第五章 测量误差的基本知识
第五章 测量误差的基本知识
在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。
测量误差及其处理的基本知识
第五章 测量误差及其处理的基本知识1、测量误差的来源有哪些?什么是等精度测量?答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。
该三个方面条件相同的观测称为等精度观测。
2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除?答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。
偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。
系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。
3、举出水准测量、角度测量及距离测量中哪些属于系统误差?答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。
4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度?答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。
当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。
例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。
所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =||/1||m D D m = 。
5、观测值中误差如何计算?答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即11L x v -=22L x v -=......n n L x v -=则中误差 []1-±=n vv m6、算术平均值及其中误差如何计算?答:设对某量进行n 次等精度观测,观测值为i L (i =1、2……n ),其算术平均值为x : []nL n L L L x n =+++=......21 ; 算术平均值中误差nm m x ±= ,其中m 为观测值的中误差。
第五章 测量误差的基本知识
2 ma
解:
α
D
+a
mS = ± 30 2 × 0.04 2 + 40 2 × 0.03 2
mS = ±1.7(m 2 )
1、求D 、 D=Lcos α = =165.50×cos15°30′ × ° =159.48m
2、求mD 、 (1)函数式 ) D=Lcosα (2)偏微分 )
中误差m ㎜,中误差 d=±0.2㎜,求实地距离 及其 ㎜ 求实地距离D及其 中误差。 中误差。 解: D=500d =
n-1 [ vv ] m=± n-1
例1:
l 1 2 3 4 5 85°42′49″ ° 85°42′40″ ° 85°42′42″ ° 85°42′46″ ° 85°42′48″ ° l0=85°42′40″ ° △l 9 0 2 6 8 25 v ﹣4 ﹢5 ﹢3 ﹣1 ﹣3 0 vv 16 25 9 1 9 60
V △l(㎜) (㎜) (㎜)
vv 4 25 256 441 9 121 856
m2 = n n
=
L = l0 +
[ vv ] 1 2 + m
∑∆ l 25" = 85°42' 40" + 5 5 =85°42′45″ °
二、求观测值的函数的中误差 S=ab (一)求偏微分 dS=b da+a db (二)以偶然误差代替微分元素
60 m=± 5 -1
m = ±3.9"
mD = 0.012 + 0.02 2 + 0.03 2
=±0.037(m) ± ( ) 六、线性函数的中误差 函数: 函数: z=k1x1+k2x2+…+knxn = + 偏微分: 偏微分: dz=k1 dx1+k2 dx2+…+kn dxn = + 中误差: 中误差:
第五章误差基本知识
现在的位置:课程介绍 >> 理论部分 >> 电子讲稿第五章误差基本知识5.1误差的来源和分类一、定义:观测值与真值之差,记为:X为真值,即能代表某个客观事物真正大小的数值。
为观测值,即对某个客观事物观测得到的数值。
为观测误差,即真误差。
二、误差的来源1、测量仪器一是仪器本身的精度是有限的,不论精度多高的仪器,观测结果总是达不到真值的。
二是仪器在装配、使用的过程中,仪器部件老化、松动或装配不到位使得仪器存在着自身的误差。
如水准仪的水准管轴不平行视准轴,使得水准管气泡居中后,视线并不水平。
水准尺刻划不均匀使得读数不准确。
又如经纬仪的视准轴误差、横轴误差、竖盘指标差都是仪器本身的误差。
2、观测者是由于观测者自身的因素所带来的误差,如观测者的视力、观测者的经验甚至观测者的责任心都会影响到测量的结果。
举例:如水准尺倾斜、气泡未严格居中、估读不准确、未精确瞄准目标都是观测误差。
3、外界条件测量工作都是在一定的外界环境下进行的。
例如温度、风力、大气折光、地球曲率、仪器下沉都会对观测结果带来影响。
上述三项合称为观测条件a.等精度观测:在相同的观测条件下进行的一组观测。
b.不等精度观测:在不同的观测条件下进行的一组观测。
测量误差的分类根据测量误差表现形式不同,误差可分为系统误差、偶然误差和粗差。
