}14x x <<37i 52i z +=+3z z -=24i +24i-42i +42i -()()2,3,,1a b m =-= |2||2|a b a b +=- m =3232-2323-ABCD O AC =2ADC BAD ∠=∠AB CD BC AD ⋅+⋅=OA. 4B. 2C.D. 7. 已知函数.设,则( )A. B. C. D. 8. 记,设函数,若函数恰有三个零点,则实数的取值范围的是( )A. B. C. D. 二、选择题:本题共4小题,每小题5分,共20分。

2025年新高考数学一轮复习模拟预测卷+模拟预测卷02(新高考卷)(原卷版)

2025年新高考数学一轮复习模拟预测卷+模拟预测卷02(新高考卷)(原卷版)

保密★启用前2025年新高考数学一轮复习模拟预测卷02注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3A =,{}1,3,4B =,则A B =U ( )A .{}1,3B .{}1,2,3C .{}1,3,4D .{}1,2,3,42.已知复数z 满足()12i 13i z +=-+,则z =( )A B C .2D .33.已知函数()()2sin 0,2f x x p w j w j æö=+><ç÷èø的最小正周期为p ,将函数f(x)的图象向右平移6p 个单位得到函数g(x)的图象,且33g x g x p p æöæö+=-ç÷ç÷èøèø,则j 的取值为A .512pB .3pC .6pD .12p4.已知3log a p =,0.7log 2b =,0.90.9c =,则a ,b ,c 的大小关系为( )A .a b c >>B .c a b >>C .a c b >>D .b a c>>5.如图,在矩形ABCD 中,24AB BC ==,E 为边AB 上的任意一点(包含端点),O 为AC 的中点,则OB DE⋅ 的取值范围是( )A .[]2,10B .[]2,8-C .[]28,D .[]4,206.在正四棱柱1111ABCD A B C D -中,12,3,AB AD A A P ===为线段11C D 的中点,一质点从A 点出发,沿长方体表面运动到达P 点处,若沿质点A 的最短运动路线截该正四棱柱,则所得截面的面积为( )A B C D .7.已知M ,N 是焦点为F 的抛物线24y x =上两个不同点,且线段MN 的中点A 的横坐标是3,直线MN 与x 轴交于点B ,则点B 的横坐标的取值范围是A .(]3 3,-B .(]3-¥,C .(]6 3--,D .()6 3-,8.若函数()f x 为奇函数,当0x <时,()()lg 3f x x x =--++,已知()0f x =有一个根为0x ,且()0,1x n n Î+,*n N Î,则n 的值为( )A .1B .2C .3D .4二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.某次数学考试后,为分析学生的学习情况,某校从某年级中随机抽取了100名学生的成绩,整理得到如图所示的频率分布直方图.为进一步分析高分学生的成绩分布情况,计算得到这100名学生中,成绩位于[80,90)内的学生成绩方差为12,成绩位于[90,100)内的同学成绩方差为10.则( )A .0.004a =B .估计该年级学生成绩的中位数约为77.14C .估计该年级成绩在80分及以上的学生成绩的平均数为87.50D .估计该年级成绩在80分及以上的学生成绩的方差为30.2510.已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,则下列说法正确的是( )A .n S n ìüíýîþ是等差数列B .若0d <,则n S 有最大值C .n S ,2n S ,3n S 成等差数列D .若m n S S =,m n ≠,则0m n S +=11.如图,在正方体1111ABCD A B C D -中,,,,E F M N 均为棱的中点,则下列结论错误的是( )A .平面//AMN 平面BDFEB .梯形BDFE 内存在一点K ,使得1A K ^平面AMNC .过1D 可作一个平面,使得1B ,N 到这个平面的距离相等D .梯形BDFE 的面积是AMN V面积的三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.()72x x y y æö--ç÷èø的展开式中43x y 的系数为 .13.已知()22ln f x x x x =-+,若实数m ,n 满足()210f m f n æö+=ç÷èø,则214m n +的最小值为 14.已知函数 ()43log 3ax x f x x x -+£ì=í>î,,,(0a >且1a ≠), 若()y f x =有最小值, 则实数a 的取值范围是 .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知12cos sin 2sin sin B C A B=+.(1)求C ;(2)若32a b c +=且3a =,求ABC V的外接圆半径.16.(15分)如图,在四棱锥S ABCD -中,^BC 平面,SAB AD ∥,1,BC SA BC SB ===45SBA Ð=o .(1)求证:SA ^平面ABCD ;(2)若12AD =,求平面SCD 与平面SAB 的夹角的余弦值.17.(15分)某公司拟通过摸球中奖的方式对员工发放节日红包.在一个不透明的袋子中装有n 个形状大小相同的标有面值的球,每位员工从球袋中一次性随机摸取m 个球()m n £,摸完后全部放回袋中,球上所标的面值之和为该员工所获得的红包数额.(1)若4n =,2m =,当袋中的球中有2个所标面值为40元,1个为50元,1个为60元时,在员工所获得的红包数额不低于90元的条件下,求取到面值为60元的球的概率;(2)若5n =,4m =,当袋中的球中有1个所标面值为10元,2个为20元,1个为30元,1个为40元时,求员工所获得红包数额的数学期望与方差.18.(17分)已知双曲线2222:1(0,0)x y C a b a b-=>>,右焦点到双曲线C 的一条渐近线的距离为1,两动点,A B 在双曲线C 上,线段AB 的中点为()()2,0M m m m ≠.(1)证明:直线AB 的斜率k 为定值;(2)O 为坐标原点,若OAB △的面积为23,求直线AB 的方程.19.(17分)已知函数()1ln x f x x+=.(1)求函数()f x 的图象在x e =(e 为自然对数的底数)处的切线方程;(2)若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.①若()1xe g x x =+,求证:()g x 为()f x 在(0,+∞)上的上界函数;②若()1kg x x =+,()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III卷)理科数学

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III卷)理科数学

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III 卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合}0|{}0)3)(2(|{>=≥--=x x T x x x S ,,则S ∩T =A. [2,3]B. ),3[]2,(+∞-∞C. ),3[+∞D. ),3[]2,0(+∞2. =-+=1i 4i 21z z z ,则若 A. 1 B. 1 C. i D. i3. 已知向量)21,23()23,21(==BC BA ,,则∠ABC = A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约15℃,B 点表示四月的平均最低气温约为5℃。

下面叙述不正确的是A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. =+=ααα2sin 2cos 43tan 2,则若 A. 2564 B. 2548 C. 1 D. 2516 6. 已知3152342542===c b a ,,,则A. b < a < cB. a < b < cC. b < c < aD. c < a < b7. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n =A. 3B. 4C. 5D. 68. 在△ABC 中,4π=B ,BC 边上的高等于31BC ,则sinA = A. 103B. 1010 C.55D. 10103 9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 53618+B. 51854+C. 90D. 8110. 在封闭的直三棱柱ABCA1B1C1内有一个体积为V 的球,若AB ⊥BC ,AB = 6,BC = 8,AA1 = 3,则V 的最大值是A. π4B. 29π C. π6 D. 332π 11. 已知O 为坐标原点,F 是椭圆C :)1(12222>>=+b a by a x 的左焦点,A 、B 分别为C 的左、右顶点。

云南省绿春县高级中学2025届高考数学倒计时模拟卷含解析

云南省绿春县高级中学2025届高考数学倒计时模拟卷含解析

云南省绿春县高级中学2025届高考数学倒计时模拟卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,若复数z 满足5i 12iz =-+,则z =( ) A .1i +B .1i -+C .12i -D .12i +2.已知函数()32,0log ,0x x f x x x ⎧≤=⎨>⎩,则3=3f f ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭( ) A .22B .12C .3log 2-D .3log 23.设双曲线221x y a b+=的一条渐近线为2y x =-,且一个焦点与抛物线24x y =的焦点相同,则此双曲线的方程为( ) A .225514x y -= B .225514y x -= C .225514y x -= D .225514x y -= 4.已知全集U =R ,集合{|lg(1)}A x y x ==-,1|B x y x ⎧⎫==⎨⎬⎩⎭则()U A B =( ) A .(1,)+∞ B .(0,1) C .(0,)+∞D .[1,)+∞5.已知椭圆22y a +22x b =1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( ) A .5-12B .3-12C .314+ D .514+ 6.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .7.函数()2f x ax =-与()xg x e =的图象上存在关于直线y x =对称的点,则a 的取值范围是( )A .,4e ⎛⎤-∞ ⎥⎝⎦B .,2e ⎛⎤-∞ ⎥⎝⎦C .(],e -∞ D .(2,e ⎤-∞⎦8.若函数()222y sin x ϕϕπ⎛⎫< ⎪⎝+⎭=的图象经过点012π⎛⎫ ⎪⎝⎭,,则函数()()()22f x sin x cos x ϕϕ=-+-图象的一条对称轴的方程可以为( ) A .24x π=-B .3724x π=C .1724x π=D .1324x π=-9.设i 是虚数单位,若复数1z i =+,则22||z z z+=( )A .1i +B .1i -C .1i --D .1i -+10.设,a b 为非零向量,则“a b a b +=+”是“a 与b 共线”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件11.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π12.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( ) A .甲B .乙C .丙D .丁二、填空题:本题共4小题,每小题5分,共20分。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。

