七年级(下册)数学几何压轴题集锦-七下翻折压轴题

合集下载

七年级下册数学压轴题集锦

七年级下册数学压轴题集锦

1、2a b m b a-+b+3=0=14.ABC A S V 如图,已知(0,),B (0,),C (,)且(4),(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQECA ∠∠的大小是否发生变化,若不变,求出其值。

2、如图1,AB(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。

(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。

(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。

6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。

(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系?为什么?7.已知∠ABC 与∠ADC 的平分线交于点E 。

(1)如图,试探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。

(2)如图,是探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。

8.(1)如图,点E 是AB 上方一点,MF 平分∠AME ,若点G 恰好在MF 的反向延长线上,且NE 平分∠CNG ,2∠E 与∠G 互余,求∠AME 的大小。

(2)如图,在(1)的条件下,若点P 是EM 上一动点,PQ 平分∠MPN ,NH 平分∠PNC ,交AB 于点H ,PJ 图,已知MA 图,AB 图,在平面直角坐标系中,已知点A (-5,0),B (),D (2,7),(1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

七下数学几何压轴题

七下数学几何压轴题

七下数学几何压轴题七下数学几何压轴题近年来,数学几何作为数学学科中的一门重要分支,越来越受到学生们的关注。

为了测试学生们在几何方面的理解和运用能力,七年级数学教师们精心设计了一道压轴题。

题目如下:已知ABCD是一个平行四边形,E是BC的中点,F是CD的中点。

连接AF,交BD于点G。

如果AB=6cm,BC=10cm,求DG的长度。

这道题目考察了学生们对平行四边形性质的理解,以及在几何推理和运用方面的能力。

解答:根据题目条件,我们可以得到以下几个关系:1. 由于E是BC的中点,根据中点定理可知,BE=EC=5cm。

2. 同理,根据中点定理,DF=FC=5cm。

3. 由于ABCD是平行四边形,所以AB∥CD,AF∥BC,根据平行线性质,∠AFD=∠BEC。

4. 由于AF∥BC,根据平行线性质,∠AFD+∠FDC=180°,所以∠BEC+∠FDC=180°。

5. ∠BEC和∠FDC是同位角,所以它们相等,即∠BEC=∠FDC。

根据以上关系,我们可以得到以下步骤:1. 通过三角形BEC和FDC,我们可以使用角度和定理得到∠FDC的度数。

∠BEC+∠FDC=180°,代入已知条件,得:∠FDC=∠BEC=∠AFD。

2. 因为ABCD是平行四边形,所以AF和BD是对角线,根据对角线的性质,有AF=BD。

即AB+BF=BD,代入已知条件,得:6+5=BD,即BD=11cm。

3. 现在我们可以使用相似三角形的性质来求解DG的长度。

由于三角形BGF与三角形EDC相似(共有一个对等边分别是BG和EC),我们可以得到以下比例关系:BG/ED=GF/DC。

BG/5=GF/10,代入已知条件,得:BG=GF/2。

同理,我们可以得到DC=EC/2,即DC=5/2=2.5cm。

再次使用相似三角形的性质,我们有GF/DG=DC/BD。

GF/DG=2.5/11,解得:DG=11GF/2.5。

综上所述,DG的长度为11GF/2.5。

七年级下册数学压轴题集锦

七年级下册数学压轴题集锦

七年级下册数学压轴题集锦1、已知点A坐标为(A,a),点B坐标为(B,b),点C坐标为(m,b),且(a-4)+b+3=0,SABC=14.1)求点C的坐标。

2)作DE⊥DC,交y轴于点E,EF为∠AED的平分线,且∠DFE=90°。

证明:FD平分∠ADO。

3)当点E在y轴负半轴上运动时,连线EC,点P为AC 延长线上一点,EM平分∠XXX,且PM⊥EM,PN⊥x轴于点N,PQ平分∠APN,交x轴于点Q。

则在运动过程中,∠MPQ与∠ECA的大小是否发生变化?若不变,求出其值。

2、如图1,XXX,∠2=2∠1.1)证明∠XXX∠FCE。

2)如图2,点M为AC上一点,点N为FE延长线上一点,且∠XXX∠XXX则∠XXX与∠CFM有何数量关系?并证明。

3、(1)如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠1=130°,∠2=110°,求∠A的度数。

