人教版八年级下册数学菱形同步练习题
人教版八年级数学下册 18.2.2.1菱形的性质 同步练习(包含答案)
人教版八年级数学下册18.2.2.1 菱形的性质同步练习一、选择题(共10小题,3*10=30)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是( ) A.1 cm B.2 cm C.3 cm D.4 cm3. 如图,在△ABC中,AB≠AC,D是BC上一点,DE∥AC交AB于点E,DF∥AB交AC于点F,要使四边形AEDF是菱形,只需添加的条件是()A.AD⊥BC B.∠BAD=∠CAD C.BD=DC D.AD=BD4. 如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4 3 B.3 3 C.2 3 D. 35. 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点为A′. 当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D. 106.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为()A.4B.4.8 C.2.4D.3.27. 已知菱形的周长为4 5 ,两条对角线的和为6,则菱形的面积为( )A .2 B. 5 C .3 D .48. 如图,菱形ABCD 的对角线AC ,BD 交于点O ,AC =4,BD =16,将△ABO 沿点A 到点C 的方向平移,得到△A′B′O′.当点A′与点C 重合时,点A 与点B′之间的距离为( )A .6B .8C .10D .129. 如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .410.如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .4二.填空题(共8小题,3*8=24)11. 菱形的两条对角线长分别是5和12,则此菱形的边长是_______,面积是_______.12.在菱形ABCD 中,对角线AC 、BD 相交于点O ,若AB =7 cm ,则周长是________cm.13. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,若∠ABC =110°,则∠BAD =________°, ∠ABD =________°,∠BCA =________°.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为_______.15.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为________.16.如图,四边形ABCD是菱形,O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为6和8时,阴影部分的面积为_______.17. 如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于________.18. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD 的周长为________.三.解答题(共7小题,46分)19.(6分) 如图,已知菱形的周长为40 cm,两邻角度数之比为1∶2.(1)求菱形的两条对角线的长;(2)求菱形的面积.20.(6分) 如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.21.(6分) 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,若∠E=50°,求∠BAO的大小.22.(6分) 已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.23.(6分) 如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.24.(8分) 如图,菱形ABCD的两条对角线相交于点O,∠DAC=30°,BD=12(1)求∠ABC的度数;(2)求菱形ABCD的面积.25.(8分) 在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.参考答案1-5DABBB 6-10 DDCAC11. 6.5,3012. 2813. 70,55,3514. 24 15. 2 316. 1217.4518.2419. 解:(1) ∵四边形ABCD 是菱形,两邻角度数之比为1∶2, ∴∠ABC=∠BAC=60°又∵菱形的周长为40 cm ,AC =AB=10 cm ,BD =2BO=2×AB 2-AO 2 =2×102-52 =10 3 cm(2)S 菱形=12BD·AC =50 3 cm 2 20. 解:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠DOC =90°,∴四边形OCED 是矩形,∴OE =CD ,∵四边形ABCD 是菱形,∴CD =BC ,∴OE =BC21. 解:菱形ABCD 中,AB =BC ,∵BE =AB ,∴BC =BE ,∴∠BCE =∠E =50°,∴∠CBE =180°-50°×2=80°,∵AD ∥BC ,∴∠BAD =∠CBE =80°,∴∠BAO =12×80°=40°. 22. 证明:∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDF ,DE =DF ,∴△ADE ≌△CDF(SAS).23. 证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC , ∴∠BPA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE , ∵AB =DA ,∴△ABF ≌△DAE(ASA)(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF24. 解:(1)∵菱形ABCD 的两条对角线相交于点O ,∠DAC =30°, ∴∠BAD =2∠DAC =60°,∵AD ∥BC ,∴∠ABC =180°-60°=120°;(2)∵菱形ABCD 的两条对角线相交于点O ,BD =12,∴AC ⊥BD ,DO =12BD =6, 又∵∠DAC =30°,∴AD =2DO =12,∴Rt △AOD 中,AO =122-62=63,∴AC =2AO =123,∴菱形ABCD 的面积=12×AC×BD =12×12×123=72 3. 25. 解:(1)连接AC ,∵四边形ABCD 是菱形,∴AB =BC ,∵∠B =60°,∴△ABC 是等边三角形,∵点E 为BC 的中点,∴AE ⊥BC ,∴∠AEC =90°,∵∠AEF =60°,∴∠FEC =90°-60°=30°,∵∠C =180°-∠B =120°,∠C +∠EFC +∠FEC =180°, ∴∠EFC =30°,∴∠FEC =∠EFC ,∴CE =CF ,∵BC =CD ,∴BC -CE =CD -CF ,即BE =DF(2)连接AC ,由(1)得△ABC 是等边三角形,∴AB =AC , ∵∠BAE +∠EAC =60°,∠EAF =∠CAF +∠EAC =60°,∴∠BAE =∠CAF ,∵四边形ABCD 是菱形,∠B =60°,∴∠ACF =12∠BCD =∠B =60°, ∴△ABE ≌△ACF(ASA),∴AE =AF , 又∵∠EAF =60°,∴△AEF 是等边三角形。
人教版八年级下册数学 18.2.2菱形 同步习题
18.2.2菱形同步习题一.选择题1.菱形ABCD的周长为40cm,它的一条对角线长10cm,则它的另一条对角线长为()A.10cm B.10cm C.5cm D.5cm2.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为菱形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 3.菱形不具备的性质是()A.对角线一定相等B.对角线互相垂直C.是轴对称图形D.是中心对称图形4.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.165.如图,在菱形ABCD中,E、F分别是AB、CD上的点,且AE=CF,EF与AC相交于点O,连接BO.若∠DAC=36°,则∠OBC的度数为()A.36°B.54°C.64°D.72°6.如图,在菱形ABCD中,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,若∠BAD=70°,则∠CFD等于()A.50°B.60°C.70°D.80°7.如图,菱形ABCD中,在边AD、BC上分别截取DM=BN,连接MN交AC于点O,连接DO,若∠BAC=20°,则∠ODC的度数为()A.20°B.40°C.50°D.70°8.如图,在菱形ABCD中,AB=5,对角线BD=8,过BD的中点O作AD的垂线,交AD 于点E,交BC于点F,连接DF,则DF的长度为()A.B.C.D.9.如图平行四边形ABCD中,∠A=110°,AD=DC.E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=()A.35°B.45°C.50°D.55°10.如图,在菱形ABCD中,∠D=120°,AB=2,点E在边BC上,若BE=2EC,则点B 到AE的距离是()A.B.C.D.二.填空题11.如图,在▱ABCD中,点E、F分别在边AD,BC上,且DE=BF,则再添加一个条件:可判定四边形AFCE是菱形.(只添加一个条件)12.在菱形ABCD中,两条对角线相交于点O,且AB=10cm,AC=12cm.则菱形ABCD 的面积是cm2.13.如图,菱形ABCD中,AC和BD交于点O,过点D作DE⊥BC于点E,连接OE,若∠BAC=25°,则∠OED的度数是.14.如图,在菱形ABCD中,AB=5,AC=6.过点D作BA的垂线,交BA的延长线于点E,则线段DE的长为.15.如图,菱形ABCD中,EF是AB的垂直平分线,∠FBC=80°,则∠ACB=°.三.解答题16.如图,在▱ABCD中,∠ABC=60°,BC=2AB,点E、F分别是BC、DA的中点.(1)求证:四边形AECF是菱形;(2)若AB=2,求BD的长.17.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=5,BD=6,求CE的长.18.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且2DE=AC,连接AE交OD于点F,连接DE、OE.(1)求证:AF=EF;(2)已知AB=2,若AB=2DE,求AE的长.参考答案一.选择题1.解:菱形ABCD如右图所示,∵菱形ABCD的周长为40cm,∴AB=BC=CD=AD=10cm;∵对角线BD=10cm,∴BO=DO=5cm;在Rt△ADO中,AO===.∴AD=2AO=.故选:A.2.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵∠BAC=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:B.3.解:根据菱形的性质可知:菱形的对角线互相垂直平分;菱形既是轴对称图形,又是中心对称图形.进行的对角线相等,而菱形不具备对角线一定相等.故选:A.4.解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.5.解:∵四边形ABCD是菱形,∴AB=BC=AD=CD,AB∥CD,AD∥BC,∴∠EAO=∠FCO,∠DAC=∠ACB=36°,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AO=CO,又∵AB=BC,∴BO⊥AC,∴∠OBC=90°﹣∠ACB=54°,故选:B.6.解:连接BF,如图所示:∵四边形ABCD是菱形,∴∠BAC=∠BAD=×70°=35°,∠BCF=∠DCF=∠BAC,BC=DC,∠ABC=180°﹣∠BAD=180°﹣70°=110°,∵EF是线段AB的垂直平分线,∴AF=BF,∴∠DCF=∠ABF=∠BAC=35°,∴∠CBF=∠ABC﹣∠ABF=110°﹣35°=75°,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=75°,∴∠CFD=180°﹣∠CDF﹣∠DCF=180°﹣75°﹣35°=70°,故选:C.7.解:∵四边形ABCD是菱形,∴AB∥CD,∴∠OAM=∠OCN,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴OA=OC,∵四边形ABCD是菱形,∴点O为BD与AC的交点,∵∠ACD=∠BAC=20°,∴∠ODC=90°﹣∠ACD=70°.故选:D.8.解:连接AC,如图:∵四边形ABCD是菱形,O是BD的中点,∴OD=OB=BD=4,AD=AB=5,AC⊥BD,∴OA==3,∵OE⊥AD,∴△AOD的面积=AD×OE=OA×OD,∴OE===,同理:OF=,∴EF=OE+OF=,∵DE===,∵EF⊥AD,∴DF===;故选:D.9.解:∵平行四边形ABCD中,AD=DC,∴四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=55°,∵PE⊥AB,∴∠PEB=90°∴∠PEF=90°﹣55°=35°,故选:A.10.解:过点B作BH⊥AE于点H,过点E作EF⊥AB交AB的延长线于点F,∵菱形ABCD中,AB=2,∴BC=2,∵BE=2EC,∴BE=,CE=,∵∠D=120°,∴∠ABE=120°,∴∠EBF=60°,∴BF=BE=,EF=,∴AF=AB+BF=2+=,∴AE===,∵S△ABE=AB•EF,∴BH===.故选:A.二.填空题11.解:添加AE=AF,理由:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,又∵DE=BF,∴AE=FC.∴四边形AFCE是平行四边形.又∵AE=AF,∴四边形AFCE是菱形.故答案为:AE=AF.12.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,∴S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.13.解:∵四边形ABCD是菱形,∠BAC=25°,∴∠ABC=180°﹣25°﹣25°=130°,∴O为BD中点,∠DBE=∠ABC=65°.∵DE⊥BC,在Rt△BDE中,OE=BE=OD,∴∠OEB=∠OBE=65°.∴∠OED=90°﹣65°=25°.故答案为:25°.14.解:∵四边形ABCD是菱形,AB=5,AC=6.∴AB=BC=CD=DA=5,AC⊥BD,OA=OC=3,∴OB===4,∴BD=2OB=8,∵,∴=5DE,解得,DE=,故答案为:.15.解:∵四边形ABCD是菱形,∴AD∥BC,∠DAC=∠BAC,∴∠AFB=∠FBC=80°,∠DAC=∠ACB,∵EF是AB的垂直平分线,∴AF=BF,∴∠F AB=∠FBA=(180°﹣∠AFB)=50°,∴∠DAC=∠BAC=25°,∴∠ACB=25°,故答案为:25.三.解答题16.(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.∵E,F分别是BC,AD的中点∴BE=CE=BC,AF=AD,∴CE=AF,CE∥AF,∴四边形AECF是平行四边形,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴AE=BE=CE,∴平行四边形AECF是菱形;(2)解:作BG⊥AD于G,如图所示:则∠ABG=90°﹣∠ABC=30°,∴AG=AB=1,BG=AG=,∵AD=BC=2AB=4,∴DG=AG+AD=5,∴BD===2.17.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,OB=OD=BD=3,∴OA===4,∴AC=2OA=8,∴菱形ABCD的面积=AC×BD=×8×6=24,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=5CE=24,∴CE=.18.(1)证明:∵四边形ABCD是菱形,∴OA=OC=AC,∵2DE=AC,∴DE=OA,又∵DE∥AC,∴四边形OADE是平行四边形,∴AF=EF;(2)解:连接CE,∵DE∥OC,DE=OC,∴四边形OCED是平行四边形,又∵菱形ABCD,∴AC⊥BD,∴四边形OCED是矩形,∴∠OCE=90°,又∵AB=2DE=AC,∴△ABC为等边三角形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,AO=AC=1,∴在矩形OCED中,CE=OD==,∴在Rt△ACE中,AE==.。
2020届人教版八年级数学下册 18.2.2菱形(2)同步练习(含解析)
18.2.2菱形(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1. 一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形基础知识和能力拓展训练一、选择题1.下列说法中,不正确的是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分且垂直的四边形是菱形C. 一组对边平行另外一组对边相等的四边形是平行四边形D. 有一组邻边相等的矩形是正方形2.如图,在□ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD 于点F,连接AE,CF,则四边形AECF是()A. 矩形B. 菱形C. 正方形D. 无法确定3.如图所示,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AB=4,BC=3,则四边形CODE的周长是()A. 10B. 12C. 18D. 244.如图,要使平行四边形ABCD成为菱形,需添加的条件是()A. AC=BDB. ∠1=∠2C. ∠ABC=90°D. ∠1=90°5.如图,已知四边形ABCD是平行四边形,下列结论中错误的是( )A. 当AB=BC时,它是菱形B. 当AC⊥BD时,它是菱形C. 当∠ABC=90°时,它是矩形D. 当AC=BD时,它是正方形6.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是()A. ②④B. ①③C. ②③④D. ①③④7.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD 的面积为1,则阴影部分的面积为()A. 12B.13C.14D.158.如图,已知∠AOB,王华同学按下列步骤作图:(1)以点O为圆心,任意长为半径作弧,交OA于点C,交OB于点D,分别以点C、点D为圆心,大于12CD的长为半径作弧,两弧交于点E,作射线OE;(2)在射线OE上取一点F,分别以点O、点F为圆心,大于12OF的长为半径作弧,两弧交于两点G、H,作直线GH,交OA于点M,交OB于点N;(3)连接FM、FN.那么四边形OMFN一定是( )A. 梯形B. 矩形C. 菱形D. 正方形9.如图,在四边形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于点E,AE平分∠BAC,AO=CO,AD=DC=2,下面结论:①AC=2AB;②AB3S△ADC=2S△ABE;④BO⊥AE.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为()A.(1345,0)B.(1345.5,)C.(1345,)D.(1345.5,0)二、填空题11.对角线相等的四边形顺次连接各边中点所得的四边形是__________.12.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是__________13.如图,AD是△ABC的高,DE∥AC,DF∥AB,则△ABC满足条件________时,四边形AEDF 是菱形.14.如图,在菱形ABCD中,E是对角线AC上一点,若AE=BE=2,AD=3,则CE=_____.、重合),PE 15.如图,菱形ABCD中,AC=2,BD=5,P是AC上一动点(P不与A C∥BC交AB于E,PF∥CD交AD于F,则图中阴影部分的面积为______________。
人教版八年级下册数学 18.2.2菱形 同步练习(含解析)
∴AC⊥BD,OA=OC= AC= ×4=2,∠BAC= ∠BAD= ×120°=60°,
∴AC=4,∠AOB=90°, ∴∠ABO=30°, ∴AB=2OA=4,OB=2 , ∴BD=2OB=4 ,
7 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
∴该菱形的面积是: AC•BD= ×4×4
点睛:此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注 意先先连接 BD,BF,这是解答本题的突破口. 6.B 【解析】根据菱形四条边相等的性质可得 AB=AD,OB=OD,根据等腰三角形三线合一的性质 可得 AO⊥BD,即可得 AC⊥BD,所以正确的顺序为③→④→①→②,故选 B. 7.A 【解析】∵四边形 ABCD 是菱形,