2025届高三数学新高考模拟练习卷及答案

2025届高三数学新高考模拟练习卷及答案

2025届高三数学新高考模拟练习卷及答案一、选择题(每题5分,共40分)1. 若函数f(x) = x^3 - 6x^2 + 9x + 1在区间(-∞, a)上是减函数,在区间(a, +∞)上是增函数,则实数a的取值范围是()A. a ≤ 1B. 1 < a ≤ 3C. a ≥ 3D. a ≤ 1 或 a ≥ 32. 已知函数g(x) = |x - 2| + |x + 1|,则g(x)的最小值为()A. -3B. 0C. 3D. 43. 设函数h(x) = 2x - 3,若h(x)的图像与直线y = kx + b平行,则k和b的关系是()A. k = 2,b ≠ -3B. k = -2,b ≠ 3C. k = 2,b = -3D. k ≠ 2,b ≠ -34. 设函数p(x) = (x - 1)^2 + 2,若p(x)的图像与直线y = 2x + 3相切,则实数x的值为()A. 1B. 2C. 3D. 45. 若等差数列{an}的前n项和为Sn,且S4 = 16,S8 = 64,则数列的公差d等于()A. 2B. 3C. 4D. 56. 若三角形ABC的面积S = 12,且AB = 4,BC = 6,AC = 8,则角A的正弦值等于()A. 1/2B. 1/3C. 1/4D. 1/67. 已知函数q(x) = x^3 - 3x,若q(x)在区间(-∞, a)上是增函数,在区间(a, +∞)上是减函数,则实数a的取值范围是()A. a ≤ -1B. -1 < a ≤ 0C. a ≥ 0D. a ≤ -1 或 a ≥ 08. 若函数r(x) = |x - 1| - |x + 1|,则r(x)的图像是()A. 抛物线B. 双曲线C. 两条射线D. 两条直线二、填空题(每题5分,共30分)9. 设函数s(x) = (x - 2)^2 + 1,若s(x)的图像与直线y = 2x + c相切,则实数c的值为______。

2025届山东省各地高考考前模拟数学试题含解析

2025届山东省各地高考考前模拟数学试题含解析

2025届山东省各地高考考前模拟数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. “2a =”是“直线210ax y +-=与(1)20x a y +-+=互相平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.设函数()210100x x x f x lgx x ⎧++≤⎪=⎨>⎪⎩,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( )A .(]0101,B .(]099,C .(]0100,D .()0+∞,3.已知AB 是过抛物线24y x =焦点F 的弦,O 是原点,则OA OB ⋅=( ) A .-2B .-4C .3D .-34.已知某几何体的三视图如右图所示,则该几何体的体积为( )A .3B .103C .113D .835.抛物线2:2(0)C y px p =>的焦点为F ,点()06,A y 是C 上一点,||2AF p =,则p =( )A .8B .4C .2D .16.1x <是12x x+<-的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分也不必要7.已知||23z z i =-(i 为虚数单位,z 为z 的共轭复数),则复数z 在复平面内对应的点在( ).A .第一象限B .第二象限C .第三象限D .第四象限8.在正方体1111ABCD A B C D -中,点P 、Q 分别为AB 、AD 的中点,过点D 作平面α使1//B P 平面α,1//A Q 平面α若直线11B D ⋂平面M α=,则11MD MB 的值为( ) A .14B .13 C .12D .239.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )A .1213B .1314C .2129D .141510.将函数22cos 128x y π⎛⎫=+- ⎪⎝⎭的图像向左平移()0m m >个单位长度后,得到的图像关于坐标原点对称,则m 的最小值为( ) A .3πB .4π C .2π D .π11.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .12.某个命题与自然数n 有关,且已证得“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A .当8n =时,该命题不成立 B .当8n =时,该命题成立 C .当6n =时,该命题不成立D .当6n =时,该命题成立二、填空题:本题共4小题,每小题5分,共20分。

高中高考数学模拟试卷试题含答案.docx

高中高考数学模拟试卷试题含答案.docx
若a1+a2+⋯+an-1=29-n,自然数n等于.
16.有以下几个命 :
①曲x2-(y+1)2=1按a=(-1,2)平移可得曲
(x+1)2-(y+3)2=1
②与直相交,所得弦2
③A、B两个定点,m常数,, 点P的 迹
④若 的左、右焦点分F1、F2,P是 上的任意一点, 点F2关于∠F1PF2的外角平分 的 称点M的 迹是
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位
5.如图,是一程序框图,则输出结果中()
.
精品文档
A.B.
C.D.
6.平面的一个充分不必要条件是()
A.存在一条直B.存在一个平面
C.存在一个平面D.存在一条直
7.已知以F1(-2,0),F2(2,0) 焦点的 与直有且 有一个交点, 的
()
A.B.C.D.
在答题卡上把所选题目对应的题号涂黑.
22.(本小题满分10分)
[几何证明选讲]如图,E是圆内两弦AB和CD的交点, 直线EF//CB,交AD的延长线于F,FG切圆于G,求证:
(1)∽;
(2)EF=FG.
23.[选修4-4:坐标系与参数方程]
已知曲线C:(t为参数),C:(为参数).
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
8.O是平面上一定点,A、B、C是平面上不共 的三个点, 点P足
,p的 迹一定通 △ABC的 ( )
A.外心B.重心C.内心D.垂心
9. {an}是等差数列,从{a1,a2,a3,⋯,a20}中任取3个不同的数,使3个数仍成等差数列, 不同的等差数列最多有 ( )
A.90个B.120个C.180个D.200个

高考数学模拟复习试卷试题模拟卷12315

高考数学模拟复习试卷试题模拟卷12315

高考模拟复习试卷试题模拟卷【考情解读】1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义. 【重点知识梳理】 1.向量的有关概念名称 定义备注向量 既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量 长度为零的向量;其方向是任意的记作0单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a|a|平行向量 方向相同或相反的非零向量 0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小相反向量 长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定 义 法则(或几何意义) 运算律加法求两个向量和的运算(1)交换律:a +b =b +a. (2)结合律: (a +b)+c =a +(b +c)减法 求a 与b 的相反向量 -b 的和的a -b =a +(-b)运算叫做a与b的差数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.【高频考点突破】考点一平面向量的有关概念【例1】给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB→=DC→是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③ B.②④ C.③④ D.②③④【答案】A【规律方法】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【变式探究】给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4【答案】C考点二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与B D 交于点O ,AB →+AD →=λAO →,则λ=________.【答案】(1)D(2)2规律方法 (1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【变式探究】 (1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0【答案】(1)D(2)A考点三 共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【规律方法】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【变式探究】 (1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.【答案】(1)C(2)3考点五 方程思想在平面向量的线性运算中的应用数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.【例4】如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b.试用a 和b 表示向量OM →.【真题感悟】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4( 。