2)如图,△ABC,∠ABC的三等分线分别与∠ACB的平分线交于点D、E。

若∠1=110°,∠2=130°,求∠A的度数。

4、如图,∠ABC+∠ADC=180°,OE、OF分别是角平分线。

判断OE、OF的位置关系。

5、已知∠A=∠C=90°。

1)如图,∠ABC的平分线与∠ADC的平分线交于点E。

试问BE与DE的位置关系,并说明理由。

2)如图,试问∠ABC的平分线BE与∠ADC的外角平分线DF的位置关系,并说明理由。

3)如图,若∠ABC的外角平分线与∠ADC的外角平分线交于点E。

试问BE与DE的位置关系,并说明理由。

6.(1)如图,点E在AC的延长线上,∠BAC与∠DCE的平分线交于点F,且∠B=60°,∠F=56°。

求∠XXX的度数。

2)如图,点E在CD的延长线上,∠BAD与∠ADE的平分线交于点F。

试问∠F、∠B和∠C之间有何数量关系?为什么?7.已知∠ABC与∠ADC的平分线交于点E。

七年级下册数学压轴题集锦

七年级下册数学压轴题集锦

1、2a b m b a-+b+3=0=14.ABC A S V 如图,已知(0,),B (0,),C (,)且(4),(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQECA ∠∠的大小是否发生变化,若不变,求出其值。

2、如图1,AB(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。

(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。

(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。

6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。

(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE 的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系?为什么?7.已知∠ABC 与∠ADC 的平分线交于点E 。

(1)如图,试探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。

(2)如图,是探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。

8.(1)如图,点E 是AB 上方一点,MF 平分∠AME ,若点G 恰好在MF 的反向延长线上,且NE 平分∠CNG ,2∠E 与∠G 互余,求∠AME 的大小。

(2)如图,在(1)的条件下,若点P 是EM 上一动点,PQ 平分∠MPN ,NH 平分∠PNC ,交AB 于点H ,PJ 图,已知MA 图,AB 图,在平面直角坐标系中,已知点A (-5,0),B (),D (2,7),(1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

七年级下册数学几何压轴题

七年级下册数学几何压轴题

七年级下册数学几何压轴题
1. 把一个长方形沿x轴正方向移动m个单位,求移动前后阴影的面积差。

2. 一个小正方体沿着x轴正方向移动,它的一面在x轴上翻转,求翻转前后阴影的面积比值。

3. 一个方形沿着y轴正方向移动,移动到一个圆的周围,求圆和方形的阴影面积比值。

4. 把一个正方形沿对角线方向移动,它最后完全重合的时候恰好覆盖了一个面积为S的等腰三角形,求三角形面积S。

5. 把一个正方形沿着y轴正方向移动,移动m个单位的时候与另外一个正方形刚好重合,求另外一个正方形的边长。

6. 一个矩形沿x轴正方向移动,移动到另外一个矩形的正上方还有b个单位,求两个矩形的阴影面积比值。

7. 把一个半圆形沿y轴正方向移动,移动到正方形的中心时,求正方形面积和半圆形面积的阴影面积比值。

8. 把一个梯形沿y轴正方向移动,移动到一个与梯形相似的大梯形上面靠着底边的位置,求阴影的面积比值。

9. 把一个正三角形沿着x轴正方向移动,相邻两次的位移满足一个等差数列,第一次移动2个单位,第三次移动8个单位,求正三角形的边长。

10. 一个椭圆形沿y轴正方向移动,移动到一个长方形上方恰好横跨长方形的两个端点,求已经移动了多少个单位。

初一下册期末考试几何压轴题全套整合

初一下册期末考试几何压轴题全套整合

平行线的拐点问题1.如图,已知AB ∥CD ,点C 在点D 的右侧,∠ADC =︒70,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 所在的直线交于点E ,点E 在AB ,CD 之间。