点,将△AMN 沿 MN 所在的直线翻折得到△A′MN,连接 A′C,则线段 A′C 长度的最小值是
______.
12.如图,正△AEF 的边长与菱形 ABCD 的边长相等,点 E、F 分别在 BC、CD 上,则∠B 的度 数是_____.
3 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A. 24
B. 26
C. 30
D. 48
8.如图,四边形 ABCD 是菱形,对角线 AC,BD 相交于点 O,DH⊥AB 于 H,连接 OH,∠DHO=20°,
则∠CAD 的度数是( )
2 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A. 20° B. 25° C. 30° D. 40° 9.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到 第二个矩形,按照此方法继续下去.已知第一个矩形的面积为 1,则第 n 个矩形的面积为 ()
人教版八年级下册数学课时练《18.2.2 菱形》试卷含答案
人教版数学八年级下册《18.2.2 菱形》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF ∠的度数是( )A .90°B .60°C .45°D .30°2.菱形ABCD 中,60BAD ∠=︒,对角线AC = )A .2B .4C .D .3.如图,在ABCD 中,8AC =,6BD =,5AD =,则ABCD 的面积为( )A .6B .12C .24D .484.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则△C=( )A .100°B .105°C .110°D .120°5.如图,四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是( )A .AB =CD B .AD =BC C .AC =BD D .AB =BC6.如图,将一个长为10 cm ,宽为8 cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .10 cm 2B .20 cm 2C .40 cm 2D .80 cm 2二、填空题 7.△ABC 中,延长BA 至D 使得AB =AD ,延长CA 至E 使得AC =AE ,当△ABC 满足条件________时,四边形BCDE 是菱形.8.已知菱形的两条对角线长为6和8,菱形的周长是_______,面积是________.9.如图,矩形ABCD 的对角线,AC BD 相交于O ,△AOB =120°,//,//CE BD DE AC ,若4=AD 则四边形CODE 的周长为______________.10.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且OA=OC ,OB=OD .请你添加一个适当的条件:______________,使四边形ABCD 成为菱形.11.如图,菱形ABCD 中,E 、F 分别在BC CD 、边上,AB AE =,且AEF 是等边三角形,则C ∠=_______.12.已知菱形的周长为40,两个相邻角度数之比为1△2,则较长对角线的长为______.三、解答题⊥于点O,交AD于点E,交BC于点F,连接AF,CE.请13.如图,在ABCD中,AC为对角线,EF AC你探究当点O满足什么条件时,四边形AFCE是菱形,并说明理由.14.如图,在菱形ABCD中,△ABC=120°,对角线AC,BD相交于点O,AE平分△CAD,分别交OD,CD于F,E两点,求△AFO的度数.15.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.16.如图,ABCD中,对角线AC BD⊥于H,12、交于O,AH BC∠=∠.(1)求证:ABCD是菱形:(2)若4AC AH==,求菱形ABCD的面积.17.如图,AE△BF,AC平分△BAE,且交BF于点C,BD平分△ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求△AOD的度数;(2)求证:四边形ABCD是菱形.18.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8cm,BD=6cm,DH△AB于H.(1)求菱形ABCD的面积;(2)求DH的长.参考答案1.B 2.B 3.C 4.A 5.D 6.A7.△BAC =90°8.20 249.1610.AB=AD.11.100︒12.13.解:当点O 是AC 的中点时,四边形AFCE 是菱形.理由如下:△四边形ABCD 是平行四边形,△//AD BC ,△AEO CFO ∠=∠,EAO FCO ∠=∠.△O 是AC 的中点,△AO CO =,△AOE COF ∆∆≌,△OE OF =,△四边形AFCE 是平行四边形,又△EF AC ⊥,△平行四边形AFCE 是菱形.14.【解析】△在菱形ABCD 中,△ABC=120°,△△BAD=60°,△对角线AC 、BD 交于点O ,△△BAC=△CAD=30°,△DOA=90°△AE 平分△CAD ,△△OAF=15°,△△AFO 的度数为:90°-15°=75°.15.解:(1)△四边形ABCD 是菱形,AC 与BD 相交于点E ,△90AED ∠=︒(菱形的对角线互相垂直),11105(cm)22DE BD ==⨯=(菱形的对角线互相平分).△12(cm)AE ==.△221224(cm)AC AE ==⨯=(菱形的对角线互相平分);(2)ABD BDC ABCD S SS =+菱形 1122BD AE BD CE =⋅+⋅ 1()2BD AE CE =⋅+ 12BD AC =⋅ 110242=⨯⨯ 2120(cm )=.16.【解析】(1)证明:AH BC ⊥,∴90AHC ∠=︒,190ACH ∠+∠=︒,12∠=∠,∴290ACH ∠+∠=︒,∴在BOC ∆中,180(2)BOC ACH ∠=︒-∠+∠=1809090︒-︒=︒,BO OC ∴⊥,即ABCD 的对角线BD AC ⊥,∴ABCD 是菱形;(2)在Rt AHC ∆中,2HC , ABCD 是菱形,∴AB BC =,设==AB BC x ,则2BH x =-,在Rt ABH ∆中,由勾股定理得:222AH BH AB +=中,即2224(2)x x +-=,解得5x =,=5420ABCD S BC AH ∴⋅=⨯=菱形.17.【解析】(1)△AC 、BD 分别是△BAD 、△ABC 的平分线,△△DAC=△BAC ,△ABD=△DBC ,△AE△BF ,△△DAB+△CBA=180°,△△BAC+△ABD=12(△DAB+△ABC )=12×180°=90°,△△AOD=90°;(2)证明:△AE△BF ,△△ADB=△DBC ,△DAC=△BCA ,△AC 、BD 分别是△BAD 、△ABC的平分线,△△DAC=△BAC ,△ABD=△DBC ,△△BAC=△ACB ,△ABD=△ADB ,△AB=BC ,AB=AD△AD=BC ,△AD△BC ,△四边形ABCD 是平行四边形,△AD=AB ,△四边形ABCD 是菱形. 18.【解析】(1)△四边形ABCD 是菱形,AC=8cm ,BD=6cm ,△S 菱形ABCD =12AC•BD=12×6×8=24cm 2, (2)△四边形ABCD 是菱形,△AC△BD ,OA=OC=12AC=4cm ,OB=OD=3cm ,△在直角三角形AOB 中,5cm , △DH=ABCD S AB=4.8cm .。
人教版八年级数学下册菱形 同步练习(无答案)
18.2.2 菱形同步练习一、选择题(本大题共8道小题)1. 对角线互相垂直平分的四边形是( ).A.平行四边形B.矩形C.菱形D.任意四边形2. 在▱ABCD中,下列结论不一定正确的是( )A.AC=BDB.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形D.AB=CD3. 下列命题中正确的是( )A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形4. 如图,若要使平行四边形ABCD成为菱形,则需要添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD5. ▱ABCD的对角线相交于点O,分别添加下列条件:①AC⊥BD;②AB=BC;③AC平分∠BAD;④AO=DO,使得▱ABCD是菱形的条件有( )A.1个B.2个C.3个D.4个6. 如图,在菱形ABCD中,E,F,G,H分别是菱形四边的中点,连接EG,FH,交于点O,则图中的菱形共有( )A.4个B.5个C.6个D.7个7. 如图,△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,若AE=4 cm,那么四边形AEDF的周长为( )A.12 cmB.16 cmC.20 cmD.22 cm8. 如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF 的面积是( )A.43B.33C.23D.3二、填空题(本大题共6道小题)9. 菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为 .10. 菱形的两条对角线长分别是6和8,则菱形的边长为。
11. 下列命题:①四边都相等的四边形是菱形;②两组邻边分别相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线相等的四边形是菱形;⑤一条对角线平分一组对角的平行四边形是菱形.其中正确的是.(填序号)12. 若菱形的两条对角线长分别是6cm,8cm,则它的周长为______cm,面积为______cm2.13. 已知菱形的周长为40cm,两个相邻角度数之比为1:2,则较长对角线的长为_____cm.14. 在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形。
八年级数学《菱形》练习题 (含答案)
八年级数学《菱形》练习题一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2 B.336 cm2 C.672 cm2 D.84 cm24.菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为()A.43B.83C.103D.1235.下列语句中,错误的是()A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到二、填空题6.菱形的周长是8 cm,则菱形的一边长是______.7.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.8.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_______.9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.10.菱形的面积为83平方厘米,两条对角线的比为1:3,那么菱形的边长为_______.三、解答题11.如图,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.12.□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE 是否是菱形?为什么?13.菱形ABCD的周长为20 cm,两条对角线的比为3:4,求菱形的面积.14.如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.参考答案一、1.C2.D3.B4.B5.D二、6.2 cm7.44厘米8.176 cm29.8 cm 5 cm10.4 cm三、11.四边形AEDF是菱形,AE=E D.12.□AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC13.24 cm214.9.6 cm。
2020-2021学年人教版八年级下册数学18.2.2菱形 同步练习
18.2.2菱形同步练习一.选择题1.平行四边形、矩形、菱形都具有的性质是()A.对角线相等B.对角线互相平分C.都是轴对称图形D.对角线互相垂直2.菱形ABCD的边长是5cm,一条对角线AC的长是8cm,则此菱形的面积为()A.40cm2B.48cm2C.24cm2D.24cm23.已知菱形的周长是高的8倍,则菱形的两邻角的度数之比为()A.3:1B.4:1C.5:1D.6:14.如图,菱形ABCD中,∠A=50°,DE⊥AB于点E.则∠BDE的度数为()A.25°B.35°C.40°D.50°5.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E.连接DF,则∠DFE等于()A.150°B.140°C.130°D.120°6.如图,在菱形ABCD中,AB=5,BD=6,DE⊥AB于点E,则DE的长为()A.4.8B.5C.9.6D.107.如图,菱形ABCD和菱形ECGF的边长分别为4和2,∠B=120°,则图中阴影部分的面积是()A.3B.2C.4D.38.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD 于点F,则EF的长为()A.4.8B.C.5D.69.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连接EF,则EF的最小值为()A.4B.4.8C.5D.610.如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S=AB2;⑤2DE=DC;⑥BF=BC,正确结论的有()个.菱形ABCDA.1B.2C.3D.4二.填空题11.如图,四边形ABCD的对角线AC与BD交于点O,AC⊥BD,且AC平分BD,若添加一个条件,则四边形ABCD为菱形.12.若一个菱形的周长为200cm,一条对角线长为60cm,则它的面积为.13.如图,菱形ABCD的边长AB=3,对角线BD=4,点E,F在BD上,且BE=DF=,连接AE,AF,CE,CF.则四边形AECF的周长为.14.如图,菱形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC于点E,若AC=6,BD=8,则OE=.15.如图,在菱形ABCD中,∠B=60°,E,H分别为AB,BC的中点,G,F分别为线段HD,CE的中点.若线段FG的长为2,则AB的长为.三.解答题16.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.17.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE 的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.18.如图,平行四边形ABCD中,E、F分别为CD、BC上两点,AF平分∠BAE,∠EAD=∠FEC.(1)求证:AB=AE;(2)若∠B=90°,AF与DC的延长线交于点H,求证:四边形ABHE为菱形.参考答案一.选择题1.解:平行四边形的对角线互相平分,而对角线相等、是轴对称图形、互相垂直不一定成立.故平行四边形、矩形、菱形都具有的性质是:对角线互相平分.故选:B.2.解:如图所示:∵菱形ABCD的边长为5cm,对角线AC=8cm,∴AB=5cm,AO=CO=4cm,OB=OD,AC⊥BD,∴OB===3(cm),∴BD=2OB=6cm,∴此菱形的面积为×8×6=24(cm2).故选:D.3.解:如图所示:∵四边形ABCD是菱形,菱形的周长是高的8倍,∴AB=BC=CD=DA=2,∠DAB+∠B=180°,∵AE=1,AE⊥BC,∴AE=AB,∴∠B=30°,∴∠DAB=150°,∴∠DAB:∠B=5:1,故选:C.4.解:∵四边形ABCD是菱形,∠A=50°,∴AD=AB,∴∠ADB=65°,∵DE⊥AB,∴∠ADE=90°﹣50°=40°,∴∠BDE=65°﹣40°=25°,故选:A.5.解:连接BF,如图所示:∵四边形ABCD是菱形,∠BAD=80°,∴∠BAC=∠BAD=×80°=40°,AB=BC=DC,∠BCF=∠DCF=∠BAC=40°,∠ABC=180°﹣∠BAD=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠AFE=90°﹣∠BAC=50°,∴∠ABF=∠BAC=40°∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°,∴∠AFD=∠CDF+∠DCF=60°+40°=100°,∴∠DFE=∠AFD+∠AFE=150°;故选:A.6.解:∵四边形ABCD为菱形,∴AO=CO,BO=DO=3,AC⊥BD,∴AO===4,∴AC=8,∴S菱形ABCD=AC•BD=×8×6=24,∵DE⊥AB,∴S菱形ABCD=AB•DE=5DE,∴5DE=24,∴DE==4.8,故选:A.7.解:方法一:如图,连接AC,则AC平行EG,根据平行线间的距离处处相等可知:阴影部分的面积=三角形ECG的面积=菱形ECGF的面积=3.