高中数学-组合与组合数

合集下载

高中数学 组合与组合数公式

高中数学 组合与组合数公式

(2)列出所有冠亚军的可能情况。
(1) 中国—美国 美国—古巴 中 美 中 古 中 俄 美 中 中国—古巴 美国—俄罗斯 美 古 美 俄 古 中 古 美 古 俄 中国—俄罗斯 古巴—俄罗斯 俄 中 俄 美 俄 古
(2) 冠 军 亚 军
组合数: 从n个不同元素中取出m(m≤n)个元素的所有组 合的个数,叫做从n个不同元素中取出m个元素的 m 组合数,用符号 C 表示
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的 子集有多少个? 组合问题 (2)某铁路线上有5个车站,则这条铁路线上共需准备 多少种车票? 排列问题 有多少种不同的火车票价? 组合问题
(3)10名同学分成人数相同的数学和英语两个学习小组, 共有多少种分法? 组合问题 (4)10人聚会,见面后每两人之间要握手相互问候, 组合问题 共需握手多少次? (5)从4个风景点中选出2个安排游览,有多少种不同的方法? 组合问题 (6)从4个风景点中选出2个,并确定这2个风景点的游览 顺序,有多少种不同的方法? 排列问题
abc abd acd bcd
求A 可分两步考虑: 3 4 求 可分两步考虑:
P4
第一步, C 4 ( 4)个;
第二步, A3 ( 6)个;
根据分步计数原理, A4
3
3
3
3
CA
3 4
3 3
.
P A 从而C 4 C3 3 P3
3
3
A
3 4 4
3 4
3
从 n 个不同元中取出m个元素的排列数
如:从 a , b , c三个不同的元素中取出两个元素的 所有组合分别是: ab , ac , bc (3个) 如:已知4个元素a , b , c , d ,写出每次取出两个 元素的所有组合.

高二数学组合与组合数

高二数学组合与组合数

課堂練習:
8.九张卡片分别写着数字0,1,2,…,8,从中取出三 张排成一排组成一个三位数,如果6可以当作9使用,问 可以组成多少个三位数?
解:可以分为两类情况:①
若取出6,则有2(A
2 8
+
C12C17C17 )
种方法;
②若不取6,则有
C17
组合数计算公式
复习
(1)C m

Am n

n(n 1)(n 2)(n m 1)
n
An
m!
(2)C m m n!
n m!(n m)!
组合数性质1: C
m n

C nm n
c c c 组合数性质2: m m m1
n1
n
n
C
0 n
=1
常用的组合数性质公式还有:
补充
1、Cn0 Cn1 Cnn 2n 2、Cn0 Cn2 Cn1 Cn3 3、kCnk nCnk11
3.一个集合有5个元素,则该集合的非空真子集共有 30 个.
4.平面内有两组平行线,一组有m条,另一组有n条,这
两组平行线相交,可以构成 Cm2 Cn2 个平行四边形 .
5.空间有三组平行平面,第一组有m个,第二组有n个,
第三组有t个,不同两组的平面都相交,且交线不都平行,
可构成
Cm2 Cn2C
2 t
2 6
C
2 4
C
2 2
=
90
种方法;
②“1、2、3型”即(4)中的分配情况,有C16
C
2 5
C33
A
3 3
=
360
种方法;
③“1、1、4型”,有

高中数学选修2-3优质课件:组合与组合数公式

高中数学选修2-3优质课件:组合与组合数公式
第十五页,编辑于星期一:点 三十六分。
解:(1)从 10 名教师中选 2 名去参加会议的选法种数为 C210= 120××19=45. (2)可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C62种选法; 第 2 类,选出的 2 名是女教师有 C42种选法. 根据分类加法计数原理,共有 C62+C42=15+6=21 种不同的 选法.
由此可得所有的组合为 ab,ac,ad,ae,bc,bd,be,cd,ce,de.
第六页,编辑于星期一:点 三十六分。
与组合数有关的计算
[例 2] (1)计算:C140-C37·A33; (2)已知C15m-C16m=107Cm7 ,求 C8m+C58-m. [解] (1)原式=C140-A73=140××39××28××17-7×6×5=210 -210=0. (2)原式=m!55!-m!-m!66!-m! =7×71-0×m7!!m!,
第十页,编辑于星期一:点 三十六分。
解:(1)原式=C38+C2100×1=83× ×72× ×61+1020××199=56+4 950 =5 006. (2)原方程可变形为CC53nn- -31+1=159,Cn5-1=154Cn3-3, 即n-1n-2n5-!3n-4n-5 =154·n-3n3-!4n-5,化简整理,得 n2-3n-54=0.解此 二次方程,得 n=9 或 n=-6(不合题意,舍去),所以 n=9 为所求.
)
A.4 或 9
B.4
C.9
D.其他
解析:当 x=3x-8 时,解得 x=4;当 28-x=3x-8
时,解得 x=9.
答案:A
第十八页,编辑于星期一:点 三十六分。
2.某班级要从 4 名男生、2 名女生中选派 4 人参加某次社区服

