机械搅拌器直径大小与罐径的比例

合集下载

年产6万吨味精厂谷氨酸机械搅拌通风发酵罐设计

年产6万吨味精厂谷氨酸机械搅拌通风发酵罐设计

生物工程与设备课程设计说明书年产6万吨味精厂谷氨酸生产机械搅拌通风发酵罐设计专业班级:生物工程作者学号:201106011158作者姓名:张晓勇指导老师:王君高王兰芝设计日期:2013年6月18日至2013年6月21日山东轻工业学院课程设计任务书食品与生物工程学院11 级生物工程专业学生张晓勇题目:年产6万吨味精厂谷氨酸生产机械搅拌通风发酵罐设计一、主要内容:1、物料恒算,计算发酵罐总容积;2、求发酵罐个数,取单罐公称容积200m3;3、公称容积200m3发酵罐设计(罐体尺寸、壁厚、搅拌器类型选择及尺寸设计、搅拌功率计算、搅拌轴直径计算、冷却面积计算与设计)二、基本要求1、编写计算设计说明书(有前言、设计参数、物料恒算、发酵罐工艺设计,设计体会)2、用CAD绘出发酵罐结构图。

三、设计参数1、糖酸转化率61%2、发酵产酸水平11%3、发酵周期32小时4、发酵罐充满系数为0.75、味精分子式187.13(C5H8NO4Na).H2O6、谷氨酸分子式147.13(C5H9NO4)7、谷氨酸密度取1.553g/cm3 8、残还原糖0.8%,干菌体1.7%9、谷氨酸提取率97.5%。

10、谷氨酸生产味精精制率为125%11、空罐灭菌压力0.25MPa 12、年工作日安330天计算四、主要参考资料〔1〕郑裕国《生物工程设备》化学工业出版社2007〔2〕高孔荣《发酵设备》轻工业出版社1991.10〔3〕梁世中《生物工程设备》轻工业出版社2002.2〔4〕化工设备设计全书编辑委员会编《搅拌设备设计》上海科学技术出版社1985〔5〕吴思方《发酵工厂工艺设计概论》中国轻工业出版社2007(6)化工工艺设计手册(7)于令信《味精工业手册》(8)张克旭《氨基酸发酵工艺学》轻工业出版社完成期限:自2013年6月18 日至2012 年 6 月21日指导教师:王君高王兰芝教研室主任:一、计算设计说明书前言机械搅拌式发酵设备和技术在整个制药、生物产品的开发过程中起着特别重要的作用。

搅拌釜尺寸计算

搅拌釜尺寸计算

选择/输入区域Rev Date Created by Checked by Approved by计算结果区域B 2017/3/1Zhengzhou.liu *使用完退出时请不要保存第一步:估算搅拌釜尺寸客户要求处理量(L)长径比H/Di 装料系数 η选择封头类型封头个数参考直径(mm)参考筒体长度(mm)1500 1.30.8椭圆EHA 上下双封头12001560第二步:计算釜容积、最小处理量、液位高度、夹套容积估算选择封头类型选择封头个数设计封头内径/管帽外径Di(mm)/Do(mm)锥形封头小端内径Di(mm)筒体长度(mm)下封头容积(L)筒体容积 (L)全容积(L)平板封头上下双封头1400014000.02155.12155.1距下封头焊接线高度 (mm)液位值(L )最小处理量80123.2液位值(L )距下封头焊接线高度 (mm)液位一20001299.2液位二30001948.8液位三1500974.4夹套内径Di(mm)夹套封头WL线与釜体封头WL线间距(mm)设计夹套高(釜体封头WL线到夹套顶距离,mm)夹套总高(mm)实际夹套容积(L)1700100500600592.2夹套内径参考:内筒直径 DN=500~600, Di=DN+50内筒直径 DN=700~1800, Di=DN+100内筒直径 DN=2000~3000,Di=DN+200长径比H/Di 参考:一般搅拌罐,液固相或液液相物料,取1~1.3一般搅拌罐,气液相物料,取1~2发酵罐:取1.7~2.5装料系数η参考:反应过程中起泡或沸腾,取0.6~0.7反应过程平稳,取0.8~0.85F-JS-C-0001_搅拌釜尺寸计算。

搅拌设备设计_第五讲_搅拌机长宽比的确定方法

搅拌设备设计_第五讲_搅拌机长宽比的确定方法

A8888 王 良 文 等 ,8 振 动 平 板 夯 减 振 装 置 的 研 究 ,8 建 筑 机 械
化, %++.B%C
通信地址: 河南省郑州市东风路 ! 号 工程系机设教研室 ("!###$ )
郑州轻 工 业 学 院 机 电
(收稿日期: %++5".%"%7 ) 工程机械
!""# $#%
示。它的主要几何参数可用直角坐标系的 ! 个坐标 (!, 或圆柱坐标系的 ! 个坐标 (# , 来描述。文 ", #) $, !) 献"#$中利用扩散方程对搅拌过程进行了综合模拟, 得 到了搅拌过程优化的目标函数
$ 12& 62& 22& 22& 12& 62& 62& 22& 12&
拌和物匀质性
混凝土 %&’ 抗压强度
!!()* . % 1 6 2 5 4 & / 03%/ 0302 0310 .3&% .32. .3/. 03.6 0350 0301
!" ()* 1345 %3&2 63.2 53.2 23/& 534% 1304 6316 %30.
专 题 讲 座
/3333双排叶片搅拌机
!!()* .30. 036% %36/ .3/. %32. 631. %302 0315 .3.& .3.5 .35% 03.1 %362 %346 036& 0315 .3./ %304
!" ()* 2361 %306 %3./ .31% %3.. 23%& %3&6 .361 %3%0 %36& %310 130& 13%2 23/. %341 .351 %3%/ 2300

机械搅拌通风发酵罐的设计

机械搅拌通风发酵罐的设计

课程设计任务书一、课程设计的内容1、通过查阅机械搅拌通风发酵罐的有关资料,熟悉基本工作原理和特点。

2、进行工艺计算3、主要设备工作部件尺寸的设计4、绘制装配图5、撰写课程设计说明书二、课程设计的要求与数据高径比为2.5,南方某地,蛇管冷却,初始水温18℃,出水温度26℃1.应用基因工程菌株发酵生产赖氨酸,此产物是初级代谢产物。

