常微分课后答案第一章

合集下载

常微分方程第三版课后答案(00001)

常微分方程第三版课后答案(00001)

常微分方程第三版课后答案常微分方程 2.11.xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

《常微分方程》 (方道元 著) 课后习题答案 浙江大学出版社

《常微分方程》 (方道元 著) 课后习题答案  浙江大学出版社
dh dt
= v0 + at.
dh dt |t=T
=0
2.一个湖泊的水量为V立方米,排入湖泊内含污染物A的污水量为V1 立方米/时,流入湖泊内不含污
0 不得超过 m 5 。试讨论湖泊中污染物A的浓度变化?
解:设污染物A的浓度为P(t),由题意可得 V P (t) + P (t)(V1 + V2 ) = P (0) = 5m
w
ω )e−s ds = y (x)。
4.考虑方程
w
.k
w
其中p(x)和q (x)都是以ω 为周期的连续函数,试证:
(1)若q (x) ≡ 0,则方程(2.4.23)的任一非零解以ω 为周期当且仅当函数p(x)的平均值 p ¯= 1 ω
ω
hd aw

dy + a(x)y ≤ 0, (x ≥ 0). dx

x 2y
= 0, y (0) = 1;
−2 ,令z = y 2 ,方程两边再乘以因子e−2x ,得到 (1)显然y ≡ 0是方程的解,当y = 0时,方程两边乘以 1 2y
方程的通解为 y = (Ce2x − x 1 2 − ) 4 8
hd aw
1 1
案 网
1.试求下列微分方程的通解或特解: √ dy − 4xy = x2 y ; (1) x dx
w
w
(3) y =
dy dx
1 1−x2 y = 1 + x, x ex + 0 y (t) dt; x4 +y 3 xy 2 ;
(4)
=
(5) 2xydy − (2y 2 − x)dx = 0;
(6) (y ln x − 2)ydx = xdy ;

常微分方程第三版习题答案

常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。

在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。

本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。

1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。

将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

常微分课后答案第一章培训讲学

常微分课后答案第一章培训讲学

常微分课后答案第一章第一章 绪论§1.1 微分方程:某些物理过程的数学模型§1.2 基本概念习题1.21.指出下面微分方程的阶数,并回答方程是否线性的:(1)y x dxdy-=24; (2)012222=+⎪⎭⎫⎝⎛-xy dx dy dx y d ;(3)0322=-+⎪⎭⎫⎝⎛y dx dy x dx dy ;(4)x xy dx dydxy d x sin 3522=+-;(5)02cos =++x y dxdy; (6)x e dx y d y=+⎪⎪⎭⎫ ⎝⎛22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程.2.试验证下面函数均为方程0222=+y dxyd ω的解,这里0>ω是常数.(1)x y ωcos =;(2)11(cos C x C y ω=是任意常数); (3)x y ωsin =;(4)22(sin C x C y ω=是任意常数);(5)2121,(sin cos C C x C x C y ωω+=是任意常数); (6)B A B x A y ,()sin(+=ω是任意常数).解 (1)y x dx y d x dxdy2222cos ,sin ωωωωω-=-=-=,所以0222=+y dxy d ω,故x y ωcos =为方程的解.(2)y x C y x C y 2211cos ,sin ωωωωω-=-=''-=',所以0222=+y dxyd ω,故x C y ωcos 1=为方程的解.(3)y x dx y d x dxdy2222sin ,cos ωωωωω-=-==,所以0222=+y dxy d ω,故x y ωsin =为方程的解.(4)y x C y x C y 2222sin ,cos ωωωωω-=-=''=',所以0222=+y dxyd ω,故x C y ωsin 2=为方程的解.(5)y x C x C y x C x C y 2222121sin cos ,cos sin ωωωωωωωωω-=--=''+-=',所以0222=+y dxyd ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 22)sin(,)cos(ωωωωω-=+-=''+=',故0222=+y dxyd ω,因此)sin(B x A y +=ω为方程的解.3.验证下列各函数是相应微分方程的解: (1)xxy sin =,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2=+'-(C 是任意常数); (3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-;(5)x y sin =,0cos sin sin 222=-+-+'x x x y y y ;(6)x y 1-=,1222++='xy y x y x ;(7)12+=x y ,x y x y y 2)1(22++-='; (8))()(x f x g y =,)()()()(2x f x g y x g x f y '-'='.证明 (1)因为2sin cos x xx x y -=',所以x xxx x x x y y x cos sin sin cos =+-=+'.(2)由于21xCx y --=',故x x C x x Cx x xy y x 2)12(1)1()1(2222=-++--⋅-=+'-.(3)由于x Ce y =',x Ce y ='',于是022=+-=+'-''x x x Ce Ce Ce y y y . (4)由x e y =',因此x x x x x x x x e e e e e e ye y e y 22212)(2-=⋅-+⋅=-+'--. (5)因为x y cos =',所以0cos sin sin sin 2sin cos cos sin sin 22222=-+⋅-+=-+-+'x x x x x x x x x y y y .(6)从21x y =',得1111122222++=+⎪⎭⎫⎝⎛-⋅+⎪⎭⎫ ⎝⎛-⋅=='xy y x x x x x y x .(7)由x y 2=',得到x y x y x x x x x y 2)1(2)1)(1()1(2222222++-=+++-+=='.(8))()()()()()()()()()()()()()()(222x f x g y x g x f x f x g x f x g x g x f x f x g x f x g x f y '-'='-⎪⎪⎭⎫ ⎝⎛⋅'='-'='. 4.给定一阶微分方程x dxdy2=, (1)求出它的通解; (2)求通过点)4,1(的特解; (3)求出与直线32+=x y 相切的解; (4)求出满足条件210=⎰ydx 的解;(5)绘出(2),(3),(4)中的解的图形. 解 (1)通解 C x xdx y +==⎰22.(2)由41==x y ,得到3=C ,所以过点)4,1(的特解为32+=x y . (3)这时122=⇒=x x ,切点坐标为)5,1(,由51==x y ,得到4=C ,所以与直线32+=x y 相切的解为42+=x y .(4)由231)31()(1310210=+=+=+=⎰⎰C Cx x dx C x ydx ,得到35=C ,故满足条件21=⎰ydx 的解为352+=x y . (5)如图1-1所示.图1-15.求下列两个微分方程的公共解: (1)422x x y y -+='; (2)2422y y x x x y --++='.解 公共解必须满足2424222y y x x x x x y --++=-+,即022242=-+-x y x y ,得到2x y =或212--=x y 是微分方程422x x y y -+='和2422y y x x x y --++='的公共解.6.求微分方程02=-'+'y y x y 的直线积分曲线.解 设直线积分曲线为0=++C By Ax ,两边对x 求导得,0='+y B A ,若0=B ,则0=A ,得到0=C ,不可能.故必有0≠B ,则BAy -=',代入原方程有02=++⎪⎭⎫ ⎝⎛-+-B Cx B A B A x B A ,或0)(22=-++B A B C x B A B A ,所以, ⎪⎪⎩⎪⎪⎨⎧=-=+0,022BA B C BAB A ,得到 ⎩⎨⎧==0,0C A 或B C A -==.所求直线积分曲线为0=y 和1+=x y .7.微分方程32224xy y y x =-',证明其积分曲线关于坐标原点)0,0(成中心对称的曲线,也是此微分方程的积分曲线.证明 设0),(=y x F 是微分方程32224xy y y x =-'的积分曲线,则与其关于坐标原点)0,0(成中心对称的曲线是0),(=--y x F .由于0),(=y x F 适合微分方程32224xy y y x =-',故3222),(),(4xy y y x F y x F x y x =-⎥⎥⎦⎤⎢⎢⎣⎡-⋅,分别以y x --,代y x ,,亦有3222))(()(),(),()(4y x y y x F y x F x y x --=--⎥⎥⎦⎤⎢⎢⎣⎡-----⋅-,而由0),(=--y x F ,得到),(),(y x F y x F y y x -----=',从而0),(=--y x F 也是此微分方程的积分曲线.8.物体在空气中的冷却速度与物体和空气的温差成比例,如果物体在20分钟内由ο100C 冷至ο60C ,那么,在多久的时间内,这个物体的温度达到ο30C ?假设空气的温度为ο20C .解 设物体在时刻t 的温度为)(t u u =,20=a u ,微分方程为)(a u u k dtdu--=,解得kt a Ce u u -+= ,根据初始条件10000===u u t ,得800=-=a u u C ,因此kt a a e u u u u --+=)(0,根据60,201===u u t ,得到k a a e u u u u 2001)(--+=,由此202ln ln 20110=--=a a u u u u k ,所以得到t e u 202ln 8020-+=,当30=u 时,解出60=t (分钟)1=(小时).在1小时的时间内,这个物体的温度达到ο30C . 9.试建立分别具有下列性质的曲线所满足的微分方程: (1)曲线上任一点的切线与该点的向径夹角为α;(2)曲线上任一点的切线介于两坐标轴之间的部分等于定长l ; (3)曲线上任一点的切线与两坐标轴所围成的三角形的面积都等于常数2a ;(4)曲线上任一点的切线介于两坐标轴之间的部分被切点等分; (5)曲线上任一点的切线的纵截距等于切点横坐标的平方;(6)曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项; (7)曲线上任一点的切线的斜率与切点的横坐标成正比.(提示:过点),(y x d 的横截距和纵截距分别为'-y y x 和y x y '-). 解 (1)曲线上任一点为),(y x ,则xy y x yy '+-'=1tan α,即ααtan tan y x x y y -+='. (2)曲线上任一点),(y x 处的切线方程为y y x Y X y -'=-',与两坐标轴交点为),0(y x y '-和)0,(y yy x '-',两点间距离为l y x y y y y x ='-+⎪⎪⎭⎫ ⎝⎛'-'22)(,即 222)()(l y x y y y x ='-+'-. (3)由(2),有221a y x y y yy x ='-'-',或y a y y x '=-'222)(.(4)由(2),有 2y x y y '-=,或0=+'y y x . (5)由(2),2x y x y ='-. (6)同样由(2),2yx y x y +='-,或x y x y ='-2. (7)易得kx y =' (k 为常数且0>k ).。