【高中数学】组合与组合数公式课件 高二下学期数学人教A版(2019)选择性必修第三册

【高中数学】组合与组合数公式课件 高二下学期数学人教A版(2019)选择性必修第三册

排列
联系
组合
组合是选择的 结果,排列是 选择后再排序 的结果
组合的概念 组合数的概念
不同的选法?
甲、乙;甲、丙;乙、丙 3
问题1
从已知的3个不
同元素中每次取

出2个元素,按

照一定的顺序排

成一列.
排列
问题2
从已知的3个
不同元素中每
次取出2个元
无 顺
素,并成一组

组合
组合的概念 一般地,从n个不同元素中取出m (m≤n)个元素并成一组,叫做从n个 不同元素中取出m个元素的一个组合.
6.2.3 组合与组合数公式
1.理解组合与组合数的概念. 2.会推导组合数公式,并会应用公式求值. 3.会用组合数公式解决简单的组合问题.
问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1
名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?
A
2 3
6
问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种
因此:Cnm
Anm Amm
n(n 1)(n 2) (n m 1) m!
这里 m,n N*,且 m n,这个公式叫做组合数公式.
因为
Anm
(n
n! m)!
所以,上面的组合数公式还可以写成
Cnm
n! m!(n m)!Fra bibliotek另外,我们规定:Cn0 1 .
例2.计算 (1) C170
(2) C130
乙丙
排列 甲乙,乙甲
甲丙,丙 甲
乙丙,丙乙
例1 判断下列问题是组合问题还是排列问题? (1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多少个? (2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票? 有多少种不同的火车票价? (4)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次? (5)从4个风景点中选出2个游览,有多少种不同的方法?

高中数学 1.2.2.1 组合与组合数公式课件 新人教A版选修23

高中数学 1.2.2.1 组合与组合数公式课件 新人教A版选修23

2.题(2)证明的关键是什么?
第十九页,共43页。
【探究提示】1.选用组合数公式的乘积式,

Cmn
A mn A mm
n(n-1)(n-2)…(n-m 1) . m!
2. 有关组合数恒等式的证明,关键是化简,应先考虑利用组合数
的阶乘( jiē chénɡ)式形式作答.
第二十页,共43页。
【自主(zìzhǔ)解答】(1)原C式140-=A37=140392-8717×6×5 =210-210=0.
【证明】右边=
n n-m
Cm n-1
n n-m
n-1! m! n-1-m
!
n!
m!n-m
!
Cnm
,
左边= Cmn ,所以左边=右边,所以原式成立.
第二十二页,共43页。
【方法技巧】关于组合数公式的选取技巧
(1)涉及具体数字的可以直接用
n n-m
Cm n-1
n n-m
n-1! m! n-1-m !
第十三页,共43页。
知识点2 组合数与组合数公式 1.组合数公式的两种形式的适用范围
形式
适用范围
乘积式
含具体数字的组合数的求值
要注阶意乘性式质(xìngzhì)含字母的组合的数顺的用有、关逆变用形、变及形证用明.顺用是将一
个组合数拆成两Cmn个1 ;C逆nm用 则Cnm是-1“合二为一”;变形式
=
(2)
C18 20
C220
20 19 21
190.
答案:190
(3)
C399
C929=C1300
100 99 98 3 21
161
700.
答案:161 700

组合与组合数(课件)高二数学(人教A版2019选择性必修第三册)

组合与组合数(课件)高二数学(人教A版2019选择性必修第三册)

解法二:抽出的3件中至少有1件是次品的抽法种数,就是从100件产品中抽出3
件的抽法种数减去3件都是合格品的抽法种数,即:
3
100

3
98
98 × 97 × 96
= 161700 −
= 9604
3!
探究新知
题型探究
题型一
有限制条件的组合问题
[学透用活]
[典例 1]
课外活动小组共 13 人,其中男生 8 人,女生 5 人,并且男、女
解:分两类情况:
第一类:没有队长被选上,从除去两名队长之外的 11 名学生中选取 5 人
有 C511=462 种选法.
第二类:一名队长被选上,分女队长被选上和男队长被选上,
有 C411+C411=660 种选法.
所以至多有 1 名队长被选上的方法有 462+660=1 122 种.
探究新知
2. 有男运动员 6 名,女运动员 4 名,其中男女队长各 1 名.选派 5 人外出比赛,
典型例题
例2 五行学说是华夏民族创造的哲学思想,是华夏文明的重要组成部分.古人
认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、
木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素
,则2类元素相生的选取方案共有多少种?
解:从5类元素中任选2类元素, 它们相生的选取有:火土,土金,金水,
思考:(1)分别观察例1中(1)与(2),(3)与(4)的计算结果,
有什么发现?
分析:例1中(1)与(2)的计算结果相同,(3)与(4)的计算结果相同.
(1)与(2)都是从10个元素中取部分元素的组合,其中,(1)取出3个元素,
(2)取出7个元素,二者取出元素之和为总元素个数10.(3)与(4)同理.

