实验一 半波振子天线仿真设计

合集下载

圆锥单极子天线仿真

圆锥单极子天线仿真

频率200—400MHZ一、半波振子(圆柱形):单极子模型:振子长度:270mm(中心频率的波长)振子半径1.5mm地板半径750mm(最低频率的1/2波长)输入阻抗在300MHz处,阻抗+ 欧姆。

方向图1.E面取φ=0°最大方向系数:在θ=30°处达φ=180°最大方向系数:在θ=30°处达H面(θ=90°)基本保持全向性Dmin在φ=325°处Dmax在φ=245°处对称振子模型保持与单极子尺寸相同振子长度:270mm(中心频率的波长)振子半径1.5mm两振子之间距离1mm输入阻抗在300MHz处,阻抗127+149j 欧姆。

是单极子的两倍,与理论符合。

方向图2.E面取φ=0°最大方向系数:在θ=90°处达取φ=180°最大方向系数:在θ=90°处达H面(θ=90°)基本保持全向性Dmin在φ=80°处Dmax在φ=10°处二,圆锥形1.单极子模型圆锥高度385mm圆锥大圆半径390mm同轴线内芯半径=圆锥小圆半径1.5mm,伸出外导体高度1mm 外导体半径3.5mm(50欧姆馈电)输入阻抗红线为电阻线,蓝线为电抗线。

方向图E面取φ=0°最大方向系数:在θ=30°处达取φ=180°最大方向系数:在θ=30°处达H面(θ=90°)基本保持全向性Dmin在φ=190°处Dmax在φ=105°处2.对称圆锥形模型圆锥高度385mm圆锥大圆半径390mm两个圆锥振子最小间距2mm输入阻抗与单极子圆锥对比,发现电阻值是单极子的两倍,符合理论。

E面取φ=0°最大方向系数:在θ=50°处达取φ=180°最大方向系数:在θ=50°处达H面(θ=90°)百度文库- 好好学习,天天向上基本保持全向性Dmin在φ=190°处Dmax在φ=340°处-11。

HFSS天线仿真实验报告

HFSS天线仿真实验报告

HFSS天线仿真实验报告半波偶极子天线设计通信0905杨巨U2009138922012-3-7半波偶极子天线仿真实验报告一、实验目的1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图特性等4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法二、实验仪器1、装有windows系统的PC一台2、HFSS13.0软件3、截图软件三、实验原理1、首先明白一点:半波偶极子天线就是对称阵子天线。

2、对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。

一臂的导线半径为a,长度为l。

两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。

对称振子的长度与波长相比拟,本身已可以构成实用天线。

3、在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。

取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。

4、在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。

利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

电流元I(z)dz所产生的辐射场为图2 对称振子辐射场的计算如图2 所示,电流元I(z)所产生的辐射场为其中5、方向函数四、实验步骤1、设计变量设置求解类型为Driven Model 类型,并设置长度单位为毫米。

提前定义对称阵子天线的基本参数并初始化2、创建偶极子天线模型,即圆柱形的天线模型。

其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。

3、设置端口激励半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。

实验三、半波振子天线仿真设计

实验三、半波振子天线仿真设计

实验三、半波振子天线仿真设计一、实验目的1、熟悉HFSS软件设计天线的基本方法2、利用HFSS软件仿真设计以了解半波振子天线的结构和工作原理3、通过仿真设计掌握天线的基本参数频率、方向图、增益等。

二、预习要求1、熟悉天线的理论知识。

2、熟悉天线设计的理论知识。

三、实验原理与参考电路3.1天线介绍天线的定义用来辐射和接收无线电波的装置。

天线的作用将电磁波能量转换为导波能量或将导波能量转换为电磁波能量。

3.1.1天线的基本功能天线应尽可能多的将导波能量转变为电磁波能量要求天线是一个良好的开放系统其次要与发射机或接收机良好匹配1、天线应使电磁波能量尽量集中于需要的方向2、对来波有最大的接收3、天线应有适当的极化以便于发射或接收规定极化的电磁波4、天线应有只够的工作带宽3.1.2天线的分类1、按用途分通信天线、广播电视天线、雷达天线等2、按工作波长分长波天线、中波天线、短波天线、超短波天线、微波天线等3、按辐射元分线天线和面天线3.1.3天线的技术指标大多数天线电参数是针对发射状态规定的以衡量天线把高频电流能量转变成空间电波能量以及定向辐射的能力。

