分数计算(裂项法五年级)
分数裂项求和方法总结
分数裂项求和方法总结一、简单分数裂项法:1.若分数的分母为n,则可将该分数表示为n等分之和,即如下形式:\(\frac{a}{n}=\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{ 1}{n}\)这种情况下,裂项个数为分母的值。
2.若分数的分母为n,且分子a能被n整除,则可以将该分数表示为n等分之和,裂项个数为分子的值,即如下形式:\(\frac{a}{n}=\frac{a}{n}+\frac{a}{n}+...+\frac{a}{n}\)二、特殊分数裂项法:1.若分母为n(n≥2),分子为1,则可用连续的n-1个分数之和表示,如:\(\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n(n+1)}\)若此时n=2,则该分数可表示为:\(\frac{1}{2}=\frac{1}{3}+\frac{1}{6}\)2.若分母为n(n≥3),分子为1,则可用连续的n-1个分数之和表示,如:\(\frac{1}{n}=\frac{1}{(n+1)(n+2)}+\frac{1}{n+1}\)若此时n=3,则该分数可表示为:\(\frac{1}{3}=\frac{1}{12}+\frac{1}{4}\)三、通用分数裂项法:1.若分数的分子是一个较大的整数a,分母是一个较小的整数b,则可以通过转换分母的形式,将该分数表示为分解后的两个分数之和,如:\(\frac{a}{b}=\frac{a+b}{b}+\frac{-b}{b}\)如将 \(\frac{7}{3}\) 进行裂项,可得:\(\frac{7}{3}=\frac{7+3}{3}+\frac{-3}{3}=\frac{10}{3}+\frac{-1}{3}\)2.若分数的分子是一个较大的整数a,分母是一个较小的整数b的平方,则可以通过转换分母的形式,将该分数表示为分解后的两个分数之和,如:\(\frac{a}{b^2}=\frac{a}{b^2}+\frac{a}{b^2}+...+\frac{a}{b^2}\)裂项的个数为分子的值。
分数裂项法基本公式
分数裂项法基本公式首先,我们先来看一个简单的例子:将分数1/2写为两个分数之和。
我们可以设想这个分数的分子是一个未知数x,然后用一个已知数k 来乘以这个未知数,得到kx。
我们希望kx能恰好等于分子1、因此,我们希望找到一个适当的k,使得kx=1显然,当k=2时,kx=2x。
此时,我们可以将分数1/2表示为1=2x。
进一步化简可以得到1=2x,即1/2=x。
根据这个例子,我们可以总结出分数裂项法的基本公式如下:设想分数的分子为未知数x,用一个合适的已知数k乘以x,使得kx 恰好等于分子。
然后,我们可以根据这个公式来解决更复杂的分数拆分问题。
例如,我们要将分数3/4写为两个分数之和。
我们可以设想这个分数的分子为未知数x,然后用一个合适的已知数k乘以x,使得kx恰好等于分子3假设k=2,我们可以设立方程2x=3,进一步求解得到x=3/2因此,我们可以将分数3/4写为3/4=3/2根据这个思路,我们可以将分数3/4但写为两个分数之和的形式。
即3/4=3/2-3/4让我们再来看一个稍复杂一点的例子:将分数7/12写为三个分数之和。
我们可以设想这个分数的分子为未知数x,然后用一个合适的已知数k乘以x,使得kx恰好等于分子7假设k=3,我们可以设立方程3x=7,进一步求解得到x=7/3根据分数裂项法的基本公式,我们可以将分数7/12但写为三个分数之和的形式。
即7/12=7/3-7/4通过这个例子,我们可以发现分数裂项法可以将一个分数拆分为多个分数,从而方便我们进行计算和化简。
同时,分母也可以使用分数关系进行适当的拓展。
除了上述的简单例子,分数裂项法还可以应用于更复杂的分数拆分问题,例如拆分带有方根的分数、拆分带有分数指数的分数等。
这些问题的解决方法也遵循着分数裂项法的基本公式,即设想分数的分子为未知数x,用一个合适的已知数k乘以x,使得kx恰好等于分子。
综上所述,分数裂项法是一种将一个分数表示为多个分数之和的方法,它的基本公式是设想分数的分子为未知数x,用一个合适的已知数k乘以x,使得kx恰好等于分子。
小学数学分数裂项(20210723004735)
分数裂差考试要求( 1)灵巧运用分数裂差计算惯例型分数裂差乞降( 2)能经过变型进行复杂型分数裂差计算乞降知识构造一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这类拆项计算称为裂项法 .裂项分为分数裂项和整数裂项,常有的裂项方法是将数字分拆成两个或多个数字单位的和或差。
碰到裂项的计算题时,要认真的察看每项的分子和分母,找出每项分子分母之间拥有的同样的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相像部分,让它们消去才是最根本的。