人教版数学高二《组合与组合数公式》 名师课件

人教版数学高二《组合与组合数公式》 名师课件
高中数学
(2)原方程可化为Cx+3x-2=110Ax+33, 即Cx+35=110Ax+33,8分 ∴5!x+x-32!!=x1+0·x3!!, ∴120x-1 2!=10·xx-11·x-2!, ∴x2-x-12=0,10分 解得x=4或x=-3, 经检验:x=4是原方程的解.12分
高中数学
• [题后感悟] 含有组合数的方程或不等式的 解法:
=2×6+52× ×41=32.
高中数学
(3)方法一:原式=Cn+1n·Cn1=
n+1! n!
·n=
n+1·n! n!
·n
=(n+1)n=n2+n.
方法二:原式=(Cnn+Cnn-1)·Cnn-1=(1+Cn1)·Cn1=(1+ n)n=n2+n.
高中数学
(1)已知C15m-C16m=107C7m,求C8m. (2)解方程:Cx+2x-2+Cx+2x-3=110Ax+33.
• (2)从1,2,3,…,9九个数字中任取3个,然后
把这三个数字相加得到一个和,这样的和共有
多少个?
高中数学
• 解答本题主要是分清取出的这m个(2个或3 个)是进行排列还是组合,即确定是与顺序 有关还是无关.
高中数学
• [解题过程] (1)当取出3个数字后,如果改变 三个数字的顺序,会得到不同的三位数,此问 题不但与取出元素有关,而且与元素的安排顺 序有关,是排列问题.
高中数学
练考题、验能力、轻巧夺冠
高中数学
• ②五个队进行单循环比赛的分组情况;
• ③由1,2,3组成两位数的不同方法数;
• ④由1,2,3组成无重复数字的两位数.
• A.①③
B.②④
• C.①②
高中数学D.①②④
• 2.如果Cn2=28,则n的值为( )

高中数学 122第1课时组合与组合数公式课件 新人教A版选修23

高中数学 122第1课时组合与组合数公式课件 新人教A版选修23

顺序排成一列”.
2.
• 组合数与组合数公式
组合数 从n个不同元素中取出m(m≤n)个元素的__所__有__不__同__组__合 定义 _的__个__数_,叫做从n个不同元素中取出m个元素的组合数.
表示法
_C_mn__
组合数 公式
乘积形式 阶乘形式
n(n-1)…(n-m+1)
Cmn = _________m_!_______
Cmn =
n!
_m__!_( __n_-__m_)__!__
性质 备注
Cmn =_C_nn_-_m_;
Cmn+1= _C_mn_+__C_nm_-_1_ ①n,m∈N*且m≤n ②规定 C0n=_1_
试一试:试求 C28+C83+C29的值. 提示 C82+C38+C29=C93+C29=C130=130××29××18=120.
含字母的组合数的有关变形及证明
3.对等式 Cmn =Cnn-m的理解 从 n 个不同元素中取出 m 个元素后,剩下 n-m 个元素.因 为从 n 个不同元素中取出 m 个元素的每一个组合,与剩下 的 n-m 个元素的每一个组合一一对应,所以从 n 个不同 元素中取出 m 个元素的组合数,等于从这 n 个元素中取出 n -m 个元素的组合数.即 Cmn =Cnn-m.
1.2.2 组 合
第1课时 组合与组合数公式
•【 课 标 要
1.理解组合求与】组合数的概念. 2.会推导组合数公式,并会应用公式求值. 3.了解组合数的两个性质,并会求值、化简和证明.
【核心扫描】
1.• 组合的概念及组合与组合数的区别.(易错点)
2.
• •
组合数公式的推导.(难点) 组合数公式的应用.(重点)

高二人数学选修课件时组合与组合数公式

高二人数学选修课件时组合与组合数公式

考生需要理解组合问题在实际生活中 的应用,如分组、选举、比赛等问题 。
掌握组合数的计算公式
考生需要熟练掌握组合数的计算公式 ,并能够运用公式解决简单的组合问 题。
历年高考真题解析
题目类型
高考中组合问题的题目类型主要 包括选择ห้องสมุดไป่ตู้、填空题和解答题。
考查内容
历年高考真题中,主要考查了组 合数的计算、组合的性质、组合
插空法是一种求解排列组合问题的常用方法,其基本思想 是将没有限制的元素先进行排列,再将有限制的元素插入 到已排好的元素之间的空隙中。
优点
能够简化问题,降低计算难度。
适用范围
适用于至少有一个元素位置不受限制的情况。
缺点
需要注意插入元素后是否满足题目的限制条件,否则容易 出错。
捆绑法
定义
捆绑法是将相邻的元素看作一 个整体,与其余元素进行排列 组合,然后再考虑相邻元素内
排列与组合关系
排列与组合的联系
排列和组合都是研究从n个不同元素中取出m个元素的问题, 但排列考虑元素的顺序,而组合不考虑元素的顺序。
排列与组合的区别
排列数公式为A(n,m) = n! / (n-m)!,而组合数公式为C(n,m) = n! / [m!(n-m)!]。可以看出,排列数考虑了元素的顺序, 因此比组合数多了一个m的阶乘。
在信息论中,组合数学用于研究 信源编码、信道编码和密码学等 问题。
统计学与概率论
在统计学和概率论中,组合数学 提供了计算概率和期望等统计量 的方法和工具。
计算机科学
在计算机算法设计和分析中,组 合数学提供了许多有用的工具和 方法,如排序算法、搜索算法、 图论算法等。
数学物理与化学
在数学物理和化学中,组合数学 用于研究分子结构、化学反应和 物质性质等问题。