方法二:如图,设AG交CE于点H,∵菱形ABCD的边AB∥CD,∴△GCH∽△GBA,∴CH:AB=GC:GB,即CH:4=2:6,解得CH=,所以,EH=CE﹣CH=2﹣=,∵∠B=120°,∴∠BCD=∠FEC=180°﹣120°=60°,∴点B到CD的距离为4×=6,点F到CE的距离为2×=3,∴阴影部分的面积=S△AEH+S△GEH=××(6+3)=3.故选:D.8.解:∵在菱形ABCD中,BD=6,AC=8,∴OB=BD=3,OA=AC=4,AC⊥BD,∴AB==5,∵S菱形ABCD=AC•BD=AB•EF,即×6×8=5EF,∴EF=4.8.故选:A.9.解:连接OP,∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=BD=8,OC=AC=6,∴BC===10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=OB×OC=BC×OP,∴OP==4.8,∴EF的最小值为4.8,故选:B.10.解:∵四边形ABCD是菱形,∴AB=BC=CD=AD.∠A=∠BCD.∵∠A=60°,∴∠BCD=60°,∴△ABD是等边三角形,△BDC是等边三角形.∴∠ADB=∠ABD=60°,∠CDB=∠CBD=60°.∵E,F分别是AB,AD的中点,∴∠BFD=∠DEB=90°,∴∠GDB=∠GBD=30°,∴∠GDC=∠GBC=90°,DG=BG,∴∠BGD=360°﹣90°﹣90°﹣60°=120°,故①正确;在△CDG和△CBG中,,∴△CDG≌△CBG(SSS),∴∠DGC=∠BGC=60°.∴∠GCD=30°,∴CG=2GD=GD+GD,∴CG=DG+BG.故②正确.∵△GBC为直角三角形,∴CG>BC,∴CG≠BD,∴△BDF与△CGB不全等.故③错误;∵S菱形ABCD=2S△ADB=2×AB•DE=AB•(BE)=AB•AB=AB2,故④错误;∵DE=BE=AB=CD,∴2DE=CD,故⑤正确;∵BD>BF,BD=BC,∴BC>BF,故⑥错误.∴正确的有:①②⑤共三个.故选:C.二.填空题11.解:添加一个条件OA=OC,则四边形ABCD为菱形,理由如下:∵AC平分BD,OA=OC,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC(答案不唯一).12.解:已知AC=60cm,菱形对角线互相垂直平分,∴AO=30cm,又∵菱形ABCD周长为200cm,∴AB=50cm,∴BO===40cm,∴AC=2BO=80cm,∴菱形的面积为×60×80=2400(cm2).故答案为:2400cm2.13.解:如图,连接AC,交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD==,在Rt△ABO中,AO===1,又∵BE=,∴EO=﹣=,在Rt△AOE中,AE===,同理可得,CE=CF=AF=,∴四边形AECF的周长4.故答案为:4.14.解:∵菱形ABCD中,AC=6,BD=8,∴OA=OC=AC=3,OB=BD=4,AC⊥BD,∴BC===5,∵OE⊥BC,∴S△OBC=×OB×OC=×BC×OE,∴OE===,故答案为:.15.解:如图,连接CG并延长,交AD于点M,连接EM,∵四边形ABCD为菱形,∠B=60°,∴AD∥BC,∴∠A=120°,∠MGD=∠CGH,∵点G为HD的中点,∴HG=DG,∵∠MGD=∠CGH,∴△MGD≌△CGH(ASA),∴MG=CG,MD=CH=BC=AD,∴点G为MC的中点,点M为AD的中点,∵F,G分别为CE和CM的中点,∴FG是△CEM的中位线,∴FG=EM,∴EM=2FG=4,∵E,M分别为AB和AD的中点,∴AE=AM,∵∠A=120°,∴EM=AE=4,∴AE=4,∴AB=2AE=8.故答案为:8.三.解答题16.(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∵AE=DE,∴CE=DE;(2)解:如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AH⊥BD,BH=DH,AH=CH,∵CE=DE=AE=1,∴BD=BE+DE=2+1=3,∴BH=BD=,EH=BE﹣BH=2﹣=,在Rt△AHE中,由勾股定理得:AH===,在Rt△AHB中,由勾股定理得:AB===,∴菱形的边长为.17.证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴▱ADCF是菱形.18.(1)证明:∵∠AEC=∠AEF+∠FEC=∠EAD+∠D,∠EAD=∠FEC,∴∠AEF=∠D,∵四边形ABCD是平行四边形,∴∠B=∠D,∴∠B=∠AEF,∵AF平分∠BAE,∴∠BAF=∠EAF,在△ABF和△AEF中,,∴△ABF≌△AEF(AAS),∴AB=AE;(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAF=∠EHA,∵∠BAF=∠EAF,∴∠EHA=∠EAF,∴AE=HE,∵AB=AE,∴AB=EH,∴四边形ABHE是平行四边形,又∵AB=AE,∴四边形ABHE为菱形.。
2020-2021学年人教版八年级下册数学《18.2.2菱形》同步专项练习
人教版八年级下册数学《18.2 菱形》同步专项提升一.选择题1.如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是()A.等腰梯形B.矩形C.菱形D.正方形2.如图所示,在Rt△ABC中,∠ABC=90°,∠BAC=30°,分别以直角边AB、斜边AC 为边,向外作等边△ABD和等边△ACE,F为AC的中点,DE与AC交于点O,DF与AB交于点G,给出如下结论:①四边形ADFE为菱形;②DF⊥AB;③AO=AE;④CE =4FG;其中正确的是()A.①②③B.①②④C.①③④D.②③④3.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若CF=6,AC=AF+2,则四边形BDFG的周长为()A.9.5B.10C.12.5D.204.如图,已知四边形ABCD的四边相等,等边△AMN的顶点M、N分别在BC、CD上,且AM=AB,则∠C为()A.100°B.105°C.110°D.120°5.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是()A.①②③B.①③④C.①②⑤D.②③⑤6.如图,在平面直角坐标系中,已知点A(2,0),B(,1),若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移()个单位,再向上平移1个单位B.向左平移个单位,再向下平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移2个单位,再向上平移1个单位7.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG ⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD(不完全重合),则四边形ABCD面积的最大值是()A.15B.16C.19D.209.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC 的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF=CF;④∠EFC=2∠CFD.其中正确的个数是()A.1个B.2个C.3个D.4个10.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G.连接EF,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EF A.则正确结论的序号是()A.①③B.②④C.①③④D.②③④二.填空题11.已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.若M是AC的中点,则四边形BNDM的形状是12.如图,在Rt△ABC中,∠C=90°,AC=BC=8cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,则t的值为时,四边形QPCP′为菱形.13.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则BG=.14.如图,在菱形ABCD中,点E是CD上一点,连接AE交对角线BD于点F,连接CF,若∠AED=40°,则∠BCF=°.15.如图,在菱形ABCD中,过点A作AH⊥BC,分别交BD,BC于点E,H,F为ED的中点,∠BAF=120°,则∠C的度数为.16.如图,在菱形ABCD中,AB=18cm,∠A=60°,点E以2cm/s的速度沿AB边由A向B匀速运动,同时点F以4cm/s的速度沿CB边由C向B运动,F到达点B时两点同时停止运动.设运动时间为t秒,当△DEF为等边三角形时,t的值为.17.如图,已知平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,两顶点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接OA,则OA的长的最小值是.18.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=.19.如图所示,四边形ABCD中,AC⊥BD于点O,AO=CO=8,BO=DO=6,点P为线段AC上的一个动点.(1)填空:AD=CD=.(2)过点P分别作PM⊥AD于M点,作PH⊥DC于H点.连接PB,在点P运动过程中,PM+PH+PB的最小值为.三.解答题20.如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且∠BED+∠F =180°求证:DE=DF.21.如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接并延长EF,与CB的延长线交于点G,连接BD.(1)求证:四边形EGBD是平行四边形;(2)连接AG,若∠FGB=30°,GB=AE=2,求AG的长.22.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD 于点E,交CB于点F.(1)若∠B=30°,AC=6,求CE的长;(2)过点F作AB的垂线,垂足为G,连接EG,试判断四边形CEGF的形状,并说明原因.23.如图,菱形ABCD中,∠B=60°,点E,F分别在AB,AD上,且BE=AF.(1)求证:△ECF为等边三角形;(2)连接AC,若AC将四边形AECF的面积分为1:2两部分,当AB=6时,求△BEC 的面积.24.如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.(1)求证:四边形CDEF是菱形;(2)若AB=2,BC=3,∠A=120°,求BP的值.25.在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为点E,F,且BE=DF.(1)如图1,求证:▱ABCD是菱形;(2)如图2,连接BD,交AE于点G,交AF于点H,连接EF、FG,若∠CEF=30°,在不添加任何字母及辅助线的情况下,请直接写出图中面积是△BEG面积2倍的所有三角形.参考答案一.选择题1.解:连接BD、AC;∵△ADE、△ECB是等边三角形,∴AE=DE,EC=BE,∠AED=∠BEC=60°;∴∠AEC=∠DEB=120°;∴△AEC≌△DEB(SAS);∴AC=BD;∵M、N是CD、AD的中点,∴MN是△ACD的中位线,即MN=AC;同理可证得:NP=DB,QP=AC,MQ=BD;∴MN=NP=PQ=MQ,∴四边形NPQM是菱形;故选:C.2.解:∵∠BAC=30°,△ABD是等边三角形,∴∠BAD=60°,∴∠DAF=90°,∴DF>AD,∴四边形ADFE不可能是菱形.故①错误.连接BF.∵△ABC是直角三角形,AF=CF,∴F A=FB,∵DA=DB,∴DF垂直平分线段AB,故②正确,∵AE⊥AB,DF⊥AB,∴AE∥DF,∵AE=2AF,DF=2AF,∴AE=DF,∴四边形AEFD是平行四边形,∴OA=OF,∴AE=AC=4OA,故③正确,在Rt△AFG中,∠F AG=30°,∴AF=2FG,∵EC=AC=2AF,∴EC=4FG,故④正确,故选:D.3.解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,设AF=x,则AC=x+2,FC=6,∵在Rt△ACF中,∠CF A=90°,∴AF2+CF2=AC2,即x2+62=(2+x)2,解得:x=8,故AC=10,故四边形BDFG的周长=4BD=2×10=20.故选:D.4.解:∵四边形ABCD的四边都相等,∴四边形ABCD是菱形,∴∠B=∠D,∠DAB=∠C,AD∥BC,∴∠DAB+∠B=180°,∵△AMN是等边三角形,AM=AB,∴∠AMN=∠ANM=60°,AM=AD,∴∠B=∠AMB,∠D=∠AND,由三角形的内角和定理得:∠BAM=∠NAD,设∠BAM=∠NAD=x,则∠D=∠AND=180°﹣60°﹣2x,∵∠NAD+∠D+∠AND=180°,∴x+2(180°﹣60°﹣2x)=180°,解得:x=20°,∴∠C=∠BAD=2×20°+60°=100°.故选:A.5.解:∵四边形ABCD是平行四边形∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确;∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG∴EG=EF=AG=BG,无法证明GE=GF,故②错误;∵BG=EF,AB∥CD∥EF,∴四边形BGFE是平行四边形,∴GF=BE,且BG=EF,GE=GE,∴△BGE≌△FEG(SSS)故③正确;∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,若四边形BEFG是菱形∴BE=BG=AB,∴∠BAC=30°与题意不符合故⑤错误,故选:B.6.解:∵A(2,0),B(,1),∴OA=2,OB==2,∴OA=OB,∴点A向右平移个单位,再向上平移1个单位得到点C,则四边形OACB是菱形.故选:C.7.解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是菱形,正确;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=BC,GN=AD,∴EG=(BC﹣AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误.综上所述,①②③共3个正确.故选:C.8.解:如图1,作AE⊥BC于E,AF⊥CD于F,,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形的宽都是3,∴AE=AF=3,∵S四边形ABCD=AE•BC=AF•CD,∴BC=CD,∴平行四边形ABCD是菱形.如图2,当菱形的一条对角线为矩形的对角线时,四边形ABCD的面积最大,,设AB=BC=x,则BE=9﹣x,∵BC2=BE2+CE2,∴x2=(9﹣x)2+32,解得x=5,∴四边形ABCD面积的最大值是:5×3=15.故选:A.9.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点F、G分别是AD、BC的中点,∴AF=AD,BG=BC,∴AF=BG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AB∥FG,∵CE⊥AB,∴CE⊥FG;故①正确;∵AD=2AB,AD=2AF,∴AB=AF,∴四边形ABGF是菱形,故②正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EF=FM,故③正确;∴∠FCD=∠M,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故④正确,故选:D.10.解:连接FC,如图所示:∵∠ACB=90°,F为AB的中点,∴F A=FB=FC,∵△ACE是等边三角形,∴EA=EC,∵F A=FC,EA=EC,∴点F、点E都在线段AC的垂直平分线上,∴EF垂直平分AC,即EF⊥AC;∵△ABD和△ACE都是等边三角形,F为AB的中点,∴DF⊥AB即∠DF A=90°,BD=DA=AB=2AF,∠DBA=∠DAB=∠EAC=∠ACE=60°.∵∠BAC=30°,∴∠DAC=∠EAF=90°,∴∠DF A=∠EAF=90°,DA⊥AC,∴DF∥AE,DA∥EF,∴四边形ADFE为平行四边形而不是菱形;∵四边形ADFE为平行四边形,∴DA=EF,AF=2AG,∴BD=DA=EF,DA=AB=2AF=4AG;在△DBF和△EF A中,,∴△DBF≌△EF A(SAS);综上所述:①③④正确,故选:C.二.填空题11.解:∵O是BD的中点,∴BO=DO,且NO=MO,∴四边形BNDM是平行四边形,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC=DM,∴平行四边形BNDM是菱形,故答案为:菱形.12.