牛顿型流体,二级发酵。

学号末尾数为0 : 15M3发酵罐;1号:50M3发酵罐;2号: 200 M3发酵罐2.应用基因工程菌株发酵生产柠檬酸,此产物是初级代谢产物。

牛顿型流体,二级发酵。

3号: 60M3发酵罐;4号 75M3发酵罐; 5号 100 M3发酵罐3.应用黑曲霉菌株发酵生产糖化酶,此产物是初级代谢产物。

非牛顿型流体,三级发酵。

6号: 15M3发酵罐; 7号: 20 M3发酵罐; 8号: 40 M3发酵罐; 9号:200 M3发酵罐(公称体积)三、课程设计应完成的工作1.课程设计说明书(纸质版和电子版)各1份2.设备装配图(A2号图纸420*594mm)1张四、课程设计进程安排五、应收集的资料及主要参考文献[1]郑裕国. 生物工程设备[M]. 北京:化学工业出版社,2007[2]李功样, 陈兰英, 崔英德. 常用化工单元设备的设计[M]. 广州:华南理工大学出版社,2006[3]陈英南, 刘玉兰. 常用化工单元设备的设计[M]. 杭州:华东理工大学出版社,2005[4]王福源主编.现代发酵技术(第二版)[M]. 北京:中国轻工业出版社,2004[5]潘红良,郝俊文主编.过程设备机械设计. 杭州:华东理工大学出版社,2006[6]吴思方主编.发酵工厂工艺设计概论[M]. 北京:中国轻工业出版社,2005[7]郑裕国主编,薛亚平副主编.生物工程设备[M].北京:化学工业出版社,2007[8] 黄福源主编,生物工艺技术[M] .北京:中国轻工业出版社,2006摘要本文对黑曲霉菌株为原料生产柠檬酸的生产流程和主要反应设备作了设计和计算。

搅拌器设计

搅拌器设计

搅拌器设计选型绪论搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。

在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。

搅拌操作分为机械搅拌与气流搅拌。

气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。

与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。

但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。

在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。

搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。

其结构形式如下图:一搅拌装置结构图第一章搅拌装置第一节搅拌装置的使用范围及作用搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,二很多的化工生产都或多或少地应用着搅拌操作。

搅拌设备在许多场合时作为反应器来应用的。

例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。

搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。

搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。

搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。

例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。

化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。

第二节搅拌物料的种类及特性搅拌物料的种类主要是指流体。

机械搅拌器直径大小与罐径的比例 (2)

机械搅拌器直径大小与罐径的比例 (2)

机械搅拌器直径大小与罐径的比例从机械搅拌器的功能可以知道,叶轮叶片的直径大小不就是任意决定的,它可以影响叶轮的排出流量,也可以影响动力消耗,也就就是可以影响向液体中输入能量的大小,说明叶轮的大小直接影响搅拌过程的进行。

如果叶轮的大小选择合理,就能供给搅拌过程所需要的动力,还能提供良好的流动状态,完成预期的操作。

叶轮叶片的大小一般以桨径的大小(所谓桨径就是指叶轮回转时前端轨迹圆的直径)与叶轮的宽度来衡量。

桨径的选择与机械搅拌器的种类有关,与罐径的大小有关。

当搅拌罐中出现“圆柱状回转区”漩涡时,这个部分的混合很差,致使混合时间较长,不利于搅拌过程,所以一般都要设法缩小这个区域。

如果减小桨径就可以缩小“圆柱状回转区”的半径。

如果因为种种原因,不方便更改桨径,那么除了通过减小浆径来缩小“圆柱状回转区”外,还可以通过以下两种方法:安装搅拌器装置附件——挡板| 搅拌器的偏心式安装在低黏度液时,由于液体流动性好,能量传递较容易,所以不必担心由于桨径的减小会造成叶轮外围出现死区。

此时,只要叶轮的搅动液量范围够,就应将桨径取小些,以桨径与罐内径之比叫桨径罐径比d/D,一般桨式叶轮的d/D=0,35~0、8。

涡轮式叶轮的d/D一般为0、25~0、5。

桨式之所以将d/D的范围取大些,就是因为它的转速较低,还常用在黏度较高的条件下。

考虑到具体的操作目的,还可将桨径尺寸选择更合理些。

例如对于液液分散操作时,为使轻相组分不致集中在轴的附近,要使罐的中心部分与四周部分的分散相能侧时分散,取d/D=1/3最合适,对气-液分散操作,也取d/D=1/3。

据认为在这个条件下.当动力消耗一定时,传质速率较大。

当固-液相悬浮操作时,为使罐底的固体颗粒易于搅起,对不同类型的罐底可取不同的桨径。

桨径罐径比分别为:平底圆罐d/D=0、45 - 0、5,椭圆形底圆罐d/D=0、4,半球形底圆罐d/D=0、3。

对于特殊的液液乳化搅拌,为取得高的剪切能力,叶轮要高速同转,其桨径罐径比更小,一般为1/6~1/10。

搅拌机设计

搅拌机设计

第一节 罐体的尺寸确定及结构选型 (一)筒体及封头型式选择圆柱形筒体,采用标准椭圆形封头 (二)确定内筒体和封头的直径发酵罐类设备长径比取值范围是 1.7~2.5,综合考虑罐体长径比对搅拌功率、传热以及物料特性的影响选取/ 2.5i H D =根据工艺要求,装料系数0.7η=,罐体全容积39V m =,罐体公称容积(操作时盛装物料的容积)390.7 6.3g V V m η=•=⨯=。

初算筒体直径iii D H D H D V 442ππ=≈34ηπi gi D H V D ≈即m D i 66.17.05.214.33.643≈⨯⨯⨯=圆整到公称直径系列,去mm DN 1700=。

封头取与内筒体相同内经,封头直边高度mm h 402=, (三)确定内筒体高度H当mm h mm DN 40,17002==时,查《化工设备机械基础》表16-6得封头的容积30.734v m =224(90.734)3.643.14 1.74i V vH m D π--===⨯,取 3.7H m = 核算/i H D 与η/ 3.7/1.7 2.18i H D ==,该值处于1.7~2.5之间,故合理。

226.30.69'1.7 3.70.73444g gi V V V D H vηππ====+⨯⨯+该值接近0.7,故也是合理的。

(四)选取夹套直径表1 夹套直径与内通体直径的关系由表1,取10017001001800j i D D mm =+=+=。

夹套封头也采用标准椭圆形,并与夹套筒体取相同直径 (六)校核传热面积工艺要求传热面积为211m ,查《化工设备机械基础》表16-6得内筒体封头表面积23.34,3.7i A m m =高筒体表面积为21 3.7 3.14 1.7 3.719.75i A D m π=⨯=⨯⨯=总传热面积为3.1419.7523.0911A =+=>故满足工艺要求。