常微分方程标准答案-一二章

常微分方程标准答案-一二章

习题1.24. 给定一阶微分方程2dyx dx=, (1). 求出它的通解; (2). 求通过点()1,4的特解; (3). 求出与直线23y x =+相切的解; (4). 求出满足条件102ydx =⎰的解;(5). 绘出(2),(3),(4)中的解得图形。

解:(1). 通解显然为2,y x c c =+∈;(2). 把1,4x y ==代入2y x c =+得3c =,故通过点()1,4的特解为23y x =+;(3). 因为所求直线与直线23y x =+相切,所以223y x cy x ⎧=+⎨=+⎩只有唯一解,即223x c x +=+只有唯一实根,从而4c =,故与直线23y x =+相切的解是24y x =+;(4). 把2y x c =+代入12ydx =⎰即得5c =,故满足条件12ydx =⎰的解是253y x =+;(5). 图形如下:-1.5-1-0.500.51 1.512345675. 求下列两个微分方程的公共解:242422,2y y x x y x x x y y ''=+-=++--解:由2424222y x x x x x y y +-=++--可得()()222210y x xy -++=所以2y x =或212y x =--,2y x =代入原微分方程满足,而212y x =--代入原微分方程不满足,故所求公共解是代入原微分方程不满足。

6. 求微分方程20y xy y ''+-=的直线积分曲线。

解:设所求直线积分曲线是y kx b =+,则将其代入原微分方程可得2200010k b k xk kx b k b k b k k -=⎧+--=⇒⇒====⎨-=⎩或所以所求直线积分曲线是0y =或1y x =+。

8. 试建立分别具有下列性质的曲线所满足的微分方程:(2). 曲线上任一点的切线介于两坐标轴之间的部分等于定长l ; (5). 曲线上任一点的切线的纵截距等于切点横坐标的平方。

常微分答案方程.doc

常微分答案方程.doc

第一章初等积分法§1.1 微分方程和解习题简单,略。

§1.2 变量可分离方程(P14)1.求下列可分离变量方程的通解:(1)ydy = xclx : (2) y = y\n y : (3) y = e x~y : (4) tan ydx—colxdy = Q o解:(1)通解为/ =^2 + Co (2)通解为lny = C0L(3)通解为,=e'+C。

(4)通解为sinycosx = C。

2.求下列方程满足给定初始条件的解:(1))/ =),(、—1),),(0) = 1; (2)(疽―i)y +2勺,2 =(),贝())=1 ;(3) / = y(2) = 0; (4) (y2 + xy2)dx-(x2 + yr2)dy = 0,y(l) = -1«解:(1)y=1;(2) y(ln|x2 -1|+1) =1: (3) y, =0,y2 =(x-2)3; (4)-= -厂;。

- y3 .利用变量替换法把下列方程化为变量可分离方程:⑴ y r = f(ax+by^c): (2)孚=二,(封);⑶牛="(易;ax x ax⑷ f(xy)y + g(xy)xy f = 0, /(w)丰 g("), /(w), g(")连续。

解:(1)令〃 = or + ” + c,则u f = a + by =a + hf\u)变量分离。

(2)令a = xy ,则/ = y +板=■ +『鼻f(u) = 〃 + '(")变量分离。

x x~ x(3)令〃 = 则_/= "/+ 2心=对*("), / = ~ 变量分离。

r x(4)令u = xy^ ,则 # = y + w,= y-虫少~ = )变量分离。

g(“) x g(u)4.求解方程xjl -y2dx + y\j\ - x2 dy = 0 o解:通解:Jl —b + Jl —y」=C(C>0)。

常微分习题解答1

常微分习题解答1

dy = − y / x ln y + ln x = c ; xy = C , C = 2 dx
7.人工繁殖细菌,其增长速度和当时的细菌数成正比。 1)如果过 4 小时的细菌数既为原细菌数的 2 倍,那么经过 12 小时应有多少? 2)如在 3 小时的时候,有细菌 104 个,那么在开始时有多少个 细菌? 解:1)
第一章 初等积分法
1.1 微分方程和解
1、指出下列微分方程的阶数: (1)
dy = y 2 + x 3 ;一阶二次 dx
d2 y d3 = x + 3 arcsin x ;二阶一次; dx 2 dx
3
(2)
(3) y
d2 y + 1 = 0 ;二阶四次; dx 2
1
⎛ dx ⎞ (4) ⎜ ⎟ = 4 ;一阶二次; ⎝ dy ⎠
2 2
10
( x −2 + x −1 )dx − ( y −2 + y −1 )dy = 0 ln | x | − x −1 − ln | y | + y −1 = C 得 C = −2
3、利用变量替换法把下列方程化为变量可分离方程: (1)
dy = f (ax + by + c) ; dx
解: u = ax + by + c , u ' = a + by ' = a + bf (u ) (2)
2) ( y − 2 xy )dx + x dy = 0
2 2
解: x = 0 或 y ′ = 2 y / x + ( y / x) ;
2
z + xz ′ = 2 z − z 2 ⇒ xz ′ = z (1 − z )

常微分方程第四版课后练习题含答案

常微分方程第四版课后练习题含答案

常微分方程第四版课后练习题含答案第一章:常微分方程基本概念和初值问题1.2 课后练习题1.2.1(1)y′=2y+3,y(0)=1,求解y(t);(2)y′+ty=1,y(0)=0,求解y(t)。

解答:(1)该微分方程为一阶线性常微分方程,其通解为$$y(t)=Ce^{2t}-\\frac{3}{2}$$代入初始条件y(0)=1,可得$$C=\\frac{5}{2}$$所以$$y(t)=\\frac{5}{2}e^{2t}-\\frac{3}{2}$$(2)首先设$u(t)=e^{\\frac{t^2}{2}}y(t)$,则$u'(t)=e^{\\frac{t^2}{2}}(y'+ty)$。

代入原方程可得$$u'(t)=e^{\\frac{t^2}{2}}$$对其积分得$$u(t)=\\int e^{\\frac{t^2}{2}} dt +C=\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}+C$$其中$erf(x)=\\frac{2}{\\sqrt{\\pi}}\\int_0^x e^{-t^2} dt$称为误差函数。

进一步解得$$y(t)=e^{-\\frac{t^2}{2}}u(t)-ue^{-\\frac{t^2}{2}}=-\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}e^{-\\frac{t^2}{2}}$$ 代入初始条件y(0)=0即可得到最终解答。

第二章:一阶线性微分方程2.2 课后练习题2.2.1求下列方程的通解:(1)(2x+1)y′+y=1;(2)(x−1)y′−y=2x;(3)$(2+\\cos x)y'-y=2-x\\cos x$。

解答:(1)该微分方程为一阶线性常微分方程,设方程的通解为$y=Ce^{-\\int \\frac{1}{2x+1} dx}+\\frac{1}{2x+1}$。

常微分方程第二版答案第一章

常微分方程第二版答案第一章

常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dy?b(t)y?c(t)?0,若a(t)?0,则可写成 dtdy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:常微分课后答案2.1】>1.dy?2xy,并求满足初始条件:x=0,y=1的特解. dx解:对原式进行变量分离得1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。

常微分方程第三版课后习题答案(1)

常微分方程第三版课后习题答案(1)


是满足方程(2 . 3 )
所以,命题成立 。 (2 ) 由题意得: (3 ) (4 ) 1 )先证 于是 是(2 . 2 8 )的一个解 。 得

是(2 . 2 8 )的一个解 。 的形式
2 )现证方程(4 )的任一解都可写成 设 是( 2 . 2 8 ) 的一个解
1 5
则 于是 (4 ’ )(4 )得
. 其中 . 于是方程可化为
即方程为一阶线性方程. 2 0 . 设函数 f ( u ) ,g ( u ) 连续、可微且 f ( u )g ( u ) , \ ,试证方程 y f ( x y ) d x + x g ( x y ) d y = 0 有积分因子 u = ( x y [ f ( x y ) g ( x y ) ] ) 证:在方程 y f ( x y ) d x + x g ( x y ) d y = 0两边同乘以 u得: u y f ( x y ) d x + u x g ( x y ) d y = 0 则 = u f + u y + y f = + y f
=
1 8
= =
习题 2 . 3 1 、验证下列方程是恰当方程,并求出方程的解 。 1 . 解: 则 所以此方程是恰当方程 。 凑微分, 得 : 2 . 解: 则 . , . , = 1.
所以此方程为恰当方程 。 凑微分, 得 3 . 解:
1 9

.
因此此方程是恰当方程 。 (1 ) (2 ) 对(1 )做 的积分,则 = 对(3 )做 的积分,则 = = 则 (3 )
解:原方程可化为:
是原方程的解.
5 .
+
= = ( )
解:原方程可化为:

马知恩周义仓编常微分方程定性与稳定性方法部分习题参考解答

马知恩周义仓编常微分方程定性与稳定性方法部分习题参考解答

马知恩周义仓编常微分⽅程定性与稳定性⽅法部分习题参考解答第⼀章 基本定理1设有 $$\bex \frac{\rd \bbx}{\rd t}=\bbf(t,\bbx),\quad \bbx(t_0)=\bbx^0,\quad (t_0,\bbx^0)\in \bbR\times \bbR^n. \eex$$试证: 若 $\bbf\in C^1(G)$, 则在 $(t_0,\bbx^0)$ 的领域内, 此 Cauchy 问题的解存在惟⼀.证明: 由 $f\in C^1(G)$ 蕴含 $f\in C(G)$ 且在 $G$ 内适合 Lipschitz 条件知有结论.2试讨论下列⽅程解的存在区间:(1) $\dps{\frac{\rd y}{\rd x}=\frac{1}{x^2+y^2}}$;(2) $\dps{\frac{\rd y}{\rd x}=y(y-1)}$.解答:(1) 由 $\dps{\frac{\rd x}{\rd y}=x^2+y^2}$ 的解的存在区间有限知 $y$ 有界, ⽽由解的延拓定理, 原⽅程解的存在区间为 $\bbR$.(2) 直接求解有 $\dps{y=\frac{1}{1-\frac{y_0-1}{y_0}e^x}}$, ⽽a.当 $0\leq y_0\leq 1$ 时, 原⽅程解的存在区间为 $\bbR$;b.当 $y_0<0$ 时, 原⽅程解的存在区间为 $\dps{\sex{\ln\frac{y_0}{y_0-1},\infty}}$;c.当 $y_0>1$ 时, 原⽅程解的存在区间为 $\dps{\sex{-\infty,\ln\frac{y_0}{y_0-1}}}$.3 设有⼀阶微分⽅程式 $$\bex \frac{\rd x}{\rd t}=(t-x)e^{tx^2}. \eex$$ 试证: 过任⼀点 $(t_0,x_0)\in\bbR^2$ 的右⾏解的存在区间均为 $[t_0,+\infty)$.证明: 由 $$\bex \frac{\rd x}{\rd t}=(t-x)e^{tx^2}=\left\{\ba{ll} <0,&x>t,\\ >0,&x<t \ea\right. \eex$$ 知解在 $\sed{x>t}$ 内递减,在 $\sed{x<t}$ 内递增. 当 $x_0>t_0$ 时, 在 $$\bex \sed{(t,x);t\in\bbR, t_0<x<x_0} \eex$$ 内应⽤解的延伸定理知解定与$\sed{x=t}$ 相交, 之后解递增, 在 $$\bex \sed{(t,x);t\in\bbR,x<t} \eex$$ 内应⽤延伸定理及⽐较定理即知结论.4设有⼀阶⽅程 $\dps{\frac{\rd x}{\rd t}=f(x)}$, 若 $f\in C(-\infty,+\infty)$, 且当 $x\neq 0$ 时有 $xf(x)<0$. 求证过 $\forall\(t_0,x_0)\in\bbR^2$, Cauchy 问题的右⾏解均在 $[t_0,+\infty)$ 上存在, 且 $\dps{\lim_{t\to+\infty}x(t)=0}$.证明: 由题意, $$\bex f(x)\left\{\ba{ll} >0,&x<0,\\ <0,&x>0. \ea\right. \eex$$ ⽽由 $f$ 的连续性, $f(0)=0$. 于是当 $x_0=0$ 时,由解的唯⼀性知 $x=0$. 当 $x_0>0$ 时, 在 $$\bex \sed{(t,x);t\in\bbR,0<x<x_0} \eex$$ 内应⽤延伸定理及惟⼀性定理知 $x(t)$ 递减趋于 $0$. 当 $x_0<0$ 时, 在 $$\bex \sed{(t,x);t\in\bbR,x_0<x<0} \eex$$ 内应⽤延伸定理及惟⼀性定理知 $x(t)$ 递增趋于 $0$.5若 $\bbf(t,\bbx)$ 在全空间 $\bbR\times\bbR^n$ 上连续且对 $\bbx$ 满⾜局部 Lipschitz 条件且 $$\bex \sen{\bbf(t,\bbx)}\leq L(r),\quad r=\sqrt{\sum_{i=1}^n x_i^2},\quad \bbx=(x_1,\cdots,x_n)^T, \eex$$ 其中 $L(r)>0, r>0$, 且 $$\bee\label{1.5:1}\int_a^{+\infty}\frac{\rd r}{L(r)}=+\infty,\quad a>0. \eee$$ 试证: 对 $\forall\ (t_0,\bbx^0)\in\bbR\times\bbR^n$, Cauchy 问题的解均可对 $t$ ⽆限延拓.证明: 由解的延伸定理, 仅须证明在任何有限区间 $-\infty<\alpha<t<\beta<+\infty$ 上, $\bbx(t)$ 有界. 为此, 令 $y(t)=\sen{\bbx(t)}$,则 $$\beex \bea \frac{\rd y(t)}{\rd t}&=2\bbx(t)\cdot\frac{\rd \bbx(t)}{\rd t} =2\bbx(t)\cdot \bbf(t,\bbx(t)),\\\sev{\frac{\rd y(t)}{\rd t}} &\leq 2\sqrt{y(t)}\cdot L\sex{\sqrt{y(t)}},\\ \frac{\rd \sqrt{y(t)}}{L\sex{\sqrt{y(t)}}}&\leq \rd t,\\ \int_\alpha^\beta \frac{\rd \sqrt{y(t)}}{L\sex{\sqrt{y(t)}}} &\leq \int_\alpha^\beta \rd t=\beta-\alpha. \eea \eeex$$ 这与\eqref{1.5:1} ⽭盾 (事实上, 当 $\alpha,\beta\gg 1$, $|\alpha-\beta|\ll 1$ 时, 不等式右端可任意⼩, ⽽不等式左端有积分发散知可⼤于某⼀正常数).6设有微分⽅程 $$\bex \frac{\rd \bbx}{\rd t}=\bbf(t,\bbx), \eex$$ $\bbf\in C(G\subset \bbR\times\bbR^n)$, 试证: 若对$\forall\ (t_0,\bbx^0)\in G$, Cauchy 问题的解都存在唯⼀, 则解必对初值连续依赖.证明: 参考[家⾥蹲⼤学数学杂志第134期, 常微分⽅程习题集, 第1600页].7 试在定理 1.1 的假设下, 利⽤ Gronwall 引理直接证明解对初始时刻 $t_0$ 的连续依赖性.证明: 参考定理 1.7 的证明.8 设有⼀阶 Cauchy 问题 $$\bex \frac{\rd y}{\rd x}=x^2+(y+1)^2,\quad y(0)=0. \eex$$ 试利⽤⽐较定理证明, 若设解的右⾏饱和区间为 $[0,\beta)$, 则 $\dps{\frac{\pi}{4}\leq \beta\leq 1}$.证明: 仅须注意到当 $0\leq x\leq 1$ 时, $$\bex (y+1)^2\leq x^2+(y+1)^2\leq 1+(y+1)^2. \eex$$ 再利⽤⽐较定理即知结论.第⼆章 动⼒系统的基本知识1试证明: $\Omega_P=\vno$ 的充要条件是 $L_P^+$ 趋于⽆穷.证明: $\ra$ ⽤反证法. 若 $L_P^+$ 不趋于⽆穷, 则 $$\bex \exists\ M>0, t_n\nearrow +\infty,\st \sen{\mbox{ $\varphi$}(P,t_n)}\leq M. \eex$$ 由 Weierstrass 定理, $$\bex \exists\ \sed{t_n'}\subset \sed{t_n},\st \mbox{ $\varphi$}(P,t_n)\to Q,\eex$$ ⽽ $Q\in \Omega_P$, 这是⼀个⽭盾. $\la$ 亦⽤反证法. 若 $\Omega_P\neq \vno$, ⽽设 $Q\in \Omega_P$, 则 $$\bex\exists\ t_n\nearrow+\infty,\st \mbox{ $\varphi$}(P,t_n)\to Q. \eex$$ 这与 $L_P^+$ 趋于⽆穷⽭盾.2试证明: 若 $\Omega_P$ 仅含惟⼀奇点 $P^*$, 则当 $t\to+\infty$ 时必有 $L_P^+$ 趋向于 $P^*$.证明: ⽤反证法. 设 $$\bee\label{2.2:1} \exists\ \ve_0>0,\ t_n\nearrow+\infty, \st \sen{\mbox{ $\varphi$}(P,t_n)-P^*}\geq\ve_0. \eee$$ 则(1)若 $\sed{t_n}$ 有有界的⼦列, 则适当抽取⼦列 $\sed{t_n'}$ 后有 $$\bex \mbox{ $\varphi$}(P,t_n')\to Q. \eex$$ 于是 $Q\in\Omega_P=\sed{P^*}$. 这与 \eqref{2.2:1} ⽭盾.(2)若 $\sed{t_n}$ ⽆有界的⼦列, 则 $\dps{\lim_{n\to\infty}\mbox{ $\varphi$}(P,t_n)=\infty}$, ⽽ $\infty\in\Omega_P=\sed{P^*}$, ⼜是⼀个⽭盾.3试证明: 若 $\Omega_P$ 有界且 $\Omega_P$ ⾮闭轨, 则 $\forall\ R\in \Omega_P$, $\Omega_R$ 与 $A_R$ 必均为奇点.