解:如图,连接PP′交CQ于D,∵四边形QPCP′为菱形,∴PP′⊥CQ,CD=DQ,∵点Q的速度是每秒1cm,∴CD=CQ=(8﹣t)cm,过点P作PO⊥AC于O,则四边形CDPO是矩形,∴CD=PO,∵∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∴∠A=45°,∴PO=AP,∵点P的运动速度是每秒cm,∴PO=×t=tcm,∴(8﹣t)=t,解得t=.故答案为:.13.解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CF A=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,即BG=5.故答案是:5.14.解:∵四边形ABCD是菱形,∴AD=CD,AD∥BC,∠ADF=∠BDC,∵AD=CD,∠ADF=∠BDC,DF=DF,∴△ADF≌△CDF(SAS),∴∠DAF=∠DCF,∵∠AED=40°,∴∠DAE+∠ADE=140°,∴∠ADE+∠DCF=140°,∵AD∥BC,∴∠ADE+∠BCD=180°,∴∠ADE+∠BCF+∠DCF=180°,∴∠BCF=40°,故答案为:40.15.解:设∠CBD=x,∵四边形ABCD为菱形,∴AD∥BC,∠ABD=∠CBD=x,∴∠ADB=∠CBD=x,∵AH⊥BC,AD∥BC,∴∠DAH=∠AHB=90°,∵F为ED的中点.∴AF=FD,∴∠F AD=∠ADB=x,∵∠BAF=120°,∴∠BAD=120°+x,∵AD∥BC,∴∠BAD+∠ABC=180°,可得:2x+120°+x=180°,解得:x=20°,∴∠BAD=120°+x=140°∵四边形ABCD为菱形,∴∠C=∠BAD=140°.故答案为:140°.16.解:连接BD.如图:∵四边形ABCD是菱形,∠A=60°,∴AD=CD=BC=AB=18,△ADB,△BDC都是等边三角形,∴AD=BD,∠ADB=∠DBF=60°,∵△DEF是等边三角形,∴∠EDF=60°,∴∠ADB=∠EDF,∴∠ADE=∠BDF,在△ADE和△BDF中,,∴△ADE≌△BDF(ASA),∴AE=BF,∴2t=18﹣4t,∴t=3,故答案为:3s.17.解:如图所示:过点A作AE⊥BD于点E,当点A,O,E在一条直线上,此时AO最短,∵平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,∴AB=AD=CD=BC=10,∠BAD=∠BCD=60°,∴△ABD是等边三角形,∴AE过点O,E为BD中点,∵∠BOD=90°,BD=10,∴EO=5,故AO的最小值为:AO=AE﹣EO=AB sin60°﹣×BD=5﹣5.故答案为:5﹣5.18.解:如右图,连接EF,FG,GH,EH,∵E、H分别是AB、DA的中点,∴EH是△ABD的中位线,∴EH=BD=3,同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,∴EF=GH=AC=3,FG=BD=3,∴EH=EF=GH=FG=3,∴四边形EFGH为菱形,∴EG⊥HF,且垂足为O,∴EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,等式两边同时乘以4得:4OE2+4OH2=9×4=36,∴(2OE)2+(2OH)2=36,即EG2+FH2=36.故答案为:36.19.解:(1)∵AC⊥BD于点O,∴△AOD为直角三角形.∴AD===10.∵AC⊥BD于点O,AO=CO,∴CD=AD=10.故答案为:10;(2)如图1所示:连接PD.∵S△ADP+S△CDP=S△ADC,∴AD•PM+DC•PH=AC•OD,即×10×PM+×10×PH=×16×6.∴10×(PM+PH)=16×6.∴PM+PH==,∴当PB最短时,PM+PH+PB有最小值,∵由垂线段最短可知:当BP⊥AC时,PB最短.∴当点P与点O重合时,PM+PH+PB有最小,最小值=+6=.故答案为:10,.三.解答题20.解:如图,过点D作DN⊥AB于N,DM⊥BC于F,∵四边形ABCD是菱形,∴AB=BC,∵S菱形ABCD=AB×DN=BC×DM,∴DN=DM,∵∠BED+∠F=180°,∠BED+∠AED=180°,∴∠F=∠AED,又∵∠DNE=∠DMF,∴△DNE≌△DMF(AAS)∴DE=DF.21.证明:(1)连接AC,如图1:∵四边形ABCD是菱形,∴AC平分∠DAB,且AC⊥BD,∵AF=AE,∴AC⊥EF,∴EG∥BD.又∵菱形ABCD中,ED∥BG,∴四边形EGBD是平行四边形.(2)过点A作AH⊥BC于H.∵∠FGB=30°,∴∠DBC=30°,∴∠ABH=2∠DBC=60°,∵GB=AE=2,∴AB=AD=4,在Rt△ABH中,∠AHB=90°,∴AH=2,BH=2.∴GH=4,∴AG===2.22.解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴CE=AE,过点E用EH垂直于AC于点H,∴CH=AH∵AC=6,∴CE=2答:CE的长为2;(2)∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF与Rt△AGF中,AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∴四边形CEGF是菱形23.解:(1)证明:连接AC,∵四边形ABCD是菱形,∴BA=BC=AD=DC,又∵∠B=60°,∴△ABC和△ADC都是等边三角形,∴∠CAD=∠ACB=∠ACD=60°,在△CBE和△CAF中,,∴△CBE≌△CAF(SAS),∴CE=CF,∠BCE=∠ACF,∴∠ECF=60°,∴△ECF为等边三角形;(2)由(1)可知△CBE≌△CAF,∴S△CBE=S△CAF,∴S四边形AECF=S△ABC,作AH⊥BC交BC于点H,在△ABH中,∠B=60°,AB=6,∴BH=3,∴AH=3,∴S△ABC=×6×3=9,当S△CBE:S△CAE=1:2时,S△BEC的面积=S△ABC=3;当S△CBE:S△CAE=2:1时,S△BEC的面积=S△ABC=6;综上,△BEC的面积为3或624.(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠EDF=∠DFC,∵DF平分∠ADC,∴∠EDF=∠CDF,∴∠DFC=∠CDF,∴CD=CF,同理可得CD=DE,∴CF=DE,且CF∥DE,∴四边形CDEF为菱形;(2)解:如图,过P作PG⊥BC于G,∵AB=2,BC=3,∠A=120°,且四边形CDEF为菱形,∴CF=EF=CD=AB=2,∠ECF=∠BCD=∠A=60°,∴△CEF为等边三角形,∴CE=CF=2,∴PC=CE=1,∴CG=PC=,PG=PC=,∴BG=BC﹣CG=3﹣=,在Rt△BPG中,由勾股定理可得BP===,即BP的值为.25.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,在△AEB和△AFD中,,∴△AEB≌△AFD(ASA),∴AB=AD,∴▱ABCD是菱形;(2)解:图中面积是△BEG面积2倍的所有三角形为△ABG、△ADH、△AGH、△DFG;理由如下:连接AC交BD于O,如图所示:则AC⊥BD,∵BC=CD,BE=DF,∴BE:BC=DF:CD,∴EF∥BD,∴∠CBD=∠CEF=30°,∴∠ABC=60°,∵▱ABCD是菱形,∴BC=CD=AB,∴△ABC是等边三角形,∠EBG=∠FDH,∴∠BAG=∠ABG,∴AG=BG,同理:AH=DH,∵AE⊥BC,∴BE=BC=AB,∵▱ABCD是菱形,∴BD是∠ABC的平分线,∴点G到AB与BC边上的高相等,∴S△ABG=2S△BEG,在△BEG和△DFH中,,∴△BEG≌△DFH(ASA),∴△BEG的面积=△DFH的面积,BG=DH,∴AG=AH,∵△AEB≌△AFD,∴S△ABG=S△ADH,∴S△ADH=2S△BEG;∵∠GAH=∠OAG+∠OAH=60°,∴△AGH是等边三角形,∴GH=AG=AH=BG=DH,OG=AG=EG,OA=OG=BE,∴△AGH的面积=2△BEG的面积,∴△GHF的面积=△DFH的面积,∴△DFG的面积=2△BEG的面积;∴图中面积是△BEG面积2倍的三角形为:△ABG、△ADH、△AGH、△DFG.。
2021年人教版数学八年级下册18.2.2《 菱形》同步练习(含答案)
人教版数学八年级下册18.2.2《菱形》同步练习一、选择题1.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是( )A. B. C. D.2.下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个3.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角5.如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①②③6.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°7.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC的长等于( )A.5B.10C.15D.208.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC9.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米B.6米C.3米D.3米10.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为()A.3B.4C.5D.6二、填空题11.在菱形ABCD 中,AC=3,BD=6,则菱形ABCD的面积为.12.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是(只填一个你认为正确的即可).13.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是________(写出一个即可).14.如图,已知矩形ABCD的对角线长为8 cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于________cm.15.在图中所示的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个小正方形的边长均为1,则该菱形的面积为________.三、解答题16.如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.17.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.18.在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.19.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且AC=2DE,连接AE交OD于点F,连接CE、OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.20.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.参考答案1.C.2.A3.D4.C5.A6.C7.A8.B9.A.10.B11.答案为:9.12.答案为:AC⊥BD或AB=BC或BC=CD或AB=AD;13.答案为:C;B=BF或BE⊥CF或∠EBF=60°或BD=BF(答案不唯一)14.答案为:16.15.答案为:12;16.解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.17.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2,又∵OE⊥AB,及∠ABD=60°,∴BE=1.18.证明:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BOA=∠DAE,∵∠ABC=∠AED,∴∠BAF=∠ADE,∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);(2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.19.(1)证明:四边形ABCD是菱形,∴OA=OC=0.5AC,AD=CD,∵DE∥AC且DE=0.5AC,∴DE=OA=OC,∴四边形OADE、四边形OCED都是平行四边形,∴OE=AD,∴OE=CD;(2)解:∵AC⊥BD,∴四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,∴在矩形OCED中,CE=OD=.∴在Rt△ACE中,AE==.20.(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∴∠EBD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形.(2)∵四边形BFDE为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∵∠A=90°,AB=2,∴AE==,BF=BE=2AE=,∴菱形BFDE的面积为:×2=。
人教版 八年级数学下册 第18章 菱形的性质和判定 专项练习题
人教版 八年级数学下册第18章 菱形的性质和判定 专项练习 (含答案)一、单选题(共有9道小题)1.菱形具有而一般平行四边形不具有的性质是( )A.对边平行B.对角线互相平分C.对边相等D.对角线互相垂直2.如图,在菱形ABCD 中, ∠BAD =120°. 已知△ABC 的周长是15,则菱形ABCD 的周长是()A .25B .20C .15D .103.如图,要使□ABCD 成为菱形,则需要添加的条件是( )A.AB=CDB.AC=BDC.AO=OCD.AC ⊥BD4.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD=60°,则花坛对角线AC 的长等于( )米A.63B.6C.33D.35.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形 6.以下四个命题正确的是( ) A. 任意三点可以确定一个圆 B. 菱形对角线相等C. 直角三角形斜边上的中线等于斜边的一半D. 平行四边形的四条边相等7.如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( )A .2AD BC EF +>B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤BD A CABCD8.如图,矩形ABCD 中,AB=8,BC=4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )A.B.C.5D.6 9.四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不变D .线段EF 的长与点P 的位置有关二、填空题(共有8道小题)10.已知菱形一个内角为120°,且平分这个内角的一条对角线长为8cm ,则这个菱形的周长为 。
八年级数学下册《菱形》同步练习题及答案解析