第二节 内筒体及夹套的壁厚计算 (一)选择材料,确定设计压力按照《钢制压力容器》(15098GB -)规定,决定选用0189Cr Ni 高合金钢板,该板材在150C 一下的许用应力由《过程设备设计》附表1D 查取,[]103t MPa σ=,常温屈服极限137s MPa σ=。

发酵罐设计

发酵罐设计

目录前言 (2)设计方案的拟定................................................................................... (3)(1)、机械搅拌生物反应器的型式 (3)(2)、反应器用途 (3)(3)、冷却水及冷却装置 (3)(4)、设计压力罐内0.4MPa;夹套0.25 Mpa (4)表-发酵罐主要设计 (4)工艺设计及计算 (5)(1)生产能力、数量和容积的确定 (5)(2)主要尺寸计算 (5)(3)冷却面积的计算 (6)(4)搅拌器设计 (6)(5)搅拌轴功率的计算 (7)(6)i求最高热负荷下的耗水量W (8)ii 冷却管组数和管径 (9)iii冷却管总长度L计算 (10)iv 每组管长l和管组高度 (10)V 每组管子圈数n (10)Vi 校核布置后冷却管的实际传热面积 (10)(7)设备材料的选择 (10)(8)发酵罐壁厚的计算 (11)(9)接管设计 (12)(10)支座选择 (13)设计结果汇总 (14)参考资料 (14)发酵罐设计心得体会 (15)附录及设计图前言生化工程设备课程设计是生物工程专业一个重要的、综合性的实践教学环节,要求我们综合运用所学知识如生化反应工程与生物工程设备课程来解决生化工程实际问题,对培养我们全面的理论知识与工程素养,健全合理的知识结构具有重要作用。

在本课程设计中,通过生化过程中应用最为广泛的设备,如机械搅拌发酵罐、气升式发酵罐、动植物细胞培养反应器,蒸发结晶设备、蒸馏设备等的设计实践,对我们进行一次生化过程发酵设备设计的基本训练,使我们初步掌握发酵设备设计的基本步骤和主要方法,树立正确的设计思想和实事求是,严肃负责的工作作风,为今后从事实际设计工作打下基础。

设计方案的拟定我们设计的是一台25M3机械搅拌通风发酵罐,发酵生产味精。

设计基本依据(1)、机械搅拌生物反应器的型式通用式机械搅拌生物反应器,其主要结构标准如下:①高径比:H/D=1.7-4.0②搅拌器:六弯叶涡轮搅拌器,Di :di:L:B=20:15:5:4③搅拌器直径:Di=D/3④搅拌器间距:S=(0.95-1.05)D⑤最下一组搅拌器与罐底的距离:C=(0.8-1.0)D⑥挡板宽度:B=0.1D,当采用列管式冷却时,可用列管冷却代替挡板(2)、反应器用途用于味精生产的各级种子罐或发酵罐,有关设计参数如下:①装料系数:种子罐0.50-0.65发酵罐0.65-0.8②发酵液物性参数:密度1080kg/m3粘度2.0×10-3N.s/m2导热系数0.621W/m.℃比热4.174kJ/kg.℃③高峰期发酵热3-3.5×104kJ/h.m3④溶氧系数:种子罐5-7×10-6molO2发酵罐6-9×10-6molO2⑤标准空气通风量:种子罐0.4-0.6vvm发酵罐0.2-0.4vvm(3)、冷却水及冷却装置冷却水:地下水18-20℃冷却水出口温度:23-26℃发酵温度:32-33℃冷却装置:种子罐用夹套式冷却,发酵罐用列管冷却。

蛇管冷却机械搅拌装置设计 化工原理课程设计

蛇管冷却机械搅拌装置设计 化工原理课程设计

蛇管冷却机械搅拌装置设计化工原理课程设计化工原理课程设计蛇管冷却机械搅拌装置设计说明书搅拌装置设计任务书(蛇管冷却机械搅拌装置设计)(一)设计题目均相液体机械搅拌蛇管冷却反应器设计。

(二)设计任务及操作条件(1)处理能力175200m3/a均相液体。

〖注:X代表学号最后两位数〗(2)设备型式机械搅拌蛇管冷却装置。

(3)操作条件①均相液温度保持60℃。

②平均停留时间20min。

③需要移走热量135kW。

④采用蛇管冷却,冷却水进口温度18℃,冷却水出口温度28℃。

⑤60℃下均相液物性参数:比热容Cp=912J/(kg·℃),导热系数λ=0.591 W/(m·℃),平均密度ρ=987kg/m3,粘度=3.5X10-2Pa·s。

⑥忽略污垢及间壁热阻。

⑦每年按300天,每天24小时连续搅拌。

(三)厂址:柳州地区。

(四)设计项目(1)设计方案简介:对确定的工艺流程及设备进行简要论述。

(2)搅拌器工艺设计计算:确定搅拌功率及蛇管传热面积。

(3)搅拌器、搅拌器附件、搅拌槽、蛇管等主要结构尺寸设计计算。

(4)主要辅助设备选型:冷却水泵、搅拌电机等。

(5)绘制搅拌器工艺流程图及设备设计条件图。

(6)对本设计评述。

目录设计方案简介 (4)工艺计算及主要设备设计 (4)一、确定设计方案 (4)1、选择蒸发器的类型 (4)2、流程安排 (4)3、冷却水泵、搅拌电机的选型 (4)二、确定性数据 (5)三、设备各项数据计算 (5)1、搅拌槽的计算 (5)2、搅拌器的选型 (6)3、搅拌器的功率计算 (7)4、电动机的选型 (8)5、蛇管规格的选择………………………………………………… (8)6、蛇管内外侧换热系数的计算 (9)7、总传热系数与传热系数的计算 (11)8、泵的选型 (12)四、计算结果列表 (15)设计评论 (15)主要符号说明 (16)参考资料 (17)带控制点的工艺流程简图、主体设备设计条件图(见附图)设计方案简介蛇管冷却搅拌是运用搅拌器将搅拌槽中的反应物料搅拌均匀,同时可以将物料的热量均匀分布,并运用蛇管作为冷却装置,使搅拌槽中的物料液保持在一定的温度下,保持一个良好的反应环境。