1、系统误差定义:误差的符号和大小保持不变或者按一定规律变化,则称其为系统误差。
如:钢尺的尺长误差。
一把钢尺的名义长度为30m,实际长度为30.005m,那么用这把钢尺量距时每量一个整尺段距离就量短了5mm,也就是会带来-5mm的量距误差,而且量取的距离越长,尺长误差就会越大,因此系统误差具有累计性。
如:水准仪的i角误差,由于水准管轴与视准轴不平行,两者之间形成了夹角i,使得中丝在水准尺上的读数不准确。
如果水准仪离水准尺越远,i角误差就会越大。
由于i角误差是有规律的,因此它也是系统误差。
正是由于系统误差具有一定的规律性,因此只要找到这种规律性,就可以通过一定的方法来消除或减弱系统误差的影响。
第5章 误差基本知识
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n
n
13
•
从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。
误差基本知识
1.用真误差来确定中误差
在等精度观测条件下,对真值为X的某一量进行n 次观测,其观测值为L1,L2…Ln,相应的真误差为 1,2…n。取各真误差平方的平均值的平方根, 称为该量各观测值的中误差,以m表示,即:
Δi = X - L i
m =
2
i =1
n
n
2.用改正数来确定中误差
在实际工作中,未知量的真值往往不知道,真误差也无法 求得,所以常用最或是误差即改正数来确定中误差。
系统误差除可用改正数计算公式对观测 结果进行改正加以消除外,也可以用一 定的观测方法来消除其误差影响。
如经纬仪视准轴不垂直于横轴造成的误差,可以 用盘左、盘右观测角度,取其平均值的方法加以 消除;在水准测量中,采用前、后视距离相等来 消除水准仪的视准轴不平行于水准管轴造成的误 差。
由此可见,系统误差对观测结果影响较大,因此 必须采用各种方法加以消除或减少它的影响。比 如用改正数计算公式对丈量结果进行改正。
例四 某水准路线各测段高差的观测值中误差分别为h1 = 18.316 m ± 5 mm,h2 = 8.171 m ± 4 mm,h3 = 6.625 m ± 3 mm,试求总的高差及其中误差。 解:h = h1 + h2 + h3 = 15.316 + 8.171 6.625 = 16.862 (m)
1. 在一定的观测条件下,偶然误差的绝对值不 会超过一定的限值。 ………………….(有界性)
2. 绝对值小的误差比绝对值大的误差出现的机 会多。………………………………….(单峰性)
3.绝对值相等的正、负误差出现的机会基本相
等。 ………………………………次数的无限
容 = 2m 容 = 3m
第5章 测量误差理论的基础知识
5.1 测量误差概述 5.2 衡量精度的指标 5.3 误差传播定律及其应用 5.4 等精度直接观测平差 5.5 不等精度观测的最或然值及其中误差
§5.1 测量误差概述
大量实践表明,当对某一未知量进行多次 观测时,无论观测仪器多么精密,观测进行得
多么仔细,观测值之间总是存在着差异。例如,
2 2 2 2 mZ A12 m12 A2 m2 An mn
§5.3.2 误差传播定律的应用
例1 量得某圆形建筑物得直径 D=34.50m, 其中误差mD 0.01m,
求建筑物得圆周长及其中误差。
解:圆周长:
P D 3.1416 34.50 108.38 中误差:
将以上各式两边平方、取平均,可得
Z 2 x12 x22 xn 2 n f2 f 2 ... f 2 xi x j 1 fi f j k 1 2 n k k k k i, j
i j
因 x 的观测值 l 彼此独立,则 xi x j 在 i j 时亦为偶 i i 然误差。根据偶然误差第4特性,上式末项当 k 时趋近于 零,故:
测量某一平面三角形的三个内角,其观测值之
和常常不等于理论值180°。这说明测量结果
不可避免地存在误差。
§5.1.1 测量误差的来源
测量工作是在一定条件下进行的,外界环境、观 测者的技术水平和仪器本身构造的不完善等原因,都 可能导致测量误差的产生。通常把测量仪器、观测者 的技术水平和外界环境三个方面综合起来,称为观测 条件。观测条件不理想和不断变化,是产生测量误差 的根本原因。通常把观测条件相同的各次观测,称为 等精度观测;观测条件不同的各次观测,称为不等精 度观测。
测量误差的基本知识
m乙 =
=
= 4.3
n
6
12
二、相对误差
l 绝对误差 :真误差、中误差 l 相对误差: 在某些测量工作中,绝对误差不能完全
反映出观测的质量。 相对误差K—— 等于误差的绝对值与相应观测值的
比值。常用分子为1的分式表示,即:
相对误差
=
误差的绝对值 观测值
=1 T
13
l 相对中误差:当误差的绝对值为中误差m 的绝对值时, K称为~,即 k=1/m 。
3
1.系统误差
l 系统误差:在相同的观测条件下,对某一未知量进行一系列 观测,若误差的大小和符号保持不变,或按照一定的规律变 化,这种误差称为~ 。
l 系统误差产生的原因 : 仪器工具上的某些缺陷;观测者的 某些习惯的影响;外界环境的影响。
l 系统误差的特点: 具有累积性
4
系统误差消减方法 ❖1、在观测方法和观测程序上采取一定的措施;
中误差、相对误差、极限误差和容许误差
10
一、中误差
在测量实践中观测次数不可能无限多,实际应用中,以 有限次观测个数n计算出标准差的估值定义为中误差m,作 为衡量精度的一种标准:
m = ±sˆ = ± [ ]
n
在测量工作中,普遍采用中误差来评定测量成果的精度。
11
l 有甲、乙两组各自用相同的条件观测了六个三角 形的内角,得三角形的闭合差(即三角形内角和 的真误差)分别为:
例:经纬仪的LL不垂直于VV对测角的影响
5
2.偶然误差 l 偶然误差:在相同的观测条件下,对某一未知量 进行一系列观测,如果观测误差的大小和符号没有 明显的规律性,即从表面上看,误差的大小和符号 均呈现偶然性,这种误差称为 ~。 l 产生偶然误差的原因: 主要是由于仪器或人的感 觉器官能力的限制,如观测者的估读误差、照准误 差等,以及环境中不能控制的因素(如不断变化着的 温度、风力等外界环境)所造成。
第五章 测量误差
(2)水准路线高差的中误差
如果在这段水准路线当中一共观测了n站,则总高 差为: 设每站的高差中误差均为m站 ,则 mh = 取3倍中误差为限差,则普通水准路线的容许误差为: m容= 3
2.水平角观测的误差分析
用DJ6经纬仪进行测回法观测水平角,那么用盘左 盘右观测同一方向的中误差为±6” ,即 =±6”。 假设盘左瞄准A点时读数为A左,盘右瞄准A时读数 为A右,那么瞄准A方向一个测回的平均读数应为
求真误差的方差: 由方差的性质可得:
中误差为标准差σ的估计值,而标准差的平方就等 于方差,故
二、线性函数
1、倍数函数 设有函数 Z=Kx 式中 x—直接观测值,其中误差为mx; K—常数 Z—观测值x的函数 若对x作n次同精度观测,其真误差列为 设对应的函数的真误差列为 。 观测值与函数间的真误差关系式为:
三、非线性函数 设有非线性函数 z=f(x1、x2、…、xn) 式中,x1、x2、…、xn为独立观测值,其相应的中
误差分别为m1、m2、…、mn,对其全微分得到
四、误差传播定律的应用 1.水准测量的误差分析
(1)一个测站的高差中误差 每站的高差为:h=a-b;a、b为水准仪在前后水准 尺上的读数,读数的中误差m读,m读≈±3mm,则 每个测站的高差中误差为
二、中误差(均方差)
1.测量工作中,用标准差来衡量观测的精度,我 们称之为中误差,用m表示。 设在相同的观测条件下,对未知量进行重复独立 观测,观测值为:l1,l2,…,ln,其真误差为Δ 1,
Δ 2,…,Δ n ,则真误差的方差
式中当n→∞,E(Δ ) = 0 ,根据数学期望的定义 E(Δ 2)就是Δ 2的算术平均值。
将上式平方,得 按上式求和,并除以n,得
《测量学》第05章 测量误差的基本知识
5.1 测量误差概述 5.2 衡量精度的标准 5.3 误差传播定律 5.4 算术平均值及其中误差 5.5 加权平均值及其中误差
5.1 测量误差概述
测量实践中可以发现, 测量实践中可以发现,测量结果 不可避免的存在误差 比如: 存在误差, 不可避免的存在误差,比如: 1.对同一量的多次观测值不相同; 对同一量的多次观测值不相同; 对同一量的多次观测值不相同 2.观测值与理论值存在差异。 观测值与理论值存在差异。 观测值与理论值存在差异
5.3 误差传播定律
阐述观测值中误差与观测值函数的中误 差之间关系的定律,称为误差传播定律 误差传播定律。 差之间关系的定律,称为误差传播定律。 一、观测值的函数 1.和差函数 2.倍函数 3.线性函数 4.-般函数
Z = x1 + x 2 + L + x n
Z = mx
Z = k1 x1 + k 2 x 2 + L + k n x n
mZ = ± (
∂f 2 2 ∂f ∂f 2 2 ) m1 + ( ) 2 m2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +( ) 2 mn ∂x1 ∂x2 ∂xn
5.4 算术平均值及观测值的中误差
一、求最或是值
设在相同的观测条件下对未知量观测了n次 设在相同的观测条件下对未知量观测了 次 , 观测值为l 中误差为m 观测值为 1、l2……ln,中误差为 1、m2、…mn,则 其算术平均值(最或然值、似真值) 其算术平均值(最或然值、似真值)L 为:
二、研究测量误差的目的和意义
分析测量误差产生的原因及其性质。 分析测量误差产生的原因及其性质。 确定未知量的最可靠值及其精度。 确定未知量的最可靠值及其精度。 正确评价观测成果的精度。 正确评价观测成果的精度。
测量误差的基本知识
§5.5误差传播定律的应用
一、水准测量的误差分析
每站的高差为:h = a - b ;m读≈ ±3mm
一站的高差中误差:m站 =
≈ ±4mm
线路n站,则总高差:
取3倍中误差为限差,则普通水准路线的容许误 差为 :
二、水平角观测的误差分析
用DJ6经纬仪进行测回法观测水平角,那么用盘 左盘右观测同一方向的中误差为±6 ″,
1、倍数函数:Z=kx 中误差:mz=kmx
2、和差函数 :Z=x1±x2±…±xn 中误差:mz m12 m22 ... mn2
3、线形函数 : Z=k1x1±k2x2±…±knxn 中误差:mz (k1)2 m12 (k2 )2 m22 ... (k n)2 mn2
加权平均值的中误差: M0 = = ±3.2mm
一、一般函数的中误差
设Z=f(x1,x2,…,xn),其中x1,x2,…,xn属于独立自 变量(如直接观测值),他们的中误差分别为 m1,m2,…,mn则函数Z的中误差为 :
mz
(
f x1
)
2
m12
f (
x2
) 2 m22
f ... (
xn
) 2 mn2
二、特殊函数的中误差
小结
• 正确列出函数式; • 检查观测值是否独立; • 求偏微分并代入观测值确定系数; • 套用公式求出中误差。
思考题:一个边长为l的正方形,若测量一 边中误差为ml=±1cm,求周长的中误差? 若四边都测量,且测量精度相同,均为ml, 则周长中误差是多少?