八年级数学下册《菱形》同步练习题及答案解析一.选择题1.已知菱形的两条对角线的长分别为6cm和8cm,则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm22.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°3.在小正方形组成网格图中,四边形ABCD的顶点都在格点上,如图所示.则下列结论错误的是()A.AD∥BC B.DC=ABC.四边形ABCD是菱形D.将边AD向右平移3格,再向上平移7格就与边BC重合4.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是()A.150°B.135°C.120°D.100°5.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为()A.45°B.50°C.60°D.70°6.如图,菱形ABCD的两条对角线相交于点O,若AC=6,菱形的面积等于12,则菱形ABCD的周长等于()A.4B.2C.D.47.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.2C.2D.18.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED的度数为()A.15°B.20°C.25°D.30°9.菱形的一个内角是60°,边长是3cm,则这个菱形的较短的对角线长是()A.B.C.3cm D.10.平行四边形ABCD的对角线AC与BD相交于点O,添加以下条件,不能判定平行四边形ABCD为菱形的是()A.AC⊥BD B.∠ABD=∠CBD C.AB=BC D.AC=BD11.如图,在菱形ABCD中,AC与BD相交于点O,AB=AC,点E在BC上,且∠CAE=15°,AE与BD 相交于F,下列结论不正确的是()A.∠EBF=30°B.BE=BF C.F A>EF D.OE⊥BC12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则四边形ABCD的面积为()A.B.C.D.513.下列说法中,错误的是()A.对顶角相等B.对角线互相垂直的平行四边形是菱形C.两直线平行,同位角相等D.两边及一角对应相等的两个三角形全等14.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB 长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16B.15C.14D.1315.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°二.填空题(共5小题)16.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.18.如图,菱形ABCD和菱形EFGH的面积分别为9cm2和64cm2,CD落在EF上,∠A=∠E,若△BCF 的面积为4cm2,则△BDH的面积是cm2.19.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF ⊥AD于F.则OE+OF=.20.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是.三.解答题(共5小题)21.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形.(2)若BD=30,MN=16,求菱形BNDM的周长.22.如图,平行四边形ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作∠DAB的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,∠DAB=60°,求四边形AFED的面积.23.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D 作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.24.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.(1)求证:四边形ABOE是菱形;(2)若AO=2,S四边形ABOE=4,求BD的长.25.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.参考答案与解析一.选择题1.解:∵菱形的两条对角线的长分别为6cm和8cm;∴这个菱形的面积=×6×8=24(cm2);故选:B.2.解:∵四边形ABCD是菱形;∴OD=OB,AB∥CD,BD⊥AC;∵DH⊥AB;∴DH⊥CD,∠DHB=90°;∴OH为Rt△DHB的斜边DB上的中线;∴OH=OD=OB;∴∠1=∠DHO;∵DH⊥CD;∴∠1+∠2=90°;∵BD⊥AC;∴∠2+∠DCO=90°;∴∠1=∠DCO;∴∠DHO=∠DCA;∵四边形ABCD是菱形;∴DA=DC;∴∠CAD=∠DCA=20°;∴∠DHO=20°;故选:A.3.解:A、由图形可知:BC和AD是连接7×2的图形的对角线,即AD∥BC,故本选项错误;B、设小正方形的边长是1,由勾股定理得:DC==,AB=,即AB=CD,故本选项错误;C、由图形可知:AD∥BC,CD∥AB,即四边形ABCD是菱形,但BC==≠AB,故本选项正确;D、将边AD向右平移3格,再向上平移7格就与边BC重合,正确,故本选项错误;故选:C.4.解:过A作AE⊥BC;由题意知AE⊥BC,且E为BC的中点;则△ABC为等腰三角形即AB=AC,即AB=AC=BC;∴∠ABC=60°;∴∠BAD=180°﹣∠ABC=180°﹣60°=120°.故选:C.5.解:∵四边形ABCD是菱形;∴AD=AB;∴∠ABD=∠ADB=(180°﹣∠A)=75°;由作图可知,EA=EB;∴∠ABE=∠A=30°;∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°;故选:A.6.解:∵菱形的面积等于12;∴AC•BD=12;∵AC=6;∴BD=4;∵菱形ABCD对角线互相垂直平分;∴BO=OD=2,AO=OC=3;∴AB===;∴菱形的周长为4.故选:D.7.解:如图,∵四边形ABCD是菱形,周长为8;∴AB=BC=CD=AD=2,AD∥BC;∴∠B+∠BAD=180°;∴∠B=180°﹣120°=60°;∴△ABC为等边三角形;∴AC=AB=2;即该菱形较短的对角线长为2;故选:C.8.解:∵四边形ABCD是菱形,∠ABC=140°;∴∠ABD=∠CBD=∠ABC=70°,BO=DO;∵DE⊥BC;∴OE=OD=OB,∠BDE=20°;∴∠ODE=∠OED=20°;故选:B.9.解:如图,∵菱形的一个内角是60°,边长是3cm;∴AB=BC=3cm,△ABC是等边三角形;∴AC=AB=3cm;即这个菱形的较短的对角线长为3cm;故选:C.10.解:A、∵四边形ABCD是平行四边形,AC⊥BD;∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形;∴AB∥CD;∴∠ABD=∠CDB;又∵∠ABD=∠CBD;∴∠CDB=∠CBD;∴BC=DC;∴平行四边形ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,AB=BC;∴平行四边形ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC=BD;∴平行四边形ABCD是矩形,故选项D不符合题意;故选:D.11.解:如图在菱形ABCD中,AB=CB=AD=CD;∵AB=AC;∴AB=CB=AD=CD=AC;∴△ABC和△ADC都是等边三角形;∴∠ABC=∠BAC=∠ACB=60°;∵BD=BD(公共边)∴△ABD≌△CBD(SSS);∴∠ABD=∠CBD=∠ABC=30°;∴∠EBF=30°.∴A正确;∵∠ABC=∠BAC=60°,∠CAE=15°;∴∠BAE=60°﹣15°=45°;∴∠BEF=180°﹣60°﹣45°=75°;∴∠BFE=180°﹣30°﹣75°=75°;∴∠BEF=∠BFE;∴BE=BF.∴B正确;过点F作FG∥BC,交AD于点G;∵AB=BC>BE;∴F A>EF;∴C正确;假设OE⊥BC正确,则∠BEO=90°;∵∠BEF=75°;∴∠OEA=90°﹣75°=15°=∠CAE;∴OE=OA=OC;∴∠OEC=∠OCE=60°;∵∠OEC=60°与OE⊥BC相矛盾;∴假设不成立;∴OE⊥BC错误;∴D不正确.故选:D.12.解:过点A作AE⊥CD于E,AF⊥BC于F,连接AC,BD交于点O;∵两条纸条宽度相同;∴AE=AF.∵AB∥CD,AD∥BC;∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AF=CD•AE.又∵AE=AF.∴BC=CD;∴四边形ABCD是菱形;∴AO=CO=1,BO=DO,AC⊥BD;∴BO===2;∴BD=4;∴四边形ABCD的面积==4;故选:A.13.解:A、对顶角相等,本选项说法正确,不符合题意;B、对角线互相垂直的平行四边形是菱形,本选项说法正确,不符合题意;C、两直线平行,同位角相等,本选项说法正确,不符合题意;D、两边及其夹角对应相等的两个三角形全等,本选项说法错误,符合题意;故选:D.14.解:连接EF,AE与BF交于点O,如图;∵AO平分∠BAD;∴∠1=∠2;∵四边形ABCD为平行四边形;∴AF∥BE;∴∠1=∠3;∴∠2=∠3;∴AB=EB;同理:AF=BE;又∵AF∥BE;∴四边形ABEF是平行四边形;∴四边形ABEF是菱形;∴AE⊥BF,OB=OF=6,OA=OE;在Rt△AOB中,由勾股定理得:OA===8;∴AE=2OA=16.故选:A.15.解:∵四边形ABCD为菱形;∴AB∥CD,AB=BC;∴∠MAO=∠NCO,∠AMO=∠CNO;在△AMO和△CNO中;;∴△AMO≌△CNO(ASA);∴AO=CO;∵AB=BC;∴BO⊥AC;∴∠BOC=90°;∵∠DAC=26°;∴∠BCA=∠DAC=26°;∴∠OBC=90°﹣26°=64°.故选:B.二.填空题16.解:∵四边形ABCD是菱形;∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°;∴AC=4,∠AOB=90°;∴∠ABO=30°;∴AB=2OA=4,OB=2;∴BD=2OB=4;∴该菱形的面积是:AC•BD=×4×4=8.故答案为:8.17.解:根据作图,AC=BC=OA;∵OA=OB;∴OA=OB=BC=AC;∴四边形OACB是菱形;∵AB=2cm,四边形OACB的面积为4cm2;∴AB•OC=×2×OC=4;解得OC=4cm.故答案为:4.18.解:如图,连接FH;∵四边形ABCD是菱形,四边形EFGH是菱形,∠A=∠E;∴∠ADC=∠EFG,∠BDC=∠ADC=∠EFH=∠EFG,△BDC的面积=×S菱形ABCD=4.5(cm2);∴BD∥FH;∴△BDH的面积=△BDF的面积;∴△BDH的面积=S△BDC+S△BCF=8.5(cm2);故答案为8.5.19.解:如图,连接AC交BD于点G,连接AO;∵四边形ABCD是菱形;∴AC⊥BD,AB=AD=10,BG=BD=8;根据勾股定理得:AG===6;∵S△ABD=S△AOB+S△AOD;即BD•AG=AB•OE+AD•OF;∴16×6=10OE+10OF;∴OE+OF=9.6.故答案为:9.6.20.解:如图,设CD与AB1交于点O;∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高;∴AE=;由折叠易得△ABB1为等腰直角三角形;∴S△ABB1=BA•AB1=2,S△ABE=1;∴CB1=2BE﹣BC=2﹣2;∵AB∥CD;∴∠OCB1=∠B=45°;又由折叠的性质知,∠B1=∠B=45°;∴CO=OB1=2﹣.∴S△COB1=OC•OB1=3﹣2;∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2.三.解答题21.(1)证明:∵AD∥BC;∴∠DMO=∠BNO;∵MN是对角线BD的垂直平分线;∴OB=OD,MN⊥BD;在△MOD和△NOB中;;∴△MOD≌△NOB(AAS);∴OM=ON;∵OB=OD;∴四边形BNDM是平行四边形;∵MN⊥BD;∴平行四边形BNDM是菱形;(2)解:由(1)可知,OB=BD=15,OM=ON=MN=8,四边形BNDM是菱形;∴BN=DN=DM=BM;∵MN⊥BD;∴∠BON=90°;∴BN===17;∴菱形BNDM的周长=4BN=68.22.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD;∴∠DEA=∠F AE;∵AE平分∠BAD;∴∠DAE=∠F AE;∴∠DEA=∠DAE∴AD=ED;∵AD=AF;∴DE=AF;∴四边形AFED是平行四边形;又∵AD=ED;∴平行四边形AFED是菱形;(2)解:过D作DG⊥AF于G,如图所示:∵∠DAB=60°;∴∠ADG=90°﹣60°=30°;∴AG=AD=2;∴DG===2;由(1)得:四边形AFED是菱形;∵AF=AD=4;∴菱形AFED的面积=AF×DG=4×2=8.23.(1)证明:∵AD∥BC;∴∠ADB=∠CBD;∵BD平分∠ABC;∴∠ABD=∠CBD;∴∠ADB=∠ABD;∴AD=AB;∵AB=BC;∴AD=BC;∵AD∥BC;∴四边形ABCD是平行四边形;又∵AB=BC;∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形;∴AC⊥BD,OB=OD,OA=OC=AC=2;在Rt△OCD中,由勾股定理得:OD==4;∴BD=2OD=8;∵DE⊥BC;∴∠DEB=90°;∵OB=OD;∴OE=BD=4.24.(1)证明:∵四边形ABCD是平行四边形;∴OB=OD=BD;∵BD=2AB;∴AB=OB;∵AE∥BD,OE∥AB;∴四边形ABOE是平行四边形;∵AB=OB;∴四边形ABOE是菱形;(2)解:连接BE,交OA于F,如图所示:∵四边形ABOE是菱形;∴OA⊥BE,AF=OF=OA=1,BF=EF=BE;∵S四边形ABOE=4;S四边形ABOE=OA•BE=×2×BE=BE;∴BE=4;∴BF=2;∴OB===;∴BD=2OB=2.25.(1)证明:∵DE∥BC,EC∥AB;∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线;∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°;∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6;∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形;∴DE=BC=6.∴.。
人教版八年级下册数学菱形同步练习题
菱形一、1.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角2.下列条件能判定四边形是菱形的是( )A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形3.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm24.如图,在菱形ABCD中,对角线AC、BD相交于点O,则{HYPERLINK "" |(1)AB=AD=_______________=_______________,即菱形的_______________相等.(2)图中的等腰三角形有________________________,直角三角形有______________,△AOD≌________________≌_______________≌_______________,由此可以得出菱形的对角线_______________,每一条对角线_______________.(3)菱形是轴对称图形,它的对称轴是_______________.二1.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm2.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形3.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.矩形D.菱形4.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是______________.5.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1∶,若AB=2.求菱形ABCD的面积.6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.7.如图,在一张长12 cm、宽5 cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学按照沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?三、课后巩固(30分钟训练)1.下列结论正确的是( )A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形2.菱形的周长为32 cm,一个角的度数是60°,则两条对角线的长分别是( )A.8 cm和cmB.4 cm和cmC.8 cm和cmD.4 cm和cm3.在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°4.在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F,且BE=EC,CF=FD,则∠AEF等于( )A.120°B.45°C.60°D.150°5.如图,在菱形ABCD中,∠ABC=60°,AC=4,BD的长为( )A. B. C. D.86.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.7.如图,已知过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.8.北京101中学的学生为迎接2008年奥运会,美化校园,在周长为12 m,夹角为60°的菱形花坛里栽十株花.试证明:不论如何安排,至少有两株花的距离小于m.9.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.参考答案一、课前预习(5分钟训练)1.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角答案:B2.下列条件能判定四边形是菱形的是( )A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形答案:C3.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm2解析:S菱形=×6×8=24(cm2).答案:C4.