高中数学第一章计数原理1.3组合1.3.1组合与组合数公式课件北师大版选修2_3

高中数学第一章计数原理1.3组合1.3.1组合与组合数公式课件北师大版选修2_3
都是相同的组合.当两个组合中的元素不完全相同(即使只有一个 元素不同),就是不同的组合.
(3)组合与排列的共同点:从n个不同的元素中任取m个元素;不同 点:对于排列,取出元素后还需对所取出的元素进行排列,即对顺序 有要求,而组合对取出的元素无需排列,只需组成一组即可,对顺序 无要求.可总结为:有序排列,无序组合.
目标导航
知识梳理
典例透析
随堂演练
题型一
题型二
题型三
【变式训练1】 判断下列各事件是排列问题还是组合问题,并求 出相应的排列数或组合数.
(1)10人相互通一次电话,共通多少次电话? (2)10个球队以单循环进行比赛(每两队比赛一次),共进行多少场 次? (3)从10个人中选出3个作为代表去开会,有多少种选法? (4)从10个人中选出3个担任不同学科的课代表,有多少种选法? 分析:解答本题主要是分清取出的这m个(2个或3个)元素是进行 排列还是组合,即确定其与顺序有关还是无关.
目标导航
题型一
题型二
题型三
知识梳理
典例透析
随堂演练
解:(1)是组合问题,因为甲与乙通了一次电话,也就是乙与甲通
了一次电话,没有顺序的区别,组合数为C120 = 45. (2)是组合问题,因为每两个队比赛一次,并不需要考虑谁先谁后,
没有顺序的区别,组合数为C120 = 45. (3)是组合问题,因为 3 个代表之间没有顺序的区别,组合数为
12345
目标导航
知识梳理
典例透析
【做一做1】 给出下面几个问题,其中是组合问题的有( )
①由1,2,3,4构成的含有2个元素的集合个数;
②五个队进行单循环比赛的比赛场次数;
③由1,2,3组成两位数的不同方法数;

高中数学(新人教A版)选择性必修二:组合、组合数【精品课件】

高中数学(新人教A版)选择性必修二:组合、组合数【精品课件】
数.
(1)10个人相互写一封信,一共写了多少封信?
(2)10个人相互通一次电话,一共通了多少次电话?
(3)从10个人中选3人去开会,有多少种选法?
(4)从10个人中选出3人担任不同学科的课代表,有多少种选法?
思路分析观察取出的元素与顺序有关还是无关,从而确定是排列问题,还是
组合问题.
解 (1)是排列问题,因为发信人与收信人是有顺序区别的,排列数为A210 =90.
式时,要根据题目特点正确选择.
(3)根据题目特点合理选用组合数的两个性质C
能起到简化运算的作用,需熟练掌握.
=
-
C , C+1
=
C
+
-1
C ,
38-
(1)求C3
变式训练 2
(2)证明:C
3
+ C21+
的值.

=
C-1 .
-
(1)解 由组合数的定义知,
组合、组合数
课标阐释
1.理解并掌握组合、组合数的概念,掌握组合与排列之间的联系与
区别.(数学抽象)
2.熟练掌握组合数公式及组合数的两个性质,并运用于计算之
中.(数学运算)
3.能够运用排列组合公式及计数原理解决一些简单的应用问题,提
高学生的数学应用能力与分析问题、解决问题的能力.(数学建模)
思维脉络
第 5 类,若 3 人中有两人唱歌第三人跳舞或两人跳舞第三人唱歌,共有
2C32 C11 C52 C53 =600(种);
第 6 类,若 3 人中有一人唱歌,又有一人跳舞有C31 C21 C53 C53 =600(种).
由分类加法计数原理得不同选法共有 25+50+300+300+600+600=1 875(种).