1、关于分母能够写作两个因数乘积的分数,即 1 形式的,这里我们把较小的数写在前面,即 a b ,ba那么有 1b 1 (11 )a b a a b2、关于分母上为 3 个或 4 个自然数乘积形式的分数,我们有:1 1 [ 1 1 ]n (n k ) ( n 2k) 2k n (n k ) ( n k)( n 2k )1(n 1 [ 12k ) (n1 ]n (n k ) ( n 2k) 3k) 3k n (n k) ( n k) ( n 2k ) (n 3k)3、关于分子不是 1k 1 1 的状况我们有:k) n n kn(nh h 1 1n n k k n n k2k1 1n n k n 2k n n k n k n 2k3k1 1n n k n 2k n 3k n n k n 2k n k n 2k n 3kh h1 1n n k n 2k2k n n k n k n 2kh h1 1n n k n 2k n 3k3k n n k n 2k n k n 2k n 3k21 1 12n2n 1 2n 1 12n 1 2n 12二、裂差型裂项的三大重点特点:( 1)分子所有同样,最简单形式为都是 1 的,复杂形式可为都是 x(x 为随意自然数 ) 的,可是只需将x 提拿出来即可转变为分子都是1 的运算。
小学五年级奥数 分数裂项初步(寒假课程)
分数计算技巧(裂项)(寒假课程)2、分数裂和:⑴目的:抵消.本讲主线⑵特点:分子为分母之和.1.分数计算裂差.2.分数计算裂和.⑶公式:ab11⑷口诀:分数裂项两肩挑.【课前小练习】(★)计算:1、分数裂差:⑴目的:抵消.⑵特点:分子相同、分母为连续的等差数列.⑶公式:111 1()a b a b差值⑷口诀:分数裂项两肩挑.,之后乘以差值分之一111 111⑴⑵⑶233457版块一∶分数计算-裂差【例1】(★★)计算:111 1122334910 【例2】(★★★)1111 1133********【巩固】(★★)计算:11 1......101111125960 【拓展】(★★★☆)444 414477104952_____1【拓展】(★★★)⑵计算:1111 124466881098100444 4......1559939797101版块二∶分数计算-裂和【例3】(★★★)4812162024计算:133557799111113【例4】(★★★★)【例5】(★★★)计算:11111111 1 2612203042567290 3112339759839 26122038042015791113151719 ⑵126122030425672902【例6】(★★★★)2 3 5 6 8 9 11 12 98 991 4 47 710 1013 97100 【超常大挑战】(★★★★)1 1 1 11 2 3 2 3 4 3 4 5 98 99 100知识大总结【今日讲题】例2, 例3, 例5, 超常大挑战1、分数裂差:⑴特点:分子相同、分母为连续的等差数列.⑵公式: 1 1 1 1( )a b a b差值2、分数裂和:⑴特点:分母为连续等差数列,分子为分母之和.⑵公式:a b 1 1a b a b 【讲题心得】_______________________________________________ ______________________________________.【家长评价】_______________________________________________ __________________________________.抵消3。
分数裂项讲解
分数裂项讲解
分数裂项,指的是将一个分式中的分子或分母拆分成两个或多个部分,然后再将分式进行简化的方法。
这种方法在解决某些数学题目时非常有用,可以把复杂的式子变得简单易懂,方便我们进行计算。
下面以一个数学题目为例来讲解分数裂项的具体步骤。
题目:将$\frac{x+2}{x^2-x-6}$拆分成两个部分。
解法:
1. 首先,我们可以将$x^2-x-6$分解成$(x-3)(x+2)$,于是原式变成$\frac{x+2}{(x-3)(x+2)}$。
2. 我们可以发现,分母部分中有一个$x+2$与分子部分相同,于是可以将原式拆分成$\frac{x+2}{x+2}×\frac{1}{x-3}$。
3. 化简得到:$\frac{1}{x-3}$。
通过分数裂项,我们成功将原式拆分成了两个部分,并进行了简化。
这种方法在许多数学题目中都是非常实用的。
分数裂项还有一些其他的应用,例如在部分分式分解中。
在部分分式分解中,我们需要把一个分式写成多个分数之和的形式,这时候分数裂项也非常有用。
通常的做法是,将分母拆分成多个部分,然后将每个部分拆分成简单的分式。
这样,就可以将原式分解成多个简单的分式相加,从而更容易进行计算。
总之,分数裂项是一种非常实用的方法,在解决数学题目时非常有用。
我们通过将分式进行拆分和简化,可以把复杂的式子变得简单易懂,方便我们进行计算。
因此,在数学学习中,我们需要充分掌握分数裂项的技巧,灵活运用在解决各种问题中。
分数的裂项公式
分数的裂项公式分数的裂项公式是一种重要的数学公式,它可以将一个分数拆分成若干个分数的和,从而简化计算。
在学习和应用该公式时,需要理解其基本概念,掌握运用技巧,并注意一些常见的注意事项。
首先,我们来看一下裂项公式的基本概念。