(1)如图1,点B 在点A 的左侧,若∠ABC =︒60,求∠BED 的度数? (2)如图2,点B 在点A 的右侧,若∠ABC =︒100,直接写出∠BED 的大小。

2.直线CD AB //,点P 在其所在平面上,且不在直线AB ,CD ,AC 上,设γβα=∠=∠=∠APC PCD PAB ,,(γβα,,均不大于︒180,且不小于︒0)(1)如图1,当点P 在两条平行直线AB ,CD 之间、直线AC 的右边时试确定γβα,,的数量关系; (2)如图2,当点P 在直线AB 的上面、直线AC 的右边时试确定γβα,,的数量关系; (3)γβα,,的数量关系除了上面的两种关系之外,还有其他的数量关系,请直接写出这些。

3.如图1,AB ∥CD ,EOF 是直线AB 、CD 间的一条折线。

(1)试证明:∠O =∠BEO +∠DFO .(2)如果将折一次改为折二次,如图2,则∠BEO 、∠O 、∠P 、∠PFC 之间会满足怎样的数量关系,证明你的结论。

(3)如果将折一次改为折三次,如图3,则∠BEO 、∠O 、∠P 、∠Q 、∠QFD 之间会满足怎样的数量关系(直接写出结果不需证明)4.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90∘(1)请判断AB与CD的位置关系并说明理由;(2)如图2,在(1)的结论下,当∠E=90∘保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?(3)如图3,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?5.如图1,已知a∥b,点A. B在直线a上,点C. D在直线b上,且AD⊥BC于E.(1)求证:∠ABC+∠ADC=90∘;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=12∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是___.中点分面积问题1.(1)如图1,已知△ABC,点D,E,F分别是BC,AB,AC的中点,若△ABC的面积为16,则△ABD的面积是___,△EBD的面积是___.(2)如图2,点D,E,F分别是BC,AD,EC的中点,若△ABC的面积为16,求△BEF的面积是多少?2.如图,△ABC中,点E是BC上的一点,BC=3BE,点D是AC的中点,若S△ADF﹣S△BEF=2.则S△ABC=_____.3.问题解决:如图1,△ABC中,AF为BC边上的中线,则S△ABF=___S△ABC.问题探究:(1)如图2,CD,BE分别是△ABC的中线,S△BOC与S四边形ADOE相等吗?△ABC中,由问题解决的结论可得,S△BCD=12S△ABC,S△ABE=12S△ABC.∴S△BCD=S△ABE∴S△BCD−S△BOD=S△ABE−S△BOD即S△BOC=S四边形ADOE.(2)图2中,仿照(1)的方法,试说明S△BOD=S△COE.(3)如图3,CD,BE,AF分别是△ABC的中线,则S△BOC=___S△ABC,S△AOE=___S△ABC,S△BOD=___S△ABF.问题拓展:(1)如图4,E、F分别为四边形ABCD的边AD、BC的中点,请直接写出阴影部分的面积与四边形ABCD的面积之间的数量关系:S阴影=___S四边形ABCD.(2)如图5,E、F. G、H分别为四边形ABCD的边AD、BC、AB、CD的中点,请直接写出阴影部分的面积与四边形ABCD的面积之间的数量关系:S阴影=___S四边形ABCD.凹多边形角度问题1.回答下列问题:(1)如图1,在△ABC 中,∠ABC=70°,∠ACB=50°,BO ,CO 分别为∠ABC 和∠ACB 的角平分线,则∠BOC=___; (2)如图2,在△ABC 中,∠A=60°,∠OBC=31∠ABC ,∠OCB=31∠ACB ,求出∠BOC 的度数; (3)在△ABC 中,∠A=60°,若BO ,CO 分别为△ABC 两个外角∠CBD 和∠BCP 的三等分线,请直接写出∠BOC 的度数.2.问题情景:如图1,△ABC 中,有一块直角三角板PMN 放置在△ABC 上(P 点在△ABC 内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C ,试问∠ABP 与∠ACP 是否存在某种确定的数量关系? (1)特殊探究:若∠A=40°,则∠ABC+∠ACB=___度,∠PBC+∠PCB=___度,∠ABP+∠ACP=___度. (2)类比探索:请探究∠ABP+∠ACP 与∠A 的关系;(3)类比延伸:如图2,改变直角三角板PMN 的位置:使P 点在△ABC 外,三角板PMN 的两条直角边PM 、PN 仍然分别经过点B 和点C ,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.对称型(翻转)全等1.如图,已知AB =AD ,AC =AE ,∠1=∠2,求证:BC =DE .平移型全等1.如图,AD=CB,E. F是AC上两动点,且有DE=BF.(1)若点E. F运动至如图(1)所示的位置,且有AF=CE,求证:△ADE≌△CBF;(2)若点E. F运动至如图(2)所示的位置,仍有AF=CE,则△ADE≌△CBF还成立吗?为什么?(3)若点E. F不重合,则AD和CB平行吗?请说明理由。