发酵设计相关计算

发酵设计相关计算

发酵罐的工艺尺寸常用的机械通风发酵罐的结构和主要几何尺寸已标准化设计。

其几何尺寸比例如下:H0/D=1.7~3.5 H/D=2~5 d/D=1/3~1/2 W/D=1/12~1/8B/D=0.8~1.0 h/D=1/4 单位全部为m发酵罐大小用公称体积表示,V0=∏D2×H/4+0.15D3其中:H0-发酵罐圆柱形筒身高度D-发酵罐内径H-罐顶到罐底的高度D-搅拌器直径W-挡板宽度B-下搅拌器距罐底的距离S-搅拌器间距h-底封头或顶封头高度香菇多糖包括胞内与胞外多糖,以每100ml发酵液中菌丝体干重2.5克计,则每100ml发酵液中粗多糖总量为52.2mg即0.522kg/m3 。

按标准曲线绘制方法,依据粗多糖在蒸馏水中的吸光度可知,其纯多糖含量为80.96%,最终纯化产品纯度96%。

年生产香菇多糖1吨,年生产日300天,发酵周期为96h,清理及维修发酵罐的总时间为1天,则总的发酵时间为5天,装料系数为70%。

一年需放罐的次数:300/5=60次所需发酵罐体积:1000/60/0.522/70%/80.96%×96%=54.09m3所以选用V=10m3发酵罐,则需6个。

发酵罐中,高径比为1.74,取H/D=2.5;搅拌器直径为1/3直径;取d/D=1/3;档板为0.1倍直径,取d1/D=0.1;下部搅拌器到底部距离为:B/D=1;S/D=2.5;W/D=1/8由公式V全=πD2[H+2(hb+D/6)]/4,H=2D, hb可忽略, V全=10m3,代入得2.224D3=10,得出:D=1.65mH=2×1.7=3.4md=1.65/3=0.55md1=0.1×1.7=0.17mW=1.7/8=0.2125mB=D=1.65S=2×1.65/3=1.1mh=D/4=0.4125液面高度=0.7×(H+h)=2.66875m本发酵过程中选用机械搅拌式发酵罐,国内普遍采用六弯叶或六箭叶圆盘涡轮式,本设计中因罐小要求加强轴向混合,故选用六箭叶圆盘涡轮式。

生物工程设备习题答案

生物工程设备习题答案

生物工程设备习题集一. 单项选择题: (每题1分)1.目前啤酒厂的糖化锅中利用_____D____进行搅拌。

A.圆盘平直叶涡轮搅拌器B.螺旋浆式搅拌器C.醪液内二氧化碳的密度梯度D. 二折叶旋桨式搅拌器2.空气过滤系统中旋风分离器的作用是_____A____。

A.分离油雾和水滴B.分离全部杂菌C.分离二氧化碳D.分离部分杂菌3.好气性发酵工厂,在无菌空气进入发酵罐之前__C___,以确保安全。

A.应该安装截止阀B.应该安装安全阀C.应该安装止回阀D.不应该安任何阀门4.无论是种子罐或发酵罐,当培养基尚未进罐前对罐进行预先灭菌,我们称为空罐灭菌,此时对灭菌温度和灭菌时间的要求是____C____,只有这样才既合理经济,又能杀灭设备中各死角残存的杂菌或芽孢。

A.高温瞬时(133℃,15秒钟)B.同实罐灭菌一样(115℃,8-15分钟)C.高温长时(127℃,45分钟)D.间歇灭菌(100℃,30分钟,连灭三次)5.机械轴封的动环的硬度比静环___B__。

动环的材料可用___________,静环最常用的材料是___________。

A.大,碳化钨钢,铸铁B.大,碳化钨钢,聚四氟乙烯C.小,聚四氟乙烯,不锈钢;D.小,聚四氟乙烯,碳化钨钢。

6.溶液在升膜式蒸发器加热管中出现爬膜的最重要条件是____D_____。

A.物料进口处或出口处采用浮头管板B.蒸发器壳体应有膨胀圈C.物料在加热管内有足够的浓缩倍数,一般为七倍D.加热的蒸气与物料之间有足够的温度差,一般为20-35℃7.目前啤酒厂的圆筒锥底发酵罐内采用_____C_____。

A.圆盘平直叶涡轮搅拌器B.螺旋浆式搅拌器C.无搅拌器D.锚式搅拌器8.空气过滤系统中空气加热器的作用是______B______。

A.对空气加热灭菌B.升高空气温度,以降低空气的相对湿度C.对空气加热,蒸发除去空气中的部分水份D.升高空气温度,杀灭不耐热的杂菌9.机械搅拌发酵罐中最下面一档搅拌器离罐底距离一般____C____搅拌器直径的高度,最上面一个搅拌器要在液层以下0.5米(大罐)。

5发酵罐简介

5发酵罐简介

(二)参数设计 1. 小型机械搅拌通风 发酵罐主要用于实 验室小试、中试和 种子罐。 2. 大型机械搅拌通风 发酵罐 公称容积 筒体高度
/m3 10 60 100 200 /mm 3200 8000 9400 11500
公称 容积 /L 50 500 2000 5000
筒体 高度 /mm 813 1400 2100 3000
(二)搅拌器
• 搅拌器的作用:
– 打碎气泡,使空气与溶液均匀接触,使氧溶解于发 酵液中; – 使发酵液充分混和,液体中的固形物料保持悬浮状 态。
• 搅拌器有轴向式(桨叶式、螺旋桨式)和径向 式(涡轮式)两种。
平叶
弯叶
箭叶
(三)挡板
• 挡板的作用——防止液面中央产生漩涡,促使 液体激烈翻动,提高溶解氧。 • 挡板宽度约为(0.1~0.12)D; • 装设4~6块挡板,可满足全挡板条件。 •全挡板条件:是指在一定转数下再增加罐内附件而轴 竖立的蛇管、列管、排管也可以起挡板作用; 功率仍保持不变。要达到全挡板条件必须满足下式要 •求: 挡板的长度自液面起至罐底为止。 • 挡板与罐壁之间的距离为(1/5 ~1/8)D。
(一)接种 1. 火圈直接倒种 2. 注射器接种 3. 压力差接种

适用于小罐

接种口用火圈杀菌;橡胶口在火圈上过一下,套 入接种口;打开进口阀、进气阀打开,关闭排气 阀,罐内升压至1kg/cm2;突然打开排气阀,罐内 压力下降至0.5 kg/cm2,瓶内种子液进入罐内。 接种瓶密封、耐高压;接种瓶口要旋紧、塞子塞 紧,防止漏气染菌;进气口压力表一定不能超过1 kg/cm2(否则接种瓶会爆炸);反复两三次直至 全部种子液接入罐内为止。
二、自吸式发酵罐
• 不需要空气压缩机提供加压空气,而依靠特设 的机械搅拌吸气装置或液体喷射吸气装置吸入 无菌空气,同时实现混合搅拌与溶氧传质的发 酵罐。 • 耗电量小,能保证发酵所需的空气,并能使气 液分离细小,均匀地接触,吸入空气中70-80% 的氧被利用。 • 可用于生产葡萄糖酸钙、力复雷素、维生素C 、酵母、蛋白酶等。

