小升初奥数计算练习题精编版
小升初奥数题必考100道及答案(完整版)
小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。
求原两位数。
答案:设原两位数个位上的数字为x,则十位上的数字为2x。
原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。
根据题意可得:21x + 12x = 132,33x = 132,x = 4。
所以原两位数为84。
题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。
小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。
50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。
路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。
1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。
题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。
第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。
第二车间人数为0.75x×3/7 = 9/28 x。
0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。
题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。
这桶油有多少千克?答案:设这桶油有x 千克。
小升初50道经典奥数题及答案详细解析精编版
小升初50道经典奥数题及答案详细解析1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。
小升初奥数题大全100道附答案(完整版)
小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。
原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。
所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。
每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。
经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。
这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。
按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。
三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。
小升初奥数题集锦及答案(全面)
小升初奥数题集锦及答案(全面)1、某市小学数学竞赛,不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍。
求参赛的总人数。
解:设不低于80分的人数为4x+2,80分以下的人数为x,及格的人数为4x+24,不及格的人数为x/6.因为总人数为不低于80分的人数加上80分以下的人数,即4x+2+x=5x+2,所以总人数为5x+2.又因为及格的人数比不低于80分的人数多22人,即4x+24=5x+2+22,解得x=44.所以总人数为5x+2=222.2、一张电影票原价为x元,根据题意可列出方程:(x-3)*1.5=1.2x,解得x=15,所以一张电影票原价为15元。
3、设乙的存款为y元,则甲的存款为9600-y元。
根据题意可列出方程:9600*0.6-120=(9600-y)*0.6,解得y=3600,所以乙的存款为3600元。
4、设原混合糖中有奶糖x颗,巧克力糖y颗。
根据题意可列出方程组:y+10=0.6(x+10+y)y+30=0.75(x+10+y)解得x=60,y=90,所以原混合糖中有60颗奶糖,90颗巧克力糖。
5、设XXX原有玻璃球为x个,则XXX原有玻璃球为3x/4,根据题意可列出方程:x/6=(3x/4+2)-x,解得x=24,所以XXX原有玻璃球24个。
6、设丙帮助甲的时间为x小时,帮助乙的时间为y小时,则可列出方程组:10/x+12/y=110/(x+y)+12/(x+y)+15/(x+y)=1解得x=20,y=30,所以丙帮助甲10小时,帮助乙12小时。