高中数学1.2.2组合第1课时组合与组合数公式人教A版选修2_3

高中数学1.2.2组合第1课时组合与组合数公式人教A版选修2_3

【解】 (1)从 10 名教师中选 2 名去参加会议的选法种数,就是 从 10 个不同的元素中取出 2 个元素的组合数,即 C210=120××19= 45(种). (2)可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C26种方法; 第 2 类,选出的 2 名是女教师有 C24种方法. 根据分类加法计数原理,共有 C26+C24=15+6=21(种)不同的选 法.
2.由 13 个人组成的课外活动小组,其中 5 个人只会跳舞,5 个人 只会唱歌,3 个人既会唱歌也会跳舞,若从中选出 4 个会跳舞和 4 个会唱歌的人去演节目,共有多少种不同的选法?
解:对 3 个既会唱歌又会跳舞的人进行分类: 第一类:若 3 人都不参加,共有 C03C45C45=25(种); 第二类:若 3 人都跳舞或都唱歌,共有 2C33C15C45=50(种); 第三类:若 3 人中有两人唱歌或跳舞,共有 2C23C25C45=300(种); 第四类:若 3 人中有一人唱歌或跳舞,共有 2C13C35C45=300(种);
判断下列问题是组合问题还是排列问题: (1)把 5 本不同的书分给 5 个学生,每人一本; (2)从 7 本不同的书中取出 5 本给某个同学; (3)10 个人互相写一封信,共写了几封信; (4)10 个人互相通一次电话,共通了几次电话.
解:(1)由于书不同,每人每次拿到的也不同,有顺序之分,故它 是排列问题. (2)从 7 本不同的书中,取出 5 本给某个同学,在每种取法中取出 的 5 本并不考虑书的顺序,故它是组合问题. (3)因为两人互写一封信与写信人与收信人的顺序有关,故它是排 列问题. (4)因为互通电话一次没有顺序之分.故它是组合问题.
■名师点拨 对组合概念的三点说明
(1)组合的特点 组合要求 n 个元素是不同的,被取出的 m 个元素也是不同的,即 从 n 个不同的元素中进行 m 次不放回地取出.

【高中数学】组合与组合数 课件 高二下学期数学人教A版(2019)选择性必修第三册

【高中数学】组合与组合数 课件 高二下学期数学人教A版(2019)选择性必修第三册
(1)从口袋内取出3个球,共有多少种方法?
(2)从口袋内取出3个球,使其中含有1个黑球,
有多少种取法?
(3)从口袋内取出3个球,使其中不含黑球,有
多少种取法?
作业布置:
1.总结一下知识点
2.同步练习册19页到20页随堂检
测1-5题做完。
3.课时跟踪检测第105页做完
总结归纳:
1.组合的定义,


3. 组合数公式:

①组合数乘积式公式:C
=



(−1)(−2)........(−+1)
=

!


=



(−)(−)........(−+)(−)⋯⋯⋯⋯×××
=
!(−)!


②组合数阶乘式公式:C
!
!(−)!
=
××
7
8
把5本不同的书分给5个学生,每人一本。
从7本不同的书中取出5本给某个学生。
9 从1,3,5,9中任取两个数相加,所得不同的和
1.组合数的概念:
1.组合数的定义:

2.符号:C

3.组合数公式:前边讲过的例题我们回过头来回顾一
下:
若3人发言无顺序有多少种选择方案?分析:在解决第一题时我们知道每三个按照
第六章
6.2.3-6.2.4
教学目标:
1.理解和掌握组合和组合数的概念
2.会运用组合数的公式及性质化简证
明和求值,解决简单的组合问题
探究一:组合的定义
情景导入:
在某次团代会上,某班级需要
从5名候选人中选择3人担任代
表上台发言
问题:(1)若3人发言有顺序

高中数学选择性必修三 6 2 3-6 2 4 第1课时 组合及组合数的定义

高中数学选择性必修三 6 2 3-6 2 4 第1课时 组合及组合数的定义

知识点二 排列与组合的关系
相同点 不同点
关系
两者都是从n个不同元素中取出m(m≤n)个元素 排列问题中元素有序,组合问题中元素无序
组合数Cmn 与排列数Amn 间存在的关系Amn=_C_mn_A__mm_
思考辨析 判断正误
SI KAO BIAN XI PAN DUAN ZHENG WU
1.从a1,a2,a3三个不同元素中任取两个元素作为一组是组合问题.
例3 有10名教师,其中6名男教师,4名女教师. (1)现要从中选2名去参加会议,有__4_5_种不同的选法;
解析 从10名教师中选2名去参加会议的选法种数,就是从10个不同元 素中取出2个元素的组合数, 即 C210=AA21220=120××19=45.
(2)选出2名男教师或2名女教师参加会议,有__2_1_种不同的选法;
跟踪训练2 从5个不同元素a,b,c,d,e中取出2个,共有多少种不同 的组合?请写出所有组合. 解 先将元素按照一定顺序排好,然后按顺序用图示的方法将各个组合 逐个写出来,如图所示:
由此可得所有的组合:ab,ac,ad,ae,bc,bd,be,cd,ce,de,共 有10种.
三、简单的组合问题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9.判断下列问题是排列问题还是组合问题,并求出相应的排列数或组合数. (1)10个人相互写一封信,一共写了多少封信? 解 是排列问题,因为发信人与收信人是有顺序区别的,排列数为 A210 =90.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7.若已知集合P={1,2,3,4},则集合P的子集中含有2个元素的子集数为 __6__. 解析 由于集合中的元素具有无序性,因此含 2 个元素的子集个数与元 素顺序无关,是组合问题,共有 C24=AA2422=42××31=6(个).