裂项公式是指,对于任意一个分数a/b,可以将其拆分成若干个形如c/d的分数之和,即:a/b = c1/d1 + c2/d2 + … + cn/dn其中,c1、c2、…、cn和d1、d2、…、dn分别为分子和分母,它们满足以下条件:1. 所有的ci和di都应为正整数;2. 分子和分母的最大公约数为1,即gcd(ci, di) = 1;3. 所有的di均不为0。
其次,我们来讨论一下裂项公式的运用技巧。
在实际应用中,我们通常根据分母的因数来分解分数,具体步骤如下:1. 对于分数a/b,我们先找出它的一组互质的分母d1、d2、…、dn,使得d1 × d2 × … × dn = b;2. 根据这组分母,我们分别将a/b表示成如下形式:a/b = (a × d1)/(b × d1) + (a × d2)/(b × d2) + … + (a × dn)/(b × dn)3. 然后,我们对每个拆分分数进行简化,即求出它们的最简形式;4. 最后,将这些最简形式的分数相加,得到a/b的裂项表达式。
需要指出的是,裂项公式的应用不仅局限于分式的计算,还可以在一些数学问题中起到很好的辅助作用。
例如,在求解一些无理数的连分数表示时,就可以利用裂项公式将无理数拆分成分数的和,进而得到连分数的展开式。
最后,我们来谈一谈在应用裂项公式时需要注意的一些事项。
首先,要保证拆分的所有分数都是正整数,而且每个分数的分母都不为0。
其次,为了简化计算,应该选择一个合适的分母进行拆分,以尽量减小后续计算的难度和错误率。
此外,在进行裂项计算时,还应避免因未简化分数而造成计算错误,以及注意计算结果的范围是否正确。
五年级下第12讲 分数裂项
第12讲 分数裂项一、知识要点特殊的分数加法试题,难以运用课本中固有的运算性质及定律进行巧算。
它们有其特殊的规律及性质,对于这些特殊试题,我们通常要用到以下两种方法:①引用公式法:有特殊的分数加法试题,有其固有的求和公式,计算时可以直接运用这些公式使计算简便。
②裂项法:先将算式中的一些分数按规律作适当拆分,使得拆分后的一些分数可以互相抵消,从而达到巧算的目的。
二、例题精选【例1】 计算:1091...431321211⨯++⨯+⨯+⨯【巩固1】计算:21201 (8)71761651⨯++⨯+⨯+⨯【例2】 计算:100981...861641421⨯++⨯+⨯+⨯【巩固2】计算:43371 (1913113717)11⨯++⨯+⨯+⨯【例3】 计算:9900989997029701 (30)29201912116521+++++++【巩固3】计算:56174216301520141213612211++++++【例4】 计算:10099982...43223212⨯⨯++⨯⨯+⨯⨯【巩固4】计算:111092...65425432⨯⨯++⨯⨯+⨯⨯【例5】 计算:100..43211...432113211211++++++++++++++【例6】 计算:90197217561542133011209127311-+-+-+-三、回家作业 【作业1】60591...131211*********⨯++⨯+⨯+⨯【作业2】63581 (1813113818)31⨯++⨯+⨯+⨯【作业3】1101901721561421611+++++-【作业4】2221201...43213211⨯⨯++⨯⨯+⨯⨯【作业5】⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+99119911 (411411311311211211)。
五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版
(1) 能熟练运算常规裂和型题目;(2) 复杂整数裂项运算;(3) 分子隐蔽的裂和型运算。
一、 复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
整数裂项口诀:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N 。
N 取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
二、 “裂和”型运算常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a+=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
考试要求知识结构整数裂项与分数裂和(1) 复杂整数裂项的特点及灵活运用(2) 分子隐蔽的裂和型运算。