2024年广东省高三数学5月高考模拟联考试卷附答案解析

2024年广东省高三数学5月高考模拟联考试卷附答案解析

2024年广东省高三数学5月高考模拟联考试卷数学试题1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.考试时间为120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程3210x x x -+-=的一个根是()A .2i-B .-1C .2D .i-2.抛物线2x ay =的焦点坐标是10,2⎛⎫- ⎪⎝⎭,则焦点到准线的距离为()A .1B .12C .32D .23.长方体1111ABCD A B C D -中,四边形11ABB A 为正方形,直线1B C 与直线AD 所成角的正切值为2,则直线1B D 与平面ABCD 所成角的正切值为()A .23B C D 4.某公司的员工中,有15%是行政人员,有35%是技术人员,有50%是研发人员,其中60%的行政人员具有博士学历,40%的技术人员具有博士学历,80%的研发人员具有博士学历,从具有博士学历的员工中任选一人,则选出的员工是技术人员的概率为()A .25B .15C .29D .495.已知等差数列{}n a 的前n 项和为n S ,若55522a S -=,则6662a S -=()A .4B .125C .65D .66.正三角形ABC 所在的平面垂直于正三角形ABD 所在的平面,且A ,B ,C ,D球O 的球面上,则CD 的长为()A .5B .C .4D .7.把数字1、2、3分别写在9张卡片上,其中有4张写着1,4张写着2,1张写着3,把这9张卡片排成三行三列,每行每列都是三张卡片,则每行和每列的卡片上数字和为奇数的排法的种数有()A .30B .27C .54D .458.已知正实数,a b,记max 4,M a b ⎧=⎨⎩,则M 的最小值为()AB .2C .1D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.半导体的摩尔定律认为,集成电路芯片上的晶体管数量的倍增期是两年,用()f t 表示从0=t 开始,晶体管数量随时间t 变化的函数,若(0)1000f =,则下面选项中,符合摩尔定律公式的是()A .若t 是以月为单位,则1000()100024f t t =+B .若t是以年为单位,则()1000t f t =⨯C .若t 是以月为单位,则lg2lg ()324f t t =+D .若t 是以年为单位,则3lg 12lg ()32t f t ⎛⎫+ ⎪⎝⎭=+10.ABC 的重心为点G ,点O ,P 是ABC 所在平面内两个不同的点,满足OP OA OB OC =++,则()A .,,O P G 三点共线B .2OP OG=C .2OP AP BP CP=++D .点P 在ABC 的内部11.已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭满足πππ(),263f x f x f f ⎛⎫⎛⎫⎛⎫-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0,且在π5π,1212⎛⎫⎪⎝⎭上单调递减,则()A .函数()y f x =的图象关于点π,04⎛⎫ ⎪⎝⎭对称B .ϕ可以等于π4-C .ω可以等于5D .ω可以等于3三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{2,1,0,1,2}A =--,集合{}20B x x x a =--<∣,写出满足{0,1}A B = 的一个实数a 的值.13.已知函数121y x =的图象与函数2(0xy a a =>且1)a ≠的图象在公共点处有相同的切线,则=a ,切线方程为.14.已知椭圆()2222:10x y C a b a b+=>>的右焦点是F ,过点F 作直线l 交椭圆于点A ,B ,过点F 与直线l 垂直的射线交椭圆于点P ,125AB PF =,且三点,,A O P 共线(其中O 是坐标原点),则椭圆的离心率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数321()(31),R 2f x ax a x x a =-++∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 的极小值为23-,求实数a 的取值集合.16.已知四棱锥P ABCD -中,底面ABCD 是矩形,2,AB AP BC PC ====1cos 3PCB ∠=.(1)求证:平面PAC ⊥平面ABCD ;(2)求二面角B PA D --的余弦值.17.一枚棋子在数轴上可以左右移动,移动的方式以投掷一个均匀的骰子来决定,规则如下:当所掷点数为1点时,棋子不动;当所掷点数为3或5时,棋子在数轴上向左(数轴的负方向)移动“该点数减1”个单位;当所掷的点数为偶数时,棋子在数轴上向右(数轴的正方向)移动“该点数的一半”个单位;第一次投骰子时,棋子以坐标原点为起点,第二次开始,棋子以前一次棋子所在位置为该次的起点.(1)投掷骰子一次,求棋子的坐标的分布列和数学期望;(2)投掷骰子两次,求棋子的坐标为2-的概率;(3)投掷股子两次,在所掷两次点数和为奇数的条件下,求棋子的坐标为正的概率.18.已知双曲线22:1C x y -=,直线1:l y mx m=+与双曲线C 交于两个不同的点A ,B ,直线1y x m =与直线l 交于点P .(1)求证:点P 是线段AB 的中点;(2)若点A ,B 两点分别在双曲线两支上,求OAB 的面积的最小值(其中O 是坐标原点).19.已知数列{}n a 的各项是奇数,且n a 是正整数n 的最大奇因数,34212nn S a a a a a =+++++L .(1)求620,a a 的值;(2)求123,,S S S 的值;(3)求数列{}n S 的通项公式.1.D【分析】因式分解后解方程可得.【详解】原方程可化为2(1)(1)0x x -+=,所以1x =或i x =±,故选:D .2.A【分析】根据抛物线的标准方程的知识求解.【详解】由题意142a =-,2a =-,即抛物线标准方程为22x y =-,所以焦点到准线的距离为212=,故选:A .3.B【分析】由异面直线所成的角求得长方体中棱的关系,再根据线面角定义计算.【详解】长方体中,//AD BC ,所以1BCC ∠就是直线1B C 与直线AD 所成角,因此11tan 2BB BCB BC ∠==,即112BC BB =,又由1BB ⊥平面ABCD 知1B DB ∠是直线1B D 与平面ABCD所成角,11tan BB B DB BD∠==故选:B .4.C【分析】设事件A =“选出的员工是行政人员”,B =“选出的员工是技术人员”,C =“选出的员工是研发人员”,D =“选出的员工具有博士学历”,由全概率公式及条件概率公式分别求出()P D 和()P DB ,即可求解.【详解】设事件A =“选出的员工是行政人员”,B =“选出的员工是技术人员”,C =“选出的员工是研发人员”,D =“选出的员工具有博士学历”,由题可知,()0.15P A =,()0.35P B =,()0.5P C =,(|)0.6P D A =,(|)0.4P D B =,(|)0.8P D C =,所以()(|)()(|)()(|)()P D P D A P A P D B P B P D C P C =++0.150.60.350.40.50.80.63=⨯+⨯+⨯=,()()(|)0.4()0.35P DB P DB P D B P B ===,()0.14P DB =,所以()0.142(|)()0.639P BD P B D P D ===,故选:C .5.B【分析】根据等差数列通项公式和前n 项和公式可解.【详解】设等差数列{}n a 的公差为d ,则()()551115254251052a S a d a d a -=+-+=-=,所以125a =-,又()()66111212626526156655a S a d a d a ⎛⎫-=+-+=-=-⨯-= ⎪⎝⎭.故选:B 6.D【分析】记AB 的中点为P ,ABC 和ABD △的重心分别为,M N ,然后证明四边形PMON 是正方形,再求其边长,即可得到3CP DP ==,最后用勾股定理求解即可.【详解】如图,记AB 的中点为P ,ABC 和ABD △的重心分别为,M N ,则分别由OA OB OC ==,OA OB OD ==可知OM 垂直于平面ABC ,ON 垂直于平面ABD .从而由PM 和PN 分别在平面ABC 和平面ABD 内,知OM PM ⊥,ON PN ⊥.而平面ABC 垂直于平面ABD ,其交线为AB ,PM 在平面ABC 内,PM AB ⊥,故PM 垂直于平面ABD ,再由PN 在平面ABD 内,知PM PN ⊥.所以四边形PMON 是矩形,而13133PM CP AP DP PN ===,故四边形PMON 是正方形.设正方形PMON 的边长为a ,则MO a =,22CM MP a ==.同时,由已知条件得5=OC 由勾股定理有222MO CM OC +=,故()22225a a +=,解得1a =.最后,由于PM PN ⊥,333CP PM a ===,333DP PN a ===,故229932CD CP DP =+=+=D 选项正确.故选:D.7.D【分析】从写有数字3的卡片,开始考虑,分3所在的行要么由2个1,要么没有1,有5种排法,由于3可以放在这9个位置中的任何一个位置,因此共有45种排法.【详解】每张卡片都有所在的行和列,为了保证每行每列的数字和为奇数,所以每行和每列有3个奇数或者1个奇数,首先考虑写有数字3的卡片,然后再考虑写有数字1的卡片,3所在的行要么有2个1,要么没有1,当3所在的行有两个1时,另外两个1必须在同一列,于是有3种排法,当3所在的行没有1时,剩下的两行应该是一行3个1,一行1个1,于是有2种排法,所以对于3的每一个位置有5种排法,由于3可以放在这9个位置中的任何一个位置,因此共有45种排法.故选:D8.A【分析】由已知得出122M a b ≥+,结合M ≥2122a b M +≥【详解】由max 4,M a b ⎧=⎨⎩得,4,,M a M b M ≥≥≥,所以24M a b ≥+,即122M a b ≥+,因为M ≥,所以2122a bM +≥因为122a b +≥122a b =时等号成立,所以21222a b M +=,M ≥4,,M a M b M ===24a b ==时,等号成立,故选:A .【点睛】关键点睛:当0,0a b c d >>>>时,有ac bd >;即122M a b ≥+且M ≥得出最小值.9.BC【分析】对AC ,计算(24),(48),(72)f f f ,满足(24)2(0),(48)2(24)f f f f ==,(24)10002n f n =⨯,*n ∈N ,可确定,对CD ,计算(2),(4),(6)f f f ,满足(2)2(0),(4)2(2)f f f f ==,(2)10002n f n =⨯,*n ∈N ,可确定.【详解】选项A ,(24)20002(0)f f ==,(48)30002(24)f f =≠,A 不符合;选项B ,(2)20002(0)f f ==,(4)40002(2)f f ==,(2)10002n f n =⨯,*n ∈N ,符合;选项C ,lg2lg ()324f t t =+,则lg 2324()10f t +=2410002t =⨯,(24)21000f =⨯,(48)40002(24)f f ==,(24)10002n f n =⨯,*n ∈N ,符合,选项D ,3lg 12lg ()32t f t ⎛⎫+ ⎪⎝⎭=+,123()1000(1)2f t t =⨯+,(2)21000(0)f f =⨯=,12(4)100072(2)f f =⨯≠,不符合.故选:BC .10.AC【分析】根据三角形重心的性质,向量共线的判定及向量的线性运算即可判断.【详解】OP OA OB OC OG GA OG GB OG GC=++=+++++3OG GA GB GC =+++ ,因为点G 为ABC 的重心,所以0GA GB GC ++=,所以3OP OG = ,所以,,O P G 三点共线,故A 正确,B 错误;AP BP CP AO OP BO OP CO OP++=+++++ ()3AO BO CO OP =+++ ,因为OP OA OB OC =++ ,所以()332AO BO CO OP OP OP OP +++=-+=,即2OP AP BP CP =++,故C 正确;因为3OP OG = ,所以点P 的位置随着点O 位置的变化而变化,故点P 不一定在ABC 的内部,故D 错误;故选:AC .11.ABD【分析】根据题意,可得函数()y f x =的图象关于π4x =-对称,关于点π,04⎛⎫⎪⎝⎭对称,由三角函数的对称性性质可得π4ϕ=±,从而判断选项A 、B ;再根据函数的单调性,可求出ω的值,从而判定选项C 、D.【详解】由π()2f x f x ⎛⎫-=- ⎪⎝⎭,则ππππ()4424f x f x f x ⎛⎫⎛⎫-=+-=-- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于π4x =-对称,又πππ5π126312<<<,且ππ063f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则1πππ02634f f ⎛⎫⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭⎝⎭,即函数()y f x =的图象关于点π,04⎛⎫ ⎪⎝⎭对称,故A 正确;根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫ ⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,可得,()()2121ππ,1242k k k k ϕω-=+=+-,由于π||2ϕ<,所以π4ϕ=±,故B 正确;当π4ϕ=时,由π5π1212x <<,得πππ5ππ1244124x ωωω+<+<+,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧+≥⎪⎪⎨⎪+≤+⎪⎩,即92424355k k ω-≤≤+,又0ω>,所以90,05k ω=<<,又()2112k k ω=+-,所以1ω=,当π4ϕ=-时,由π5π1212x <<,得πππ5ππ1244124x ωωω-<-<-,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧-≥⎪⎪⎨⎪-≤+⎪⎩,即2424335k k ω+≤≤+,又0ω>,所以0,3k ω==,故C 错误,D 正确.