§5.4等精度直接观测值
1.算术平均值原理 假设对某量X 进行了n次等精度的独立观测,得
5.偶然误差的特性
第五章测量误差的基本知识
第五章测量误差的基本知识§5.1 测量误差概述在测量工作中,当对某量进行多次重复观测后就会发现,各次观测值之间往往存在差异。
例如,对某段距离进行多次丈量,往往发现每次丈量的结果不一致;又如,平面三角形三内角之和理论上应等于180°,但经测量后的三个内角的观测值之和常常不等于180°而有差异。
这类在同一量的各观测值之间,或在观测值与其理论值之间存在差异的现象,在测量工作中是普遍存在的。
之所以会产生这类现象,是因为观测值中包含有观测误差的缘故。
一、产生误差的原因观测值中为什么会存在观测误差呢?概括起来,有下列三方面原因:1.观测者由于观测者感觉器官的鉴别能力的局限性,在仪器安置、目标照准、测微读数等工作中都会产生误差。
同时,观测者的技术水平及工作态度也会对观测结果产生影响。
2.测量仪器测量工作所使用的测量仪器都具有一定的精密度,从而使观测结果的精度受到限制。
另外,仪器本身构造上的缺陷,也会使观测结果产生误差。
3.外界条件观测时的外界条件,如温度、湿度、气压、大气折光、风力等因素都会对观测结果直接产生影响。
随着这些因素的变化,它们对观测结果产生的影响也随之变化,这就必然使观测结果带有误差。
观测者、测量仪器和观测时的外界条件是引起观测误差的主要因素,通常称为观测条件。
观测条件相同的各次观测称为等精度观测。
观测条件不同的各次观测称为非等精度观测。
任何观测都不可避免地要产生误差。
为了获得观测值的正确结果,就必须对误差进行分析研究,以便采取适当的措施来消除或削弱其影响。
二、误差的分类观测误差按其性质,可分为系统误差和偶然误差。
1.系统误差在相同的观测条件下,对某量进行多次观测,如果观测误差的大小和符号呈现某种规律性的变化,或保持常数,这类误差称为系统误差。
例如,用名义长为30m,而实长为29.99m 的钢尺量距时,每量一尺段就有+0.01m的系统误差。
又如,经纬仪的竖盘指标差对竖直角测量的影响也属系统误差。
第五章测量误差的基本知识
mC
试求 中误差
5.3等精度直接观测量的最可靠值及其中 误差
▪ 当观测次数n趋于无穷大时,算术平均值趋 于未知量的真值。当n为有限值时,通常取 算术平均值做为最可靠值。
▪ 利用观测值的改正数vi计算中误差:
m [vv] (n 1)
▪ 算术平均值中误差:
M m [vv] n n(n 1)
例:对某直线丈量了6次,丈量结果如表,求算术
▪ 4相同的观测条件下,一测站高差的中误差为 _______。
▪ 5衡量观测值精度的指标是_____、_______和 ______。
▪ 6对某目标进行n次等精度观测,某算术平均值的中 误差是观测值中误差的______倍。
▪ 7在等精度观测中,对某一角度重复观测多次,观测 值之间互有差异,其观测精度是______的。
第五章 测量误差的基本知识
第五章 测量误差基本知识
5.1 测量误差与精度 5.2误差传播定律 5.3等精度直接观测量的最可靠值及其中误 差 5.4非等精度直接观测值的最可靠值及其中 误差
第五章 测量误差基本知识
▪ 主要内容:测量误差的概念、来源、分类 与处理方法;精度概念及评定标准;误差 传播定律;观测值中误差计算;直接观测 值的最可靠值及其中误差
C.水准管轴不平行与视准轴的误差
▪ 经纬仪对中误差属( )
▪ A.偶然误差; B.系统误差; C.中误差
▪ 尺长误差和温度误差属( )
▪ A.偶然误差; B.系统误差; C.中误差
▪ 下面是三个小组丈量距离的结果,只有( 测量的相对误差不低于1/5000的要求
)组
▪ A.100m 0.025m; B.200m 0.040m; C.150m 0.035m
第五章测量误差的基本知识
第五章测量误差的基本知识1、衡量测量精度的指标有中误差、相对误差、极限误差。
5.测量,测角中误差均为10〃,所以A角的精度高于B角。
(X)8.在测量工作中无论如何认真仔细,误差总是难以避免的。
(X)10 .测量中,增加观测次数的目的是为了消除系统误差。
(X)1、什么是偶然误差?它有哪些特性?定义:相同的观测条件,若误差在数值和符号上均不相同或从表面看无规律性。
如估读、气泡居中判断等。
偶然误差的特性:(D有界性(2)渐降性(3)对称性(4)抵偿性7.已知DJ6经纬仪一测回的测角中误差为nu = ±20",用这类仪器需要测几个测回取平均值,才能达到测角中误差为±10” ?()A. 1B.2C.3D.43.偶然误差服从于一定的规律。