最新七年级下册数学几何压轴题集锦

最新七年级下册数学几何压轴题集锦

精品文档与AFE重合,射线AFAE翻折,△ABE与△在矩形ABCD中,点E为BC边上的一动点,沿交于点G。

直线CD AEG的正弦值。

,若AB=6,BC=12,求锐角11、当BE:EC=3:时,连结EG,轴建立平面直角坐标系,AB=5,BC=8分别为X轴、Y直线2、以B为原点,BC和直线AB成等腰三角形,若存在,AEG△E从原点出发沿X正半轴运动时,是否存在某一时刻使当点E的坐标。

求出点、2=14.Sb+3=0,b)且(a-4)+,0,a),B(0b),C(m,A如图,已知(1ABC点坐标C1)求(o。

90?DFE=的平分线,且y,交轴于E点,EF为?AEDDE(2)作?DC;ADOFD平分?求证:,平分∠AEC为AC延长线上一点,EM点轴负半轴上运动时,)(3E在y连EC,P在运动过程中,E点,轴于交APNPQNxEM,PNPM且⊥⊥轴于点,平分∠,xQ则精品文档.精品文档?MPQ ECA?的大小是否发生变化,若不变,求出其值。

y yA A ND F oQ D x oxE MC CB PE1 ∠AB//EF,∠2=22、如图1,FCE;∠(1)证明∠FEC=NMC,则∠∠FMN为FE延长线上一点,且∠FNM=上一点,(2)如图2,M为ACN CFM有何数量关系,并证明。

与∠AAN ME2CC BF2 1 图图°,∠1=130、ED,若∠的三等分线交于点、∠∠ABC,1、3()如图,△ABCACB 的度数。

°,求∠2=110A精品文档.精品文档AE21DBCD,E 的平分线交于点的三等分线分别与∠ACB2)如图,△ABC,∠ABC( A的度数。

°,∠若∠1=1102=130°,求∠ADE12CB的位置OFOE、分别是角平分线,则判断∠ADC=180°,OE、OF、如图,∠4ABC+ 关系为ECOFAB.°∠C=90、已知∠5A=有何位置关DEBEEADCABC(1)如图,∠的平分线与∠的平分线交于点,试问与精品文档.精品文档系?说明你的理由。

七年级(下册)数学压轴题集锦

七年级(下册)数学压轴题集锦

1、2a b m b a-+b+3=0=14.ABCA S如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。