7、设全部工作需要的时间为x天,则可列出方程组:1/72)+(1/72+1/48)*2+(1/72+1/48+1/28)*4/3=1/31/72)+(1/72+1/48)*3+(1/72+1/48+1/28)*4/3+8=(5/6)*x1/72+1/48+1/28)*2/3=(1/72+1/48+1/28+1/x)*1/6解得x=72,所以余下的工作由丙单独完成需要36天。
小升初奥数50道经典奥数题及答案解析
小升初奥数50道经典奥数题及答案解析1. 一个数的百分之一比这个数的百分之10小9,这个数是多少?解析:假设这个数为x,则百分之一可以表示为0.01x,百分之10可以表示为0.1x。
根据题意可得0.01x = 0.1x - 9。
整理得到0.09x = 9,解得x = 100。
2. 假设一个数的百分之一是3,这个数是多少?解析:可以设这个数为x,则百分之一可以表示为0.01x。
根据题意可得0.01x = 3,解得x = 300。
3. 4的百分之一是多少?解析:可以直接计算得到4的百分之一为0.04。
4. 假设一个数的百分之一是0.02,这个数是多少?解析:设这个数为x,则百分之一可以表示为0.01x。
根据题意可得0.01x = 0.02,解得x = 2。
5. 判断下列四个小数哪一个是最小的?0.01,0.1,0.02,0.2。
解析:可以将四个小数都化为百分数进行比较。
0.01 = 1%,0.1 = 10%,0.02 = 2%,0.2 = 20%。
显然,1%是最小的。
6. 在数的添加、减少、乘法和除法中,哪种运算是无法实现负数的?解析:除法无法实现负数,因为任何数除以0都是无意义的。
7. 将0.35表示成分数形式。
解析:0.35可以表示为35/100,然后将分数进行约分得到7/20。
8. 填入下面的括号中:(2-3)÷(-2)=()。
解析:(2-3)÷(-2) = -1/(-2) = 1/2。
9. 计算:(-2)+3-5×(-4)÷(-2)。
解析:根据运算法则,先进行乘法和除法,再进行加法和减法。
(-2)+3-5×(-4)÷(-2) = (-2)+3-20÷(-2) = (-2)+3-(-10) = (-2)+3+10 = 11。
10. 计算:(-12)-0.5×(2-3)+4÷2。
解析:先进行括号内的运算,(-12)-0.5×(2-3)+4÷2 = (-12)-0.5×(-1)+4÷2 = (-12)-(-0.5)+4÷2 = (-12)+0.5+2 = -9.5。
六年级小升初奥数题100例附答案(完整版)
六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。
x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。
题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。
所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。
小升初数学常考奥数题100道附答案(完整版)
小升初数学常考奥数题100道附答案(完整版)1. 计算:1+2-3-4+5+6-7-8+9+10-11-12+...+2017+2018-2019-2020答案:-2020思路:每4 个数的计算结果为-4,2020÷4 = 505,所以结果为-4×505 = -20202. 某数除以4 余3,除以5 余2,除以6 余1,这个数最小是多少?答案:57思路:满足除以4 余3 的数有3、7、11、15、19...;满足除以5 余2 的数有2、7、12、17、22...;满足除以6 余1 的数有1、7、13、19、25...。
所以这个数最小是573. 鸡兔同笼,鸡比兔多15 只,共有脚180 只,鸡兔各有多少只?答案:鸡45 只,兔30 只思路:设兔有x 只,则鸡有x + 15 只。
4x + 2×(x + 15) = 180,解得x = 30,鸡有45 只4. 一个数减去7 的差再乘以7,所得的结果与它减去13 的差再乘以13 的结果相同,这个数是多少?答案:20思路:设这个数为x,(x - 7)×7 = (x - 13)×13,解得x = 205. 甲乙两人同时从A、B 两地相向而行,第一次在离A 地75 千米处相遇,相遇后继续前进,到达目的地后又立即返回,第二次在离 B 地55 千米处相遇,A、B 两地相距多少千米?答案:170 千米思路:第一次相遇时,甲走了75 千米,两人共走了一个全程;第二次相遇时,两人共走了三个全程,所以甲走了75×3 = 225 千米,此时甲走了一个全程多55 千米,所以全程为225 - 55 = 170 千米6. 一个长方体,如果高增加2 厘米,就变成一个正方体,这时表面积比原来增加56 平方厘米,原来长方体的体积是多少?