组合,组合数(课件)-高二数学教材配套学案 课件

组合,组合数(课件)-高二数学教材配套学案 课件

经典例题
总结
题型三 “含有”或“不含有”、“至少”或“至多”组问题
1.“含有”或“不含有”某些元素的组合问题: “含”,则先将这些元素取出,再由另外元素补足; “不含”,则先将这些元素剔除,再从剩余元素中去取. 2.“至少”或“至多”含有几个元素的问题: “至多”“至少”问题的常用解题方法有两种:(1)直接分类法,注 意分类要细、要全;(2)间接法,注意找准对立面,确保不重不漏.
单的应用问题,提高学生的数学应用能力与分析
问题、解决问题的能力.(数学建模)
自主学习
一、组合的相关概念 1.组合:一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个 不同元素中取出m个元素的一个 组合.
2.相同组合:两个组合只要元素相同,不论元素的顺序如何,都是相同的. 3. 排列与组合的区别与联系 (1)共同点:两者都是从n个不同元素中取出m(m≤n)个元素. (2)不同点:排列与元素的顺序有关,组合与元素的顺序无关.
经典例题
题型一 组合概念的理解与应用
解:(1)每两人握手一次,无顺序之分,是组合问题. (2)每两人相互写一封信,是排列问题,因为发信人与收信人是有顺序区别 的. (3)是排列问题,因为取出3个数字后,如果改变这3个数字的顺序,便会得到 不同的三位数. (4)是组合问题,因为取出3个数字后,无论怎样改变这3个数字的顺序,其构 成的集合都不变.
例3 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选 出5人参加市级培训,在下列条件下,各有多少种不同的选法? (1)任意选5人; (2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.
经 典 例 题 题型三 “含有”或“不含有”、“至少”或“至多”组问题

高中数学同步教学课件 组合及组合数的定义

高中数学同步教学课件 组合及组合数的定义

当堂检测 1.已知 C2n=10,则 n 的值为____5____. 2.如果 A3m=6C4m,则 m=____7____.
3.给出下列问题: ①从甲、乙、丙 3 名同学中选出 2 名去参加某两个乡镇的社会调查, 有多少种不同的选法? ②有 4 张电影票,要在 7 人中确定 4 人去观看,有多少种不同的选 法? ③某人射击 8 枪,击中 4 枪,且命中的 4 枪均为 2 枪连中,则不同 的结果有多少种? 其中是组合问题的个数是____2____.
【变式 3】 在一次考试的选做题部分,要求在第 1 题的 4 个小题中选做 3 个小题,在第 2 题的 3 个小题中选做 2 个小题,第 3 题的 2 个小题中 选做 1 个小题,有________种不同的选法. 【解析】分三步完成这件事,即共有 C43·C32·C21=24(种). 【答案】24
课堂小结 1.知识清单: (1)组合与组合数的定义. (2)排列与组合的区别与联系. (3)用列举法写组合. 2.方法归纳:枚举法. 3.常见误区:分不清“排列”还是“组合”.
(2)可按AB→AC→AD→BC→BD→CD顺序写出,如图:
由此可以写出所有的组合:ABC,ABD,ABE,ACD,ACE,ADE, BCD,BCE,BDE,CDE.
方法二(树形图法): (1)画出树形图,如图所示:
由此可以写出所有的组合:ab,ac,ad,bc,bd,cd.
(2)画出树形图,如图所示.
6.2.3 第1课时 组合及组合数的定义
【学习要求】
1.理解组合的定义,正确认识组合与排列的区别与联系. 2.会用组合知识解决一些简单的组合问题.
自学导引
1.组合的定义 一般地,从 n个不同元素中取出m(m≤n)个元素并成一组 ,叫做从 n

高二数学选修课件时组合与组合数公式

高二数学选修课件时组合与组合数公式
可能的结果。
适用范围
适用于组合元素个数较少,且 可以直观列举出所有可能结果 的情况。
优点
直观、易懂,能够直接得到问 题的答案。
缺点
当组合元素个数较多时,列举 过程可能变得繁琐,容易出错

插空法
01
定义
插空法是一种求解组合问题的 方法,它适用于某些特殊的组 合问题,如“不相邻”问题等 。该方法的基本思想是将需要 排列的元素先排好,然后将需 要插入的元素插入到已排好元 素的空隙中。
存在问题分析
在教学过程中,我发现部分学生在理解和运用组合数公式时存在一定困难。这可能是由于学生对阶乘运算和代数 运算掌握不够熟练所致。针对这些问题,我将加强相关知识点的讲解和练习,帮助学生更好地掌握所学知识。
XX
THANKS
感谢观看ቤተ መጻሕፍቲ ባይዱ
REPORTING
图论算法
图论算法是解决图论问题的有效方法 ,如最短路径算法、最小生成树算法 等。这些算法在组合优化问题中也有 广泛应用。
组合优化问题
组合优化是图论与组合数学的重要交 叉点,涉及如何在满足一定条件下寻 找最优的组合方案。例如,旅行商问 题、最小生成树问题等。
代数结构与组合设计
代数结构基础
代数结构是研究数学对象之间运算规律的数学分支,如群、环、域等。这些结构与组合数学中的计数、排列、组合等 问题密切相关。
,可以吸引玩家的兴趣并提高游戏的趣味性。例如,一些益智类游戏就
需要运用组合数学的知识来设计关卡和难度等级。
XX
PART 05
拓展:组合数学与其他学 科联系
REPORTING
图论与组合优化
图论基本概念
图论是研究图的结构、性质及其应用 的数学分支,与组合数学密切相关。 图由顶点和边组成,可用于表示对象 之间的关系。