如图,在菱形ABCD中,对角线AC、BD相交于点O,则(1)AB=AD=_______________=_______________,即菱形的_______________相等.(2)图中的等腰三角形有________________________,直角三角形有______________,△AOD≌________________≌_______________≌_______________,由此可以得出菱形的对角线_______________,每一条对角线_______________.(3)菱形是轴对称图形,它的对称轴是_______________.答案:(1)BC CD 四条边(2)△ABD、△ABC、△ADC、△BCD △AOB、△BOC、△COD、△DOA △AOB △COB △COD 垂直平分平分一组对角(3)对角线所在的直线二、课中强化(10分钟训练)1.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm解析:OE是Rt△BOC的斜边BC上的中线,故OE=BC=AD=3 cm.答案:C2.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形解析:连结矩形的两条对角线,则相邻两边中点的连线是三角形的中位线.由三角形的中位线等于第三边的一半及矩形两条对角线相等可得中点四边形的各边都相等,故顺次连结矩形各边中点所得的四边形是菱形.答案:C3.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.矩形D.菱形解析:因为等边三角形的三条边都相等,所以用它拼成的四边形的四条边都相等,而四条边都相等的四边形是菱形,因此选D.答案:D4.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是______________.解析:由菱形的邻角互补,可知菱形的另一组内角是60°,60°内角所对的对角线是较短的.根据有一个角是60°的等腰三角形是等边三角形可推出菱形边长是10,因此菱形周长是40.答案:405.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1∶,若AB=2.求菱形ABCD的面积.解:菱形两对角线将其分割为四个全等的直角三角形.设AO=x,因为四边形ABCD为菱形,所以AO=CO,BO=DO,AC⊥BD.又因为AC∶BD=1∶,所以AO∶BO=1∶,BO=.在Rt△ABO中,因为AB2=BO2+AO2,所以AB2=()2+x2=22.所以x=1.所以AO=1,BO=.所以AC=2,BD=.所以菱形的面积为×2×=.6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.答案:证明:∵∠ACB=90°,DE是BC的中垂线,∴E为AB边的中点.∴CE=AE=BE.∵∠BAC=60°,∴△ACE为正三角形.在△AEF中,∠AEF=∠DEB=∠BAC=60°,而AF=CE,又CE=AE,∴AE=AF.∴△AEF也为正三角形.∴∠CAE=∠AEF=60°.∴AC EF.∴四边形ACEF为平行四边形.又CE=AC,∴平行四边形ACEF为菱形.7.如图,在一张长12 cm、宽5 cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学按照沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?解:(方案一)S菱形=S矩形-4S△AEH=12×5-4××6×=30(cm2).(方案二)设BE=x,则CE=12-x,∴AE=.因为四边形AECF是菱形,则AE2=CE2,∴25+x2=(12-x)2.∴x=.∴S菱形=S矩形-2S△ABE=12×5-2××5×≈35.21(cm2).经比较可知,(方案二)张丰同学所折的菱形面积较大.三、课后巩固(30分钟训练)1.下列结论正确的是( )A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形解析:根据菱形的判定定理:对角线互相垂直平分的四边形是菱形.答案:D2.菱形的周长为32 cm,一个角的度数是60°,则两条对角线的长分别是( )A.8 cm和cmB.4 cm和cmC.8 cm和cmD.4 cm和cm解析:因菱形四边相等,所以每边都为8,其对角线平分一组对角,根据一个角是60°,可求得.答案:C3.在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°解析:由菱形为中心对称图形可知B正确.答案:B4.在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F,且BE=EC,CF=FD,则∠AEF等于( )A.120°B.45°C.60°D.150°解析:因为AE垂直平分BC,所以AB=AC.又因为AB=BC,所以△ABC为等边三角形.∠BAC=60°,∠EAC=30°.同理可证∠FAC=30°,△AEF是等边三角形,所以∠AEF=60°.答案:C5.如图,在菱形ABCD中,∠ABC=60°,AC=4,BD的长为( )A. B. C. D.8解析:∵ABCD为菱形,∴AB=BC.又∵∠ABC=60°,∴△ABC为等边三角形.∴AB=BC=AC=4,∠ABO=30°,∠AOB=90°.在△AOB中,OB==.∴BD=BO+OD=.答案:B6.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.解:添加条件:对角线相等.理由:连结AC、BD.在△ABC中,∵AE=BE,BF=CF,∴EF为△ABC的中位线.∴EF=.同理可得FG=,GH=,HE=.又∵AC=BD(添加条件),∴EF=FG=GH=HE.故四边形EFGH为菱形.7.如图,已知过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.答案:证明:在ABCD中,OD=OB,OA=OC,AB∥CD,∴∠OBG=∠ODE.又∵∠BOG=∠DOE,∴△OBG≌△ODE.∴OE=OG.同理OF=OH.∴四边形EFGH是平行四边形.又∵EG⊥FH,∴四边形EFGH是菱形.8.北京101中学的学生为迎接2008年奥运会,美化校园,在周长为12 m,夹角为60°的菱形花坛里栽十株花.试证明:不论如何安排,至少有两株花的距离小于m.答案:证明:如图,把菱形花坛分成9个菱形,由此可得至少有一个小菱形里要栽两株花,因为小菱形的对角线长为m,所以至少有两株花的距离小于m.9.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.答案:证明:∵EF垂直平分AC,∴EF⊥AC,AO=CO.∵四边形ABCD为平行四边形,∴AD∥BC.∴∠AEO=∠CFO.∴△AOE≌△COF.∴OE=OF.∴四边形AECF是平行四边形.又∵AC⊥EF,∴四边形AFCE是菱形.- 11 -。
人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)
菱形的性质与判定一 、填空题(本大题共6小题)1.如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是 .2.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .3.如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.4.已知菱形的一个内角为60︒,一条对角线的长为23,则另一条对角线的长为________.5.菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为6.已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是二 、解答题(本大题共7小题)DCAB 图21CBAE F DBCA7.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.8.如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.9.如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.10.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBAC'DCB A EQEP NMDCBA11.如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分12.已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.13.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBACDH GFEBAGF E DCBAFEDCBA菱形的性质与判定答案解析一 、填空题 1.42.AB AD AC BD =⊥,3.120︒;由题意可知:构成三角形为等边三角形4.2或65.56.150°;如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒二 、解答题7.⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). ⑵ 150︒.8.根据题意可知则. ∵, ∴. ∴, ∴.∴, ∴四边形为菱形. 9.如图,连结AC 、BD .∵PQ 为ABC ∆的中位线EDCBA'CDE C DE ∆≅∆'''CD C D C DE CDE CE C E =∠=∠=,,//AD BC C DE CDE '∠=∠CDE CED ∠=∠CD CE =CD C D C E CE ''===CDC E 'QNMD C∴PQ AC ∥且12PQ AC = 同理MN AC ∥且12MN AC = ∴MN PQ ∥且MN PQ = ∴四边形PQMN 为平行四边形. 在AEC ∆和DEB ∆中AE DE =,EC EB =,60AED CEB ∠=︒=∠即AEC DEB ∠=∠ ∴AEC DEB ∆∆≌ ∴AC BD =∴1122PQ AC BD PN ===. 10.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.11.连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以ABCDEFEG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直12.当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.13.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ABEFGHD CABCDEF∴18∠=︒CEF分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.。
2020年春人教版八年级下册同步练习:18.2.2 菱形 包含答案解析
2020年人教版八年级下册同步练习:18.2.2 菱形一.选择题(共10小题)1.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°2.如图,已知某菱形花坛ABCD的周长是24m,∠BAD=120°,则花坛对角线AC的长是()A.6m B.6m C.3m D.3m3.如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.364.菱形的两条对角线长分别为12与16,则此菱形的周长是()A.10B.30C.40D.1005.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,E是BC中点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm6.如图,将两张长为5,宽为1的矩形纸条交叉,若两张纸条重叠部分为一个四边形(两纸条不互相重合),则这个四边形的周长的最大值是()A.8B.10C.10.4D.127.已知:如图,菱形ABCD的四边相等,且对角线互相垂直平分.在菱形ABCD中,对角线AC、DB相交于点O,且AC≠BD,则图中全等三角形有()A.7对B.8对C.9对D.10对8.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA 长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为()A.2B.3C.4D.59.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,四边形ABCD是菱形;②当AC⊥BD时,四边形ABCD是菱形;③当∠ABC=90°时,四边形ABCD是菱形:④当AC=BD时,四边形ABCD是菱形;A.3个B.4个C.1个D.2个10.如图,AC、BD是菱形ABCD的对角线,E、F分别是边AB、AD的中点,连接EF,EO,FO,则下列结论错误的是()A.EF=DO B.EF⊥AOC.四边形EOF A是菱形D.四边形EBOF是菱形二.填空题(共8小题)11.顺次连接四边形ABCD各边中点形成一个菱形,则原四边形对角线AC、BD的关系是.12.若菱形的周长为20,且较长的对角线的长为8,则较短的对角线的长为13.如图,四边形ABCD是平行四边形,补充一个条件使其成为菱形,你补充条件是(只需填一个即可).14.如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点.若AB=5,BD=8,则线段EF的长为.15.如图,若菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,则点C的坐标是.16.如图,小华剪了两条宽为3的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为.17.如图,在菱形ABCD中,∠BAD=45°,DE是AB边上的高,BE=2,则AB的长是.18.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2019的坐标为.三.解答题(共6小题)19.已知:如图,菱形ABCD中,点E,F分别在AB,AD边上,AE=AF,连接CE,CF.求证:∠AEC=∠AFC.20.如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE =CF.21.已知:如图,在平行四边形ABCD中,对角线BD的垂直平分线EF与AD、BD、BC 分别交于点E、O、F.求证:四边形BFDE是菱形.22.如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接并延长EF,与CB的延长线交于点G,连接BD.(1)求证:四边形EGBD是平行四边形;(2)连接AG,若∠FGB=30°,GB=AE=2,求AG的长.23.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.24.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=6,AB=8,求菱形ADCF的面积.参考答案一.选择题(共10小题)1.【解答】解:∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=∠DAB=25°.故选:B.2.【解答】解:∵菱形花坛ABCD的周长是24m,∠BAD=120°,∴AB=BC=6m,AD∥BC,∴∠ABC=180°﹣∠BAD=60°,∴△ABC是等边三角形,∴AC=AB=6m.故选:B.3.【解答】解:∵四边形ABCD是菱形,∴AO=CO=AC,BO=DO=BD=3,AC⊥BD,∴AO===4,∴AC=8,∴菱形ABCD的面积=×AC×BD=24,故选:B.4.【解答】解:∵如图,菱形ABCD中,AC=16,BD=12,∴OA=AC=8,OB=BD=6,AC⊥BD,∴AB==10,∴此菱形的周长是:4×10=40.故选:C.5.【解答】解:∵四边形ABCD是菱形,∴BC=AD=6cm,AC⊥BD,∵E为CB的中点,∴OE是直角△OBC的斜边上的中线,∴OE=BC=3cm.故选:C.6.【解答】解:如图所示,此时菱形的周长最大,∵四边形AECF是菱形∴AE=CF=EC=AF,在Rt△ABE中,AE2=AB2+BE2,∴AE2=1+(5﹣AE)2,∴AE=2.6∴菱形AECF的周长=2.6×4=10.4故选:C.7.【解答】解:图中全等三角形有:△ABO≌△ADO,△ABO≌△CDO,△ABO≌△CBO;△AOD≌△COD,△AOD≌△COB;△DOC≌△BOC;△ABD≌△CBD,△ABC≌△ADC;共8对.故选:B.8.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故选:C.9.【解答】解:∵四边形ABCD是平行四边形,∴①当AB=BC时,四边形ABCD是菱形;故符合题意;②当AC⊥BD时,四边形ABCD是菱形;故符合题意;③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;④当AC=BD时,四边形ABCD是矩形;故不符合题意;故选:D.10.