证明: ⽤反证法证明 $\Omega_R$ 为奇点集, $A_R$ 为奇点集类似可证. 设 $\Omega_R$ 含有常点. 由 $R\in \Omega_P$ 及$\Omega_P$ 为不变集知 $L_R\subset \Omega_Q$. 于是按引理 2.3, $L_R$ 为闭轨线, $L_R=\Omega_R\subset \Omega_P$. 这与 $\Omega_P$ ⾮闭轨⽭盾.4试证明: ⼀系统的圈闭奇点的集合是⼀闭集.证明: 全体奇点的集合为 $$\bex \sed{\bbx^*\in G; \bbf(\bbx^*)=\mbox{ $0$}}. \eex$$ 由 $\bbf$ 的连续性即知结论.5 若 $L_P^+$ 有界且 $\Omega_P$ 仅由奇点构成, 能否断定 $\Omega_P$ 仅含⼀个奇点?解答: 不能断定. 仅能说 $\Omega_P$ 为由奇点构成的连通闭集或闭轨线.6 设 $O(0,0)$ 是⼀平⾯⾃治系统的惟⼀奇点, 且是稳定的, 全平⾯没有闭轨线. 试证: (1) 此系统的任⼀轨线必负向⽆界; (2) 任⼀有界的正半轨闭进⼊奇点 $O$.证明:(1) ⽤反证法. 若有⼀轨线负向有界, 则在定理 2.8 中, 由全平⾯没有闭轨线知 (3),(4) 不成⽴; 由 $O$ 为惟⼀奇点知 (1),(2),(5) 不成⽴. 这是⼀个⽭盾.(2) 对有界正半轨⽽⾔, 定理 2.8 中仅有 (1),(2),(5) 可能成⽴. 若 (1),(2) 成⽴, 则结论已证; ⽽由全平⾯没有闭轨线知 (5) 不成⽴.第三章 稳定性理论1 讨论⽅程 $$\bee\label{3.1:1} \sedd{\ba{ll}\frac{\rd x_1}{\rd t}=x_2,\\ \frac{\rd x_2}{\rd t}=-a^2\sin x_1\ea} \eee$$ 零解的稳定性.解答: 选取 $$\bex V(\bbx)=\frac{x_2^2}{2}+a^2(1-\cos x_1), \eex$$ 则 $V$ 在原点的⼀邻域内是正定的, 且沿 \eqref{3.1:1} 的轨线有 $$\bex \dot V(\bbx)=V_{x_1}x_1'+V_{x_2}x_2'=0. \eex$$ 由此, 零解是稳定的, 但不是渐近稳定的.2 证明⽅程 $\dps{\frac{\rd x}{\rd t}=-x+x^2}$ 的零解是指数渐近稳定的, 但不是全局渐近稳定的.证明: 解该微分⽅程有: $$\bex \ba{ccc} -\frac{1}{x^2}\frac{\rd x}{\rd t}=\frac{1}{x}-1,&\frac{\rd y}{\rd t}=y-1\\sex{y=\frac{1}{x}},&\frac{\rd z}{\rd t}=-e^{-t}\ \sex{z=e^{-t}y},\\ z=e^{-t}+C,&y=Ce^t+1,&x=\frac{1}{1+Ce^t}. \ea \eex$$由此, 原微分⽅程的解为 $$\bex x=0,\mbox{ 或 }x(t)=\frac{1}{1+Ce^t}. \eex$$ 取初值 $(t_0,x_0),\ x_0\neq 0$, 有 $$\bexx(t,t_0,x_0)=\frac{x_0}{1+e^{t-t_0}(1-x_0)}. \eex$$ 故当 $|x_0|<1$ 时, $$\bex |x(t,t_0,x_0)|\leq \sev{\frac{1}{x_0}-1}e^{-(t-t_0)}. \eex$$ 这说明零解是指数渐近稳定的. 但由于从 $(t_0,1)$ 出发的解 $x(t,t_0,1)=1$ 不趋于零解, ⽽零解不是全局渐近稳定的.3 在相空间 $\bbR^n$ 中给出 $\dps{\frac{\rd \bbx}{\rd t}=\bbf(t,\bbx),\ \bbf(t,0)=0}$ 的零解稳定、渐近稳定、不稳定的⼏何解释.解答: 零解是稳定的 $\lra\ \forall\ \ve>0,\ \exists\ \delta>0,\ \forall\ P\in B_\delta,\ L_P^+\subset B_\ve$; 零解是渐进稳定的$\lra\ \exists\ U\ni O,\ \forall\ P\in U,\ L_P^+\to 0$; 零解是不稳定的 $\lra\ \exists\ \ve_0>0,\ \exists\ P_n\to0, \stL_{P_n}^+\bs B_\ve\neq \vno$.4判断下列系统零解的稳定性:(1) $\dps{\sedd{\ba{ll} \frac{\rd x_1}{\rd t}=mx_2+\alpha x_1(x_1^2+x_2^2),\\ \frac{\rd x_2}{\rd t}=-mx_1+\alphax_2(x_1^2+x_2^2); \ea}}$;(2) $\dps{\frac{\rd^2x}{\rd t^2}+\sex{\frac{\rd x}{\rd t}}^3+f(x)=0,}$ 其中 $xf(x)>0\ (x\neq 0), f(0)=0$;(3) $\dps{\frac{\rd^2x}{\rd t^2}-\sex{\frac{\rd x}{\rd t}}^2sgn\sex{\frac{\rd x}{\rd t}}+x=0}$.解答:(1) 取 $$\bex V=x_1^2+x_2^2, \eex$$ 则 $V$ 正定, 且沿微分⽅程的轨线有 $$\bex \dot V=2\alpha(x_1^2+x_2^2)\sedd{\ba{lll} \mbox{正定},&\alpha>0,\\ 0,&\alpha=0,\\ \mbox{负定},&\alpha<0. \ea} \eex$$ 于是当 $\alpha>0$ 时, 由定理 3.3, 零解是不稳定的; 当 $\alpha=0$ 时, 由定理 3.1, 定理是稳定的; 当 $\alpha<0$ 时, 由定理 3.1, 零解是渐近稳定的.(2) 令 $\dps{x_1=x,x_2=\frac{\rd x}{\rd t}}$, 则 $$\bex \frac{\rd x_1}{\rd t}=x_2,\quad \frac{\rd x_2}{\rd t}=-x_2^3-f(x_1). \eex$$ 取 $$\bex V=\frac{x_2^2}{2}+\int_0^{x_1}f(t)\rd t, \eex$$ 则 $V$ 正定, 且沿微分⽅程的轨线有 $\dot V=-x_2^4\leq 0.$再 $$\bex \sed{\bbx;\dot V(\bbx)=0}=\sed{0}, \eex$$ 我们据定理 3.2 知零解是渐近稳定的.(3) 令 $\dps{x_1=x,x_2=\frac{\rd x}{\rd t}}$, 则 $$\bex \frac{\rd x_1}{\rd t}=x_2,\quad \frac{\rd x_2}{\rd t}=x_2^2sgn(x_2)-x_1. \eex$$ 取 $$\bex V=\frac{x_1^2+x_2^2}{2}, \eex$$ 则 $V$ 正定, 且沿微分⽅程的轨线有 $\dot V=x_2^2|x_2|$是正定的. 我们据定理 3.3 知零解是不稳定的.5 若存在有⽆穷⼩上界的正定函数 $V(t,\bbx)$, 它沿着 $$\bex (3.3.1)\quad \frac{\rd\bbx}{\rd t}=\bbf(t,\bbx),\quad \bbf(t,0)=0 \eex$$ 解曲线的全导数 $\dot V(t,\bbx)$ 负定, 证明 (3.3.1) 的零解是渐近稳定的.证明: 仅须注意到存在正定函数 $W(x)$, $W_1(x)$ 使得 $$\bex W(\bbx)\leq V(t,\bbx)\leq W_1(\bbx). \eex$$ ⽽可仿照定理 3.1 的证明.6 讨论 $\dps{\frac{\rd x}{\rd t}=\frac{g'(t)}{g(t)}x}$ 零解的稳定性, 其中 $\dps{g(t)=\sum_{n=1}^\infty \frac{1}{1+n^4(t-n)^2}}$. 能否得到零解渐近稳定的结果? 为什么?解答: 直接求解有 $$\bex x(t)=\frac{x_0}{g(t_0)}{g(t)}, \eex$$ ⽽由 $$\bex |x(t)|\leq\frac{|x_0|}{g(t_0)}\sez{2+\sum_{n\neq [t],[t]+1}\frac{1}{1+n^4(t-n)^2}} \leq \frac{|x_0|}{g(t_0)}\sez{2+\sum_{n=1}^\infty\frac{1}{n^4}} \eex$$ 知零解是稳定的; 由$$\bex |x(k)|=\frac{|x_0|}{g(t_0)}\sez{1+\sum_{n\neq k}\frac{1}{n^4(k-n)^2}}\geq \frac{|x_0|}{g(t_0)} \eex$$ 知零解不是渐近稳定的.7证明 $\dps{\frac{\rd x}{\rd t}=-\frac{x}{t+1}}$ 的零解是渐近稳定的, 但不存在有⽆穷⼩上界的正定函数 $V(t,x)$, 使得 $\dotV(t,x)$ 负定 (该习题表明习题 5 中渐近稳定性定理中的条件不是必要的).证明: 直接求解有 $$\bex x(t)=\frac{x_0}{1+t}. \eex$$ ⽽零解是渐近稳定的.。