通用式发酵罐的设计与计算

通用式发酵罐的设计与计算

一、通用式发酵罐的尺寸及容积计算1. 发酵罐的尺寸比例不同容积大小的发酵罐,几何尺寸比例在设计时已经规范化,具体设计时可根据发酵种类、厂房等条件做适当调整。

通用式发酵罐的主要几何尺寸如下图。

(1)高径比:H0︰D =(1.7~4)︰1。

(2)搅拌器直径:D i =31D 。

(3)相邻两组搅拌器的间距:S =3D i 。

(4)下搅拌器与罐底距离:C =(0.8~1.0)D i 。

(5)挡板宽度:W =0.1 D i ,挡板与罐壁的距离:B =(81~51)W 。

(6)封头高度:h =h a +h b ,式中,对于标准椭圆形封头,h a =41D 。

当封头公称直径≤2 m 时,h b =25 mm ;当封头的公称直径>2 m 时,h b =40 mm 。

(7)液柱高度:H L =H 0η+h a +h b ,式中,η为装料系数,一般情况下,装料高度取罐圆柱部分高度的0.7倍,极少泡沫的物料可达0.9倍,对于易产生泡沫的物料可取0.6倍。

2. 发酵罐容积的计算圆柱部分容积V 1:0214H D V π=式中符号所代表含义见上图所示,下同。

椭圆形封头的容积V 2:)61(4642222D h D h D h D V b a b +=+=πππ公称容积是指罐圆柱部分和底封头容积之和,其值为整数,一般不计入上封头的容积。

其计算公式如下:)6140221D h H D V V V b ++=+=(公π 罐的全容积V 0: )]61(2[4202210D h H D V V V b ++=+=π如果填料高度为圆柱高度的η倍,那么液柱高度为:b a L h h H H ++=η0装料容积V :)61(40221D h H D V V V b ++=+=ηπη 装料系数η:0V V =η二、通用式发酵罐的设计与计算 1. 设计内容和步骤通用式发酵罐的设计已逐渐标准化,其设计内容及构件见表6-6。

表6-6 发酵罐设计内容及构件设计内容构件的选取与计算 设备本体的设计筒体、封头、罐体压力、容积等 附件的设计与选取 接管尺寸、法兰、开孔及开孔补强、人孔、传热部件、挡板、中间轴承等搅拌装置的设计 传动装置、搅拌轴、联轴器、轴承、密封装置、搅拌器、搅拌轴的临界转速等设备强度及稳定性检验设备重量载荷、设备地震弯矩、偏心载荷、塔体强度及稳定性、裙座的强度、裙座与筒体对接焊缝验算等 2. 发酵罐的结构及容积的计算【例1】某厂间歇式发酵生产,每天需用发酵罐3个,发酵罐的发酵周期为80h ,问需配备多少个发酵罐?根据公式 N =11124803=+⨯(个)根据生产规模和发酵水平计算每日所需发酵液的量,再根据这一数据确定发酵罐的容积。

100M3机械搅拌通风式发酵罐

100M3机械搅拌通风式发酵罐
课程设计
课程名称:机械搅拌通风式生物反应器 学生学院: 化学工艺与技术学院 生物工程0901 200922153035 桂文涛 杨忠华
专业班级: 学 号:
学生姓名: 指导教师:
2012 年10 月 14 日


设计任务书 ............................................
H=H0+2ha=9.0+2×0.95=10.9m 忽略搅拌器的体积,假设发酵液最高不超过筒体上端,则发酵罐内溶 液体积满足: V‘h= Va +
式h中为筒体部分发酵液的高度,h取ห้องสมุดไป่ตู้.75
则有h=7.07m< H0= 9 m
说明假设成立。
发酵液高度 Hf=h+ha=7.07+0.95=8.02m 考虑压力,温度,腐蚀因素,选择罐体材料和封头材料,封头 结构、与罐体连接方式。罐体和封头都使用16MnR钢为材料,封头设计 为标准椭圆封头,因D>500mm,所以采用双面缝焊接的方式与罐体连 接。 2.1.2 壁厚计算 (1)筒体设计厚度δd 计算厚度计算式: δd =
V0=V公+V封
查阅文献《钢制压力容器用封头》(JB/T 4746-2002)标准,
当公称直径D=3600mm时,标准椭圆封头的曲面高度h=900mm,直边高 度 hb=50mm,总深度为ha=950mm,内表面积Af=14.6m²,容积 Vf=6.62m³ 罐筒身高 :H0 =
=8.5m,圆整到9m 此时:H0/D=9000mm/3600mm=2.5,与前面的假设符合, 故可认为D=3600mm是合适的. 实际发酵罐体积:V=π/4D²H0+2Vf=104.8m³ (2)封头规格 查《钢制压力容器用封头》(JB/T 4746-2002)标准,由发酵 罐工程内径可得封头规格如下: 公称直径 3.6m 曲面直度 度 0.90m 0.05m ㎡ 直边高 积 14.6 6. 62m³ 内表面 容积 罐体高度 H 和筒体 高度H0 筒体高度

搅拌桨型制的选择与应用

搅拌桨型制的选择与应用

搅拌桨的选择与使用探讨本文来自: 马后炮化工作者: mahoupao日期: 2010-3-31 15:49 阅读: 518人评分是一种美德,请不要吝啬您的评分探讨, 选择在化工生产中,搅拌普遍存在,常规的搅拌形式有锚式、桨式、涡轮式、推进式、框式等,搅拌装置在高径比较大时,可用多层搅拌桨,特殊产品甚至会使用较为复杂的MIG式搅拌。

不同形式的搅拌对应各种不同的使用环境,以满足不同的使用要求。

请大家结合实际的使用经验,探讨下各种搅拌形式搅拌效果的特点,也可以结合实际事例说明各种搅拌形式在某些场合的适用性。

抛砖引玉一下,我在生产中使用过推进式的搅拌桨。

在使用中发现有如下特点:推进式的搅拌桨,物料随桨径向运动明显,而轴向运动较差;物料在升降温过程中,贴壁部分与釜中心区有明显的温差;物料较少或转速较快时会在釜中心区形成漩涡;此形式的搅拌,在结晶过程中会形成过饱和度的缓慢释放,有利于晶体的生长。