故选:ABD【点睛】关键点点睛:根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫ ⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,从而()()2121ππ,1242k k k k ϕω-=+=+-.12.1(答案不唯一)【分析】由已知得出{0,1}B ⊆,设2()f x x x a =--,结合图象列出不等式组求解即可.【详解】因为{0,1}A B = ,所以{0,1}B ⊆,设2()f x x x a =--,则()0f x <的整数解为0,1,则(0)0f <,(1)0f <,(1)0f -≥且(2)0f ≥,解得02a <≤,故答案为:1.13.12eee 0x -+=【分析】设公共点为()00,x y ()00x >,即可得到0120x a x =,再由导数的几何意义得到01201ln 2x x a a -=,从而求出0x ,即可求出切点坐标,从而求出a ,再求出切线方程.【详解】设公共点为()00,x y ()00x >,则012000x y x y a⎧⎪=⎨⎪=⎩,即0120x a x =,所以0012ln ln x a x =,所以00ln 1ln 2a x x =,由12112y x -=',2ln x y a a =',所以0121012|x x y x =-'=,002ln |x x x y a a ==',又在公共点处有相同的切线,所以01201ln 2xx a a -=,即1122000011ln 22x x x x -=⋅,所以0ln 1x =,则0e x =,120e y =,则00l e111ln ln 22n 2e e a x x ===,则12ee a =,所以切线方程为()11221e e 2e x y --=-,即e 0x -+=.故答案为:12e e;e 0x -+=14【分析】先证明四边形AFPF '是矩形,然后利用已知条件求出AF B ' 三边的比例,再利用椭圆的定义求出AF '和AF 与a 的关系式,最后利用22224AF AF F F c +==''即得离心率.【详解】设椭圆的左焦点为F '.由于,,A O P 三点共线,故由椭圆的对称性知OA OP =,而OF OF =',故四边形AFPF '是平行四边形.又因为FP FA ⊥,,故四边形AFPF '是矩形.由于四边形AFPF '是矩形,故512AF PF ABAB==',513BF AB =='.从而可设5AF k '=,12AB k =,13BF k '=,此时30224k AF AB BF AF AF BF BF a a a =++=++'+=+'=''.这得到215k a =,所以253AF k a ==',242233AF a AF a a a =-=-='.最后由222AF AF F F +=''得到()22224233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即222049a c =,故2259c a =.从而椭圆的离心率3ce a===.【点睛】关键点点睛:本题的关键点在于利用矩形的性质和椭圆的定义研究AF B ' 的三边,从而避免直接直线与椭圆联立导致繁杂的计算.15.(1)答案见解析(2)171{,,}3312a ∈-【分析】(1)对函数求导,根据a 的不同范围,分别求出函数的单调性;(2)结合(1),由a 的不同范围确定极小值点,列出方程求解即可.【详解】(1)2()3(31)1(31)(1)f x ax a x ax x '=-++=--,①当0a =时,令()(1)0f x x '=--=,1x =,当(,1)x ∞∈-时,()0f x ¢>,()f x 单调递增,当(1,)x ∈+∞时,()0f x '<,()f x 单调递减;②当0<a 时,令()(31)(1)0f x ax x '=--=,解得1x =或103x a=<,当1(,3x a∈-∞和(1,)+∞时,()0f x '<,()f x 单调递减;当1(,1)3x a∈时,()0f x '>,()f x 单调递增;③当0a >时,令()(31)(1)0f x ax x '=--=,解得1x =或103x a=>,i)当113a <时,即13a >时,当1(,3x a∈-∞和(1,)+∞时,()0f x '>,()f x 单调递增;当1(,1)3x a∈时,()0f x '<,()f x 单调递减;ii)当113a >时,即103a <<时,当(,1)x ∞∈-和1(,)3a+∞时,()0f x '>,()f x 单调递增;当1(1,)3x a∈时,()0f x '<,()f x 单调递减;iii)当113a =时,即13a =时,()0f x '≥,()f x 在R 上单调递增;综上所述,当0<a 时,()f x 在1(,)3a -∞和(1,)+∞单调递减,()f x 在1(,1)3a单调递增;当0a =时,()f x 在(,1)-∞单调递增,()f x 在(1,)+∞单调递减;当13a =时,()f x 在R 上单调递增;当13a >时,()f x 在1(,3a -∞和(1,)+∞单调递增,()f x 在1(,1)3a 单调递减;当103a <<时,()f x 在(,1)-∞和1(,)3a +∞时单调递增;()f x 在1(1,)3a单调递减.(2)①当13a =时,()f x 在R 上单调递增,无极值;②当a<0时,()f x 在1(,)3a -∞和(1,)+∞单调递减,()f x 在1(,1)3a单调递增;所以()f x 的极小值为1()3f a,故32111112(()(31)(332333f a a a a a a =-++=-,化简得,11(12)(3)0aa-+=,解得13a =-或112a =(舍去);③当13a >时,()f x 在1(,)3a -∞和(1,)+∞单调递增,()f x 在1(,1)3a 单调递减,所以()f x 的极小值为(1)f ,故12(1)(31)123f a a =-++=-,解得73a =,符合题意;④当103a <<时,()f x 在(,1)-∞和1(,)3a +∞时单调递增;()f x 在1(1,)3a单调递减,所以()f x 得极小值为1()3f a,故32111112(()(31)(332333f a a a a a a =-++=-,解得112a =或13a =-(舍去).故实数171{,,}3312a ∈-.16.(1)证明见解析;(2)27035-.【分析】(1)作PH AC ⊥于H ,连接BH ,证明BH AC ⊥,由余弦定理求得PB ,证得PH BH ⊥,从而可得PH ⊥平面ABCD ,从而可得证面面垂直;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)因为2,AB AP BC PC ====1cos 3PCB ∠=,3PB ==,作PH AC ⊥于H ,连接BH ,由已知,,PA AB CP CB AC AC ===得PAC △≌BAC ,因此PAC △绕AC 旋转后点P 可与点B 重合,因此由PH AC ⊥得BH AC ⊥,PH BH =,由已知AC ==,所以222AP CP AC +=,从而AP CP ⊥,所以3BH PH ===,从而有222BH PH PB +=,所以PH BH ⊥,又BH AC H = ,,BH AC ⊂平面ABCD ,所以PH ⊥平面ABCD ,又因为PH ⊂平面PAC ,所以平面PAC ⊥平面ABCD ;(2)过H 作HM AB ⊥于M ,作HN BC ⊥于N ,由(1)得3CH =,由HN BC ⊥,AB BC ⊥得//HN AB ,所以CHN ∽CAB △,所以HN CH AB CA =,所以223AB CH HN CA ⋅==,同理223HM =,因此H 到边CD 的距离为3,H 到边AD 的距离为43,以DA 为x 轴,DC 为y 轴,过D 与直线PH 平行的直线为z 轴,建立空间直角坐标系,如图,则A ,2,0)B ,(0,0,0)D ,43P ,DA = ,(0,2,0)AB = ,224(,33AP =- ,设平面PAD 的一个法向量是111(,,)m x y z =,则11114030m AP x y z mDA ⎧⋅=+=⎪⎨⎪⋅==⎩ ,取11z =得(0,m = ,设平面PAB 的一个法向量是222(,,)n x y z =,则222222403320n AP x y z mAB y ⎧⋅=-+=⎪⎨⎪⋅==⎩,取2x =23)3n =,00cos ,m n m n m n+⋅===由图知二面角B PA D --是钝二面角,所以其余弦值为35-.17.(1)分布列见解析,()0E X =(2)19(3)49【分析】(1)由题目分析即可得出分布列,再用数学期望公式计算即可;(2)分析出所有满足投掷骰子两次,棋子的坐标为2-的所有情况,即可求出概率;(3)先求出投掷股子两次,所掷两次点数和为奇数且棋子的坐标为正的概率及掷两次点数和为奇数的概率,根据条件概率公式计算即可.【详解】(1)设X 为投掷骰子一次棋子的坐标,由题可知4,2,0,1,2,3X =--,且概率都相同为16,分布列如下:X4-2-0123P1616161616161()(42123)06E X =⨯--+++=.(2)投掷骰子两次,棋子的坐标为2-的情况有:①第一次坐标为4-(点数为5),第二次向右2个单位(点数为4);②第一次坐标为2-(点数为3),第二次不动(点数为1);③第一次坐标为0(点数为1),第二次向左2个单位(点数为3);④第一次坐标为2(点数为4),第二次向左4个单位(点数为5);故投掷骰子两次,棋子的坐标为2-的概率为114369P =⨯=.(3)设事件A =“掷两次点数和为奇数”,B =“投掷股子两次棋子的坐标为正”,由题可知,()11332C C 1362P A ==,投掷股子两次,所掷两次点数和为奇数,且棋子的坐标为正的点数情况有:6和1,6和3,4和1,1和2,共8种情况,故12()8369P AB =⨯=,则在所掷两次点数和为奇数的条件下,棋子的坐标为正的概率2()49(|)1()92P AB P B A P A ===.18.(1)证明见详解(2)【分析】(1)联立方程组双曲线与直线l ,利用韦达定理求中点坐标,再求直线1y x m=与直线l 交于点P ,即可证明;(2)根据弦长公式和三角形面积公式,结合函数性质求最值.【详解】(1)设()()1122,,,A x y B x y ,联立2211y mx m x y ⎧=+⎪⎨⎪-=⎩,消去y 得()22211210m x x m ----=,由于直线l 与双曲线C 交于两个不同的点,所以210m -≠,()()42222411Δ44110m m m m m -+⎛⎫=+-+=> ⎪⎝⎭,得20m <22121222112111m m x x x x m m --≠+==--,,于是()12122221111,21211x x y y m m m m m m ++==⨯+=---,即线段AB 的中点为()2211,11m m m ⎛⎫⎪ ⎪--⎝⎭,联立1y mx m =+与1y x m=,得()2211,11x y m m m ==--,即点()2211,11P m m m ⎛⎫ ⎪ ⎪--⎝⎭,因此点P 是线段AB 的中点.(2)若点A B 、两点分别在双曲线两支上,21221101m x x m--=<-,所以201m <<,12AB x =-=2=点O 到直线1y mx m=+的距离1||m d =,OAB的面积1122S AB d ==⨯令24t mm =-,所以s =令1s t=,则S =因为201m <<,由221124t m ⎛⎫=--+ ⎪⎝⎭,得104t <≤,由1s t =,得4s ≥,由S =得S ≥=即当21124,,,422s t m m ====±时,OAB 的面积的最小值为【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y ,()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为1212,x x x x +的形式;(5)代入韦达定理求解.19.(1)63a =,205a =(2)12S =,26S =,322S =(3)423n n S +=【分析】(1)根据所给定义直接计算可得;(2)根据所给定义列出()1,2,3,,8i i a = ,即可得解;(3)当n 为奇数时2121n k a a k -==-()N*k ∈,即可求出13521na a a a -++++ ,当n 为偶数时2n k k a a a ==()N*k ∈,从而得到246812n n a a a a a S -+++++= ,即可推导出114n n n S S ---=()2n ≥,再利用累加法计算可得.【详解】(1)因为6123=⨯⨯,所以63a =,又20145=⨯⨯,所以205a =;(2)依题意可得121a a ==,33a =,41a =,55a =,63a =,77a =,81a =,所以1122S a a =+=,2341211316a S a a a =+++=+++=,3123567481131537122S a a a a a a a a =++++++++=++++++=.(3)因为n a 是正整数n 的最大奇因数,当n 为奇数,即21n k =-()N*k ∈时2121n k a a k -==-,所以()()111352112113521242n n nn n a a a a ---+-++++=++++-=⨯= ,当n 为偶数,即2n k =()N*k ∈时2n k k a a a ==,所以当2n ≥时1246812223242222n n a a a a a a a a a a -⨯⨯⨯⨯⨯+++++=+++++ 1123412n n a a a a a S --=+++++= ,所以34212nn S a a a a a =+++++L ()()1352468212n n a a a a a a a a a -=++++++++++ 114n n S --=+,所以114n n n S S ---=()2n ≥且12S =,所以()()()()11221321n n n n n S S S S S S S S S S ---=-+-++-+-+ 12244442n n --=+++++ ()1414422143n n --+=+=-,当1n =时12S =也满足423n n S +=,所以数列{}n S 的通项公式为423n n S +=.【点睛】关键点点睛:本题关键是理解定义,第三问关键是推导出114n n n S S ---=()2n ≥且12S =,最后利用累加法求出n S .。