高中数学选修课件:组合与组合数公式

高中数学选修课件:组合与组合数公式
排列与组合的定义
从n个不同元素中取出m(m≤n,m与n均为自然数,下同)个不同元素按照一定的顺序排 成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m个元素 的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
组合数公式推导过程
推导过程
考虑从n个元素中取出m个元素的所有可能情况,这相当于对n个元素进行全排 列,然后除以m个元素的全排列和剩余(n-m)个元素的全排列,以消除排列中 的重复情况。
进行快速计算。
组合的应用
在概率统计、排列组合问题、 编码理论等领域有广泛应用。
易错点剖析及注意事项
区分排列与组合
排列是有顺序的,而组合是无顺序的。在计算时,要注意题目要求的 是排列数还是组合数。
注意组合数的范围
由于组合数是从n个元素中取出m个,因此必须满足0≤m≤n的条件, 否则组合数无意义。
阶乘的计算
解答题思路剖析
仔细审题
明确题目要求,理解题意。
制定解题计划
根据题目条件和所学知识,制定详细的解 题步骤和计划。
执行解题计划
检查答案
按照计划逐步进行计算和推导,注意每一 步的正确性和合理性。
对答案进行检验和审查,确保没有遗漏和错 误。如果答案不符合题目要求,需要重新检 查和修正解题过程。
05 练习题巩固提高
证明组合数恒等式
利用组合数的性质和递推关系可以证 明一些组合数恒等式,如范德蒙德恒 等式等。
在概率统计中作用
计算事件概率
在概率论中,组合数经常用于计 算一些事件的概率,如超几何分
布、二项分布等。
抽样问题
在统计学中,组合数也常用于解决 一些抽样问题,如从总体中抽取一 定数量的样本进行检验等。

高中数学组合 (4)

高中数学组合 (4)

三、相同元素分配,隔板处理
练习1: 从6个学校中选出30名学生参加数学竞赛, 每校至少有1人,这样有几种选法?
练习2:将7只相同的小球全部放入4个不同盒子,每盒 至少1球的放法有多少种? 变式 将7只相同的小球全部放入4个不同盒子,每盒可 空,不同的放法有多少种?
二、相同元素不相邻问题
例:某城新建的一条道路上有12只路灯,为了节 省用电而不影响正常的照明,可以熄灭其中三盏 灯,但两端的灯不能熄灭,也不能熄灭相邻的两 盏灯,可以熄灭的方法共有( ) 3 3 3 3 A C C11 种 (A) 8 种(B) 8 种 (C) C 9 种 ( D)
个班、三个班、四个班进行分类,共有
C 2C 3C C 126
1 6 2 6 3 6 4 6
种分法.
例5.(1)四个不同的小球放入四个不同的盒中,一共 有多少种不同的放法? (2)四个不同的小球放入四个不同的盒中且恰有一个空 盒的放法有多少种?
解:(1)根据分步计数原理:一共有
4
4 256种方法;
2 3 A.(C C7 )(C7 C82 ) 3 2 C.C C C7 C8 3 8 3 2 8 7
C
3 2 3 B.(C8 C7 ) (C7 C82 )
3 2 1 D.C8 C7 C11
4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,则甲、乙两人不 都入选的不同选法种数共有( )
注意: 对于排列组合的混合应用题,
一般解法是先选后排。
练习: 10名学生均分成2组,每组选出正、 副组长各1人,共有多少种不同的方法?
练习:1、某学习小组有5个男生3个女生,从中选3名 男生和1名女生参加三项竞赛活动,每项活动至少有1 人参加,则有不同参赛方法______种.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学重点:组合与组合数的定义. 教学难点:组合与组合数的定义应用及组合与排列的
关系
问题引入
有5本不同的书: ▪ (1)取出3本分给甲、乙、丙三人每人1本,
有几种不同的分法? ▪ (2)取出4本给甲,有几种不同的取法?
问题(1)中,书是互不相同的,人也互不相同, 所以是排列问题.
问题(2)中,书不相同,但甲所有的书只有数 量的要求而无“顺序”的要求,因而问题(2)不是 排列问题.
引例2
引例2:从不在同一条直线上的三点 A、B、C中,每次取出两个点作一
条直线,问可以得到几条不同的直线?
引例3
1. 北京、上海、广州三个民航站之间的 直达航线,需要准备多少种不同的飞机票?
2. 北京、上海、广州三个民航站之间 的直达航线,有多少种不同的飞机票价?
引例总结
以上引例所研究的问题是不同的, 但是它们有数量上的共同点,都是:
n! m !(n
m) !
C
m n
.
课堂小结
排列
组合 联系
组合是选择的 结果,排列是 选择后再排序 的结果
组合的概念 组合数的概念
作业
P23
A 1,2
组合数公式
排列与组合是有区别的,但它们又有联系.
一般地,求从n 个不同元素中取出m 个元素的排
列数,可以分为以下2步:
第1步,先求出从这n 个不同元素中取出m 个元素
的组合数Cnm .
第2步,求每一个组合中m 个元素的全排列数Amm .
根据分步计数原理,得到:Anm Cnm Amm
因此:C
m n
(1)
C4 10