求证:平分;(3)E 在y 轴负半轴上运动时.连EC.点P 为AC 延长线上一点.EM 平分∠AEC.且PM ⊥EM,PN ⊥x 轴于N 点.PQ 平分∠APN.交x 轴于Q 点.则E 在运动过程中.MPQECA∠∠的大小是否发生变化.若不变.求出其值。

2、如图1.AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE;(2)如图2.M 为AC 上一点.N 为FE 延长线上一点.且∠FNM=∠FMN.则∠NMC 与∠CFM 有何数量关系.并证明。

图1 图2 3、(1)如图.△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D.若∠1=130°.∠B C B C2=110°.求∠A 的度数。

(2)如图.△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°.∠2=130°.求∠A 的度数。

4、如图.∠ABC+∠ADC=180°.OE 、OF 分别是角平分线.则判断OE 、OF 的位置关系为?5、已知∠A=∠C=90°.BCCFA(1)如图.∠ABC 的平分线与∠ADC 的平分线交于点E.试问BE 与DE 有何位置关系?说明你的理由。

(2)如图.试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。

(3)如图.若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E.试问BE 与DE 有何位置关系?说明你的理由。

6.(1)如图.点E 在AC 的延长线上.∠BAC 与∠DCE 的平分线交于点F.∠B=60°,∠F=56°,求∠BDC 的度数。

(完整版)七年级下册数学几何压轴题集锦(最新整理)

(完整版)七年级下册数学几何压轴题集锦(最新整理)

在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。

1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。

2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在,求出点E 的坐标。

1、2a b m b a-+b+3=0=14.ABC A S A 如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作D E ,交轴于E 点,E F 为A E D 的平分线,且D FE 90。

求证:平分;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,的大小是否发生变化,若不变,求出其值。

MPQECA ∠∠2、如图1,AB//EF, ∠2=2∠1(1)证明∠FEC=∠FCE;(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。

图1 图23、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。

BCA BCABC(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。

AC4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?FEA5、已知∠A=∠C=90°.(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。

1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。

2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在,求出点
E 的坐标。

1、
2
a b m b a-+b+3=0=14.ABC
A S
如图,已知(0,),B (0,),C (,)且(4),
o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标
(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。

求证:平分;
(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,
MPQ
ECA ∠∠的大小是否发生变化,若不变,求出其值。

2、如图1,AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE;
(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。

图1 图2 3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。

B C B C
(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。

4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?
5、已知∠A=∠C=90°.
(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关
B
C
A
C
F
A
系?说明你的理由。

(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。

(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。

6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。

(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE 的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系?为什么?
7.已知∠ABC 与∠ADC 的平分线交于点E 。

(1)如图,试探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。

A
E
E
A
D
B
B
(2)如图,是探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。

8.(1)如图,点E 是AB 上方一点,MF 平分∠AME ,若点G 恰好在MF 的反向延长线上,且NE 平分∠CNG ,2∠E 与∠G 互余,求∠AME 的大小。

(2)如图,在(1)的条件下,若点P 是EM 上一动点,PQ 平分∠MPN ,NH 平分∠PNC ,交AB 于点H ,PJ//NH ,当点P 在线段EM 上运动时,∠JPQ 的度数是否改变?若不变,求出其值;若改变,请说明你的理由。

9.如图,已知MA//NB ,CA 平分∠BAE ,CB 平分∠ABN ,点D 是射线AM 上一动点,连DC ,当D 点在射线AM (不包括A 点)上滑动时,∠ADC+∠ACD+∠ABC 的度数
B
C
B
C
A
C
D
是否发生变化?若不变,说明理由,并求出度数。

10.如图,AB//CD ,PA 平分∠BAC ,PC 平分∠ACD ,过点P 作PM 、PE 交CD 于M ,交AB 于E ,则(1)∠1+∠2+∠3+∠4不变;(2)∠3+∠4-∠1-∠2不变,选择正确的并给予证明。

11.如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;
(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