1 天线方向图及其有关参数所谓方向图是指在离天线一定距离处辐射场的相对场强归一化模值随方向变化的曲线图。

如图1所示。

若天线辐射的电场强度为Erθφ把电场强度绝对值写成601IErfr式式中I为归算电流对于驻波天线通常取波腹电流Im作为归算电流fθφ为场强方向函数。

因此方向函数可定义为260/ErfIr式为了便于比较不同天线的方向性常采用归一化方向函数用Fθφ表示即yzrOxmaxmax3EfFfE式图1 方向图球坐标系式中f maxθφ为方向函数的最大值Emax 为最大辐射方向上的电场强度Eθφ为同一距离θφ方向上的电场强度。

通常采用两个互相垂直的平面方向图来表示。

A E平面所谓E平面就是电场强度矢量所在并包含最大辐射方向的平面B H平面所谓H平面就是磁场强度矢量所在并包含最大辐射方向的平面。

天线实验报告(DOC)

天线实验报告(DOC)

实验一 半波振子天线的制作与测试一、实验目的1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。

2、掌握半波振子天线的制作方法。

3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。

4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。

二、实验原理(1)天线阻抗带宽的测试 测试天线的反射系数(S 11),需要用到公式(1-1):)ex p(||011θj Z Z Z Z S A A Γ=+-=(1-1)根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。

天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述:||1||1Γ-Γ+=ρ(1-2)|)lg(|20Γ-=RL [dB](1-3)对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。

表1-1 工程上对天线的不同要求(供参考)天线带宽驻波系数ρ的要求 反射系数|Γ|的要求 反射损耗RL 的要求 窄带(相对带宽5%以下)ρ≤1.2或1.5|Γ|≤0.09或0.2 ≥21dB 或14dB 宽带(相对带宽20%以下) ρ≤1.5或2 |Γ|≤0.2或0.33≥14dB 或10dB 超宽带ρ≤2或2.5,甚至更大 |Γ|≤0.33或0.43≥10dB(2)同轴电缆的特性阻抗本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数 2.2r ε=)。

其特性阻抗计算公式如下:060ln r b Z a ε⎛⎫=⎪⎝⎭(1-4)式中 a ——内芯直径; b ——外皮内直径。

三、实验仪器(1)Anritsu S331D天馈线测试仪图1-1 Anritsu S331D天馈线测试仪表1-2 Anritsu S331D天馈线测试仪主要性能指标参数名称参数值频率范围25MHz-4000MHz频率分辨率100kHz输出功率< 0dBm回波损耗范围0.00-54.00dB(分辨率:0.01dB)驻波比范围0.00-65.00 (分辨率:0.01)(2)50欧姆同轴电缆、SMA连接器、热塑管、直径2.5mm和0.5mm铜丝、泡沫(用于支撑和固定天线)和酒精棉等。

实验一:天线技术仿真

实验一:天线技术仿真

实验一:天线技术仿真【实验目的】1、学会简单搭建天线仿真环境的方法,主要是熟悉Matlab软件的使用方法;2、了解对称振子基本原理;3、了解振子长度与波长的关系;4、通过天线的仿真,了解天线的方向图特性;【实验内容】1. 创建天线仿真模型;2. 分析天线的辐射场;3. 对天线的二维、三维方向图进行仿真;【实验仪器】1、装有windows系统的PC一台2、Matlab软件3、截图软件【实验原理及相关知识】1. 对称振子天线的辐射场对称振子天线是一种经典的、迄今为止使用最广泛的天线,特别是半波对称振子天线。

单个半波对称振子可单独使用或作为抛物面天线的馈源,也可采用多个半波对称振子组成各种天线阵。

图1 对称振子天线如图 1 所示,对称振子天线由两根长度均为的细导线构成。

由于中心馈电,所以在振子两臂上的电流是对称的,且呈正弦分布,并在上、下端点趋近于零,振子上的电流分布可表示为(1)式中为轴坐标的绝对值,为电流幅值,为振子长度的一半。