4.对于偶然误差,绝对值较小的误差比绝对值较大的误差出现的机会。
14.测量误差的来源有、、外界条件。
3.设对某距离丈量了6 次,其结果为246.535m、246.548m、246.520m、246.529m、246.550m、246.537m,试求其算术平均值、算术平均值中误差及其相对中误差。
6.偶然误差的算术平均值随观测次数的无限增加而趋向于o14.设对某角度观测4个测回,每一测回的测角中误差为±5",则算术平均值的中误差为±〃。
24.衡量测量精度的指标有、、极限误差。
3.观测值与之差为闭合差。
()A.理论值B.平均值C.中误差D.改正数5.由于钢尺的不水平对距离测量所造成的误差是()A.偶然误差B.系统误差C.可能是偶然误差也可能是系统误差D.既不是偶然误差也不是系统误差8.阐述函数中误差与观测值中误差之间关系的定律称为o9.什么是系统误差?什么是偶然误差?误差产生的原因有哪些?10测量误差按性质可分为和两大类。
1. 2.相对误差2.由估读所造成的误差是()oA.偶然误差B.系统误差C.既是偶然误差又是系统误差14.下列不属于衡量精度的标准的是()。
第五章 测量误差的基本知识
一般情况下,只要是观测值必然含有误差。 一般情况下,只要是观测值必然含有误差。
5.1 测量误差的来源及分类
二、测量误差产生的原因
1. 仪器误差 2. 观测误差 3. 外界条件的影响 观测条件
如果使用的仪器是同一个精密等级, 如果使用的仪器是同一个精密等级,操作人员有相同 的工作经验和技能,工作环境的自然条件(气温、 的工作经验和技能,工作环境的自然条件(气温、风 湿度等等)基本一致,则称为相同的观测条件 相同的观测条件。 力、湿度等等)基本一致,则称为相同的观测条件。
i
正态分布曲线
图中有斜线的长方形 面积就代表误差出现 在某区间的频率。 在某区间的频率。
-21 -15 -18 -12 -9 -6 -3 0 +3 +9 +15 +21 +6 +12 +18 +24
x=∆
-24
误差分布频率直方图
5.2 偶然误差的基本特性
误差分布图
在一定的观测条件下得到一组独立的误差, 在一定的观测条件下得到一组独立的误差,对应着一种确定 的分布。 同时无限缩小误差区间, 的分布。当误差个数 n → ∞ ,同时无限缩小误差区间,上图 中的各矩形的顶边折线就成为一条光滑的连续曲线。 中的各矩形的顶边折线就成为一条光滑的连续曲线。 这条曲线称为误差分布曲线也称为 正态分布曲线。 正态分布曲线。曲线上任意一点的 纵坐标y 的函数, 纵坐标y均为横坐标 ∆ 的函数,其 函数形式为:
5.3 衡量观测值精度的指标
1、中误差
中误差不同于各个观测值的真误差, 中误差不同于各个观测值的真误差,它是衡量一组观 测值精度的指标, 测值精度的指标,它的大小反映出一组观测值的离散 程度。中误差m值小,表明误差的分布较为密集, 程度。中误差m值小,表明误差的分布较为密集,各 观测值间的差异较小,这组观测的精度就高;反之, 观测值间的差异较小,这组观测的精度就高;反之, 中误差m值较大,表明误差的分布较为离散, 中误差m值较大,表明误差的分布较为离散,观测值 之间的差异也大,这组观测的精度就低。 之间的差异也大,这组观测的精度就低。 说明:中误差越小,观测精度越高。 说明:中误差越小,观测精度越高。
(整理)第5章,误差基本知识
第5章测量误差基本知识测量工作使用仪器进行测量,在测量过程中不可避免的出现误差,为了提高测量精度及精度评定,需要了解测量误差的来源,促进测量工作方法的改进,和测量精度的提高。
误差—在一定观测条件下,观测值与真值之差。
精度—观测误差的离散程度。
5-1 误差的基本概念讨论测量误差的目的:用误差理论分析,处理测量误差,评定测量成果的精度,指导测量工作的进行。
▼▼▼▼产生测量误差的原因,▼▼测量误差的分类和处理原则,▼▼偶然误差的特性一、测量误差的来源仪器原因:仪器精度的局限,轴系残余误差等。
人的原因:判别力和分辨率的限制,经验等。
外界影响:气象因素(温度变化,风、大气折光)等。
有关名词:观测条件,等精度观测:上述三大因素总称观测条件,在上述条件基本一致的情况下进行各次观测,称等精度观测。
结论:观测误差不可避免(粗差除外)二、测量误差的分类两类误差:系统误差偶然误差粗差(错误排除)1、系统误差-- 误差出现大小、符合相同,或按规律变化,具有积累性。
处理方法①检校仪器,把仪器的系统误差降到最小程度;②求改正数,对测量结果加改正数消除;③对称观测,使系统误差对观测成果的影响互为相反数,以便外业操作时抵消。