答案:441 立方厘米思路:增加的表面积是4 个相同的长方形的面积,一个面的面积为56÷4 = 14 平方厘米,长方形的长(即正方体的棱长)为14÷2 = 7 厘米,原长方体高为7 - 2 = 5 厘米,体积为7×7×5 = 245 立方厘米7. 有三根铁丝,一根长54 米,一根长72 米,一根长36 米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?答案:18 米思路:求54、72、36 的最大公因数,为188. 一个最简分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是2/3,原来的分数是多少?答案:21/29思路:设分子为x,则分母为50 - x,(x - 5) / (50 - x - 5) = 2 / 3,解得x = 21,分数为21/299. 小明买了3 支铅笔和2 支钢笔,共用去22 元,钢笔的单价是铅笔的6 倍,钢笔和铅笔的单价各是多少元?答案:钢笔12 元,铅笔2 元思路:设铅笔单价为x 元,则钢笔单价为6x 元,3x + 2×6x = 22,解得x = 2,钢笔单价12 元10. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩16 千克,这桶油有多少千克?答案:60 千克思路:设这桶油有x 千克,x - 1/5x - 1/5x - 20 = 16,解得x = 6011. 某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第三车间少40 人,三个车间共有多少人?答案:560 人思路:设总人数为x 人,第三车间人数为3/7×(3/4x + x),则3/7×(3/4x + x) - 1/4x = 40,解得x = 56012. 学校组织数学竞赛,按参赛人数的1/5 颁奖,分设一、二、三等奖,已知获二等奖的人数比一等奖多20 人,且获二等奖的人数是三等奖的4/5,一共有多少人参赛?答案:1500 人思路:设参赛总人数为x 人,二等奖人数为1/5x×4/9,一等奖人数为1/5x×1/9,1/5x×4/9 - 1/5x×1/9 = 20,解得x = 150013. 有一堆糖果,其中奶糖占45%,再放入16 块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?答案:9 块思路:设原来糖果总数为x 块,45%x = 25%(x + 16),解得x = 20,奶糖有45%×20 = 9 块14. 修一条路,已修的和未修的长度比是1∶3,再修300 米后,已修的和未修的长度比是1∶2,这条路全长多少米?答案:3600 米思路:设已修的长度为x 米,未修的长度为3x 米,(x + 300) / (3x - 300) = 1 / 2,解得x = 900,全长4x = 3600 米15. 甲、乙两仓库存货吨数比为4∶3,如果从甲库中取出8 吨放到乙库中,则甲、乙两仓库存货吨数比为4∶5,两仓库原存货总吨数是多少吨?答案:63 吨思路:设甲仓库原存货4x 吨,乙仓库原存货3x 吨,(4x - 8) / (3x + 8) = 4 / 5,解得x = 9,总吨数7x = 63 吨16. 在一个底面半径是10 厘米的圆柱形杯中装水,在水中放一底面半径为5 厘米的圆锥形铝锤,使铝锤全部被水淹没,当铝锤从杯中取出后,杯里水面下降了 5 毫米,求铝锤的高是多少厘米?答案:6 厘米思路:下降的水的体积等于圆锥形铝锤的体积,3.14×10×10×0.5 = 1/3×3.14×5×5×h,解得h = 6 厘米17. 一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1 小时到达,如果以原速行驶120 千米后,再将速度提高25%,则可提前40 分钟到达,那么甲、乙两地相距多少千米?答案:270 千米思路:设原速度为v,原时间为t,vt = 1.2v×(t - 1),解得t = 6 小时。
小升初奥数精讲精练500题
小升初奥数精讲精练500题100题精讲(一)数论------100题数论(1)例题1:(第7题)一个三位数是3的倍数,去掉它的个位数字后,所得的两位数是17的倍数。
这个三位数最大是____。
例题2:(第8题)将被11除余1,被15除余12的自然数按从小到大的顺序排成一列:a1,a2,a3,……,则a1=____;若a m-1<2011<a m,则m=_____。
例题3:(第15题)请选择一个你喜欢的两位数,将它连续写5遍组成一个十位数(如:两位数12连续写5遍成为1212121212),将这个十位数除以这个两位数,所得到的商再除以9,所得的余数是_____。