常微分方程教程_丁同仁(第二版)_习题解答_1

常微分方程教程_丁同仁(第二版)_习题解答_1

∂y
∂x
∂y ∂x
2. (x + 2 y)dx + (2x + y)dy = 0
解: P(x, y) = x + 2 y, Q(x, y) = 2x − y,
∂P

=
2,
∂Q
=
2,
所以 ∂P = ∂Q ,即
原方程为恰当方程
∂y ∂x
∂y ∂x
则 xdx + (2 ydx + 2xdy) − ydy = 0,
解: P(x, y = ye x + 2e x + y 2 , Q(x, y) = e x + 2xy ,
则 ∂P = e x + 2 y, ∂Q = e x + 2 y, 所以 ∂P = ∂Q ,即 原方程为恰当方程
∂y
∂x
∂y ∂x
则 2e x dx + [( ye x + y 2 )dx + (e x + 2xy)dy] = 0,
两边积分得: (2 + y)e x + xy 2 = C.
7. ( y + x2 )dx + (ln x − 2 y)dy = 0 x
解: P(x, y) = y + x2 Q(x, y) = ln x − 2 y, x
则 ∂P = 1 , ∂Q = 1 , 所以 ∂P = ∂Q ,即 原方程为恰当方程
(1) dy = x 2 dx y 解:原方程即为: ydy = x 2dx 两边积分得: 3y 2 − 2x3 = C, y ≠ 0 .
dy
(2)
dx
=
x2 y(1 + x3 )

常微分方程与动力系统第一章答案

常微分方程与动力系统第一章答案

常微分方程与动力系统第一章答案常微分方程与动力系统第一章答案解析:(2019-1)()是对一系列代数式的简化。

在有限元法中,()在形式上与微分方程不同,但其解可以看成是一系列代数式,故选择题中的“代”字不能作虚数处理。

()中,对数集合 B与 B之间的关系为:a、当 P为一阶整数时, B为负整数;当P为一阶整数时, AB分别为零和正值。

2.“点”的概念是()。

A.位置点 B.方位信息 C.坐标中心D.时刻点1.空间坐标系的基本形式是()。

A.坐标原点B.原点坐标原位 D.坐标原位解析:在分析动力系统时,空间坐标系有两种形式:A.原坐标系是从一条曲线上画出的一个点,称为原坐标系最末一点,它的坐标原位即为原坐标系最末一点。

在动力系统中坐标系会被看作二次函数,其解可以看成是对一系列代数式的简化。

在选择题中,选 C项。

B.原点在弧上的曲率轴方向上指向某一点而引起旋转后到达弧顶上的一点并在该点与弧顶之间保持平行时形成的直线被称为原点直线或者弧顶轨迹线。

解析:从图2中可以看出,曲率轴并不在弧顶上出现,而位于弧顶侧面上方的弧顶轨迹线正好与弧顶顶部相平行。

2.速度函数的定义与离散方程一致。

解析:对速度函数(或称函数),应定义为:用一个常微分方程表达式表示为:为速度函数,因此有:、等式解。

上述定义属于线性空间关系中的微分方程组,而选择题中给出的只是一系列代数式而已。

2.对于某流体动力系统,其内禀速度为?其中?(1)中提到的速度函数为?它指在时间 t内通过某点时所处的临界速度 f。

3.位置点坐标等于()。

解析:点位点坐标=圆心角坐标(x、 y、 z),圆中心坐标等于圆心角坐标,点 A有圆心角坐标;位置点坐标等于圆心角坐标; Z点中心坐标等于圆心角坐标, Z点 B有圆心角坐标;节点 A 有圆心角坐标;位置点 A有圆心角坐标;节点 D有圆心角坐标。