1、锚式、框式使用于低转速一般在60至300rpm 之间,这是因为考虑到锚式、框式长度多有3到5米,支撑点位于轴头,搅拌轴强度有限,高速下搅拌轴跳动比较大,特别是搅拌底部晃动幅度很大,甚至会碰到反应釜内壁。

同时结合物料的粘度选取转数,粘度大转速低,粘度小转数适当的高点。

2、涡轮式、推进式使用转速相对较高。

推进式的搅拌桨,物料较少或转速较快时会在釜中心区形成漩涡.可以在离搅拌桨50mm的距离的地方安置一张外径和搅拌桨相同的圆板,这样可以适当的减少漩涡。

搅拌是一个相对复杂的话题,论坛上也有相关主题,现就个人理解,小结如下:通常对搅拌的要求是由搅拌过程的目的和物料性质所决定的。

针对搅拌器的选型因素诸如容积循环速率、湍流强度和剪切作用等可以考虑:1、有类似应用,且搅拌效果较满意的可选用相同搅拌器;如:低粘度反应和简单体系通常我们一般选用单(双)桨叶式即可,而不用框式,以防止形成气相涡流,影响蒸馏效率;如为减少反混或沉积,则选用推进式或桨式与推进式组合,并加装导流桶;而涡轮式、布鲁马金式等也都可以很好的适用于低粘体系。

机械搅拌器直径大小与罐径的比例

机械搅拌器直径大小与罐径的比例

机械搅拌器直径⼤⼩与罐径的⽐例机械搅拌器直径⼤⼩与罐径的⽐例从机械搅拌器的功能可以知道,叶轮叶⽚的直径⼤⼩不是任意决定的,它可以影响叶轮的排出流量,也可以影响动⼒消耗,也就是可以影响向液体中输⼊能量的⼤⼩,说明叶轮的⼤⼩直接影响搅拌过程的进⾏。

如果叶轮的⼤⼩选择合理,就能供给搅拌过程所需要的动⼒,还能提供良好的流动状态,完成预期的操作。

叶轮叶⽚的⼤⼩⼀般以桨径的⼤⼩(所谓桨径是指叶轮回转时前端轨迹圆的直径)和叶轮的宽度来衡量。

桨径的选择与机械搅拌器的种类有关,与罐径的⼤⼩有关。

当搅拌罐中出现“圆柱状回转区”漩涡时,这个部分的混合很差,致使混合时间较长,不利于搅拌过程,所以⼀般都要设法缩⼩这个区域。

如果减⼩桨径就可以缩⼩“圆柱状回转区”的半径。

如果因为种种原因,不⽅便更改桨径,那么除了通过减⼩浆径来缩⼩“圆柱状回转区”外,还可以通过以下两种⽅法:安装搅拌器装置附件——挡板| 搅拌器的偏⼼式安装在低黏度液时,由于液体流动性好,能量传递较容易,所以不必担⼼由于桨径的减⼩会造成叶轮外围出现死区。

此时,只要叶轮的搅动液量范围够,就应将桨径取⼩些,以桨径与罐内径之⽐叫桨径罐径⽐d/D,⼀般桨式叶轮的d/D=0,35~0.8。

涡轮式叶轮的d/D⼀般为0.25~0.5。

桨式之所以将d/D的范围取⼤些,是因为它的转速较低,还常⽤在黏度较⾼的条件下。

考虑到具体的操作⽬的,还可将桨径尺⼨选择更合理些。

例如对于液液分散操作时,为使轻相组分不致集中在轴的附近,要使罐的中⼼部分和四周部分的分散相能侧时分散,取d/D=1/3最合适,对⽓-液分散操作,也取d/D=1/3。

据认为在这个条件下.当动⼒消耗⼀定时,传质速率较⼤。

当固-液相悬浮操作时,为使罐底的固体颗粒易于搅起,对不同类型的罐底可取不同的桨径。

桨径罐径⽐分别为:平底圆罐d/D=0.45 - 0.5,椭圆形底圆罐d/D=0.4,半球形底圆罐d/D=0.3。

对于特殊的液液乳化搅拌,为取得⾼的剪切能⼒,叶轮要⾼速同转,其桨径罐径⽐更⼩,⼀般为1/6~1/10。

不锈钢工业搅拌罐尺寸标准

不锈钢工业搅拌罐尺寸标准

不锈钢工业搅拌罐尺寸标准
不锈钢工业搅拌罐尺寸标准可以根据不同的应用和需求而有所不同。

下面是一些常见的尺寸标准参考:
- 容量:根据实际需求,不锈钢搅拌罐的容量可以有多种选择,通常从几升到几千升不等。

- 直径:不锈钢搅拌罐的直径一般在0.3米到3米左右,具体
尺寸会根据容量和需要进行调整。

- 高度:不锈钢搅拌罐的高度通常在0.5米到6米左右,也可
以根据具体需求调整。

- 接口尺寸:不锈钢搅拌罐上的进出料口和其他接口的尺寸也
会有一定的标准,常见的尺寸有1/2英寸、3/4英寸、1英寸等。

需要注意的是,以上只是一些常见的尺寸标准,具体的尺寸还需要根据生产厂家提供的设计和要求来确定。

不同的行业和应用对搅拌罐的尺寸和设计要求也有差异,因此在选择不锈钢搅拌罐尺寸时要根据具体情况进行评估和选择。

搅拌器的选型

搅拌器的选型

第三节搅拌器的选型(一)搅拌器选型桨径与罐内径之比叫桨径罐径比/d D,涡轮式叶轮的/d D一般为0.25~0.5,涡轮式为快速型,快速型搅拌器一般在 1.3H D>时设置多层搅拌器,且相邻搅拌器间距不小于叶轮直径d。

适应的最高黏度为50Pa s∙左右。

搅拌器在圆形罐中心直立安装时,涡轮式下层叶轮离罐底面的高度C 一般为桨径的1~1.5倍。

如果为了防止底部有沉降,也可将叶轮放置低些,如离底高度/10=.最上层叶轮高度离液面至少要有1.5d的深C D度。

符号说明b——键槽的宽度B——搅拌器桨叶的宽度d——轮毂内经d——搅拌器桨叶连接螺栓孔径d——搅拌器紧定螺钉孔径1d——轮毂外径2D——搅拌器直径JD——搅拌器圆盘的直径1G——搅拌器参考质量h——轮毂高度1h——圆盘到轮毂底部的高度2L ——搅拌器叶片的长度R ——弧叶圆盘涡轮搅拌器叶片的弧半径M ——搅拌器许用扭矩()N m ∙t ——轮毂内经与键槽深度之和 δ——搅拌器桨叶的厚度1δ——搅拌器圆盘的厚度工艺给定搅拌器为六弯叶圆盘涡轮搅拌器,其后掠角为45o α=,圆盘涡轮搅拌器的通用尺寸为桨径j d :桨长l :桨宽20:5:4b =,圆盘直径一般取桨径的23,弯叶的圆弧半径可取桨径的38。