C3 7

(2)
3
C
3 8
2
C
2 5

C A (3) 已知 3 2 , 求 n .
n
n
例2


:
C
m n
m 1 nm
C
m1 n
.
证明:
C
m n
n! m(! n m)! ,
m 1 nm
C m1 n
m 1 nm
(m
n! 1)!(n
m
1)!
m1
n!
(m 1)! (n m)(n m 1)!
记作:Cnm.
注意:
Cnm 是一个数,应该把它与“组合” 区别开来.
如:从 a , b , c三个不同的元素中取出两个
元素的所有组合分别是: ab , ac , bc (3个)
如:已知4个元素a , b , c , d ,写出每次
取出两个元素的所有组合.
a
b
c
bcd c d
d
ab , ac , ad , bc , bd , cd 6个
练习:
中国、美国、古巴、俄罗斯四国女排
邀请赛,通过单循环决出冠亚军. (1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况。
(1) 中国—美国 美国—古巴
中国—古巴 美国—俄罗斯
中国—俄罗斯 古巴—俄罗斯
(2) 冠 军












亚 军












我们怎么去求组合数呢?
组合问题
(握4)手10相人互聚问会候,,见共面需后握每手两多人少之次间?要组合问题 (5)从4个风景点中选出2个安排游览,
组合问题 有多少种不同的方法?
(6)从4个风景点中选出2个,并确定这2个风景
点的游览顺序,有多少种不同的方法? 排列问题
组合数
从 n 个不同元素中取出 m( m n) 个元素的所有组合的个数,叫做从n 个 不同元素中取出 m个元素的组合数.
知识链接
▪ 1:什么叫做排列?排列的特征是什么?
▪ 2:什么叫做排列数?它的计算公式是 怎样的?
引例1
▪ 引例1:从甲、乙、丙3名同学中选出2 名去参加一项活动,有多少种不同的选 法?
从3名同学中选出2名,不同的选法有3种: 甲、乙 乙、丙 丙、甲
所选出的2名同学之间并无顺序关系,甲、乙和乙、 甲是同一种选法.
高二数学
教学目标:
(一)知识目标: 1.理解组合与组合数的定义. 2.会运用组合与组合数的定义解决相应的问题
(二)过程与方法目标 通过类比引入、分类讨论、数形结合、化归与转化等数学
思想方法的使用,培养学生分析问题、解决问题的能力。 (三)情感态度与价值观
培养学生良好的思维品质,感受为真理而执着追求的精神, 进行辩证唯物主义教育。
从3个不同的元素里每次取出2个元素, 不管顺序并成一组,一共有多少不同组?
组合定义
一般地,从 n 个不同元素中取出 m 个(不m同元n素)中个取元出素m并个成元一素组的,一叫个做组从合n.
思考: 排列与组合的概念,它们有什么共同点、不同点?
共同点:都要“从n个不同元素中任取m个元素” 不同点:对于所取出的元素,排列要“按照一定的顺序 排成一列”,而组合却是“不管怎样的顺序并成一 组”.
排列与元素的顺序有关,而组合与元素的顺序 无关,这是它的根本区别.
概念理解
思考一:ab与ba是相同的排列还是相同的组合?为什么? 思考二:两个相同的排列有什么特点?两个相同的组合呢?
1)元素相同; 2)元素排列顺序相同.
元素相同
思考三:组合与排列有联系吗?
构造排列分成两步完成,先取后排;而构造 组合就是其中一个步骤.
判断下列问题是组合问题还是排列问题?
(1)设集合A={a,b,c,d,e},则集合A的含有 3个元素的子集有多少个? 组合问题
(2)某铁路线上有5个车站,则这条铁路线上 共需准备多少种车票? 排列问题 有多少种不同的火车票价? 组合问题
(3)10名同学分成人数相同的数学和英语两个
学习小组,共有多少种分法?
Anm Amm
ቤተ መጻሕፍቲ ባይዱ
nn 1n 2
m!
n m 1
这里m、n N,* 且 m n,这个公式叫做组合
数公式.
从 n 个不同元中取出m个元素的排列数
A C A m m m
n
n
m
组合数公式:
Cnm
Anm Amm
n(n 1)(n 2)L m!
(n m 1)
Cnm
n! m!(n
m)!
例1 计算:
相关文档
最新文档