一、整数裂项【例 1】 计算:1324354699101⨯+⨯+⨯+⨯++⨯【巩固】计算:355779979999101⨯+⨯+⨯++⨯+⨯【例 2】 计算101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯例题精讲重难点【巩固】333444797979⨯⨯+⨯⨯++⨯⨯【例 4】 计算:111222333999999100100100⨯⨯+⨯⨯+⨯⨯++⨯⨯+⨯⨯【例 5】 ()()()()1121231234123100+++++++++++++++【巩固】()()()33636936300++++++++++【例 6】 填空: ()+=2165, ()+=31127, ()+=41209()+=513011,()+=614213, ()+=715615【巩固】计算:90197217561542133011209127651+-+-+-+-【例 7】 5667788991056677889910+++++-+-+⨯⨯⨯⨯⨯【巩固】 36579111357612203042++++++132579101119【巩固】12379111725 3571220283042 +++++++【例 9】111112010263827 2330314151119120123124 +++++++++【巩固】3549637791105311 6122030425688⎡⎤⎛⎫-+-+--÷ ⎪⎢⎥⎝⎭⎣⎦【例 10】22222222 122318191920 122318191920 ++++ ++⋯⋯++⨯⨯⨯⨯【巩固】222222222222226214321321211+⋯++-⋯++++-++++-1、 14477104952⨯+⨯+⨯++⨯=_________2、 计算:57911131517191612203042567290-+-+-+-+3、 11798175451220153012++++++4、 222222221223200420052005200612232004200520052006++++++++⨯⨯⨯⨯ 课堂检测5、 2221111112131991⎛⎫⎛⎫⎛⎫+⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭1、 1122335050⨯+⨯+⨯++⨯2、 2464689698100⨯⨯+⨯⨯++⨯⨯3、 123791121313571220284056+++++++4、 12389(1)(2)(3)(8)(9)234910-⨯-⨯-⨯⨯-⨯-家庭作业5、121231234123502232342350++++++++++⨯⨯⨯⨯++++++教学反馈。
小学五年级奥数--估算和裂项解题技巧
小学五年级奥数——估算和裂项技巧一、估算问题估算中常用到缩放法、取整法等技巧。
求近似值或整数部分等,常常需要进行估算,估算的关键在于确定已知数据具有恰当精度的近似值,一般偏差范围在上下5%以内。
【应用见例1】二、分数通分化简法1.求出原来几个分数的分母的最简公分母;2.根据分数的基本性质,把原来分数化成以这个最简公分母为分母。
三、裂项运算法1.“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里可以把较小的数写在前面,即设a <b ,那么有⎪⎭⎫ ⎝⎛--=⨯b a a b b a 1111;(2)对于分母中有3个或4个连续自然数乘积形式的分数,如:()()211+⨯+⨯n n n ,()()()3211+⨯+⨯+⨯n n n n ,可以进行如下裂项运算:()()()()()⎥⎦⎤⎢⎣⎡+⨯+-+⨯=+⨯+⨯2111121211n n n n n n n ;()()()()()()()()⎦⎤⎢⎣⎡+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯3211211313211n n n n n n n n n n 注:将算式中的项进行拆分,使拆分后的项前后可抵消,这种拆项计算称为裂项法。
裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差的形式。
遇到裂项的计算题时,要仔细观察每项的分子和分母,发现各项分子与分母之间具有的相同关系,找出其共有部分。
裂项的题目无须复杂的计算,一般都是将中间部分消去。
因此,找到相邻两项的相似部分将它们消去,才是最根本的方法。
“裂差”型裂项有一下三大关键特征(1)分子全部相同,最简单的形式为分子都是1,一般复杂的形式可为都是x (x 为任意自然数)的式子,但是只要将x 提取出来即可转化为分子都是1的运算;(2)分母上均为几个自然数的乘积,并且满足相邻2个分母上的因数“首尾相接”。
(3)分母上几个因数间的差是一个定值。
2.“裂和”型运算常见的“裂和”型运算主要有以下两种形式:(1)ab b a b b a a b a b a 11+=⨯+⨯=⨯+;(2)ab b a b a b b a a b a b a +=⨯+⨯=⨯+2222注:(1)裂差型运算的核心环节是“两两抵消”达到简化的目的;(2)裂和型运算的核心环节是“两两抵消”或转化为“分数凑整”来达到简化的目的。
小学奥数--分数裂项-精选练习例题-含答案解析(附知识点拨及考点)
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
,本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- 、(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
$知识点拨教学目标分数裂项计算二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