高考数学模拟题复习试卷普通高等学校招生全国统一考试(I卷)理科数学6

高考数学模拟题复习试卷普通高等学校招生全国统一考试(I卷)理科数学6

高考数学模拟题复习试卷普通高等学校招生全国统一考试(I 卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合}032|{},034|{2>-=<+-=x x B x x x A ,则A∩B = A. )23,3(-- B. )23,3(- C. )23,1( D. )3,23( 2. 设(1 + i)x = 1 + yi ,其中x 、y 是实数,则| x + yi | =A. 1B. 2C. 3D. 23. 已知等差数列{an}前9项和为27,a10 = 8,则a100 =A. 100B. 99C. 98D. 974. 某公司的班车在7:30、8:00、8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A. 31 B. 21 C. 32 D. 43 5. 已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 A. )3,1(- B. )3,1(-C. )3,0(D. )3,0(6. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径。

若该几何体的体积是328π,则它的表面积是 A. π17 B. π18C. π20D. π287. 函数y = 2x2 e|x|在[2,2]的图象大致为A. B. C. D.8. 若a > b > 0,0 < c <1,则A. c c b a <B. c c ba ab <C. c b c a a b log log <D. c c b a log log <9. 执行右面的程序框图,如果输入的x = 0,y = 1,n = 1,则输出的x 、y 的值满足A. y = 2xB. y = 3xC. y = 4xD. y = 5x10. 以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点。

2025届山东省临沭县高考全真模拟卷数学试题第六套

2025届山东省临沭县高考全真模拟卷数学试题第六套

2025届山东省临沭县高考全真模拟卷数学试题第六套请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数2sin cos ()20x x xf x x =+在[2,0)(0,2]ππ-⋃上的图象大致为( ) A . B .C .D .2.已知复数z 满足121iz i i+⋅=--(其中z 为z 的共轭复数),则z 的值为( ) A .1B .2C 3D 53.已知点1F 是抛物线C :22x py =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F ,2F 为焦点的双曲线上,则双曲线的离心率为( ) A .622B 21C .622D 214.函数()sin 3f x x πω⎛⎫=-⎪⎝⎭(0>ω),当[]0,x π∈时,()f x 的值域为3⎡⎤⎢⎥⎣⎦,则ω的范围为( ) A .53,62⎡⎤⎢⎥⎣⎦B .55,63⎡⎤⎢⎥⎣⎦C .14,23⎡⎤⎢⎥⎣⎦D .50,3⎛⎤ ⎥⎝⎦5.设i 是虚数单位,若复数5i2i()a a +∈+R 是纯虚数,则a 的值为( ) A .3-B .3C .1D .1-6.已知集合{}|124A x x =<≤,21|65B x y x x ⎧⎫==⎨⎬-+-⎩⎭,则A B =( ) A .{}5|x x ≥ B .{}|524x x <≤ C .{|1x x ≤或}5x ≥ D .{}|524x x ≤≤7.若直线不平行于平面,且,则( )A .内所有直线与异面B .内只存在有限条直线与共面C .内存在唯一的直线与平行D .内存在无数条直线与相交 8.复数21iz i+=-,i 是虚数单位,则下列结论正确的是 A .5z =B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限9.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为()32222x y x y +=.给出下列四个结论:①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为18; ④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④10.函数cos 23sin 20,2y x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,3π⎡⎤⎢⎥⎣⎦ C .,62ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎤⎢⎥⎣⎦11.若i 为虚数单位,网格纸上小正方形的边长为1,图中复平面内点Z 表示复数z ,则表示复数2iz的点是( )A .EB .FC .GD .H12.已知函数()e ln mxf x m x =-,当0x >时,()0f x >恒成立,则m 的取值范围为( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,e e⎛⎫ ⎪⎝⎭C .[1,)+∞D .(,e)-∞二、填空题:本题共4小题,每小题5分,共20分。