例:误差处理方法钢尺尺长误差△D K 计算改正钢尺温度误差△Dt 计算改正水准仪视准轴误差I 操作时抵消(前后视等距)经纬仪视准轴误差C 操作时抵消(盘左盘右取平均)●结论:系统误差可以消除。
2、偶然误差-- 误差出现的大小,符合各部相同,表面看无规律性。
例:估读误差—气泡居中判断,瞄准,对中等误差,导致观测值产生误差。
◎偶然误差:是由人力不能控制的因素所引起的误差。
◎特点:具有抵偿性。
◎处理原则:采用多余观测,减弱其影响,提高观测结果的精度。
3、粗差—指在一定的观测条件下超过规定限差值。
对于粗差,应当分析原因,通过补测等方法加以消除。
三、偶然误差的特性1、偶然误差的定义:设某量的真值X对该量进行n次观测得n次的观测值l1,l2,l3……l n则产生了n个真误差真误差:△I = X-l i2、偶然误差的特性☎当观测次数很多时,偶然误差的出现,呈现统计学上的规律性,偶然误差具有正态分布的特性。
测量误差基本知识
第五章测量误差基本知识5-1 测量误差概述一、测量误差产生的原因对某一个量进行多次重复观测,例如重复观测某一水平角或往返丈量某段距离等,其多次测量的结果总存在着差异,这说明观测值中含有测量误差。
产生测量误差的原因很多,概括起来有下列三个方面:1.仪器的原因测量工作是采用经纬仪、水准仪等测量仪器完成的,测量仪器的构造不可能十分完善,从而使测量结果受到一定影响。
例如,经纬仪的视准轴与横轴不垂直、度盘刻划不均匀,都会使所测角度产生误差;水准仪的视准轴不平行于水准管轴、望远镜十字丝不水平,都会使高差产生误差。
2.观测者的原因由于观测者感觉器官的鉴别能力存在局限性,所以对仪器的各项操作,如经纬仪对中、整平、瞄准、读数等方面都会产生误差。
此外,观测者的技术熟练程度和工作态度也会对观测成果带来不同程度的影响。
3.外界环境的影响测量所处的外界环境(包括温度、风力、日光、大气折光等)时刻在变化,使测量结果产生误差。
例如,温度变化会使钢尺产生伸缩,风吹和日光照射会使仪器的安置不稳定,大气折光会使瞄准产生偏差等。
人、仪器和外界环境是测量工作的观测条件,由于受到这些条件的影响,测量中的误差是不可避免的。
观测条件相同的各次观测称为等精度观测;观测条件不相同的各次观测称为不等精度观测。
二、测量误差的分类测量误差按其对观测结果影响性质的不同分为系统误差和偶然误差两类。
1.系统误差在相同的观测条件下对某一量进行一系列观测,若误差的出现在符号和数值上均相同,或按一定的规律变化,这种误差称为系统误差。
例如,用名义长度为30.000m,而实际鉴定后长度为30.006m的钢卷尺量距,每量一尺段就有0.006m的误差,其量距误差的影响符号不变,且与所量距离的长度成正比。
所以,系统误差具有积累性,对测量结果的影响较大;另一方面,系统误差对观测值的影响具有一定的规律性,且这种规律性总能想办法找到,因此系统误差对观测值的影响可用计算公式加以改正,或采用一定的测量措施加以消除或削弱。
《测量学》第五章测量误差基本知识
系统误差的来源与消除方法
总结词
系统误差的来源主要包括测量设备误差、环境因素误差和测量方法误差。消除系统误差的方法包括校准设备、改 进测量方法和采用适当的修正公式。
详细描述
系统误差的来源多种多样,其中最常见的是测量设备误差,如仪器的刻度不准确、零点漂移等。此外,环境因素 如温度、湿度和气压的变化也可能导致系统误差。为了消除这些误差,可以采用定期校准设备、选择适当的测量 方法和采用修正公式等方法。
相对测量法
通过比较被测量与标准量之间 的差异来得到被测量的值,并 评估误差。
组合测量法
将被测量与其他已知量进行组 合,通过测量组合量来得到被
测量的值,并评估误差。
测量结果的表示与处理
测量结果的表示
测量结果应包括被测量的值、单位、 测量不确定度以及置信区间等。
异常值的处理
在数据处理过程中,如果发现异常值, 应进行识别、判断和处理,以确保测 量结果的准确性和可靠性。
测量学第五章 测量误差 基本知识
contents
目录
• 测量误差概述 • 系统误差 • 随机误差 • 粗大误差 • 测量误差的估计与处理
测量误差概述
01
测量误差的定义
测量误差
在测量过程中,由于受到测量仪器、 环境条件、操作者技能等因素的影响 ,使得测量结果与被测量的真实值之 间存在一定的差异。
不确定度的评定方法
不确定度的传递
不确定度的评定方法包括A类评定和B类评 定,其中A类评定基于统计分析,B类评定 基于经验和信息。
在多个量之间存在函数关系时,需要将各 个量的不确定度传递到最终的测量结果中 ,以确保最终结果的准确性和可靠性。
THANKS.