分数巧算之裂项法
【举一反三】 计算:
3 3 3 3 3 (1) 6 12 20 30 42
7 7 7 7 7 (2) 42 56 72 90 110
1 1 1 1 ....... 2 3 3 4 4 5 49 50 1 1 1 1 1 1 1 1 1 ....... 2 3 3 4 4 5 5 49 50 1 1 2 50 24 12 50 25
【举一反三】 计算:
1 1 1 通过拆分,我们将例2转化成了 n(n 1) n n 1
的形式,因此
1 1 1 1 1 原式 5 ( ) 1 2 2 3 3 4 4 5 5 6 5 5 6 25 6
【举一反三】计算:
8 8 8 8 8 (1) 23 24 24 25 25 26 26 27 27 28
3 (
1 1 1 1 1 ) 20 30 42 56 72
分母写成两个 相邻的数的乘积
1 1 1 1 1 3 ( ) 4 5 5 6 6 7 7 8 8 9
1 1 1 1 1 1 1 1 1 1 3 ( ) 4 5 5 6 6 7 7 8 8 9 1 1 3 ( ) 4 9 5 5 3 36 12
1 1 1 将每一个分数分裂成两分数的差,即 n(n 1) n n 1
1 1 1 1 1 ...... 1 2 2 3 3 4 48 49 49 50
1 1 1 1 1 1 1 1 1 1 ( ) ( ) ( ) ...... ( ) ( ) 1 2 2 3 3 4 48 49 49 50
五年级奥数.计算综合.分数裂差(A级).学生版
1、 灵活运用分数裂差计算常规型分数裂差求和2、 能通过变型进行复杂型分数裂差计算求和一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
1、 对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- 2、 对于分母上为3个或4个自然数乘积形式的分数,我们有:1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++ 1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 3、 对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)( ()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭考试要求知识结构分数裂差()()()()()21122k n n k n k n n k n k n k =-+++++ ()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++ ()()()()()11222hhn n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h h n n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭ 二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
分数裂项相消法公式
分数裂项相消法公式一、分数裂项相消法的基本类型及公式。
(一)分母为两个连续自然数相乘的形式。
1. 裂项公式。
- 对于(1)/(n(n + 1)),可以裂项为(1)/(n)-(1)/(n + 1)。
- 例如:(1)/(2×3)=(1)/(2)-(1)/(3),(1)/(3×4)=(1)/(3)-(1)/(4)等。
2. 证明。
- (1)/(n)-(1)/(n + 1)=(n+1 - n)/(n(n + 1))=(1)/(n(n + 1))。
(二)分母为两个相差d(d为常数)的自然数相乘的形式。
1. 裂项公式。
- 对于(1)/(n(n + d)),可以裂项为(1)/(d)((1)/(n)-(1)/(n + d))。
- 例如:当d = 2时,(1)/(3×5)=(1)/(2)((1)/(3)-(1)/(5))。
2. 证明。
- (1)/(d)((1)/(n)-(1)/(n + d))=(1)/(d)×(n + d - n)/(n(n + d))=(1)/(n(n + d))。
(三)分母为三个连续自然数相乘的形式。
1. 裂项公式。
- 对于(1)/(n(n + 1)(n+2)),可以裂项为(1)/(2)[(1)/(n(n + 1))-(1)/((n + 1)(n+2))]。
- 例如:(1)/(1×2×3)=(1)/(2)((1)/(1×2)-(1)/(2×3))。
2. 证明。
- (1)/(2)[(1)/(n(n + 1))-(1)/((n + 1)(n + 2))]=(1)/(2)×((n + 2)-n)/(n(n +1)(n+2))=(1)/(n(n + 1)(n+2))。
二、分数裂项相消法的应用示例。
(一)求和。
1. 例1:求S=(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(99×100)的值。