例题4:(第18题)六年级1班有30多人,个子最高的小明发现,放学站队时无论是2人、还是3人或者4人站成一排,他都只能自己单独站在最后,没有人与他站一排。
则六年级1班共有_____人。
例题5:(第46题)如果现在是上午的10点21分,那么经过2879……9(共20个9)分钟之后的时间是____点____分。
100题精讲(一)数论------ 100题数论(2)例题1:(第49题)一个六位数的末位数字是2,如果将2移到首位,则原数就是新数的3倍。
原数是_____。
例题2:(第53题)有一个两位数,如果用它除以它的个位数字,商9余6;如果用它除以个位数字与十位数字的和,商5余3。
这个两位数是_____。
例题3:(第54题)一串数的前4项分别是2、0、1、0,从第5项开始,每一项都是它前面4项数字和的个位数字,那么该数列中_____(填“会”或“不会”)出现2、0、1、1连续4项。
例题4:(第64题)有三箱螺帽,其中第一个箱子里有303只螺帽,第二个箱子里的螺帽是全部螺帽的,第三个箱子里的螺帽是全部螺帽的7(n是自然数)。
则第三个箱子里有螺帽_____只。
例题5:(第74题)由2011个9组成的多位数999……99除以74所得余数是_____。
100题精讲(一)数论------ 100题数论(3)例题1:(第75题)小萌在超市买了3种糖果,其中红色糖果每粒8分,绿色糖果每粒1角,黄色糖果每粒2角,她共付了1元2角2分。
小升初最常考奥数题100道及答案(完整版)
小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。
小升初奥数题及答案修订版
小升初奥数题及答案集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]1、某次数学测验共20题,作对1题得5分,做错1题扣1分,不做得0分,小华得了76分,他对了多少题20-(20×5-76)÷(5+1)=16(道)2、一班有学生45人,男生2/5和女生的1/4参加了数学竞赛,参赛的共有15人,男女生各几人解:设男生有x人,则女生有(45-x)。
2/5x+1/4(45-x)=1 5 2/5x+4/45-4/x=1 5 x=2 5 女生:45-25=20(人)3、一列火车长200米,通过一条长430的隧道用了42秒,以同样的速度通过某站台用25秒,这个站台长多少米(200+430)÷42×25-200 =375-200 =175米4、一项工作,甲单独做需15天完成,乙单独做需12天完成。
这项工作由甲乙两人合做,并且施工期间乙休息7天,问几天完成解:设完成工作要X天,所以甲乙一起工作(X-6)天,甲单独工作6天。
根据题意可得甲单独一天可完成1/15.乙1/12,由此得式子:(1/15+1/12)(X-6)+1/15*6= 1解得X=105、本骑车前往一座城市,去时的速度为x,回来时的速度为y。
他整个行程的平均速度是多少(答案是2x y/x+y,为什么)解:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y那么平均速度为2S/(S/X+S/Y)=2/(1/X+1/Y)=2X Y/(X+Y)6、游泳池里,参加游泳的学生,小学生占30%,又来一批学生后,学生总数增加20%,小学生占学生总数的40%,小学7、将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数多12,求甲、乙、丙各是几解:把1440分解质因数:1440=12×12×10 =2×2×3×2×2×3×2×5=(2×2×2)×(3×3)×(2×2×5)=8×9×20如果甲、乙二数分别是8、9,丙数是20,则:8×9=72,20×3+12=72正符合题中条件。
小升初数学必考奥数题100道附答案(完整版)
小升初数学必考奥数题100道附答案(完整版)题目1:有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄乘积是360。
他们中年龄最大的是多少岁?答案:将360 分解因数,360 = 2×2×2×3×3×5 = 3×4×5×6,所以年龄最大的是6 岁。
题目2:计算:1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +…+ 2014 - 2015 - 2016 + 2017 + 2018答案:原式= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +…+ (2013 + 2014 - 2015 - 2016) + 2017 + 2018 = 2017 + 2018 = 4035题目3:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成?答案:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要6 天完成。