高考数学模拟复习试卷试题模拟卷125

高考数学模拟复习试卷试题模拟卷125

高考模拟复习试卷试题模拟卷【考情解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【重点知识梳理】 1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a =(x1,y1),b =(x2,y2),则a +b =(x1+x2,y1+y2),a -b =(x1-x2,y1-y2),λa =(λx1,λy1),|a|=x21+y21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则AB →=(x2-x1,y2-y1),|AB →|=(x2-x1)2+(y2-y1)2. 3.平面向量共线的坐标表示设a =(x1,y1),b =(x2,y2),则a ∥b ⇔x1y2-x2y1=0. 【高频考点突破】考点一 平面向量基本定理的应用【例1】 (1)在△ABC 中,点D 在边AB 上,CD 平分∠ACB.若CB →=a ,CA →=b ,|a|=1,|b|=2,则CD →=()A.13a +23bB.23a +13bC.35a +45bD.45a +35b(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 (1)B(2)12规律方法 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【变式探究】如图,两块斜边长相等的直角三角板拼在一起,若AD →=xAB →+yAC →,则x =________,y =________.答案 1+3232考点二 平面向量的坐标运算【例2】 (1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =() A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=() A .(-2,-4) B .(-3,-5) C .(3,5) D .(2,4)答案 (1)D(2)B规律方法 向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【变式探究】 (1)已知点A(-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为() A .(7,4) B .(7,14) C .(5,4) D .(5,14)(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于()A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)答案(1)D(2)B考点三向量共线的坐标表示【例3】平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).(1)若(a+kc)∥(2b-a),求实数k;(2)若d满足(d-c)∥(a+b),且|d-c|=5,求d的坐标.规律方法(1)两平面向量共线的充要条件有两种形式:①若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0;②若a∥b(a≠0),则b=λa.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【变式探究】(1)已知梯形ABCD,其中AB∥CD,且DC=2AB,三个顶点A(1,2),B(2,1),C(4,2),则点D的坐标为________.(2)已知向量a=(3,1),b=(1,3),c=(k,7),若(a-c)∥b,则k=________.答案 (1)(2,4)(2)5【真题感悟】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4) 【答案】A2.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.152 【答案】C3.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3) 【答案】B4.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.5.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 【答案】126.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.7.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A.2 2 B.2 3C.4 2 D.4 3【答案】D8.(·湖南卷)已知a,b是单位向量,a·b=0,若向量c满足|c-a-b|=1,则|c|的取值范围是()A.[2-1,2+1] B.[2-1,2+2]C.[1,2+1] D.1,2+2【答案】A9.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-3 【答案】410.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 【答案】A11.(·天津卷) 在平行四边形ABC D 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.【答案】1212.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 【答案】213.(·重庆卷)如图1-9所示,椭圆的中心为原点O,长轴在x轴上,离心率e=22,过左焦点F1作x轴的垂线交椭圆于A,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P,P′,过P,P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外,若PQ⊥P′Q,求圆Q的标准方程.图1-914.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝ ⎛⎦⎥⎤0,52B.⎝ ⎛⎦⎥⎤52,72 C.⎝⎛⎦⎥⎤52,2D.⎝ ⎛⎦⎥⎤72,2【答案】D【押题专练】1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=()A .b -12aB .b +12aC .a +12bD .a -12b【答案】A2.已知在▱ABCD 中,AD →=(2,8),AB →=(-3,4),对角线AC 与BD 相交于点M ,则AM →= ()A.⎝⎛⎭⎫-12,-6B.⎝⎛⎭⎫-12,6C.⎝⎛⎭⎫12,-6D.⎝⎛⎭⎫12,6答案 B3.已知向量a =(-1,2),b =(3,m),m ∈R ,则“m =-6”是“a ∥(a +b)”的 ()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案 A4.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于()A .-12a +32b B.12a -32b C .-32a -12bD .-32a +12b答案 B5.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2 PA →,则 ()A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A6.已知向量a =(1,2),b =(x ,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.答案 127.若三点A(2,2),B(a ,0),C(0,b)(ab≠0)共线,则1a +1b 的值为________.答案 128.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.答案 49.已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.10.如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.11.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设向量p =(a +c ,b),q =(b -a ,c -a),若p ∥q ,则角C 的大小为() A .30°B .60°C .90°D .120°答案 B12.在平面直角坐标系xOy 中,已知A(1,0),B(0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,且|OC|=2,若OC →=λOA →+μOB →,则λ+μ=() A .2 2 B. 2 C .2 D .42答案 A13.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________.答案 m≠5414.如图,已知点A(1,0),B(0,2),C(-1,-2),求以A ,B ,C 为顶点的平行四边形的第四个顶点D 的坐标.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第04节 数学归纳法一、选择题1. 数学归纳法适用于证明的命题类型是A 、已知⇒结论B 、结论⇒已知C 、直接证明比较困难D 、与正整数有关 【答案】D【解析】由数学归纳法的概念可知,数学归纳法适用于证明的命题类型是与正整数有关的题目,故选D. 2. 用数学归纳法证明等式(3)(4)123(3)()2n n n n *+++++++=∈N 时,第一步验证1n =时,左边应取的项是 A .1 B .12+C .123++D .1234+++【答案】D3. 利用数学归纳法证明不等式1+12+13+ 121n -<f(n) (n≥2,n N *∈)的过程中,由n =k 变到n =k +1时,左边增加了( ) A .1项 B .k 项 C .12k -项 D .2k项【答案】D【解析】当n k =时,左边共有21k -项,当1n k =+时,左边共有121k +-项,左边增加了()()121212k kk+---=项.4. 若f n n()=++++-121314121……,则f k f k ()()+-1等于() A 、1211k +- B 、121211211k k k +++-+ C. 121211k k +-+ D. 121211211k k k ++++-+…… 【答案】D5. 设()x f 是定义在正整数集上的函数,且()x f 满足:“当()1+≥k k f 成立时,总可推出()21+≥+k k f 成立”,那么,下列命题总成立的是 ( ) A .若()21<f 成立,则()1110<f 成立B .若()43≥f 成立,则当1≥k 时,均有()1+≥k k f 成立C .若()32<f 成立,则()21≥f 成立D .若()54≥f 成立,则当4≥k 时,均有()1+≥k k f 成立 【答案】D6. 在应用数学归纳法证明凸n 变形的对角线为)3(21-n n 条时,第一步检验n 等于( ) A.1 B.2 C .3 D .0 【答案】C【解析】因为凸n 变形的n 最小为3,所以第一步检验n 等于3,故选C. 7. 下面四个判断中,正确的是()A .式子1+k +k2+…+kn(n ∈N*)中,当n =1时式子值为1B .式子1+k +k2+…+kn -1(n ∈N*)中,当n =1时式子值为1+kC .式子1+1123++…+121n + (n ∈N*)中,当n =1时式子值为1+1123+ D .设f(x)=111+1231n n n ++++ (n ∈N*),则f(k +1)=f(k)+111323334k k k +++++ 【答案】C8.在数列{an}中,an =1-12+13-14+…+121n --12n,则ak +1等于() A .ak +121k + B .ak +122k +-124k + C .ak +122k + D .ak +121k +-122k + 【答案】D【解析】由于a1=1-12,a2=1-12+13-14,…,ak =1-12+13-14+…+121k --12k∴ak +1=ak +121k +-122k +.故选D. 9. 用数学归纳法证明12+32+52+…+(2n ﹣1)2=n (4n2﹣1)过程中,由n=k 递推到n=k+1时,不等式左边增加的项为( )A .(2k )2B .(2k+3)2C .(2k+2)2D .(2k+1)2【答案】D .10. 用数学归纳法证明(1)(2)()213(21)n n n n n n +++=-····,从k 到1k +,左边需要增乘的代数式为()A.21k +B.2(21)k +C.211k k ++D.231k k ++ 【答案】B二、填空题11. 利用数学归纳法证明“221111n n a a a a a ++-++++=-, (1,a n N ≠∈)”时,在验证1n =成立时,左边应该是 .【答案】21a a ++【解析】用数学归纳法证明“221111n n a a a a a++-++++=-, (1,a n N ≠∈)”时,在验证1n =成立时,将1n =代入,左边以1即0a 开始,以112a a +=结束,所以左边应该是21a a ++.12. 用数学归纳法证明:(31)(1)(2)()2n n n n n n +++++++=*()n N ∈的第二步中,当1n k =+时等式左边与n k =时的等式左边的差等于.【答案】32k +13.用数学归纳法证明2n na b +≥2a b +⎛⎫ ⎪⎝⎭n(a ,b 是非负实数,n ∈N +)时,假设n =k 命题成立之后,证明n =k +1命题也成立的关键是________________.【答案】两边同乘以2a b + 【解析】要想办法出现ak +1+bk +1,两边同乘以2a b +,右边也出现了要证的2a b +⎛⎫ ⎪⎝⎭k +1. 三、解答题14. 数列}{n a 满足)(2*N n a n S n n ∈-=. (1)计算1a ,2a ,3a ,4a ,并由此猜想通项公式n a ;(2)用数学归纳法证明(1)中的猜想.15. 已知数列}{n a 的前n 项和为n S ,且44431--=+n n n a S )(*∈N n ,令nn n a b 4=. (1)求证:数列}{n b 是等差数列,并求数列}{n a 的通项公式;(2)若2)(-=n a n f )(*∈N n ,用数学归纳法证明)(n f 是18的倍数.【解析】(1)当1n =时,4443211--=a S ,∴201=a .当n≥2时,444311--=--n n n a S ,∴n n n n n a a S S 43443311⨯--=---,即n n n a a 4341⨯+=-. ∴344111=-=----n n n n n n a a b b . 即当n≥2时31=--n n b b .∵51=b ,∴数列}{n b 是首项为5,公差为3的等差数列.∴)1(35-+=n b n ,即23+=n b n . ∴n n n a 4)23(+=.16. 若不等式11n ++12n ++…+131n +>24a 对一切正整数n 都成立,猜想正整数a 的最大值,并证明结论.则当n =k +1时,有()111k +++()112k +++…+()1311k ++ =11k ++12k ++…+131k ++132k ++133k ++134k +-11k +>2524+[132k ++134k +-()231k +].因为132k ++134k +=()2619188k k k +++>()231k +, 所以132k ++134k +-()231k +>0,所以当n =k +1时,不等式也成立.由①②知,对一切正整数n,都有11n++12n++…+131n+>2524,所以a的最大值等于25. 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