不同长度的对称振子上的电流分布如图2所示。

λ/2 3λ/4 λ 3λ/2图2 对称振子的电流如图 1 所示,在振子上距对称原点为处取一长度元,当 足够小时, 上流动的电流均匀分布且相位相同,可视为一个电偶极子,其远区辐射电场为'0'sin sin ()2jkRI dE jk l z edz Rθθλ-=- (2)为求得对称振子天线的辐射电场,可对式 (2) 进行积分运算,为保证积分能在简单的情况下进行,先对式 (2) 中变量进行分析。

式中的积分变量是 ,式中也随 变化,是 的函数,这样被积函数显得有点复杂,为此,可做些近似处理,在的情况下,射线与在振子附近可视为平行的射线,因此(3)在远区,由于和的值差别极小,因此在式 (2) 的分母中,可用 代替 ,但在相位项中 与 的微小差距将会引起较大的相位差,因此必须考虑式 (3) 给出的近似关系。

故式 (2) 变为(4)对式 (4) 进行积分得到利用积分公式得到对称振子天线的辐射电场(5)同理,可获得对称振子天线的辐射磁场(6)可见,对称振子天线的方向性函数为(7)(a)(b)(c) (d)图 3对称振子的方向图图 3 给出了四种不同长度的对称振子天线的方向图,可以看出当振子总长度小于1个波长时,天线的辐射场中没有副瓣。

实验一半波振子天线仿真设计

实验一半波振子天线仿真设计

实验一 半波振子天线仿真设计一、 实验目的:1、 熟悉HFSS 软件设计天线的基本方法;2、 利用HFSS 软件仿真设计以了解半波振子天线的结构和工作原理; 通过仿真设计掌握天线的基本参数:频率、方向图、增益等。

预习要求熟悉天线的理论知识。

熟悉天线设计的理论知识。

实验原理与参考电路 天线介绍天线的定义:用来辐射和接收无线电波的装置。

天线的作用:将电磁波能量转换为导波能量,或将导波能量转换为电磁波能量。

天线的基本功能天线应尽可能多的将导波能量转变为电磁波能量,要求天线是一个良好的开放系统,其次要与发射机(或接收机)良好匹配;天线应使电磁波能量尽量集中于需要的方向, 对来波有最大的接收;天线应有适当的极化,以便于发射或接收规定极化的电磁波; 天线应有只够的工作带宽; 天线的分类按用途分:通信天线、广播电视天线、雷达天线等;按工作波长分:长波天线、中波天线、短波天线、超短波天线、微波天线等; 按辐射元分:线天线和面天线; 天线的技术指标大多数天线电参数是针对发射状态规定的,以衡量天线把高频电流能量转变成空间电波能量以及定向辐射的能力。

天线方向图及其有关参数所谓方向图,是指在离天线一定距离处,辐射场的相对场强 (归一化模值)随方向变化的曲线图。

如图1所示。

若天线辐射的电场 强度为E (r ,θ,φ),把电场强度(绝对值)写成60(,,(,)1I E r f rθϕθϕ=式式中I 为归算电流,对于驻波天线,通常取波腹电流I m 作为归算电流; f (θ,φ)为场强方向函数。

因此,方向函数可定义为(,,)(,)260/E r f I rθϕθϕ=式为了便于比较不同天线的方向性,常采用归一化方向函数,用F (θ,φ)表示,即max max(,)(,)(,)3(,)E f F f E θϕθϕθϕθϕ==式图1 方向图球坐标系式中,f max (θ,φ)为方向函数的最大值;E max 为最大辐射方向上的电场强度;E (θ,φ)为同一距离(θ,φ)方向上的电场强度。

自制FM半波振子天线

自制FM半波振子天线
根据二分一波长匹配线的性质输入端与输出端相位相差180度加入金属管之后不对称的同轴电缆与对称的天线相连后没有破坏天线的对称性从而阻抗变换起到对称转不对称的作用而且阻抗不变
自制FM半波振子天线补充内容 Nhomakorabea平衡管阻抗变换器的原理:在同轴电缆旁附加一段长度是四分一接收中心波长的金属棒,半波天线的一臂接电缆外网,电缆芯线接另一臂与金属管相连处,金属管底部与同轴电缆外网相连。根据二分一波长匹配线的性质,输入端与输出端相位相差180度,加入金属管之后,不对称的同轴电缆与对称的天线相连后没有破坏天线的对称性,从而阻抗变换起到对称转不对称的作用,而且阻抗不变。