题目4:在一个比例中,两个外项互为倒数,其中一个内项是2.5,另一个内项是多少?答案:两个外项互为倒数,乘积为1。
根据比例的性质,两个内项的积也为1,所以另一个内项是1÷2.5 = 0.4题目5:一个数除以8 余5,除以9 余6,这个数最小是多少?答案:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数最小是72 - 3 = 69题目6:一个圆形花坛的周长是25.12 米,在它的周围加宽1 米,加宽后的面积比原来增加了多少平方米?答案:原来花坛的半径为25.12÷3.14÷2 = 4 米,加宽后的半径为5 米。
增加的面积为3.14×(5²- 4²) = 28.26 平方米题目7:一个长方体的棱长总和是120 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少立方厘米?答案:120÷4 = 30 厘米,3 + 2 + 1 = 6,长为15 厘米,宽为10 厘米,高为5 厘米,体积为750 立方厘米题目8:甲乙两车同时从A、B 两地相对开出,4 小时后相遇。
小升初数学奥数题120道附带完整答案
小升初数学奥数题120道附带完整答案1. 某数加上6,乘以6,减去6,除以6,其结果等于6,求这个数。
答案:1。
解题思路:从后向前来推算,“除以6,结果等于6”,则前一个数是6×6=36;“减去6 等于36”,则前一个数是36+6=42;“乘以6 等于42”,则前一个数是42÷6=7;“加上6 等于7”,所以这个数是7-6=1。
2. 两支蜡烛,第一支4 小时燃尽,第二支3 小时燃尽,如果同时点燃这两支蜡烛,问多长时间后第一支蜡烛的长度是第二支蜡烛的2 倍?答案:12/5 小时。
解题思路:把蜡烛的长度看作单位“1”,第一支蜡烛每小时燃烧1/4,第二支蜡烛每小时燃烧1/3,设x 小时后第一支蜡烛的长度是第二支蜡烛的 2 倍,可列出方程1-x/4=2×(1-x/3),解得x=12/5。
3. 一个最简分数,如果分子加1,分数值就等于1,如果分母加1,分数值就等于2/3,求原来这个分数。
答案:4/5。
解题思路:设分子为x,分母为y,根据条件可列方程组(x+1)/y=1,x/(y+1)=2/3,解方程组可得x=4,y=5,所以原来的分数是4/5。
4. 甲、乙两车分别从A、B 两地同时出发相向而行,它们的速度比是2:3,在途中相遇后,甲车速度提高20%,乙车速度不变,当乙车到达A 地时,甲车距B 地还有28 千米,求A、B 两地相距多少千米?答案:180 千米。
解题思路:相遇时甲乙所行路程比也是2:3,设全程为 5 份,相遇后乙行2 份到 A 地,甲行2×(1+20%)=2.4 份,那么3-2.4=0.6 份是28 千米,一份是28÷0.6=140/3 千米,全程5 份就是140/3×5=700/3=180 千米。
5. 有含盐8%的盐水40 千克,要配制成含盐20%的盐水,需加盐多少千克?答案:6 千克。
解题思路:原来盐水中盐的质量为40×8%=3.2 千克,设加盐x 千克,可列出方程(3.2+x)/(40+x)=20%,解得x=6。
小升初奥数竞赛题100例附答案(完整版)
小升初奥数竞赛题100例附答案(完整版)1. 计算:2 + 4 + 6 + 8 + …+ 100解:这是一个等差数列求和,项数= (100 - 2)÷2 + 1 = 50和= (2 + 100)×50 ÷2 = 2550答:25502. 若a△b = a×b - a + b,计算5△3解:5△3 = 5×3 - 5 + 3 = 13答:133. 一本书,已看页数与未看页数之比是3 : 5,再看30 页,已看页数与未看页数之比是2 : 3,这本书共有多少页?解:30÷(2/5 - 3/8)= 1200(页)答:1200 页4. 甲、乙、丙三个数的比是5 : 3 : 4,甲数是20,乙数比丙数少多少?解:乙数:20÷5×3 = 12丙数:20÷5×4 = 16乙数比丙数少:16 - 12 = 4答:45. 一个圆柱的底面半径是4 厘米,高是6 厘米,它的侧面积是多少平方厘米?解:侧面积= 2×3.14×4×6 = 150.72(平方厘米)答:150.72 平方厘米6. 一项工程,甲队单独做10 天完成,乙队单独做15 天完成,两队合作几天能完成这项工程的一半?解:1/2÷(1/10 + 1/15)= 3(天)答:3 天7. 有浓度为30%的糖水200 克,要使浓度变为40%,需蒸发掉多少克水?解:糖的质量:200×30% = 60(克)后来糖水质量:60÷40% = 150(克)蒸发掉水:200 - 150 = 50(克)答:50 克8. 