山东省临沂市2024年数学(高考)统编版模拟(强化卷)模拟试卷

山东省临沂市2024年数学(高考)统编版模拟(强化卷)模拟试卷

山东省临沂市2024年数学(高考)统编版模拟(强化卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题设集合,则( )A.B.C.D.第(2)题圆锥的母线长为4,侧面积是底面积的倍,过圆锥的两条母线作圆锥的截面,则该截面面积的最大值是( )A .8B.C.D.第(3)题在平面直角坐标系中,以下方程对应的曲线,绕原点旋转一定角度之后,可以成为函数图象的是( )A.B.C.D.第(4)题复数满足,则( )A.B.C.D.第(5)题在等比数列中,,则公比q 的值为A .2B .3C .4D .8第(6)题在中,角A ,B ,C 的对边分别为a ,b ,c ,若,则的形状是( )A .等腰三角形或直角三角形B .直角三角形C .等腰三角形D .等边三角形第(7)题△ABC 中,A=,BC =3,则△ABC 的周长为( )A.B.C.D.第(8)题已知与的夹角为,则( )A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题边长为的正三角形ABC 三边AB 、AC 、BC 的中点分别为D 、E 、F ,将三角形ADE 沿DE 折起形成四棱锥,则下列结论正确的是( )A.四棱锥体积最大值为B.当时,平面平面PEFC.四棱锥总有外接球D .当时,四棱锥外接球半径有最小值第(2)题已知定义在R上的偶函数的图像是连续的,,在区间上是增函数,则下列结论正确的是( )A.的一个周期为6B.在区间上单调递减C.的图像关于直线对称D.在区间上共有100个零点第(3)题正方体中,,分别是棱,上的动点(不含端点),且,则()A.与的距离是定值B.存在点使得和平面平行C.D.三棱锥的外接球体积有最小值三、填空(本题包含3个小题,每小题5分,共15分。

山东省临沂市2024年数学(高考)统编版模拟(综合卷)模拟试卷

山东省临沂市2024年数学(高考)统编版模拟(综合卷)模拟试卷

山东省临沂市2024年数学(高考)统编版模拟(综合卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题双曲线的两顶点为,虚轴两端点为,两焦点为,若以为直径的圆内切于菱形,则双曲线的离心率是A.B.C.D.第(2)题已知复数z满足,(i是虚数单位),则复数z在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(3)题将6本相同的数学书和2本相同的语文书随机排成一排,2本语文书不相邻的概率为()A.B.C.D.第(4)题已知集合或,,则()A.B.C.D.第(5)题已知向量、、满足,若对于每一个确定的的最大值和最小值分别为、,则对于任意的,的最小值为()A.B.C.D.第(6)题袋子中有大小相同的个白球和个红球,从中任取个球,已知个球中有白球,则恰好拿到个红球的概率为()A.B.C.D.第(7)题从某班名同学中选出人参加户外活动,利用随机数表法抽取样本时,先将名同学按、、、进行编号,然后从随机数表第一行的第列和第列数字开始往右依次选取两个数字,则选出的第个同学的编号为()0347437386369647366146986371629774246292428114572042533237321676(注:表中的数据为随机数表第一行和第二行)A.B.C.D.第(8)题过抛物线的焦点,作倾斜角为的直线交于,两点,交的准线于点,若(为坐标原点),则线段的长度为()A.8B.16C.24D.32二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知点P在双曲线C:上,,分别是双曲线C的左、右焦点,若的面积为20,则()A.点P到x轴的距离为B.C.为钝角三角形D.第(2)题设有一组圆,,下列四个命题正确的是()A.存在,使得圆与轴相切B.存在,使得圆与圆有公共点C.存在一条直线与所有的圆均相交D.存在,使得圆经过原点第(3)题已知,且则()A.B.C.D.三、填空(本题包含3个小题,每小题5分,共15分。

云南省丽江市2024高三冲刺(高考数学)部编版模拟(备考卷)完整试卷

云南省丽江市2024高三冲刺(高考数学)部编版模拟(备考卷)完整试卷

云南省丽江市2024高三冲刺(高考数学)部编版模拟(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知中,内角,,满足,则()A.B.C.D.第(2)题儿童手工制作(DIY)对培养孩子的专注力、创造力有很大的促进作用.如图,在某节手工课上,小明将一张半径为2cm的半圆形剪纸折成了一个圆锥(无裁剪无重叠),接着将毛线编制成一个彩球,放置于圆锥底部,制作成一个冰淇淋模型.已知彩球的表面积为,则该冰淇淋模型的高(圆锥顶点到球面上点的最远距离)为()A.B.C.6cm D.第(3)题已知直线和圆满足对直线上任意一点,在圆上存在点,使得,则实数的取值范围是()A.B.C.D.第(4)题中国古代制定乐律的生成方法是最早见于《管子·地员篇》的三分损益法,三分损益包含两个含义:三分损一和三分益一.根据某一特定的弦,去其,即三分损一,可得出该弦音的上方五度音;将该弦增长,即三分益一,可得出该弦音的下方四度音.中国古代的五声音阶:宫、徵(zhǐ),商、羽、角(jué),就是按三分损一和三分益一的顺序交替,连续使用产生的.若五音中的“宫”的律数为81,请根据上述律数演算法推算出“羽”的律数为()A.72B.48C.54D.64第(5)题已知(是虚数单位)的共轭复数为,则在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(6)题如图,水利灌溉工具筒车的转轮中心到水面的距离为,筒车的半径是,盛水筒的初始位置为与水平正方向的夹角为.若筒车以角速度沿逆时针方向转动,为筒车转动后盛水筒第一次到达入水点所需的时间(单位:),则()A.B.C.D.第(7)题若是夹角为的两个单位向量,与垂直,则()A.B.C.D.第(8)题已知集合,,则()A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设是抛物线弧上的一动点,点是的焦点,,则( )A .B .若,则点的坐标为C .的最小值为D .满足面积为的点有2个第(2)题将一个直径为的铁球磨制成一个零件,能够磨制成的零件可以是( )A .底面直径为,高为的圆柱体B .底面直径为,高为的圆锥体C .底面直径为,高为的圆锥体D .各棱长均为的四面体第(3)题已知,则( )A .B .C .D .三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题是虚数单位,复数________.第(2)题已知函数,则的对称中心为____.第(3)题已知数列与的前项和分别为,,且, ,,,则的取值范围是__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题平面直角坐标系中,曲线C 的参数方程为,(为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,射线l 的极坐标方程为,将射线l 绕点逆时针旋转后,得到射线,若射线l ,分别与曲线C 相交于点A ,点B .(1)求曲线C 的极坐标方程;(2)求的最小值.第(2)题如图,四棱锥中,底面为矩形且垂直于侧面,为的中点,,.(1)证明:平面;(2)侧棱上是否存在点E ,使得平面与平面夹角的余弦值为,若存在,求的值;若不存在,说明理由.第(3)题,,,.(1)若在点处的切线方程为,求实数,的值;(2)当时,的图象与的图象在内有两个不同的公共点,求实数的取值范围.第(4)题某公园计划改造一块四边形区域ABCD铺设草坪,其中百米,百米,,,草坪内需要规划4条人行道DM、DN、EM、EN以及两条排水沟AC、BD,其中M、N、E分别为边BC、AB、AC的中点.(1)若,求排水沟BD的长;(2)若,试用表示4条人行道的总长度.第(5)题李先生是一名上班族,为了比较上下班的通勤时间,记录了20天个工作日内,家里到单位的上班时间以及同路线返程的下班时间(单位:分钟),如下茎叶图显示两类时间的共40个记录:(1)求出这40个通勤记录的中位数M,并完成下列2×2列联表:超过M不超过M上班时间下班时间(2)根据列联表中的数据,请问上下班的通勤时间是否有显著差异?并说明理由.附:,,。