设从出发起运动了x 秒。

①请用含x 的代数式分别表示P,Q 两点的坐标; ②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等?若存在,求E 的坐标,若不存在,说明理由?
12.
如图,在平面直角坐标系中,∠ABO=2∠BAO ,P 为x 轴正半轴上一动点,BC 平分
B
N
A
D
x
x
∠ABP ,PC 平分∠APF ,OD 平分∠POE 。

(1)求∠BAO 的度数; (2)求证:∠C=15°+1
2∠OAP ;
(3)P 在运动中,∠C+∠D 的值是否变化,若发生变化,说明理由,若不变求其值。

13.如图,A 为x 轴负半轴上一点,C (0,-2),D (-3,-2)。

(1)求△BCD 的面积;
(2)若AC ⊥BC ,作∠CBA 的平分线交CO 于P ,交CA 于Q ,判断∠CPQ 与∠CQP 的大小关系,并说明你的结论。

(3)若∠ADC=∠DAC ,点B 在x 轴正半轴上任意运动,∠ACB 的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,∠E ∠ABC
的值是否变化?若不变,求出其值;
若变化,说明理由。

14.如图,已知点A (-3,2),B (2,0),点C 在x 轴上,将△ABC 沿x 轴折叠,使
x
x
x
点A 落在点D 处。

(1)写出D 点的坐标并求AD 的长;
(2)EF 平分∠AED ,若∠ACF-∠AEF=15º,求∠EFB 的度数。

15.(1)在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD 。

①直接写出图中相等的线段、平行的线段; ②已知A (-3,0)、B (-2,-2),点C 在y 轴的正半轴上,点D 在第一象限,且S ∆ACD =5,求点C 、D 的坐标;
(2)在平面直角坐标系中,如图,已知一定点M (1,0),两个动点E (a ,2a+1)、F (b ,-2b+3),请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM 。

若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由。

16.如图,在直角坐标系中,已知B (b ,0),C (0,a ),且|b +3|+(2c-8)²=0.
x
(1)求B 、C 的坐标;
(2)如图,AB//CD ,Q 是CD 上一动点,CP 平分∠DCB ,BQ 与CP 交于点P ,求∠DQB +∠QBC
∠QPC
的值。

17.如图,A 、B 两点同时从原点O 出发,点A 以每秒m 个单位长度沿x 轴的负方向运动,点B 以每秒n 个单位长度沿y 轴的正方向运动。

(1)若|x+2y-5|+|2x-y|=0,试分别求出1秒钟后A 、B 两点的坐标。

(2)如图,设∠BAO 的邻补角和∠ABO 的邻补角平分线相交于点P ,问:点A 、B 在运动的过程中,∠P 的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由。

(3)如图,延长BA 至E ,在∠ABO 的部作射线BF 交x 轴于点C ,若∠EAC 、∠FCA 、∠ABC 的平分线相交于点G ,过点G 作BE 的垂线,垂足为H ,试问∠AGH 和∠BGC 的大小关系如何?请写出你的结论并说明理由。

18、如图,在平面直角坐标系中,A (a ,0),C (b ,2),
且满足(a+b )²+|a-b+4|=0,过C 作CB ⊥x 轴于B 。

(1)求三角形ABC 的面积。

(2)若过B 作BD//AC 交y 轴于D ,且AE 、DE 分别平分∠CAB ,∠ODB ,如图,求∠AED 的度数。

(3)在y 轴上是否存在点P ,使得∆ABC 和∆ACP 的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由。

19.已知:在△ABC 和△XYZ 中,∠Y+∠Z=95°,将△XYZ 如图摆放,使得∠X 的两条边分别经过点B 和点C 。

(1)将△XYZ 如图1摆放时,则∠ABX+∠ACX= 度;
(2)将△XYZ 如图2摆放时,请求出∠ABX+∠ACX 的度数,并说明理由;
(3)能否将△XYZ 摆放到某个位置时,使得BX 、CX 同时平分∠ABC 和∠ACB ?请写出你的结论。

图1
Z
图2
Y
Z。

相关文档
最新文档