一圆形花坛周长36 米,每隔6 米种一棵月季花,在相邻两棵月季花之间种两棵菊花,一共种了多少棵花?解:月季花:36÷6 = 6(棵)菊花:6×2 = 12(棵)共种:6 + 12 = 18(棵)答:18 棵9. 鸡兔共有20 只,脚有56 只,鸡兔各有多少只?解:假设全是鸡,脚有20×2 = 40 只兔:(56 - 40)÷(4 - 2)= 8(只)鸡:20 - 8 = 12(只)答:鸡12 只,兔8 只10. 把一个棱长8 厘米的正方体木块削成一个最大的圆柱,圆柱的体积是多少?解:半径= 8÷2 = 4(厘米)体积= 3.14×4²×8 = 401.92(立方厘米)答:401.92 立方厘米11. 某商品进价100 元,按20%的利润定价,然后打九折出售,赚了多少钱?解:定价:100×(1 + 20%)= 120(元)售价:120×90% = 108(元)利润:108 - 100 = 8(元)答:8 元12. 甲乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行70 千米,乙车每小时行80 千米,3 小时后两车相距60 千米,A、B 两地相距多少千米?解:(70 + 80)×3 + 60 = 450 + 60 = 510(千米)答:510 千米13. 小明读一本书,第一天读了全书的1/5,第二天读了28 页,这时读的页数与剩下页数的比是5 : 6,这本书有多少页?解:两天读了全书的5/(5 + 6)= 5/11全书页数:28÷(5/11 - 1/5)= 110(页)答:110 页14. 在200 克水中加入50 克盐,盐水的含盐率是多少?解:50÷(200 + 50)×100% = 20%答:20%15. 一个数的3/4 比它的40%多70,这个数是多少?解:70÷(3/4 - 40%)= 200答:20016. 修一条路,已修的和未修的长度比是3 : 5,如果再修12 千米,已修的和未修的长度比是9 : 11,这条路全长多少千米?解:原来已修的占全长的3/(3 + 5)= 3/8后来已修的占全长的9/(9 + 11)= 9/20全长:12÷(9/20 - 3/8)= 160(千米)答:160 千米17. 一个圆锥形麦堆,底面直径6 米,高1.2 米。
小升初奥数题精选(10篇)
小升初奥数题精选(10篇)1.小升初奥数题精选篇一1、甲、乙两列火车同时从两地相向开出,甲车每小时行50千米,乙车每小时行60千米。
两车相遇时,甲车正好走了300千米,两地相距多少千米?答【分析】相遇时甲走了300千米,所以甲走了300÷50=6时,这6时正好是甲、乙两车的相遇时间,两地的距离(50+60)×6=660千米。
2、甲、乙两列火车同时从相距380千米的两地相向开出,甲车每小时行50千米,乙车每小时行60千米。
乙车比甲车晚出发1小时,乙车出发后,甲、乙两车几小时相遇?解答:乙车晚出发1小时,则乙车出发时甲已经行驶了50×1=50千米,此时甲、乙两车的距离是380-50=330千米,所以乙车出发后,相遇时间为330÷(50+60)=3小时。
2.小升初奥数题精选篇二1、学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。
三个年级段各分得多少本图书?设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本x+2x+3x-120=8406x-120=8406x=840+1206x=960x=960/6x=160高年级段为:160*2=320(本)中年级段为:160*3-120=360(本)答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本。
2、学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。
现在田径组有女生多少人?解:设原来田径队男女生一共x人1/3x+6=4/9(x+6)x=301/3x+6=30*1/3+6=16女生16人3.小升初奥数题精选篇三1、一个两位数除72,余数是12,那么满足要求的所有两位数有几个?分别是多少?解答:由题意知,所求的两位数应是7212=60的约数,还应大于12。
在60的约数中,两位数有10、12、15、20、30、60这六个数,大于12的有:15、20、30、60这四个数。
小升初奥数精讲精练500题
小升初奥数精讲精练500题100题精讲(一)数论------100题数论(1)例题1:(第7题)一个三位数是3的倍数,去掉它的个位数字后,所得的两位数是17的倍数。
这个三位数最大是____。
例题2:(第8题)将被11除余1,被15除余12的自然数按从小到大的顺序排成一列:a1,a2,a3,……,则a1=____;若a m-1<2011<a m,则m=_____。