数据修约
根据测量不确定度对数据进行修约, 以确保数据的完整性和一致性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章测量误差基本知识内容:了解测量误差来源及产生的原因;掌握系统误差和偶然误差的特点及其处理方法;理解精度评定的指标(中误差、相对误差、容许误差)的概念;了解误差传播定律的应用。
重点:系统误差和偶然误差的特点及其处理方法。
难点:中误差、相对误差、容许误差的概念;误差传播定律的应用。
§ 5.1 测量误差的概念测量误差按其对测量结果影响的性质,可分为系统误差和偶然误差。
一、系统误差 (system error)1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。
2、特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。
二、偶然误差 (accident error)1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。
但具有一定的统计规律。
2、特点:(1)具有一定的范围。
(2)绝对值小的误差出现概率大。
(3)绝对值相等的正、负误差出现的概率相同。
(4)数学期限望等于零。
即:误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。
此外,在测量工作中还要注意避免粗差 (gross error) (即:错误)的出现。
偶然误差分布频率直方图§ 5.2 衡量精度的指标测量上常见的精度指标有:中误差、相对误差、极限误差。
一、中误差方差:——某量的真误差, [] ——求和符号。
规律:标准差估值(中误差 m )绝对值愈小,观测精度愈高。
在测量中,n为有限值,计算中误差 m 的方法,有:1、用真误差( true error )来确定中误差——适用于观测量真值已知时。
真误差Δ——观测值与其真值之差,有:标准差中误差(标准差估值), n 为观测值个数。
[ 例题 ] :对 10 个三角形的内角进行了观测,根据观测值中的偶然误差(三角形的角度闭合差,即真误差),计算其中误差。
三内角和的观测值序号观测值L 真误差△ △平方1 180 ° 00 ′ 03 ″ - 3 ″ 92 180 ° 00 ′ 02 ″ - 2 ″ 43 179 ° 59 ′ 58 ″ + 2 ″ 44 179 ° 59 ′ 56 ″ + 4 ″ 165 180 ° 00 ′ 00 ″ - 1 ″ 16 180 ° 00 ′ 04 ″ 0 ″ 07 180 ° 00 ′ 03 ″ - 4 ″ 168 179 ° 59 ′ 57 ″ + 3 ″ 99 179 ° 59 ′ 58 ″ + 2 ″ 410 180 ° 00 ′ 03 ″ - 3 ″ 9∑ 24 72中误差2、用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。
V ——最或是值与观测值之差。
一般为算术平均值与观测值之差,即有:二、相对误差1、相对中误差 =2、往返测较差率 K=三、极限误差(容许误差)常以两倍或三倍中误差作为偶然误差的容许值。
即:。
§ 5.3 误差传播定律及其应用误差传播定律设、… 为相互独立的直接观测量,有函数,则有:[ 例题 ] :在水准测量中,读数a与b的误差分别为m a=±3mm与m b=±4mm,则高差h的中误差m h等于多少?解:高差计算公式为: h=a-b由函数形式可知其属于和差函数,则根据误差传播定律可知:m = ±[ 例题 ]: 电磁波测距三角高程公式:h = Dtgα+i-v ,已知: D= 192.263m ± 0.006m ,α=8°9′16″±10″ ,i= 1.515m ± 0.002m ,v= 1.627m ± 0.002m ,求 h 值及其中误差m h 。
解:高差h=Dtgα+i-v= 27.437m ,对此式各项求偏导,其系数有:f1 =0.1433, f2 =0.9513, f3 =+1, f4 =-1,应用误差传播公式,有:故:m h=±7mm最后结果写为:h=27.437± 0.007m第一节概述一、测量误差测量工作的实践表明,在任何测量工作中,无论是测角、测高差或量距,当对同一量进行多次观测时,不论测量仪器多么精密,观测进行得多么仔细,测量结果总是存在着差异,彼此不相等。
例如,反复观测某一角度,每次观测结果都不会一致,这是测量工作中普遍存在的现象,其实质是每次测量所得的观测值与该量客观存在的真值之间的差值,这种差值称为测量误差。
即测量误差=观测值-真值用表示测量误差,X表示真值,L表示观测值,则测量误差可用下式(5-1)表示:△=-(5-1)二、测量误差的来源产生测量误差的因素是多方面的,概括起来有以下三个因素:1、仪器精度的有限性,测量中使用的仪器和工具不可能十分完善,致使测量结果产生误差。
例如:用普通水准尺进行水准测量时,最小分划为5mm,就难以保证毫米数的完全正确性。
经纬仪、水准仪检校不完善产生的残余误差影响,例如:水准仪视准轴部平行于水准管轴,水准尺的分划误差等。
这些都会使观测结果含有误差。
2、观测者感觉器官鉴别能力的局限性;会对测量结果产生一定的影响,例如对中误差、观测者估读小数误差、瞄准目标误差等。