圆月圆日=分母 x;在x轴上圆心角坐标等于分母 x、 y、 z;在 y轴上圆心角坐标等于分母 x、 z;在 z轴上圆心角坐标等于分母 x@心角坐标等于分母 y、 z;在x轴上圆心角坐标等于分母 y@心角坐标等于分母 y、 z;在任意一点上圆坐标等于分母 z;在任意一点上圆坐标等于分母x、 z;在任意点位点坐标等于时位点坐标;在任意点集合上圆心角坐标等于分母 x、 z;在任意点集合上圆核中心坐标等于分母x、 z。

常微分方程第二版答案第一章

常微分方程第二版答案第一章

常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dy?b(t)y?c(t)?0,若a(t)?0,则可写成 dtdy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:常微分课后答案2.1】>1.dy?2xy,并求满足初始条件:x=0,y=1的特解. dx解:对原式进行变量分离得1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。

常微分方程丁同仁李承志第二版第一章答案_0

常微分方程丁同仁李承志第二版第一章答案_0

常微分方程丁同仁李承志第二版第一章答案篇一:常微分方程丁同仁李承志第二版第一章答案习题 1-11.验证下列函数是右侧相应微分方程的解或通解: (1)y?c2x1e?c2e?2x, y???4y?0.证明:?y?cx1e2?c?2x2e,则y?=2c2x1e2x?2c2e?,y4cx1e2?4cx2e?2,y???4y?0.∴ y?sinxx, xy??y?cosx.证明:∵y?sinx, y??xcosx?sinxx则x2xy??y?xcosx?sinxx?sinxx?cosx(3)y?x(?exxdx?c), xy??y?xex.证明:∵y?x(?exxdx?c), 则 yexex x?c?xx, exex∴xy??y?x?x?c?xxx(?ex?x?c)?xex ??(x?2)(4) ??4,x?c1,y???0,cy’?1?x??c2,??(x?2)?4,c2?x,证明:(1)当x?c1时2y=?(x?)14,y’=?x?2其他情况类似.2.求下列初值问题的解:(1)yx, y(0)?a0, y?(0)?a1, y??(0)?a2.解:∵yx, ∴y12x2?c1, ∵y??(0)?a2,∴c1?a2,∴y??x3?a2x?c2, ∵y?(0)?a1, ∴c2?a1,(2),∴y?124x4?12a2x2?a1x?c,∵y(0)?a0, 满足初值问题的解为:y?14124x?2a22x?a1x?a0. dydx?f(x), y(0)?0, (这里f(x)是一个已知的连续函数)解:∵dydx?f(x), 即 dy?f(x)dx, ∴xx?dy??f(t)dt?c,x∴y(x)?y(0)??f(t)dt?c, ∵y(0)?0, ∴c?0 0x∴满足初值问题的解为:y(x)?f(t)dt.(3)dRdt??aR, R(0)?1,解:①若R?0, 则∵dRR??adt,两边积分得:lnR??at?c ∵R(0)?1 ∴c?1 ∴满足初值问题的解为:R?e?at(4)dydx?1?y2, y(x0)?y0,解:∵dydx?1?y2,∴dy1?y2?dx,两边积分得:arctgy?x?c.∵y(x0)?y0,∴c?arctgy0?x0.∴满足初值问题的解为:y?tg(x?arctgy0?x0). (1)函数y??(x,c1,c2,,cn)是微分方程F(x,y,y?,,y(n))?0的通解,其中c1,c2,cn是独立的任意常数,(2)存在一组常数(1,2,,cn)?Rn和空间中的点0(0,0,0,,y(n?1)0)(3)满足3.假设??0??(0,1,,cn)0?(0,1,,cn)???x??(n?1)?(n?1)??xn?1(0,1,,cn)试证明:存在点0的某一邻域 U,使得对任意一点M0(x?,(n?1)0,y0,y0,y0),可确定一组数ci?ci(M0),i?1,2,,n,使得y??(x,c1(M0),c2(M0),,cn(M0))是初值问题y(x,y?(x,y(n?1)(x1)0)?y00)?y0,0)?y(n?0??F(x,y,y?,,y(n?1))?0 的解.证明:因为y??(x,c1,c2,,cn)是微分方程F(x,y,y?, ,y(n))?0的通解,所以初值问题y(x(n?1)0)?y0,y?(x0)?y0,,y(x(n?1)0)?y0 ??F(x,y,y?,,y(n?1))?0的解应具有形式y??(x,c??1,c2,,c?,其中(c??n)1,c2,,c?n)应满足:??y0??(x0,c?1,,c?n)?y(x,c?1,,c??0??x0n),(*) ??(n?1)?(n?1)??y0xn?1(x0,c?1,,c?n)如何确定(c?1,c?2,,c?n)呢?由条件(2)及隐函数定理知,存在点 0的某一邻域U,使得对任意一点M?1)0(x0,y0,y?0,,y(n0)可确定一组数c??i?ci(M0),i?1,2,,n,使得(*)成立.得证.4. 求出:(1)曲线族y?cx?x2所满足的微分方程;解:y?cx?x2, y??c?2x, xy??cx?2x2则有:xy??x2?y.(2)曲线族y?c1ex?cx2xe所满足的微分方程;xx解:由y?c??y??c1e?cx2e?c1xe1ex?c2xexy???cxxx, 1e?2c2e?c1xe联立消去c1,c2得:y2y??y?0.(3)平面上以原点为中心的一切圆所满足的微分方程;解:平面上以原点为中心的圆的方程为x2?y2?r2(r?0)将视y为x的函数,对x求导得:2x?2yy??0平面上以原点为中心的一切圆所满足的微分方程为x?yy??0.(4)平面上一切圆所满足的微分方程.解:平面上圆的方程为:(x?a)2?(y?b)2?r2(r?0),将y视为x 的函数,对x求导得:??2(x?a)?2(y?b)y??0?2?2?2(y?b)y2?y’??0联立消去a,b得,2(y?b)y?4y0[1?(y?)2]y3y?(y??)2?0.习题 1-2作出如下方程的线素场:(1)y??xyxy(2)y??(y?1)2(3)y??x2?y22. 利用线素场研究下列微分方程的积分曲线族:(1)y??1?xy篇二:常微分方程教程+第二版+丁同仁+李承志+答案和练习第2章习题第二章答案习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x2?1)dx?(2x?1)dy?0解:P(x,y)?3x2?1, Q(x,y)?2x?1,则?P?y?0,?Q?x?2,所以 ?P?Q?y??x即原方程不是恰当方程.2.(x?2y)dx?(2x?y)dy?0解:P(x,y)?x?2y,Q(x,y)?2x?y,则?P?y?2,?Q?x?2, 所以?P?Q?y??x,即原方程为恰当方程则xdx?(2ydx?2xdy)?ydy?0,两边积分得:x222xy?y2?2?C. 3.(ax?by)dx?(bx?cy)dy?0 (a,b和c为常数).解:P(x,y)?ax?by,Q(x,y)?bx?cy,则?P?y?b,?Q?x?b, 所以?P?Q?y??x,即原方程为恰当方程则axdx?bydx?bxdy?cydy?0,ax2cy2两边积分得:2?bxy?2?C. 4.(ax?by)dx?(bx?cy)dy?0(b?0)解:P(x,y)?ax?by,Q(x,y)?bx?cy,则?P?Q?y??b,?x?b, 因为 b?0, 所以?P?Q?y??x,即原方程不为恰当方程5.(t2?1)cosudu?2tsinudt?0解:P(t,u)?(t2?1)cosu,Q(t,u)?2tsinu则?P?t?2tcosu,?Q?x?2tcosu, 所以?P?y??Q?x,即原方程为恰当方程则(t2cosudu?2tsinudt)?cosudu?0,两边积分得:(t2?1)sinu?C. 6.(yex?2ex?y2)dx?(ex?2xy)dy?0解: P(x,y?yex?2ex?y2,Q(x,y)?ex?2xy,则?P?y?ex?2y,?Q?x?ex?2y, 所以?P?y??Q?x,即原方程为恰当方程则2exdx?[(yex?y2)dx?(ex?2xy)dy]?0, 两边积分得:(2?y)ex?xy2?C.7.(yx?x2)dx?(lnx?2y)dy?0 解:P(x,y)?yx?x2Q(x,y)?lnx?2y,则?P1?Q?y?x,?x?1x, 所以?P?Q?y??x,即原方程为恰当方程则(yxdx?lnxdy)?x2dx?2ydy?0两边积分得:x33?ylnx?y2?C. 8.(ax2?by2)dx?cxydy?0(a,b和c为常数) 解:P(x,y)?ax2?by2,Q(x,y)?cxy,则?P?Q?y?2by,?x?cy, 所以当?P?Q?y??x,即方程为恰当方程则ax2dx?(by2dx?cxydy)?0两边积分得:ax3?bxy23?C. 而当2b?c时原方程不是恰当方程.9.2s?1s?t?s2dst2dt?0 解:P(t,s)?2s?1t)?s?s2,Q(t,st2, 则?P?t?1?2s?Q1?2s?P?Qt2,?s?t2, 所以?y??x,方程,s?s2两边积分得:t?C. 2b?c时,原即原方程为恰当10.xf(x2?y2)dx?yf(x2?y2)dy?0, 其中f(?)是连续的可微函数.解:P(x,y)?xf(x2?y2),Q(x,y)?yf(x2?y2),则?P?Q?y?2xyf?,?x?2xyf?, 所以?P?y??Q?x,即原方程为恰当方程,两边积分得:?f(x2?y2)dx?C,即原方程的解为F(x2?y2)?C (其中F为f的原积分).习题2-2.1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dyx2(1)dx?y解:原方程即为:ydy?x2dx 两边积分得:3y2 ?2x3?C,y?0.dyx2(2)dx?y(1?x3)解:原方程即为:ydy?x21?x3dx两边积分得:3y2?2ln?x3?C,y?0,x??1.(3)dydx?y2sinx?0解:当y?0时原方程为:dyy2?sinxdx?0 两边积分得:1?(c?cosx)y?0.又y=0也是方程的解,包含在通解中,则方程的通解为1?(c?cosx)y?0.(4)dydx?1?x?y2?xy2;解:原方程即为:dy1?y2?(1?x)dx 两边积分得:arctgy?x?x22?c,即 y?tg(x?x22?c).(5)dydx?(cosxcos2y)2 解:①当cos2y?0时原方程即为:dy(cos2y)2?(cosx)2dx 两边积分得:2tg2y?2x?2sin2x?c.②cos2y=0,即y? k?2??4也是方程的解. (6)xdx??y2解:①当y??1时原方程即为:dydx?y2?x两边积分得:arcsiny?lnx?c.② y??1也是方程的解. dyx?e?x(7).dx?y?ey解.原方程即为:(y?ey)dy?(x?e?x)dxk?N)(22两边积分得:y2?ey?x2?e?x?c,原方程的解为:y2?x2?2(ey?e?x)?c.2. 解下列微分方程的初值问题.(1)sin2xdx?cos3ydy?0, y(?)??23解:两边积分得:?cos2x2?sin3y3?c,即 2sin3y?3cos2x?c因为 y(?2)??3, 所以 c?3.所以原方程满足初值问题的解为:2sin3y?3cos2x?3.(2).xdx?ye?xdy?0, y(0)?1;解:原方程即为:xexdx?ydy?0,两边积分得:(x?1)exdx?y22dy?c,因为y(0)?1,所以c??12,所以原方程满足初值问题的解为:2(x?1)exdx?y2dy?1?0.(3).d??r, r(0)?2;解:原方程即为:drr?d?,两边积分得:lc,因为r(0)?2,所以c?ln2,所以原方程满足初值问题的解为:lln2 即r?2e?.(4).dydx?lnx1?y2,y(1)?0;解:原方程即为:(1?y2)dy?lnxdx,两边积分得:y?y33?x?xlnx?c, 因为y(1)?0,所以c?1,所以原方程满足初值为:y?y33?x?xlnx?1篇三:第2章习题 2第二章答案常微分方程教程+第二版+丁同仁+李承志+答案和练习(1)y?1)3. v?1?2, 2v?1ln1?u?1?u ?x?c,?8y??c. ?3 ,(2), x2z?ce. ?x2?1(v?u)?2.(1)y??cos(x?y)2x?v,y2?u,①当cosu?11 两边积分得:ctg2 解:令u?x?y ②当cosu?1(2)(3uv?v)du?(u 解:方程两边同时乘以22?u??1 得?,令v??2?m?z,则m?zn,令n n,?2x2?y2?3)3.(3u2v?uv2)du?即 (3uvdu?u2322, u?y,v?xdy(3)(x?y?3)?dx22?m?n?,?udx+p(x)ue?udx?q(x)e?udx.即有:u2?u??p(x)u5.c?2x).45?.解:设此曲线为y?y(x)dyy?dxx?tg45??1dyy1?dxx6. 探照灯的反光镜(旋转面)反射成平行线束?维坐标系.设所求曲面由曲线??0;?3e3xy2)dy?0,?ey?c. 3x3?y??z?结为求 xy 平面上的曲线1?(2xe2y?)dy?0 y即(edx?2y1?)dy?0, y26(3).(3x?)dxy?2dy)?0,y (3x2y即 (3x2x?c. (4).ydx?(x2? 2)?dy?0, ylny?c(5).2xydx?(x3 2?0 ,。