山东省济南市(新版)2024高考数学人教版模拟(强化卷)完整试卷

山东省济南市(新版)2024高考数学人教版模拟(强化卷)完整试卷

山东省济南市(新版)2024高考数学人教版模拟(强化卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,关于的方程有个不等实数根,则实数的取值范围是( )A .B .C .D .第(2)题已知分别是双曲线的左、右焦点,过的直线与双曲线C 的右支交于A ,B 两点,△和△的内心分别为M ,N ,则的取值范围是( )A .B .C .D .第(3)题函数在上的大致图象为( )A .B .C .D .第(4)题已知函数恒有零点,则实数k 的取值范围是( )A.B .C .D .第(5)题祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夿圮个丰幹衒幹靨闺皊个丰処佛余﹦袱幹衒五迟个丰幹衒幹靨皊幹靨扆戰﹦妈枢戰徝个丰戰靨皊靨秵恁盾筏﹦邩乎迟个丰処佛余皊余秵盾筏.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为),其中:三棱锥的底面是正三角形(边长为),四棱锥的底面是有一个角为的菱形(边长为),圆锥的体积为,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是A .B .C .D .第(6)题设集合,则( )A .B .C .D .第(7)题8位选手参加射击比赛, 最终的成绩(环数) 分别为42,38,45,43,41,47,44,46,其分位数是( )A .44.5B .45C .45.5D .46第(8)题设全集,集合,则( )A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知数列满足,则下列说法正确的是()A.B.数列为递减数列C.数列为等差数列D.第(2)题若复数满足(其中i是虚数单位),则()A.的虚部为B.的模为C.的共轭复数为D.在复平面内对应的点位于第四象限第(3)题在平面直角坐标系中,已知抛物线的焦点为F,准线l与x轴的交点为A,点M,N在C上,且,则()A.B.直线MN的斜率为C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题观察下列等式:;;;;……照此规律,________.第(2)题设,则满足的x的取值范围为______.第(3)题设i是虚数单位,则复数的虚部是________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数(1)若讨论的单调性;(2)当时,若函数与的图象有且仅有一个交点,求的值(其中表示不超过的最大整数,如.参考数据:第(2)题如图,在三棱柱中,为底面的重心,点分别在棱上,且(1)求证:平面;(2)若底面,且三棱柱的各棱长均相等,求平面与平面DOG的夹角的余弦值.第(3)题如图,线段是圆柱的母线,是圆柱下底面的直径.(1)弦上是否存在点,使得∥平面,请说明理由;(2)若,,求点到平面的距离.第(4)题已知函数,其中.(1)若曲线在处的切线与直线平行,求a的值.(2)若函数在定义域内单调递减,求a的取值范围.(3)若不等式对恒成立,求a的取值范围.第(5)题如图,在棱长为4的正方体中,为的中点,过,,三点的平面与此正方体的面相交,交线围成一个多边形.(1)在图中画出这个多边形(不必说出画法和理由);(2)平面将正方体分成两部分,求这两部分的体积之比(其中);(3)若点是侧面内的动点,且,当最小时,求三棱锥的外接球的表面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷【考情解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【重点知识梳理】 1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a =(x1,y1),b =(x2,y2),则a +b =(x1+x2,y1+y2),a -b =(x1-x2,y1-y2),λa =(λx1,λy1),|a|=x21+y21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则AB →=(x2-x1,y2-y1),|AB →|=(x2-x1)2+(y2-y1)2. 3.平面向量共线的坐标表示设a =(x1,y1),b =(x2,y2),则a ∥b ⇔x1y2-x2y1=0. 【高频考点突破】考点一 平面向量基本定理的应用【例1】 (1)在△ABC 中,点D 在边AB 上,CD 平分∠ACB.若CB →=a ,CA →=b ,|a|=1,|b|=2,则CD →=()A.13a +23bB.23a +13bC.35a +45bD.45a +35b(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 (1)B(2)12规律方法 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【变式探究】如图,两块斜边长相等的直角三角板拼在一起,若AD →=xAB →+yAC →,则x =________,y =________.答案 1+3232考点二 平面向量的坐标运算【例2】 (1)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =() A .(-2,-1) B .(-2,1) C .(-1,0) D .(-1,2)(2)在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=() A .(-2,-4) B .(-3,-5) C .(3,5) D .(2,4)答案 (1)D(2)B规律方法 向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.【变式探究】 (1)已知点A(-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为() A .(7,4) B .(7,14) C .(5,4) D .(5,14)(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于()A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)答案(1)D(2)B考点三向量共线的坐标表示【例3】平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).(1)若(a+kc)∥(2b-a),求实数k;(2)若d满足(d-c)∥(a+b),且|d-c|=5,求d的坐标.规律方法(1)两平面向量共线的充要条件有两种形式:①若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0;②若a∥b(a≠0),则b=λa.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【变式探究】(1)已知梯形ABCD,其中AB∥CD,且DC=2AB,三个顶点A(1,2),B(2,1),C(4,2),则点D的坐标为________.(2)已知向量a=(3,1),b=(1,3),c=(k,7),若(a-c)∥b,则k=________.答案 (1)(2,4)(2)5【真题感悟】1.【高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4) 【答案】A2.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b)⊥c ,则实数k =( )A .-92 B .0 C .3 D.152 【答案】C3.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e1=(0,0),e2=(1,2) B .e1=(-1,2),e2=(5,-2) C .e1=(3,5),e2=(6,10) D .e1=(2,-3),e2=(-2,3) 【答案】B4.(·山东卷) 已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图像向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图像,若y =g(x)图像上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.5.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 【答案】126.(·陕西卷) 在直角坐标系xOy 中,已知点A(1,1),B(2,3),C(3,2),点P(x ,y)在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.7.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A.2 2 B.2 3C.4 2 D.4 3【答案】D8.(·湖南卷)已知a,b是单位向量,a·b=0,若向量c满足|c-a-b|=1,则|c|的取值范围是()A.[2-1,2+1] B.[2-1,2+2]C.[1,2+1] D.1,2+2【答案】A9.(·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.图1-3 【答案】410.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 【答案】A11.(·天津卷) 在平行四边形ABC D 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.【答案】1212.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 【答案】213.(·重庆卷)如图1-9所示,椭圆的中心为原点O,长轴在x轴上,离心率e=22,过左焦点F1作x轴的垂线交椭圆于A,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P,P′,过P,P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外,若PQ⊥P′Q,求圆Q的标准方程.图1-914.(·重庆卷) 在平面上,AB1→⊥AB2→,|OB1|=|OB2→|=1,AP →=AB1→+AB2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝ ⎛⎦⎥⎤0,52B.⎝ ⎛⎦⎥⎤52,72 C.⎝⎛⎦⎥⎤52,2D.⎝ ⎛⎦⎥⎤72,2【答案】D【押题专练】1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=()A .b -12aB .b +12aC .a +12bD .a -12b【答案】A2.已知在▱ABCD 中,AD →=(2,8),AB →=(-3,4),对角线AC 与BD 相交于点M ,则AM →= ()A.⎝⎛⎭⎫-12,-6B.⎝⎛⎭⎫-12,6C.⎝⎛⎭⎫12,-6D.⎝⎛⎭⎫12,6答案 B3.已知向量a =(-1,2),b =(3,m),m ∈R ,则“m =-6”是“a ∥(a +b)”的 ()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案 A4.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于()A .-12a +32b B.12a -32b C .-32a -12bD .-32a +12b答案 B5.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2 PA →,则 ()A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A6.已知向量a =(1,2),b =(x ,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.答案 127.若三点A(2,2),B(a ,0),C(0,b)(ab≠0)共线,则1a +1b 的值为________.答案 128.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ=________.答案 49.已知A(-2,4),B(3,-1),C(-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.10.如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.11.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设向量p =(a +c ,b),q =(b -a ,c -a),若p ∥q ,则角C 的大小为() A .30°B .60°C .90°D .120°答案 B12.在平面直角坐标系xOy 中,已知A(1,0),B(0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,且|OC|=2,若OC →=λOA →+μOB →,则λ+μ=() A .2 2 B. 2 C .2 D .42答案 A13.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________.答案 m≠5414.如图,已知点A(1,0),B(0,2),C(-1,-2),求以A ,B ,C 为顶点的平行四边形的第四个顶点D 的坐标.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

相关文档
最新文档