查HG-T 3796.1~12-2005,选取搅拌器参数如下表由前面的计算可知液层深度 2.45H m =,而1.3210i D m m=,故1.3i H D >,则设置两层搅拌器。

为防止底部有沉淀,将底层叶轮放置低些,离底层高度为425mm ,上层叶轮高度离液面2J D 的深度,即1025mm 。

则两个搅拌器间距为1000mm ,该值大于也轮直径,故符合要求。

(二)搅拌附件 ①挡板挡板一般是指长条形的竖向固定在罐底上板,主要是在湍流状态时,为了消除罐中央的“圆柱状回转区”而增设的。

罐内径为1700mm ,选择4块竖式挡板,且沿罐壁周围均匀分布地直立安装。

生物工程设备考试重点

生物工程设备考试重点

一、名词解释1、公称容积:发酵罐大小体积通常用公称容积标示,所谓公称容积是指圆柱体体积与底封头体积之和。

2、滤饼过滤:当悬浮液通过过滤介质时,固体颗粒被介质阻拦而形成滤饼,当滤饼积至一定厚度时就起到过滤作用,此时即可获得澄清的滤液。

3、体积溶氧速率:OTR=K L(C*-CL)4、KLa体积溶氧系数,单位体积发酵液的溶氧速率。

KL表示液相总传质系数,a表示每单位体积发酵液中气液界界面。

5、过滤除菌:是目前生物技术工业生产中使用的最常用的空气除菌方法,它采用定期灭菌的干燥介质来阶截流过的空气所含的微生物,从而获得无菌空气。

6、恒速干燥:.单位时间内于单位干燥面积上所能汽化的水分量在一段时间内是恒定的。

7、单程蒸发:溶液在蒸发器中只通过加热室一次,不作循环流动即成为浓缩液排出的蒸发操作。

8、自吸式发酵罐:是一种不需要空气压缩机提供加压空气,而依靠特设的机械搅拌吸气装置或液体喷射吸气装置吸入无菌空气并同时实现混合搅拌与溶氧传质的发酵罐。

9、体积溶氧系数:就是单位体积液体所能吸收的氧气。

10、气流输送混合比:每1kg空气所能提升的物料质量,或输送的物料流量G物与空气流量G气之比—μ=G物/G气。

11、色谱分离:利用各组分物理化学性质的差异,使各组分在固定相和流动相中的分离程度有差别,导致各组分移动速度不同而被分离的过程,称为色谱分离,又叫层析分离。

12、空气过滤除菌穿透率:过滤前后空气中微粒浓度的比值,即穿透滤层的微粒浓度与原微粒浓度的比值,称为穿透率。

13、全挡板条件:是指达到消除液面漩涡的最低条件,在一定转速下面增加罐内附件而轴功率仍保持不变。

14、气升式发酵罐:底部通无菌空气,无搅拌装置的发酵罐。

15、离心分离因数:离心加速度与重力加速度之比叫离心分离因数,用K C表示。

16、精馏系数(蒸馏系数):在酒精蒸馏中用蒸馏系数表示杂质相对乙醇的挥发能力。

17、蒸发(或称浓缩):将稀溶液通过加热蒸发,使溶液汽化或将稀溶液通过电渗析、离子交换等方法将溶液提高浓度的过程。

50L发酵罐设计计算书

50L发酵罐设计计算书

50L机械搅拌发酵罐设计机械搅拌发酵罐主要由发酵罐、搅拌装置、传动装置和轴封装置等部分组成。

发酵罐包括罐体和传热装置,他是提供反应空间和反应条件的部件。

搅拌装置由搅拌器和搅拌轴组成,靠搅拌轴传递动力,由搅拌器达到搅拌目的。

传动装置包括电动机、减速机及机座、连轴器和底座等附件,它为搅拌器提供搅拌动力和相应的条件。

轴封装置为发酵罐和搅拌轴之间的密封装置,以封住罐体内的流体不致泄漏,并使得罐内流体不受外界污染。

第一章发酵罐结构一,发酵罐结构选型机械搅拌发酵罐的主要部分是一圆柱形容器,其结构形式与传热方式有关。

常用的传热方式有夹套式壁外传热结构和罐体内部蛇管传热结构。

根据工艺要求,罐体上还需安装各种工艺接管。

根据已知条件:罐体全容积V=50L,设计压力P=0.25Mpa,设计温度T=1300C查搅拌罐使用范围规格表得:选择41型搅拌罐,其罐底为焊接的标准椭圆型封头,顶盖为可拆连接的平盖,换热器型式为整体夹套式。

二,罐体尺寸确定发酵罐包括罐体和装焊在其上的各种附件。

1,罐体的高径比和装料量在知道发酵罐的全容积(V=50L)以后,首先要选择适宜的高径比(H/D i)和装料量,确定筒体的直径和高度(1)罐体的高径比选择罐体的高径比应考虑的主要因素有三个方面:<1>,高径比对搅拌功率的影响一定结构形式搅拌器的浆叶直径同与其装配的搅拌罐罐体内径通常有一定的比例范围.随着罐体高径比的减小,即高度减小而直径放大,搅拌器浆叶直径也相应放大。

在固定的搅拌轴转数下,搅拌器功率与搅拌器浆叶直径的5次方成正比。

所以随着罐体直径的放大,搅拌器功率增加很多。

<2>,罐体高径比对传热的影响罐体高径比对夹套传热有显著影响。

容积一定时高径比越大则罐体盛料部分表面积越大,夹套的传热面积也越大。

同时高径比越大,则传热表面距离罐体中心越近,物料温度梯度就越小,有利于提高传热效果。

<3>,物料特性对罐体高径比的要求发酵罐的搅拌反应对罐体的高径比有着特殊要求,为了使通入罐内的空气与发酵液有充分的接触时间,需要有足够的高度,就希望高径比取的大一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械搅拌器直径大小与罐径的比例
从机械搅拌器的功能可以知道,叶轮叶片的直径大小不是任意决定的,它可以影响叶轮的排出流量,也可以影响动力消耗,也就是可以影响向液体中输入能量的大小,说明叶轮的大小直接影响搅拌过程的进行。