常微分方程教程丁同仁第二版答案完整版

常微分方程教程丁同仁第二版答案完整版

习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x 2 −1)dx +(2x +1)dy =0 解:P (x , y ) =3x 2 −1,Q (x , y ) =2x +1 ,则∂∂P y =0 ,∂∂Q x =2 ,所以∂∂P y ≠∂∂Q x即,原方程不是恰当方程.2.(x +2y )dx +(2x +y )dy =0 解:P (x , y ) =x +2y , Q (x , y ) =2x −y , 则∂∂P y =2, ∂∂Q x =2, 所以∂∂P y =∂∂Q x,即原方程为恰当方程则xdx +(2ydx +2xdy ) −ydy =0,2 2两边积分得:x +2xy −y =C . 2 23.(ax +by )dx +(bx +cy )dy =0 (a,b 和c 为常数).解:P (x , y ) =ax +by , Q (x , y ) =bx +cy , 则∂∂P y =b , ∂∂Q x =b , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则axdx +bydx +bxdy cydy =0,()+两边积分得:ax 2 +bxy +cy 2=C . 2 24.(ax −by )dx +(bx −cy )dy =0(b ≠0) 解:P (x , y ) =ax −by , Q (x , y ) =bx −cy ,则∂∂P y=−b , ∂∂Q x =b , 因为 b ≠0, 所以∂∂P y ≠∂∂Q x ,即,原方程不为恰当方程5.(t 2 +1)cos udu +2 t sin udt =0 解:P (t ,u ) =(t 2 +1)cos u , Q (t ,u ) =2t sin u 则∂∂P t =2t cos u , ∂∂Q x =2t cos u , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则(t 2 cos udu +2t sin udt ) +cos udu =0,两边积分得:(t 2 +1)sin u =C .6.( ye x +2e x +y 2)dx +(e x +2xy )dy =0 解:P (x , y =ye x +2e x +y 2, Q (x , y ) =e x +2xy ,则∂∂P y =e x +2y , ∂∂Q x =e x +2y , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则2e x dx +[(ye x +y 2)dx +(e x +2xy )dy ] =0,两边积分得:(2 +y )e x +xy 2 =C .7.( y +x 2)dx +(ln x −2y )dy =0 x 解:P (x , y ) =y +x 2 Q (x , y ) =ln x −2y ,x则∂∂P y =1 x , ∂∂Q x =1 x , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则( ydx +ln xdy ) +x 2 dx −2ydy =0 x 3两边积分得:x 3+y ln x −y 2 =C .8.(ax 2+by 2)dx +cxydy =0(a ,b 和c 为常数) 解:P (x , y ) =ax 2 +by 2, Q (x , y ) =cxy ,则∂∂P y =2by , ∂∂Q x =cy , 所以当∂∂P y =∂∂Q x,即2b =c 时,原方程为恰当方程则ax 2 dx +(by 2 dx +cxydy ) =0 3两边积分得:ax +bxy 2 =C .3而当2b ≠c 时原方程不是恰当方程.9.2s −1 ds +s −2 s 2 dt =0 t t解:P (t , s ) =2s −1, Q (t , s ) =s −2 s 2,t t则∂∂P t =1−t 22s , ∂∂Q s =1−t22s , 所以∂∂P y =∂∂Q x ,即原方程为恰当方程,两边积分得:s −s 2=C .t10.xf (x 2 +y 2)dx +yf (x 2 +y 2)dy =0, 其中f (⋅)是连续的可微函数.解:P (x , y ) =xf (x 2 +y 2 ), Q (x , y ) =yf (x 2 +y 2 ), 则∂∂P y =2xyf ′, ∂∂Q x =2xyf ′, 所以∂∂P y =∂∂Q x,即原方程为恰当方程,两边积分得:∫f (x 2 +y 2)dx =C ,即原方程的解为F (x 2 +y 2) =C (其中F 为f 的原积分).习题2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dy x 2(1) dx =y解:原方程即为:ydy =x 2 dx 两边积分得:3y 2 −2x 3 =C , y ≠0 .dy x 2(2) dx =y (1+x )3 2解:原方程即为:ydy =1+x x 3dx 两边积分得:3y 2 −2ln1+x 3=C , y ≠0,x ≠−1 .(3) dy +y 2 sin x =0dx解:当y ≠0时原方程为:dy +sin xdx =0y2 两边积分得:1+(c +cos x ) y =0 .又y=0也是方程的解,包含在通解中,则方程的通解为1+(c +cos x ) y =0 .dy 22(4) dx=1+x +y +xy ;解:原方程即为:1+dy y 2=)(1+x dx 2两边积分得:arctgy =x +x 2+c ,即y =tg (x +x 22+c ) .(5) dy =(cos x cos 2y )2 dx解:①当cos 2y ≠0 时原方程即为:(cos dy 2y )2 =(cos x )2 dx 两边积分得:2tg 2y −2x −2sin 2 x =c .②cos 2y =0,即y =k π+π也是方程的解.( k ∈N )2 4 (6) x dy =1−y 2 dx解:①当y ≠±1时dydx 原方程即为:1−y 2 =x两边积分得:arcsin y −ln x =c .②y =±1也是方程的解. dy x −e −x(7).dx =y +e y解.原方程即为:( y +e y )dy =(x −e −x )dx 2 2两边积分得:y +e y =x +e −x +c ,22原方程的解为:y 2 −x 2 +2(e y −e −x ) =c .2. 解下列微分方程的初值问题.(1) sin 2xdx +cos3ydy =0, y (π) =π;2 3解:两边积分得:−cos 22x +sin 33y =c ,即2sin 3y −3cos 2x =c 因为y (π2) =π3,所以 c =3.所以原方程满足初值问题的解为:2sin 3y −3cos 2x =3.x (2).xdx +ye −dy =0 ,y (0) =1;解:原方程即为:xe x dx +ydy =0 ,两边积分得:(x −1)e xdx +y 22dy =c ,因为y (0) =1,所以c =−12,所以原方程满足初值问题的解为:2(x −1)e x dx +y 2 dy +1 =0 .(3).dr =r ,r (0) =2 ;d θ解:原方程即为:dr =d θ,两边积分得:ln r −θ=c ,r因为r (0) =2 ,所以c =ln 2 ,所以原方程满足初值问题的解为:ln r −θ=ln 2 即r =2e θ.dy ln x (4).dx =1+y2, y (1) =0;解:原方程即为:(1+y 2)dy =ln x dx , 两边积分得:y 3x x ln y ++−x =c ,3因为y (1) =0 ,所以c =1, 3 所以原方程满足初值为:y x x ln y ++−x =1 3 2 dy 3(5).1+x dx=xy ,y (0) =1;dy x 解:原方程即为:y 3 =1+x 2 dx ,2两边积分得:−12y −2 =1+x +c ,因为y (0) =1,所以c =−3 ,2 所以原方程满足初值问题的解为:21+x 2 +y1 =3 .2 3. 解下列微分方程,并作出相应积分曲线的简图.(1).dy =cos x dx解:两边积分得:y =sin x +c .积分曲线的简图如下:(2).dxdy =ay ,(常数a ≠0 );解:①当y ≠0时,原方程即为:aydy =dx 积分得:a 1ln y =x c +,即y =ce ax (c >0) ②y =0也是方程的解.积分曲线的简图如下:y(3).dy =1−y 2 ;dx解:①当y ≠±1时,1+y 原方程即为:(1−dy y 2)=dx 积分得:ln =2x +c ,1−y 即y =ce 2 x −1 .ce 2 x +1②y =±1也是方程的解.积分曲线的简图如下:dy n 1(4).dx=y ,(n =3,1, 2) ;解:①当y ≠0时,1 dy ⅰ) n =3, 2 时,原方程即为yn =dx ,积分得:x +1y 1−n =c .n −1ⅱ) n =1时,原方程即为dy y=dx 积分得:ln y =x +c ,即y =ce x(c >0) .②y =0也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为y =y (x ),由题意及导数的几何意义,则有dy y dx b 2 −y2 ,所以求B 的运动轨迹即是求此微分方程满足y (0) =b 的解.=−解之得:x =12 b ln b b +−b b 22 +−y y 22 −b 2 −y 2 .5. 设微分方程dy =f ( y ) (2.27),其中f(y) 在y =a 的某邻域(例如,区间y −a <ε)dx 内连续,而且f ( y )=0 ⇔y =a ,则在直线y =a 上的每一点,方程(2.27)的解局部唯一,±εdy 当且仅当瑕积分=∞(发散).∫a a f ( y )证明:( ⇒)首先经过域R 1:−∞<x <+∞, a −ε≤y <a 和域R 2:−∞<x <+∞,a <y ≤a +ε内任一点( x 0, y 0)恰有方程(2.13)的一条积分曲线,它由下式确定dy =x −x 0 . (*)∫y y 0 f ( y )这些积分曲线彼此不相交. 其次,域R 1( R 2)内的所有积分曲线∫f dy ( y )=x +c 都可由其中一条,比如∫f dy ( y ) =x +c 0 沿着x 轴的方向平移而得到。