例题3:(第15题)请选择一个你喜欢的两位数,将它连续写5遍组成一个十位数(如:两位数12连续写5遍成为1212121212),将这个十位数除以这个两位数,所得到的商再除以9,所得的余数是_____。
例题4:(第18题)六年级1班有30多人,个子最高的小明发现,放学站队时无论是2人、还是3人或者4人站成一排,他都只能自己单独站在最后,没有人与他站一排。
则六年级1班共有_____人。
例题5:(第46题)如果现在是上午的10点21分,那么经过2879……9(共20个9)分钟之后的时间是____点____分。
100题精讲(一)数论------ 100题数论(2)例题1:(第49题)一个六位数的末位数字是2,如果将2移到首位,则原数就是新数的3倍。
原数是_____。
例题2:(第53题)有一个两位数,如果用它除以它的个位数字,商9余6;如果用它除以个位数字与十位数字的和,商5余3。
这个两位数是_____。
例题3:(第54题)一串数的前4项分别是2、0、1、0,从第5项开始,每一项都是它前面4项数字和的个位数字,那么该数列中_____(填“会”或“不会”)出现2、0、1、1连续4项。
例题4:(第64题)有三箱螺帽,其中第一个箱子里有303只螺帽,第二个箱子里的螺帽是全部螺帽的15,第三个箱子里的螺帽是全部螺帽的n7(n是自然数)。
则第三个箱子里有螺帽_____只。
例题5:(第74题)由2011个9组成的多位数999……99除以74所得余数是_____。
小升初数学常见奥数题100道附答案(完整版)
小升初数学常见奥数题100道附答案(完整版)1. 甲、乙两人同时从A、B 两地相向而行,甲每分钟走52 米,乙每分钟走48 米,两人走了10 分钟后交叉而过,又相距38 米,A、B 两地相距多少米?答案:962 米思路:两人10 分钟走的路程之和为(52 + 48)×10 = 1000 米,减去交叉而过相距的38 米,A、B 两地相距1000 - 38 = 962 米。
2. 一筐苹果,先拿出140 个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?答案:240 个思路:设这筐苹果原来有x 个,(x - 140)×(1 - 60%) = 1/6x ,解得x = 240 。
3. 修一条路,第一天修了全长的1/5 多100 米,第二天修了余下的2/7 ,还剩500 米,这条路全长多少米?答案:1000 米思路:设全长为x 米,第一天修了1/5x + 100 米,余下x - (1/5x + 100) = 4/5x - 100 米,第二天修了2/7×(4/5x - 100) 米,可列方程4/5x - 100 - 2/7×(4/5x - 100) = 500 ,解得x = 1000 。
4. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:第一车间40 人,第二车间121 人,第三车间19 人思路:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有1/2x - 1 人,x + 3x + 1 + 1/2x - 1 = 180 ,解得x = 40 ,第二车间121 人,第三车间19 人。
5. 一个书架,上层书的本数是下层的4 倍,如果从上层拿60 本到下层,两层书的本数就相同,上层和下层原来各有多少本书?答案:上层160 本,下层40 本思路:设下层原来有x 本,则上层原来有4x 本,4x - 60 = x + 60 ,解得x = 40 ,上层160 本。
小升初常考的奥数题100道附答案(完整版)
小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。
三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。
问:学生有多少人?答案:设原来有x 条船。
6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。
如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。
一共有多少个小朋友?答案:设小朋友有x 个。
x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。
原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。
(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。