【解答】解:∵菱形ABCD,∴BO=OD,BD⊥AC,∵E、F分别是边AB、AD的中点,∴2EF=BD=BO+OD,EF∥BD,∴EF=DO,EF⊥AO,∵E是AB的中点,O是BD的中点,∴2EO=AD,同理可得:2FO=AB,∵AB=AD,∴AE=OE=OF=AF,∴四边形EOF A是菱形,∵AB≠BD,∴四边形EBOF是平行四边形,不是菱形,故选:D.二.填空题(共8小题)11.【解答】解:∵EFGH为菱形∴EH=EF又∵E、F、G、H为四边中点∴AC=2EH,BD=2FE∴AC=BD.故答案为AC=BD.12.【解答】解:菱形周长为20,则AB=5,∵BD=8,∴BO=4,∴AO==3,∴AC=2AO=6,故答案为:6.13.【解答】解:∵AB=BC,且四边形ABCD为平行四边形∴四边形ABCD是菱形故答案为:AB=BC(答案不唯一)14.【解答】解:∵ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD=4.在Rt△AOB中,依据勾股定理可知:AO===3.∴AC=6.∵E、F是AB和BC的中点,即EF是△ABC的中位线,∴EF=AC=3.故答案为:3.15.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y 轴上,∴AB=AD=5=CD,∴DO===3,∵CD∥AB,∴点C的坐标是:(﹣5,3).故答案为(﹣5,3).16.【解答】解:过点B作BE⊥AD于点E,BF⊥CD于点F,根据题意得:AD∥BC,AB∥CD,BE=BF=3,∴四边形ABCD是平行四边形,∵∠BAD=∠BCD=60°,∴∠ABE=∠CBF=30°,∴AB=2AE,BC=2CF,∵AB2=AE2+BE2,∴AB=,同理:BC=2,∴AB=BC,∴四边形ABCD是菱形,∴AD=2,∴S菱形ABCD=AD•BE=6.故答案为:6.17.【解答】解,设AB=x,∵四边形ABCD是菱形,∴AD=AB=x,∵DE是AB边上的高,∴∠AED=90°,∵∠BAD=45°,∴∠BAD=∠ADE=45°,∴AE=ED=x﹣2,由勾股定理得:AD=AE2+DE2,∴x2=(x﹣2)2+(x﹣2)2,解得:x1=4+2,x2=4﹣2,∵BE=2,∴AB>2,∴AB=x=4+2,故答案为:4+2.18.【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B3向右平移1344(即336×4)到点B2019.∵B3的坐标为(2,0),∴B2019的坐标为(2+1344,0),∴B2019的坐标为(1346,0).故答案为:(1346,0).三.解答题(共6小题)19.【解答】证明:连接AC,∵四边形ABCD是菱形,∴∠BAC=∠DAC,∵AC=AC,AE=AF,∴△AEC≌△AFC(SAS)∴∠AEC=∠AFC.20.【解答】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.21.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB(SAS),∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BFDE是菱形.22.【解答】证明:(1)连接AC,如图1:∵四边形ABCD是菱形,∴AC平分∠DAB,且AC⊥BD,∵AF=AE,∴AC⊥EF,∴EG∥BD.又∵菱形ABCD中,ED∥BG,∴四边形EGBD是平行四边形.(2)过点A作AH⊥BC于H.∵∠FGB=30°,∴∠DBC=30°,∴∠ABH=2∠DBC=60°,∵GB=AE=2,∴AB=AD=4,在Rt△ABH中,∠AHB=90°,∴AH=2,BH=2.∴GH=4,∴AG===2.23.【解答】(1)证明:∵DE∥BC,DF∥AB ∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=100°,∠C=30°,∴∠ABC=180°﹣100°﹣30°=50°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=50°,∠BDE=∠EDF=25°.24.【解答】解:(1)证明:∵E是AD的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中∴△AEF≌△DEB(AAS)∴AF=DB∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点∴AD=CD=BC∴四边形ADCF是菱形;(2)解:法一、设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=.法二、连接DF∵AF=DB,AF∥DB∴四边形ABDF是平行四边形∴DF=AB=8∴S菱形ADCF=AC•DF=.答:菱形ADCF的面积为24.。
人教版数学八年级下册18.2菱形测试试题
人教版数学八年级下18.2.2 菱形测试题一.选择题(每题 3 分,共 30 分)1.如图,菱形花坛ABCD的边长为6m,∠A=120°,此中由两个正六边形构成的图形部分栽花,则栽花部分图形的周长为()A.12mB.20mC.22mD.24m2.如图,在菱形 ABCD中,对角线 AC 与 BD 交于点 O, OE⊥ AB,垂足为 E,若∠ ADC=130°,则∠ AOE的大小为()A.75 °B.65 °C.55 °D.50 °3.如图,在□ ABCD中, AB=5,AD=6,将□ ABCD沿 AE 翻折后,点 B 恰巧与点 C 重合,则折痕 AE 的长为()A.33B.215C.D.44.菱形不具备的性质是()A.四条边都相等B.对角线相等C.既是轴对称图形,又是中心对称图形D.对角线相互垂直且相互均分5.如图,在菱形ABCD中,对角线AC, BD 交于点 O, E 为 AD 的中点,菱形ABCD的周长为28,则 OE 的长等于()B.4C.7D.146.菱形不具备的性质是()A.四条边都相等B.对角线必定相等C.是轴对称图形D.是中心对称图形7.平面直角坐标系中,四边形 ABCD的极点坐标分别是 A(-3,0),B( 0,2), C(3,0),D ( 0, -2),则四边形 ABCD是()A.矩形B.菱形C.正方形D.梯形8.如图,在菱形 ABCD中,E 是 AC 的中点, EF∥ CB,交 AB 于点 F,假如 EF=3,那么菱形 ABCD 的周长为()A.24B.18C.12D.99.如图,在菱形 ABCD中,∠ B=60°,AB=1,延伸 AD 到点 E,使 DE=AD,延伸 CD到点 F,使DF=CD,连结 AC, CE, EF,AF,则以下描绘正确的选项是()A.四边形 ACEF是平行四边形,它的周长是4B.四边形 ACEF是矩形,它的周长是2+23C.四边形 ACEF是平行四边形,它的周长是43D.四边形 ACEF是矩形,它的周长是4+4310..图,在菱形 ABCD中, AC=62,BD=6,E 是 BC边的中点, P,M 分别是 AC,AB 上的动点,连结 PE, PM,则 PE+PM 的最小值是()A.63B.36C.2二.填空题(每题 3 分,共 18 分)11.如图,四边形ABCD是平行四边形,若AB=,则四边形ABCD是菱形 .【菱形的判断(定义法)】有一组邻边的四边形是菱形.12.菱形 ABCD中,∠ A=60°,其周长为 24cm,则菱形的面积为cm2.13.如图,四边形 ABCD是菱形,,若∠ABO=30°,∠ CBO=,∠ ADO=30°,∠ CDO=30°.结论:菱形的对角线;而且每一条对角线均分一组对角.14.如图,四边形ABCD是平行四边形,AC丄,则四边形ABCD是菱形 .【判断定理一】对角线的平行四边形是菱形.15.如图,四边形ABCD是菱形,若AB=1,则 BC=,CD=,AD=.结论:菱形的四条边都.16.已知菱形的边长为 3,一个内角为 60°,则该菱形的面积是.17.菱形 OACB在平面直角坐标系中的地点如下图,点 C 的坐标是( 6,0),点 A 的纵坐标是 1,则点 B 的坐标为.18.如图,四边形ABCD是平行四边形,若AB=AD,则四边形ABCD是.【菱形】有一组邻边的四边形叫做菱形.三.解答题(共66 分)19 如图,矩形ABCD的对角线AC, BD 交于点 O,且 DE∥ AC, CE∥ BD.(1)求证:四边形 OCED是菱形;(2)若∠ BAC=30°,AC=4,求菱形 OCED的面积 .20.矩形,菱形因为其特别的性质,为拼图供给了方便,因此墙面瓷砖一般设计为矩形,图案也以菱形居多.如图,是一种长 30cm ,宽 20cm 的矩形瓷砖, E、F、G、H 分别是矩形ABCD 各边的中点,暗影部分为淡黄色,中间部分为白色,现有一面长 4.2m ,宽 2.8m 的墙壁准备贴瓷砖.问:这面墙壁最少要贴这类瓷砖多少块?所有贴满瓷砖后,这面墙壁最多会出现多少个面积相等的菱形?此中淡黄色的菱形有多少个?21.如图,菱形ABCD的边长为8,∠ ABC=60°,求对角线AC的长 .22.如图,在△ ABC 中,∠ ABC=90°,点 D 为 AC的中点,过点作BD 的平行线,交 CE的延伸线于点 F,在 AF 的延伸线上截取(1)求证:四边形 BDFG是菱形;(2)若 AC=10, CF=6,求线段 AG 的长度 .C 作 CE⊥ BD 于点 E,过点 A FG=BD,连结 BG、 DF.23.如图,在△ABC中, AD⊥BC 于点 D,点 E、F 分别是 AB、AC 上的点,且 ED∥ AC,DF∥AB,当知足什么条件时,四边形 AEDF是菱形?人教版数学八年级下18.2.2 菱形测试题答案选择题(每题 3 分,共 30 分)1.答案: B.解:如图:∵四边形 ABCD为菱形,且∠ A=120 ,°∴∠ FAE=60. °∵EFGMNH 为正六边形,∴∠ BMG=60 °,∠ AFE=60 ,°MG=GF=AF,∴△ BGM 和△ AEF均为等边三角形,∴E F=AF, BG=MG.∴B G=GF=FA=2,∴正六边形的边长为 2.又∵ 正六边形有一个公共边OE,∴可得两个六边形的周长为 6 × 2+6 × 2-4=20,∴可得栽花部分的图形周长为20m.应选 B.2.如图,在菱形 ABCD中,对角线 AC 与 BD 交于点 O, OE⊥ AB,垂足为 E,若∠ ADC=130°,则∠ AOE的大小为()A.75 °B.65 °C.55 °D.50 °3.答案: D.解:∵翻折后点 B 恰巧与点 C 重合,∴AE⊥ BC, BE=CE.∵BC=AD=6,∴BE=3,∴A E=AB2-BE2=4.应选 D.4.答案: B.解:A.菱形的四条边都相等,不切合题意;B.菱形的对角线相互垂直且均分,不必定相等,切合题意;C.菱形既是轴对称图形,又是中心对称图形,不切合题意;D.菱形的对角线相互垂直且相互均分,不切合题意,应选 B.5.答案: A.解:∵菱形 ABCD的周长为28,∴菱形的边长AB=BC=CD=AD=7.∵四边形 ABCD为菱形,∴B O=OD.又∵ E 为 AD 边的中点,∴OE 为三角形 ABD 的中位线,∴O E=1/2AB=3.5.6.答案: B.解:菱形的四条边都相等,既是轴对称图形,又是中心对称图形,但对角线不必定相等.应选 B.7.答案: B.解:∵A(-3, 0), B( 0,2), C( 3, 0), D( 0,-2),∴AO=CO, DO=BO,∴四边形 ABCD为平行四边形.∵AC⊥BD,∴四边形 ABCD是菱形 .应选 B.8.答案: A.解:∵ E 是 AC 中点,∵E F∥ BC,交 AB 于点 F,∴EF 是△ ABC的中位线,∴E F=12BC,三角形中位线性质∴B C=6,∴菱形 ABCD的周长是 4 × 6=24.菱形的四条边相等应选 A.9.答案: B.解:∵ DE=AD, DF=CD,∴四边形 ACEF是平行四边形 .∵四边形 ABCD为菱形,∠ B=60 ,°∴∠ B=∠D=60 .°∵AD=CD,∠ D=60 ,°∴△ ACD是等边三角形,∴A C=AD=CD=1.∵A E=AD+DE, CF=CD+DF, AD=CD=1∴A E=CF=2.∵四边形 ACEF是平行四边形,AE=CF,∴四边形 ACEF是矩形,∴∠ FAC=90. °在Rt△ ACF中, CF=2, AC=1.∴A F=2AG=3,∴矩形 ACEF的周长为: (1+3)× 2=23+2.应选 B.10答案: C.解:如图,作点 E 对于AC 的对称点E′,过点E′作E′M⊥ AB 于点M ,交AC 于点P,则此时PE+PM 获得最小值 .∵点 E、 E′对于直线AC 对称,∴P E=PE ′.∴PE+PM=PE ′ +PM=E ′ M.∵四边形 ABCD是菱形,∴点 E′在 CD 上,∵A C=62, BD=6,∴AB=(32)2+32=33.∵S 菱形 ABCD=12AC?BD=AB?E ,′M∴12 × 62 ×6=33?EM,′解得:E′M=26.即PE+PM的最小值是 26.应选 C.填空题(每题 3 分,共 18 分)11.答案: AD 或 BC;相等;平行.解:有一组邻边相等的平行四边形叫做菱形,所以若AB=AD 或AB=BC时,四边形ABCD是菱形 .12.答案: 18313.答案: AC⊥ BD; 30°;相互垂直 .解:∵四边形 ABCD是菱形,∴A B=BC=CD=DA,∴点 A、 C 在 BD 上的垂直均分线上,∴AC⊥BD,∴∠ CBO=∠ ABO=30 .°结论:菱形的对角线相互垂直;而且每一条对角线均分一组对角.14.答案: BD;相互垂直 .解:依据对角线相互垂直的平行四边形是菱形可知:当AC⊥ BD 时,四边形ABCD是菱形 .15.答案: 1; 1;1;相等 .解:∵四边形 ABCD是菱形,∴AB=CD, AD=BC,且 AB=BC,∴A B=BC=CD=AD=1,即菱形的四边都相等 .9316.答案:2解:因为菱形的一个内角是60°,所以较短的对角线与菱形的一组邻边构成一个等边三角形,即较短的对角线为3,依据勾股定理可求得较长的对角线的长为33,93则这个菱形的面积 =1/2×3×33=217.答案:( 3, -1) .解:连结AB 交 OC于点 D,∵四边形 ABCD是菱形,∴AB⊥ OC, OD=CD, AD=BD,∵点 C 的坐标是( 6, 0),点 A 的纵坐标是1,∴O C=6, BD=AD=1,∴O D=3,∴点 B 的坐标为( 3, -1).18.答案:菱形;相等;平行.解:有一组邻边相等的平行四边形叫做菱形,所以四边形ABCD是菱形 .解答题(共66 分)19证明:( 1)∵ DE∥ OC,CE∥ OD,∴四边形 OCED是平行四边形 .∵四边形 ABCD是矩形,∴AC=BD, OC=1/2AC,OD=1/2BD,∴OC=OD,∴四边形 OCED是菱形 .(2)在矩形 ABCD中,∠ABC=90°,∠ BAC=30°,AC=4,∴BC=2,∴A B=DC=2 3 .如图:连结OE,交 CD 于点 F.∵四边形 OCED为菱形,∴F为 CD中点,∴O F=1/2BC=1,∴O E=2OF=2,1OE CD1 2 2 3 2 3∴S 菱形 OCED=2220.解:( 1)∵ 墙壁的长为 4.2 米,宽为 2.8 米,∴墙壁的面积为 4.2× 2.8=11.平76方米 .30 厘米 =0.3 米,20 厘米 =0.2 米,同理可得瓷砖的面积为0.3 × 0.2==0.06平方米 .∴起码需要的瓷砖数为11.76/0.06=196 块 .(2)因为矩形中间的菱形各边都相等,当摆出菱形最多时,墙壁的长摆下的瓷砖数为 4.2/0.3=14 个,墙壁的宽摆下的瓷砖为 2.8/0.2=14 个 .每四个和△AHG 全等的三角形构成一个新的菱形,共有三角形数为196×4=784个 .∵周围共有 (14+14)× 4-4=108个三角形不可以构成菱形,∴新构成最多的菱形数为(784-108 )/4=169 个,即淡黄色的菱形有169 个,∴出现的菱形数为196+169=365 个 .∵这些菱形的面积都相等,∴这面墙璧最多会出现365 个面积相等的菱形 .21.解:∵四边形 ABCD是菱形,∴A B=BC.又∵∠ ABC=60°.∴△ ABC是等边三角形.∴A C=AB=8.22.证明:( 1)∵ AG∥ BD, FG=BD,∴四边形 BDFG是平行四边形 .∵CE⊥ BD,∴C F⊥ AG.∵BD、FC分别△ ABC和△ AFC斜边上的中线,∴B D=DF=1/2AC,∴四边形 BDFG是菱形 .(2)∵四边形 BDFG为菱形,∠ ABC=90°,点 D 是 AC的中点,∴G F=DF=1/2AC=5.∵C F⊥ AG,∴AF=AC 2CF 2= 10262=8,∴A G=AF+FG=8+5=13.23.解:当 AB=AC时,四边形AEDF是菱形 .∵DE∥ AC, DF∥AB,∴四边形 AFDE为平行四边形,∠EAD=∠FDA.∵AD⊥ BC, AB=AC,∴AD 是∠ BAC的均分线,∴∠ EAD=∠ FAD,∴∠ FDA=∠ FAD,∴A F=DF(等角平等边 ),∴四边形 AEDF为菱形 (一组邻边相等的平行四边形是菱形).。
人教版八年级下册数学 18.2.2 菱形 测试题(含答案)
9.①③ ②④⑤ 解析 由“有一个角是直角的平行四边形是矩形”“对角线相等的平行四边形是矩 形”可判定□ABCD 为矩形的条件有①③;“邻边相等的平行四边形是菱形”“对角线互相垂直的平行四 边形是菱形”,另外,对角线平分一组对角的平行四边形也是菱形,由此,判定□ABCD 是菱形的条 件有②④⑤.
