信号与线性系统分析习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 257
信号与线性系统课后答案
第一章 信号与系统(一)
1-1画出下列各信号的波形【式中)()
(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)(
(3))
()sin()(t t t f επ=
(4))
fε
=
t
(t
(sin
)
(5))
t
f=
(sin
r
(t
)
2 / 257
(7))
t
f kε
(k
=
(
2
)
(10))
f kε
k
-
=
(k
+
]
(
)1
(
)
1[
3 / 257
4 / 257
1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f
(5)
)2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε
(11))]7()()[6
sin()(--=k k k k f εεπ (12)
)]()3([2)(k k k f k
---=εε 解:各信号波形为 (1)
)
2()1(3)1(2)(-+--+=t t t t f εεε
(2)
)2
(
)1
(
2
)(
)(-
+
-
-
=t r
t r
t r
t
f
(5)
)
2(
)
2(
)(t
t
r
t
f-
=ε
5 / 257
6 / 257
(8)
)]5()([)(--=k k k k f εε
(11)
)]
7()()[6
sin()(--=k k k k f εεπ
(12)
)]
(
)
3(
[
2
)
(k
k
k
f k-
-
-
=ε
ε
7 / 257
1-3 写出图1-3所示各波形的表达式。
8 / 257
1-4 写出图1-4所示各序列的闭合形式表达式。
9 / 257
10 / 257
1-5 判别下列各序列是否为周期性的。如果是,确定其周期。
(2))63cos()443cos()(2
π
πππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=
解:
11 / 257
1-6 已知信号
)(t f 的波形如图1-5所示,画出下列各函数的波形。
(1))()1(t t f ε- (2))1()1(--t t f ε (5)
)21(t f - (6))25.0(-t f
(7)dt
t df )
( (8)dx x f t ⎰∞-)(
解:各信号波形为 (1)
)
()1(t t f ε-
12 / 257
(2)
)1()1(--t t f ε
(5)
)
21(t f -
13 / 257
(6)
)25.0( t f
(7)dt
t df )(
(8)
dx
x
f
t
⎰∞-)(
14 / 257
15 / 257
1-7 已知序列
)(k f 的图形如图1-7所示,画出下列各序列的图形。
(1))()2(k k f ε- (2))2()2(--k k f ε
(3))]4()()[2(---k k k f εε (4))2(--k f (5)
)1()2(+-+-k k f ε (6))3()(--k f k f
解:
16 / 257
17 / 257
1-9 已知信号的波形如图1-11所示,分别画出
)(t f 和dt
t df )(的波形。
解:由图1-11知,)3(t f -的波形如图1-12(a)所示()3(t f -波形是由对)23(t f -的波形展宽为原来
的两倍而得)。将
)3(t f -的波形反转而得到)3(+t f 的波形,如图1-12(b)所示。再将)3(+t f 的波形右
移3个单位,就得到了
)(t f ,如图1-12(c)所示。dt
t df )(的波形如图1-12(d)所示。