7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。
小升初50道经典奥数题,有空练练手!(附答案以及详细解析)
小升初50道经典奥数题,有空练练手!(附答案以及详细解析)小升初奥数50题01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。
【解析】分给一班后还剩下40-20=20个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10个。
02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。
【解析】年龄问题,7年前,儿子年龄为12-7=5岁,而妈妈年龄是儿子的6倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37岁。
03、同学们进行广播操比赛,全班正好排成相等的6行。
小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有( )人【解析】站队问题,要注意不要忽略本身。
从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。
04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。
第600颗是( )颜色。
【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66....6,余数为6,所以第600颗是黄颜色。
05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有( )厘米,绳子长( )厘米。
【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。
06、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。
【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬了7米,离井口还差3米,所以只需要再1小时,蜗牛就可爬出井口,因此需要的总时间为8小时。
07、锯一根10米长的木棒,每锯一段要2分钟。
如果把这根木棒锯成相等的5段,一共要( )分钟。
小升初面试口算奥数练习题及答案(共24份)
1.计算:222 + 333 + 444 + 555 + 666 =答案:22202.甲、乙两地相距80千米,汽车行完全程要1.6小时,而步行要16小时。
某人乘车从甲地出发去乙地,行了1.15小时后汽车出了故障,他改为步行继续前进。
问:他到达目的地总共用了多少小时?答案:5.65小时3.如图:正方形ABCD的边长为12厘米,P是AB边上的任意一点,M、N、I、H分别是BC、AD上的三等分点(即BM=MN=NC,DH=HI=IA),E、F、G是边CD上的四等分点,图中阴影部分面积是多少平方厘米。
答案:60平方厘米4. 252、140、308三个数共有多少个不同的公因数?答案:6个1.计算:1-2 + 3-4 + 5-…-1994 + 1995 =答案:9982.船在静水中的速度是每小时20千米,它从上游甲地开往乙地共用了6小时,水流速度每小时4千米,问从乙地返回甲地需要多少时间?答案:9小时3.在三角形ABC中,BD=2DC,AE=BE,已知三角形ABC的面积是18平方厘米,那么四边形AEDC的面积等于多少平方厘米?答案:12平方厘米4.有一个自然数,用它分别去除25、38、43,三个余数之和为18,这个自然数是几?答案:111.计算: 0.75 + 9.75 + 99.75 + 999.75 + 1=答案:11112.甲、乙两名运动员在环行跑道上从同一地点同时背向而行,出发后30分钟两人第一次相遇。
若已知甲运动员跑一圈要48分钟。
问:乙运动员跑一圈要多少分钟?答案:80分钟3.如图:一个长方形被分成A、B、C、D四个小长方形,已知A的面积是2平方厘米,B的面积是3平方厘米,C的面积是5平方厘米,那么原长方形的面积是多少平方厘米?答案:17.5平方厘米4.对于任意两个自然数A和B,规定一种新运算:A※B=A (A + 1) (A + 2)… (A + B-1)如果(X※3)※2 = 3660,那么X等于多少?答案:X = 3口奥练习四1.计算: (2 + 4 + 6 + … + 1996)-(1 + 3 + 5 + … + 1995) =答案:9982.甲、乙、丙三个人进行竞走比赛,甲用10米/秒的速度走完全程;乙用20米/秒的速度走完全程的一半,又用5米/秒的速度走完余下的路程;丙在一半的时间内按20米/秒的速度行走,在另一半时间内又按5米/秒的速度行走。