常微分习题解答1

常微分习题解答1

u
'
=

2y x3
+
y' x2
=
f (u) − 2u 。 x
(4) f (xy) y + g(xy)xy ' = 0 , f (u) ≠ g(u) , f , g 连续。
解: u
=
xy
,u'
=
y
+
xy
'

f
(u)
u x
+
g (u )
⎛ ⎜⎝
u
'−
u x
⎞ ⎟⎠
=
0,
( f (u) − g(u)) u + g(u)u ' = 0 。
7.人工繁殖细菌,其增长速度和当时的细菌数成正比。 1)如果过 4 小时的细菌数既为原细菌数的 2 倍,那么经过 12
小时应有多少?
2)如在 3 小时的时候,有细菌 104 个,那么在开始时有多少个
细菌?
解:1)
dy dx
=
kx

y
=
y0ekx
y(4) = 2 y0 ⇔ e4k = 2 ⇒ y(12) = y0e12k = 8 y0
2xy = c2 − x2 , 2xdy + 2 ydx = −2xdx ,是。 (4) y′′ = x2 + y2 , y = 1 。否。
x
3
1.2 变量可分离方程 方程 dy = f (x)g( y) 有特解和通解:
dx A) g( y) = 0 ;
B)
g( y)

0 时, ∫
dy g( y)
解 dy = 2x, y(3) = 4 , y = x2 − 5 dx

常微分课后标准答案第一章

常微分课后标准答案第一章

第一章 绪论§1.1 微分方程:某些物理过程的数学模型§1.2 基本概念习题1.21.指出下面微分方程的阶数,并回答方程是否线性的:(1)y x dxdy-=24; (2)012222=+⎪⎭⎫ ⎝⎛-xy dx dy dx y d ; (3)0322=-+⎪⎭⎫ ⎝⎛y dx dy x dx dy ; (4)x xy dx dy dx y d xsin 3522=+-; (5)02cos =++x y dxdy; (6)x e dx y d y=+⎪⎪⎭⎫ ⎝⎛22sin . 解 (1)一阶线性微分方程;(2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程.2.试验证下面函数均为方程0222=+y dxy d ω的解,这里0>ω是常数. (1)x y ωcos =;(2)11(cos C x C y ω=是任意常数); (3)x y ωsin =;(4)22(sin C x C y ω=是任意常数);(5)2121,(sin cos C C x C x C y ωω+=是任意常数); (6)B A B x A y ,()sin(+=ω是任意常数).解 (1)y x dx y d x dxdy2222cos ,sin ωωωωω-=-=-=,所以0222=+y dxy d ω,故x y ωcos =为方程的解.(2)y x C y x C y 2211cos ,sin ωωωωω-=-=''-=',所以0222=+y dxyd ω,故x C y ωcos 1=为方程的解.(3)y x dx y d x dxdy2222sin ,cos ωωωωω-=-==,所以0222=+y dxy d ω,故x y ωsin =为方程的解.(4)y x C y x C y 2222sin ,cos ωωωωω-=-=''=',所以0222=+y dxy d ω,故x C y ωsin 2=为方程的解.(5)y x C x C y x C x C y 2222121sin cos ,cos sin ωωωωωωωωω-=--=''+-=',所以0222=+y dxyd ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 22)sin(,)cos(ωωωωω-=+-=''+=',故0222=+y dxy d ω,因此)sin(B x A y +=ω为方程的解.3.验证下列各函数是相应微分方程的解: (1)xxy sin =,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2=+'-(C 是任意常数); (3)xCe y =,02=+'-''y y y (C 是任意常数); (4)xe y =,x x xe ye y ey 2212-=-+'-;(5)x y sin =,0cos sin sin 222=-+-+'x x x y y y ; (6)xy 1-=,1222++='xy y x y x ; (7)12+=x y ,x y x y y 2)1(22++-=';(8))()(x f x g y =,)()()()(2x f x g y x g x f y '-'='.证明 (1)因为2sin cos xx x x y -=',所以x x xx x x x y y x cos sin sin cos =+-=+'. (2)由于21xCx y --=',故x x C x x Cx x xy y x 2)12(1)1()1(2222=-++--⋅-=+'-.(3)由于xCe y =',xCe y ='',于是022=+-=+'-''xxxCe Ce Ce y y y .(4)由x e y =',因此x x x x x x x xe e e e e e ye y ey 22212)(2-=⋅-+⋅=-+'--.(5)因为x y cos =',所以0cos sin sin sin 2sin cos cos sin sin 22222=-+⋅-+=-+-+'x x x x x x x x x y y y .(6)从21x y =',得1111122222++=+⎪⎭⎫⎝⎛-⋅+⎪⎭⎫ ⎝⎛-⋅=='xy y x x x x x y x .(7)由x y 2=',得到x y x y x x x x x y 2)1(2)1)(1()1(2222222++-=+++-+=='.(8))()()()()()()()()()()()()()()(222x f x g y x g x f x f x g x f x g x g x f x f x g x f x g x f y '-'='-⎪⎪⎭⎫ ⎝⎛⋅'='-'='. 4.给定一阶微分方程x dxdy2=, (1)求出它的通解; (2)求通过点)4,1(的特解;(3)求出与直线32+=x y 相切的解; (4)求出满足条件21=⎰ydx 的解;(5)绘出(2),(3),(4)中的解的图形. 解 (1)通解 C x xdx y +==⎰22.(2)由41==x y ,得到3=C ,所以过点)4,1(的特解为32+=x y .(3)这时122=⇒=x x ,切点坐标为)5,1(,由51==x y ,得到4=C ,所以与直线32+=x y 相切的解为42+=x y .(4)由231)31()(1310210=+=+=+=⎰⎰C Cx x dx C x ydx ,得到35=C ,故满足条件21=⎰ydx 的解为352+=x y . (5)如图1-1所示.图1-15.求下列两个微分方程的公共解: (1)422x x y y -+='; (2)2422y y x x x y --++='.解 公共解必须满足2424222y y x x x x x y --++=-+,即022242=-+-x y x y ,得到2x y =或212--=x y 是微分方程422x x y y -+='和2422y y x x x y --++='的公共解.6.求微分方程02=-'+'y y x y 的直线积分曲线.解 设直线积分曲线为0=++C By Ax ,两边对x 求导得,0='+y B A ,若0=B ,则0=A ,得到0=C ,不可能.故必有0≠B ,则BAy -=',代入原方程有 02=++⎪⎭⎫ ⎝⎛-+-B Cx B A B A x B A ,或0)(22=-++B A B C x B A B A ,所以, ⎪⎪⎩⎪⎪⎨⎧=-=+0,022BA B C BAB A ,得到⎩⎨⎧==0,0C A 或B C A -==. 所求直线积分曲线为0=y 和1+=x y .7.微分方程32224xy y y x =-',证明其积分曲线关于坐标原点)0,0(成中心对称的曲线,也是此微分方程的积分曲线.证明 设0),(=y x F 是微分方程32224xy y y x =-'的积分曲线,则与其关于坐标原点)0,0(成中心对称的曲线是0),(=--y x F .由于0),(=y x F 适合微分方程32224xy y y x =-',故3222),(),(4xy y y x F y x F x y x =-⎥⎥⎦⎤⎢⎢⎣⎡-⋅,分别以y x --,代y x ,,亦有3222))(()(),(),()(4y x y y x F y x F x y x --=--⎥⎥⎦⎤⎢⎢⎣⎡-----⋅-,而由0),(=--y x F ,得到),(),(y x F y x F y y x -----=',从而0),(=--y x F 也是此微分方程的积分曲线.8.物体在空气中的冷却速度与物体和空气的温差成比例,如果物体在20分钟内由100C 冷至 60C ,那么,在多久的时间内,这个物体的温度达到 30C ?假设空气的温度为20C .解 设物体在时刻t 的温度为)(t u u =,20=a u ,微分方程为)(a u u k dtdu--=,解得kta Ce u u -+= ,根据初始条件10000===u u t ,得800=-=a u u C ,因此kt a a e u u u u --+=)(0,根据60,201===u u t ,得到ka a e u u u u 2001)(--+=,由此202ln ln 20110=--=a a u u u u k ,所以得到t eu 202ln 8020-+=,当30=u 时,解出60=t (分钟)1=(小时).在1小时的时间内,这个物体的温度达到30C . 9.试建立分别具有下列性质的曲线所满足的微分方程:(1)曲线上任一点的切线与该点的向径夹角为α;(2)曲线上任一点的切线介于两坐标轴之间的部分等于定长l ;(3)曲线上任一点的切线与两坐标轴所围成的三角形的面积都等于常数2a ; (4)曲线上任一点的切线介于两坐标轴之间的部分被切点等分; (5)曲线上任一点的切线的纵截距等于切点横坐标的平方;(6)曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项; (7)曲线上任一点的切线的斜率与切点的横坐标成正比.(提示:过点),(y x d 的横截距和纵截距分别为'-y y x 和y x y '-).解 (1)曲线上任一点为),(y x ,则xy y x yy '+-'=1tan α,即ααtan tan y x x y y -+='. (2)曲线上任一点),(y x 处的切线方程为y y x Y X y -'=-',与两坐标轴交点为),0(y x y '-和)0,(y yy x '-',两点间距离为l y x y y y y x ='-+⎪⎪⎭⎫ ⎝⎛'-'22)(,即 222)()(l y x y y y x ='-+'-. (3)由(2),有221a y x y y yy x ='-'-',或y a y y x '=-'222)(.(4)由(2),有 2y x y y '-=,或0=+'y y x . (5)由(2),2x y x y ='-. (6)同样由(2),2yx y x y +='-,或x y x y ='-2. (7)易得kx y =' (k 为常数且0>k ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 绪论§1.1 微分方程:某些物理过程的数学模型§1.2 基本概念习题1.21.指出下面微分方程的阶数,并回答方程是否线性的:(1)y x dxdy-=24; (2)012222=+⎪⎭⎫ ⎝⎛-xy dx dy dx y d ; (3)0322=-+⎪⎭⎫ ⎝⎛y dx dy x dx dy ; (4)x xy dx dy dx y d xsin 3522=+-; (5)02cos =++x y dxdy; (6)x e dx y d y=+⎪⎪⎭⎫ ⎝⎛22sin . 解 (1)一阶线性微分方程;(2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程.2.试验证下面函数均为方程0222=+y dxy d ω的解,这里0>ω是常数. (1)x y ωcos =;(2)11(cos C x C y ω=是任意常数); (3)x y ωsin =;(4)22(sin C x C y ω=是任意常数);(5)2121,(sin cos C C x C x C y ωω+=是任意常数); (6)B A B x A y ,()sin(+=ω是任意常数).解 (1)y x dx y d x dxdy2222cos ,sin ωωωωω-=-=-=,所以0222=+y dxy d ω,故x y ωcos =为方程的解.(2)y x C y x C y 2211cos ,sin ωωωωω-=-=''-=',所以0222=+y dxyd ω,故x C y ωcos 1=为方程的解.(3)y x dx y d x dxdy2222sin ,cos ωωωωω-=-==,所以0222=+y dxy d ω,故x y ωsin =为方程的解.(4)y x C y x C y 2222sin ,cos ωωωωω-=-=''=',所以0222=+y dxy d ω,故x C y ωsin 2=为方程的解.(5)y x C x C y x C x C y 2222121sin cos ,cos sin ωωωωωωωωω-=--=''+-=',所以0222=+y dxyd ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 22)sin(,)cos(ωωωωω-=+-=''+=',故0222=+y dxy d ω,因此)sin(B x A y +=ω为方程的解.3.验证下列各函数是相应微分方程的解: (1)xxy sin =,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2=+'-(C 是任意常数); (3)xCe y =,02=+'-''y y y (C 是任意常数); (4)xe y =,x x xe ye y ey 2212-=-+'-;(5)x y sin =,0cos sin sin 222=-+-+'x x x y y y ; (6)xy 1-=,1222++='xy y x y x ; (7)12+=x y ,x y x y y 2)1(22++-=';(8))()(x f x g y =,)()()()(2x f x g y x g x f y '-'='.证明 (1)因为2sin cos xx x x y -=',所以x x xx x x x y y x cos sin sin cos =+-=+'. (2)由于21xCx y --=',故x x C x x Cx x xy y x 2)12(1)1()1(2222=-++--⋅-=+'-.(3)由于xCe y =',xCe y ='',于是022=+-=+'-''xxxCe Ce Ce y y y . (4)由xe y =',因此x x x x x x x xe e e e e e ye y ey 22212)(2-=⋅-+⋅=-+'--.(5)因为x y cos =',所以0cos sin sin sin 2sin cos cos sin sin 22222=-+⋅-+=-+-+'x x x x x x x x x y y y .(6)从21x y =',得1111122222++=+⎪⎭⎫⎝⎛-⋅+⎪⎭⎫ ⎝⎛-⋅=='xy y x x x x x y x .(7)由x y 2=',得到x y x y x x x x x y 2)1(2)1)(1()1(2222222++-=+++-+=='.(8))()()()()()()()()()()()()()()(222x f x g y x g x f x f x g x f x g x g x f x f x g x f x g x f y '-'='-⎪⎪⎭⎫ ⎝⎛⋅'='-'='. 4.给定一阶微分方程x dxdy2=, (1)求出它的通解; (2)求通过点)4,1(的特解;(3)求出与直线32+=x y 相切的解; (4)求出满足条件21=⎰ydx 的解;(5)绘出(2),(3),(4)中的解的图形. 解 (1)通解 C x xdx y +==⎰22.(2)由41==x y ,得到3=C ,所以过点)4,1(的特解为32+=x y .(3)这时122=⇒=x x ,切点坐标为)5,1(,由51==x y ,得到4=C ,所以与直线32+=x y 相切的解为42+=x y .(4)由231)31()(1310210=+=+=+=⎰⎰C Cx x dx C x ydx ,得到35=C ,故满足条件21=⎰ydx 的解为352+=x y . (5)如图1-1所示.图1-15.求下列两个微分方程的公共解: (1)422x x y y -+='; (2)2422y y x x x y --++='.解 公共解必须满足2424222y y x x x x x y --++=-+,即022242=-+-x y x y ,得到2x y =或212--=x y 是微分方程422x x y y -+='和2422y y x x x y --++='的公共解.6.求微分方程02=-'+'y y x y 的直线积分曲线.解 设直线积分曲线为0=++C By Ax ,两边对x 求导得,0='+y B A ,若0=B ,则0=A ,得到0=C ,不可能.故必有0≠B ,则BAy -=',代入原方程有 02=++⎪⎭⎫ ⎝⎛-+-B Cx B A B A x B A ,或0)(22=-++B A B C x B A B A ,所以, ⎪⎪⎩⎪⎪⎨⎧=-=+0,022BA B C BAB A ,得到⎩⎨⎧==0,0C A 或B C A -==. 所求直线积分曲线为0=y 和1+=x y .7.微分方程32224xy y y x =-',证明其积分曲线关于坐标原点)0,0(成中心对称的曲线,也是此微分方程的积分曲线.证明 设0),(=y x F 是微分方程32224xy y y x =-'的积分曲线,则与其关于坐标原点)0,0(成中心对称的曲线是0),(=--y x F .由于0),(=y x F 适合微分方程32224xy y y x =-',故3222),(),(4xy y y x F y x F x y x =-⎥⎥⎦⎤⎢⎢⎣⎡-⋅,分别以y x --,代y x ,,亦有3222))(()(),(),()(4y x y y x F y x F x y x --=--⎥⎥⎦⎤⎢⎢⎣⎡-----⋅-,而由0),(=--y x F ,得到),(),(y x F y x F y y x -----=',从而0),(=--y x F 也是此微分方程的积分曲线.8.物体在空气中的冷却速度与物体和空气的温差成比例,如果物体在20分钟内由100C 冷至 60C ,那么,在多久的时间内,这个物体的温度达到 30C ?假设空气的温度为20C .解 设物体在时刻t 的温度为)(t u u =,20=a u ,微分方程为)(a u u k dtdu--=,解得kta Ce u u -+= ,根据初始条件10000===u u t ,得800=-=a u u C ,因此kt a a e u u u u --+=)(0,根据60,201===u u t ,得到ka a e u u u u 2001)(--+=,由此202ln ln 20110=--=a a u u u u k ,所以得到t eu 202ln 8020-+=,当30=u 时,解出60=t (分钟)1=(小时).在1小时的时间内,这个物体的温度达到30C . 9.试建立分别具有下列性质的曲线所满足的微分方程:(1)曲线上任一点的切线与该点的向径夹角为α;(2)曲线上任一点的切线介于两坐标轴之间的部分等于定长l ;(3)曲线上任一点的切线与两坐标轴所围成的三角形的面积都等于常数2a ; (4)曲线上任一点的切线介于两坐标轴之间的部分被切点等分; (5)曲线上任一点的切线的纵截距等于切点横坐标的平方;(6)曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项; (7)曲线上任一点的切线的斜率与切点的横坐标成正比.(提示:过点),(y x d 的横截距和纵截距分别为'-y y x 和y x y '-).解 (1)曲线上任一点为),(y x ,则xy y x yy '+-'=1tan α,即ααtan tan y x x y y -+='. (2)曲线上任一点),(y x 处的切线方程为y y x Y X y -'=-',与两坐标轴交点为),0(y x y '-和)0,(y yy x '-',两点间距离为l y x y y y y x ='-+⎪⎪⎭⎫ ⎝⎛'-'22)(,即 222)()(l y x y y y x ='-+'-. (3)由(2),有221a y x y y yy x ='-'-',或y a y y x '=-'222)(.(4)由(2),有 2y x y y '-=,或0=+'y y x . (5)由(2),2x y x y ='-. (6)同样由(2),2yx y x y +='-,或x y x y ='-2. (7)易得kx y =' (k 为常数且0>k ).。

相关文档
最新文档