如果叶轮的大小选择合理,就能供给搅拌过程所需要的动力,还能提供良好的流动状态,完成预期的操作。

叶轮叶片的大小一般以桨径的大小(所谓桨径是指叶轮回转时前端轨迹圆的直径)和叶轮的宽度来衡量。

桨径的选择与机械搅拌器的种类有关,与罐径的大小有关。

当搅拌罐中出现“圆柱状回转区”漩涡时,这个部分的混合很差,致使混合时间较长,不利于搅拌过程,所以一般都要设法缩小这个区域。

如果减小桨径就可以缩小“圆柱状回转区”的半径。

如果因为种种原因,不方便更改桨径,那么除了通过减小浆径来缩小“圆柱状回转区”外,还可以通过以下两种方法:
安装搅拌器装置附件——挡板| 搅拌器的偏心式安装
在低黏度液时,由于液体流动性好,能量传递较容易,所以不必担心由于桨径的减小会造成叶轮外围出现死区。

此时,只要叶轮的搅动液量范围够,就应将桨径取小些,以桨径与罐内径之比叫桨径罐径比d/D,一般桨式叶轮的
d/D=0,35~0.8。

涡轮式叶轮的d/D一般为0.25~0.5。

桨式之所以将d/D的范围取大些,是因为它的转速较低,还常用在黏度较高的条件下。

考虑到具体的操作目的,还可将桨径尺寸选择更合理些。

例如对于液液分散操作时,为使轻相组分不致集中在轴的附近,要使罐的中心部分和四周部分的分散相能侧时分散,取
d/D=1/3最合适,对气-液分散操作,也取d/D=1/3。

据认为在这个条件下.当动力消耗一定时,传质速率较大。

当固-液相悬浮操作时,为使罐底的固体颗粒易
于搅起,对不同类型的罐底可取不同的桨径。

桨径罐径比分别为:平底圆罐
d/D=0.45 - 0.5,椭圆形底圆罐d/D=0.4,半球形底圆罐d/D=0.3。

对于特殊的液液乳化搅拌,为取得高的剪切能力,叶轮要高速同转,其桨径罐径比更小,一般为1/6~1/10。

在液体黏度很大,大到使流动进入层流状态时,轴附近的“圆柱状回转区”几乎变小到零,但因液体黏滞力很大,罐内易出现死区,所以桨径要取得很大,如采用锚式、框式及螺带式等,其d/D都在0.9以上。

推进式叶轮轴向流量大,体积循环能力强,一般桨径都不大,多取d=0,2-0.5其中以d/D=1/3为最常用。

您可能感兴趣的文章:根据黏度和需求对搅拌器选型
可将机械搅拌器根据转速区分为快速型与慢速型两类,它们的桨径罐径比不同。

以经常使用在过渡区与湍流区的为快速型,如涡轮式、推进式、鼠笼式与桨式等;以经常用在层流区的为慢速型,如螺带式、锚式、螺杆式等等。

对快速型搅拌器直径大小一般取2.0≤D/d≤8.0,即0.125≤d/D≤0.5;对慢速型的一般取1.04≤D/d≤2.0,即0.5≤d/D≤0.96。

您可能感兴趣的文章:高速机械搅拌器的转速控制
关于一个叶轮上叶片的数量,一般在桨式中常用双叶。

各种涡轮式的叶轮以6叶及8叶为多,最少的用3叶,最多有用16叶。

推进式有2叶、3叶和4叶,以3叶居多。

关于叶轮宽度的影响.可从机械搅拌器的动力消耗方面来分析。

可这样概括地说,在高黏度液体中,层流范围内动力消耗几乎和桨宽成正比,而在低黏度液中,仅在叶轮宽度范围较小时,动力消耗随桨宽增加而增加,当桨宽大到一定范围以上,动力消耗就不再因桨宽增大而增大了。

这里介绍一些常用桨宽b的数据。

对涡轮式,在不互溶液-液中搅拌时,取d/D=1/3,叶片数=4,桨宽b=(0.05~0.1)D。

在气-液分散操作中,取d/D=1/3.则取(b/D)n=0.15~0.3。

桨式的b=(0.1~0.25)D。

锚式、框式及螺带式其桨宽
b=0.1D。

您可能感兴趣的文章:搅拌器桨叶宽度对搅拌功率的影响
关于机械搅拌器在搅拌轴上的安装层数,一般都是从叶轮的搅动范围来考虑的,液层过高则要考虑设置多层叶轮。

对于低黏度液体,如黏度小于5000mPa.s 时径流型叶轮可搅动罐内上下范围为桨径的4倍,所以对常用的液层降度H=D时,只要一层叶轮即可。

推进式叶轮一般也在粘度大于110mPa.s及液层深度H>4d时才取积层。

对于高黏度液体,当黏度达到50000mPa.s时,上下可搅动的液体范围但是桨径的1/2,所以这时必须增加机械搅拌器层数。

多层搅拌如下图。

快速型机械搅拌器一般在H>1.3D时设置多层机械搅拌器,且相邻搅拌器间距不小于叶轮直径d。

一般情况下,我们也可以利用螺带螺杆搅拌器来加强液体在上下方向的循环,但是如果液体高度过高,那么多层搅拌器就是首选了。

相关阅读:螺杆螺带
搅拌器技术参数
机械搅拌器在圆形罐中心直立安装时,桨式与涡轮式下层叶轮离罐底面的高度C一般为桨径的1~1.5倍。

如果为了防止底部有沉淀,也可将叶轮放置低些,如离底高度C=D/10。

最上层叶轮高度离液面至少要有1,5d的深度,特别是不设挡板液面中心有下陷时更要注意。

搅拌器过于接近液面会目液面下陷而使叶轮外露。

推进式叶轮的C值一般也等于1/3液层深度。

为了防止底部沉淀的产生也可以安装底挡板,下面是底挡板相关内容:底挡板和指形挡板
推进式搅拌器在倾斜安装和侧面安装时,其安装尺寸参见图2-9。

按照此图上的数据安装,可不致使被搅拌的液体产生固定的旋涡,有利于混合过程。

上面介绍的这些几何关系都是一些最常用的。

如图2-10上的几何尺寸关系可称为涡轮式的标准型尺寸。

只有尺寸选择合理,才有可能良好地发挥机械搅拌器的功能,特别是高黏度液体的搅拌,其叶轮尺寸、安装尺寸尤其重要,应当慎重选择。

相关文档
最新文档