19.如图,菱形 ABCD 的边长为 2,BD=2,E、F 分别是边 AD,CD 上的两个动点,且满足 AE+CF=2.
(1)求证:△BDE≌△BCF; (2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为 S,求 S 的取值范围.
20.如图,菱形 AB1C1D1 的边长为 1,∠B1=60°;作 AD2⊥B1C1 于点 D2,以 AD2 为一边,作第 二个菱形 AB2C2D2,使∠B2=60°;作 AD3⊥B2C2 于点 D3,以 AD3 为一边,作第三个菱形 AB3C3D3, 使∠B3=60°;……依此类推,这样作的第 n 个菱形 ABnCnDn 的边 ADn 的长是______.
(1)求证:四边形 AECD 是菱形; (2)若点 E 是 AB 的中点,试判断△ABC 的形状,并说明理由. 17.如图,矩形 ABCD 的对角线 AC,BD 相较于点 O,DE∥AC,CE∥BD. (1)求证:四边形 OCED 为菱形. (2)连接 AE,BE,AE 与 BE 相等吗?请说出理由.
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
18.2.2 菱形 测试题
一、选择题
1.对角线互相垂直平分的四边形是( ).
A.平行四边形
B.矩形
C.菱形
D.任意四边形
2.下列命题中,正确的是( ).
A.两邻边相等的四边形是菱形
人教版八年级下册数学-18.2.2菱形-测试题(含答案)
菱形 测试题一、填空题1.菱形的邻角比为1:5,它的高为,则它的周长为_______. 2.两条对角线_________的四边形是菱形. 3.已知菱形的两对角线的比为2:3,两对角线和为20,•则这对角线长分别为_____,_______.4.菱形ABCD 的AC 交BD 于O ,AB=13,BO=12,AO=5,求菱形的周长=_____, 面积=•____.5.O 为菱形ABCD 的对角线交点,E 、F 、G 、H 分别是菱形各边的中点,若OE=3cm ,•则OF=_____,OG=_______,OH=______. 二、选择题6.从菱形的钝角的顶点向对边引垂线,并且这条垂线平分对边,•则该菱形的钝角为( ).A .110°B .120°C .135°D .150°7.菱形的两邻角之比为1:2,如果它的较短对角线为3cm ,则它的周长为( ). A .8cm B .9cm C .12cm D .15cm 8.菱形具有而矩形不一定具有的性质是( ). A .对边相等 B .对角相等 C .对角线互相相等 D .对有线相等9.能够找到一点使该点到各边距离相等的图形为( ).A .平行四边形B .菱形C .矩形D .不存在 10.下列说法不正确的是( ).A .菱形的对角线互相垂直B .菱形的对角线平分各内角C .菱形的对角线相等D .菱形的对角线交点到各边等距离 三、解答题11.如图所示,已知E 为菱形ABCD 的边AD 的中点,EF ⊥AC 于F 交AB 于M .试说明M 为AB 的中点.21M FE DCBA12.如图所示,已知菱形ABCD 中E 在BC 上,且AB=AE ,∠BAE=12∠EAD ,AE 交BD 于M ,试说明BE=AM .3421ME DCBA13.如图所示,已知在菱形ABCD 中,AE ⊥CD 于E ,∠ABC=60°,求∠CAE 的度数.14.如图所示,菱形的周长为20cm ,两邻角的比为1:2. 求:(1)较短对角线长是多少(2)一组对边的距离是多少15.如图所示,已知菱形ABCD 中,E 、F 分别在BC 和CD 上,且∠B=∠EAF=•60°,∠BAE=15°,求∠CEF 的度数.16.已知在菱形ABCD 中,AE ⊥BC 于E ,且BE=EC ,若AC=6,求菱形ABCD 的各边长.17.菱形一边与两条对角线所构成的两个角的差为10°,求菱形的各内角.18.如图所示,已知菱形ABCD 中,E 、F 是BC 、CD 上的点,且AE=EF=AF=AB ,• 求∠C 的度数.19.如图所示,O为矩形ABCD的对角线交点,DE∥AC,CE⊥BD,OE与CD•互相垂直平分吗?请说明理由.20.如图所示,已知在菱形ABCD中,E在BC上,若∠B=∠EAD=70°,ED•平分∠AEC 吗?请说明理由.21.试说明:菱形的对角线的交点到各边的中点距离相等.参考答案一、1.12cm 2.互相垂直平分 3.8 12 4.52 120 5.3cm 3cm 3cm二、6.B 7.C 8.C 9.B 10.C三、11.由于△AME是以AC为轴的轴对称图形(其中∠1=∠2,ME⊥AC)所以AM=AE=12AD,故AM=12AB,所以M是AB的中点.12.设∠BAE=x°,则∠EAD=2x°,•所以∠AEB=∠ABC=2x°,那么5x°=180°,x=36°,由于∠1=∠2,故∠2=36°,∠BEM=•72•°,•那么∠BME=72°,所以∠BEM=∠BME即BE=BM,又∠1=∠5=36°,所以BM=AM,那么BE=AM •13.30° 14.(1)20cm (2)15.连AC,可得△ABC为等边三角形,则∠ACF=120°-60°=60°,由已知得∠2=∠1=15°,把△ABE绕着A按逆时针方向旋转60•°可与△ACF 重合,这样AF=AE,由于∠EAF=60°,故△AEF为等边三角形,那么∠AEF=60°,由于∠AEB=180°-60°-15°=105°,故∠CEF=180°-60°-105°=15°16.略 17.6 •6 6 6 18.80° 100° 80° 100° 19.100°四边形ODEC是菱形 •20.由∠B=∠EAD=70°,AD∥BC,即∠AEB=70°,那么∠1=40°,由AB=AE,AB=AD,得AE=•AD,即∠2=55°,而∠AEC=180°-70°=110°,故∠DEC=110°-55°=55°,所以ED平分∠AEC21.通过斜边中线等于斜边的一半和菱形各边都相等的道理而推得.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形一、1.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角2.下列条件能判定四边形是菱形的是( )A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形3.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm24.如图,在菱形ABCD中,对角线AC、BD相交于点O,则(1)AB=AD=_______________=_______________,即菱形的_______________相等.(2)图中的等腰三角形有________________________,直角三角形有______________,△AOD≌________________≌_______________≌_______________,由此可以得出菱形的对角线_______________,每一条对角线_______________.(3)菱形是轴对称图形,它的对称轴是_______________.二1.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm2.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形3.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.矩形D.菱形4.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是______________.5.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1若AB=2.求菱形ABCD的面积.6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.7.如图,在一张长12 cm、宽5 cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学按照沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?三、课后巩固(30分钟训练)1.下列结论正确的是( )A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形2.菱形的周长为32 cm,一个角的度数是60°,则两条对角线的长分别是( )A.8 cm cmB.4 cm cmC.8 cm和cm D.4 cm cm3.在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°4.在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F,且BE=EC,CF=FD,则∠AEF等于( )A.120°B.45°C.60°D.150°5.如图,在菱形ABCD中,∠ABC=60°,AC=4,BD的长为( )A. B.D.86.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.7.如图,已知过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.8.北京101中学的学生为迎接2008年奥运会,美化校园,在周长为12 m,夹角为60°的菱形花坛里栽十株花.试证明:不论如何安排,m.9.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.参考答案一、课前预习(5分钟训练)1.菱形和矩形一定都具有的性质是( )A.对角线相等B.对角线互相平分C.对角线互相垂直D.每条对角线平分一组对角答案:B2.下列条件能判定四边形是菱形的是( )A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形答案:C3.菱形的两条对角线长分别为6 cm、8 cm,则它的面积为( )A.6 cm2B.12 cm2C.24 cm2D.48 cm2解析:S菱形6×8=24(cm2).答案:C4.如图,在菱形ABCD中,对角线AC、BD相交于点O,则(1)AB=AD=_______________=_______________,即菱形的_______________相等.(2)图中的等腰三角形有________________________,直角三角形有______________,△AOD≌________________≌_______________≌_______________,由此可以得出菱形的对角线_______________,每一条对角线_______________.(3)菱形是轴对称图形,它的对称轴是_______________.答案:(1)BC CD 四条边(2)△ABD、△ABC、△ADC、△BCD △AOB、△BOC、△COD、△DOA △AOB △COB △COD 垂直平分平分一组对角(3)对角线所在的直线二、课中强化(10分钟训练)1.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6 cm,则OE的长为( )A.6 cmB.4 cmC.3 cmD.2 cm解析:OE是Rt△BOC的斜边BC上的中线,故答案:C2.顺次连结矩形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形解析:连结矩形的两条对角线,则相邻两边中点的连线是三角形的中位线.由三角形的中位线等于第三边的一半及矩形两条对角线相等可得中点四边形的各边都相等,故顺次连结矩形各边中点所得的四边形是菱形.答案:C3.用两个边长为a的等边三角形纸片拼成的四边形是( )A.等腰梯形B.正方形C.矩形D.菱形解析:因为等边三角形的三条边都相等,所以用它拼成的四边形的四条边都相等,而四条边都相等的四边形是菱形,因此选D.答案:D4.菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是______________.解析:由菱形的邻角互补,可知菱形的另一组内角是60°,60°内角所对的对角线是较短的.根据有一个角是60°的等腰三角形是等边三角形可推出菱形边长是10,因此菱形周长是40.答案:405.如图所示,在菱形ABCD中,AC、BD相交于O,且AC∶BD=1若AB=2.求菱形ABCD的面积.解:菱形两对角线将其分割为四个全等的直角三角形.设AO=x,因为四边形ABCD为菱形,所以AO=CO,BO=DO,AC⊥BD.又因为AC∶BD=1∶,所以AO∶BO=1在Rt△ABO中,因为AB2=BO2+AO2,所以AB22+x2=22.所以x=1.所以所以6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.答案:证明:∵∠ACB=90°,DE是BC的中垂线,∴E为AB边的中点.∴CE=AE=BE.∵∠BAC=60°,∴△ACE为正三角形.在△AEF中,∠AEF=∠DEB=∠BAC=60°,而AF=CE,又CE=AE,∴AE=AF.∴△AEF也为正三角形.∴∠CAE=∠AEF=60°.∴∴四边形ACEF为平行四边形.又CE=AC,∴平行四边形ACEF为菱形.7.如图,在一张长12 cm、宽5 cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学按照沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?解:(方案一)S菱形=S矩形-4S△AEH=12×(cm2).(方案二)设BE=x,则CE=12-x,∴因为四边形AECF是菱形,则AE2=CE2,∴25+x2=(12-x)2.∴∴S菱形=S矩形-2S△ABE=12×2).经比较可知,(方案二)张丰同学所折的菱形面积较大.三、课后巩固(30分钟训练)1.下列结论正确的是( )A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形解析:根据菱形的判定定理:对角线互相垂直平分的四边形是菱形.答案:D2.菱形的周长为32 cm,一个角的度数是60°,则两条对角线的长分别是( )A.8 cm cmB.4 cm cmC.8 cm和cm D.4 cm cm解析:因菱形四边相等,所以每边都为8,其对角线平分一组对角,根据一个角是60°,可求得.答案:C3.在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°解析:由菱形为中心对称图形可知B正确.答案:B4.在菱形ABCD中,AE⊥BC,AF⊥CD,垂足为E、F,且BE=EC,CF=FD,则∠AEF等于( )A.120°B.45°C.60°D.150°解析:因为AE垂直平分BC,所以AB=AC.又因为AB=BC,所以△ABC为等边三角形.∠BAC=60°,∠EAC=30°.同理可证∠FAC=30°,△AEF是等边三角形,所以∠AEF=60°.答案:C5.如图,在菱形ABCD中,∠ABC=60°,AC=4,BD的长为( )A. B.D.8解析:∵ABCD为菱形,∴AB=BC.又∵∠ABC=60°,∴△ABC为等边三角形.∴AB=BC=AC=4,∠ABO=30°,∠AOB=90°.在△AOB中∴答案:B6.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由.解:添加条件:对角线相等.理由:连结AC、BD.在△ABC中,∵AE=BE,BF=CF,∴EF为△ABC的中位线.∴同理可得又∵AC=BD(添加条件),∴EF=FG=GH=HE.故四边形EFGH为菱形.7.如图,已知过平行四边形ABCD的对角线交点O作互相垂直的两条直线EG、FH与平行四边形ABCD各边分别相交于点E、F、G、H.求证:四边形EFGH是菱形.答案:中,OD=OB,OA=OC,AB∥CD,∴∠OBG=∠ODE.又∵∠BOG=∠DOE,∴△OBG≌△ODE.∴OE=OG.同理OF=OH.∴四边形EFGH是平行四边形.又∵EG⊥FH,∴四边形EFGH是菱形.8.北京101中学的学生为迎接2008年奥运会,美化校园,在周长为12 m,夹角为60°的菱形花坛里栽十株花.试证明:不论如何安排,m.答案:证明:如图,把菱形花坛分成9个菱形,由此可得至少有一个小菱形里要栽两株花,因为小菱形的对角线长为m,所以至少有两株花的距离小于m.9.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F.求证:四边形AFCE是菱形.答案:证明:∵EF垂直平分AC,∴EF⊥AC,AO=CO.∵四边形ABCD为平行四边形,∴AD∥BC.∴∠AEO=∠CFO.∴△AOE≌△COF.∴OE=OF.∴四边形AECF是平行四边形.又∵AC⊥EF,∴四边形AFCE是菱形.。