3、观测过程中,外界条件的不定性,如温度、阳光、风等时刻都在变化,必将对观测结果产生影响,例如:温度变化使钢尺产生伸缩,阳光照射会使仪器发生微小变化,较阴的天气会使目标不清楚等。
通常把以上三种因素综合起来称为观测条件,可想而知观测条件好,观测中产生的误差就会小,反之,观测条件差,观测中产生的误差就会大。
但是不管观测条件如何,受上述因素的影响,测量中存在误差是不可避免的。
应该指出,误差与粗差是不同的,粗差是指观测结果中出现的错误,如测错、读错、记错等,不允许存在,为杜绝粗差,除了加强作业人员的责任心,提高操作技术外,还应采取必要的检校措施。
三、测量误差的分类测量误差按其性质不同可分为系统误差和偶然误差。
1、系统误差在相同的观测条件下,对某量进行一系列观测,若出现的误差在数值大小或符号上保持不变或按一定的规律变化,这种误差称为系统误差。
例如用名义长度为30米,而实际长度为30.004米的钢尺量距,每量一尺就有0.004米的系统误差,它就是一个常数。
又如水准测量中,视准轴与水准管轴不能严格平行,存在一个微小夹角,角一定时在尺上的读数随视线长度成比例变化,但大小和符号总是保持一致性。
系统误差具有累计性,对测量结果影响甚大,但它的大小和符号有一定的规律,可通过计算或观测方法加以消除,或者最大限度地减小其影响,如尺长误差可通过尺长改正加以消除,水准测量中的角误差,可以通过前后视线等长,消除其对高差的影响。
2、偶然误差在相同的观测条件下,对某量进行一系列观测,如出现的误差在数值大小和符号上均不一致,且从表面看没有任何规律性,这种误差称为偶然误差。
如水准标尺上毫米数的估读,有时偏大,有时偏小。
由于大气的能见度和人眼的分辨能力等因素使照准目标有时偏左,有时偏右。
偶然误差亦称随机误差,其符号和大小在表面上无规律可循,找不到予以完全消除的方法,因此须对其进行研究。
因为在表面上是偶然性在起作用,实际上却始终是受其内部隐蔽着的规律所支配,问题是如何把这种隐蔽的规律揭示出来。
第二节→偶然误差的特性大量的实践证明,在相同的观测条件下对某量进行一系列观测所出现的偶然误差呈现出一定的规律性。
观测次数愈多,这种规律愈明显。
例如,在相同的观测条件下,观测了96个三角形的内角,因观测存在误差,每一个三角形内角之和都不等于真值180°,其差值称为三角形内角和的真误差.即:(5-2)将96个三角形内角和的真误差的大小和正负按一定的区间统计误差个数,列表于5-1中。
误差统计表表5-1由表5-1可以看出:(1)小误差的个数比大误差个数多;(2)绝对值相等的正负误差的个数大致相等;(3)最大误差不超过3.0″。
人们反复实践和认识,总结出偶然误差具有如下的特性:1、有限性:在一定的观测条件下,偶然误差的绝对值不会超过一定的限值;2、集中性:绝对值小的误差比绝对值大的误差出现的机会多;3、对称性:绝对值相等的正误差与负误差出现的机会相等;4、抵偿性:偶然误差的算术平均值,随着观测次数的无限增加而趋向于零,即:(5-3)式中:为观测次数;………。
以上四个特性中,第一个特性说明误差的范围;第二个特性说明误差绝对值大小的规律;第三个特性说明误差符号出现的规律;第四个特性说明了偶然误差具有互相抵消的性能,因此采用增加观测次数,取其算术平均值,可以大大减弱偶然误差的影响。
这四个特性是误差理论的基础。
由于偶然误差本身的特性,不能用改变观测方法或计算改正的办法加以消除,只能根据偶然误差的理论加以处理,以减小它对测量成果的影响,求出最可靠的结果第三节→评定精度的标准一、评定精度的标准为了对测量成果的精确程度作出评定,有必要建立一种评定精度的标准,通常用中误差,相对误差和容许误差来表示。
1.中误差设在相同观测条件下,对真值为的一个未知量进行次观测,观测值结果为,每个观测值相应的真误差(真值与观测值之差)为△1、△2、……,△n。
则以各个真误差之平方和的平均数的平方根作为精度评定的标准,用表示,称为观测值中误差。
(5-4)式中:观测次数—称为观测值中误差(又称均方误差)为各个真误差△的平方的总和。
上式表明了中误差与真误差的关系,中误差并不等于每个观测值的真误差,中误差仅是一组真误差的代表值,当一组观测值的测量误差愈大,中误差也就愈大,其精度就愈低;测量误差愈小,中误差也就愈小,其精度就愈高。
【例题5-1】甲、乙两个小组,各自在相同的观测条件下,对某三角形内角和分别进行了7次观测,求得每次三角形内角和的真误差分别为:甲组:+2〞、-2〞、+3〞、+5〞、-5〞、-8〞、+9〞乙组: -3〞、+4〞、0〞、-9〞、-4〞、+1〞、+13〞则甲、乙两组观测值中误差为:由此可知,乙组观测精度低于甲组,这是因为乙组的观测值中有较大误差出现,因中误差能明显反映出较大误差对测量成果可靠程度的影响,所以成为被广泛采用的一种评定精度的标准。
(二)相对误差测量工作中对于精度的评定,在很多情况下用中误差这个标准是不能完全描述对某量观测的精确度的。
例如,用钢卷尺丈量了100和1000两段距离,其观测值中误差均为±0.1,若以中误差来评定精度,显然就要得出错误结论,因为量距误差与其长度有关,为此需要采取另一种评定精度的标准,即相对误差。
相对误差是指绝对误差的绝对值与相应观测值之比,通常以分子为1,分母为整数形式表示。