半波振子天线课程设计

半波振子天线课程设计

半波振子天线课程设计一、课程目标知识目标:1. 学生能够理解半波振子天线的原理,掌握其结构特点及工作原理。

2. 学生能够掌握半波振子天线的阻抗匹配条件,解释其带宽特性。

3. 学生能够运用相关公式计算半波振子天线的辐射电阻、输入阻抗等参数。

技能目标:1. 学生能够运用所学知识,分析并解决实际中半波振子天线的问题。

2. 学生能够设计简单的半波振子天线,并进行性能分析。

3. 学生能够运用仿真软件对半波振子天线进行建模和仿真实验。

情感态度价值观目标:1. 培养学生对无线电通信及天线技术的兴趣,激发学习热情。

2. 培养学生严谨的科学态度,提高实践操作能力和团队协作能力。

3. 增强学生对我国在通信领域取得成就的自豪感,培养爱国主义情怀。

本课程针对高年级学生,结合学科特点,注重理论与实践相结合。

通过本课程的学习,使学生能够全面掌握半波振子天线的相关知识,提高实际应用能力,培养创新思维和科学精神。

课程目标明确、具体,可衡量,为教学设计和评估提供依据。

二、教学内容1. 引言:介绍天线的基本概念、分类及在无线电通信中的作用,引出半波振子天线。

2. 理论知识:- 半波振子天线的结构、工作原理和特点。

- 阻抗匹配原理,解释半波振子天线的带宽特性。

- 辐射电阻、输入阻抗的计算方法。

3. 实践操作:- 设计简单的半波振子天线,分析其性能。

- 利用仿真软件(如ADS、CST等)进行半波振子天线的建模和仿真实验。

4. 应用拓展:- 探讨半波振子天线在实际通信系统中的应用。

- 分析半波振子天线与其他类型天线的优缺点对比。

教学内容参考教材相关章节,确保科学性和系统性。

教学大纲明确,包括理论教学与实践操作相结合,进度安排合理。

具体教学内容如下:1. 引言(第1章)2. 理论知识(第2章)3. 实践操作(第3章)4. 应用拓展(第4章)三、教学方法本课程采用多种教学方法,旨在激发学生的学习兴趣,提高学生的主动性和实践能力。

1. 讲授法:教师通过生动的语言、丰富的案例,系统讲解半波振子天线的理论知识,使学生掌握基本概念、原理和计算方法。

半波偶极子天线的HFSS仿真设计

半波偶极子天线的HFSS仿真设计

半波偶极子天线的HFSS仿真设计一、实验目的:1.以一个简单的半波偶极子天线设计为例,加深对对称阵子天线的了解;2.熟悉HFSS软件分析和设计天线的大体方式及具体操作;3.利用HFSS软件仿真设计以了解半波振子天线的结构和工作原理;4.通过仿真设计把握天线的大体参数:频率、方向图、增益等。

二、实验步骤:本次实验设计一个中心频率为3GHz的半波偶极子天线。

天线沿着Z轴放置,中心位于坐标原点,天线材质利用理想导体,总长度为0.48λ,半径为λ/200。

天线馈电采纳集总端口鼓励方式,端口距离为0.24mm,辐射边界和天线的距离为λ/4。

1、添加和概念设计变量参考指导书,在Add Property对话框中概念和添加如下变量:2、设计建模1)、创建偶极子天线模型第一创建一个沿Z轴方向放置的细圆柱体模型作为偶极子天线的一个臂,其底面圆心坐标为(0,0,gap/2),半径为dip_radius,长度为dip_length,材质为理想导体,模型命名为Dipole,如下:然后通过沿着坐标轴复制操作生成偶极子天线的另一个臂。

现在就创建出了偶极子的模型如下:2)、设置端口鼓励半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为鼓励端口平面,并设置端口平面的鼓励方式为集总端口鼓励。

该矩形面需要把偶极子天线的两个臂连接起来,因此极点坐标为(0,-dip_radius,-gap/2),长度和宽度别离为2*dip_radius和gap。

如下:然后设置该矩形面的鼓励方式为集总端口鼓励。

由之前的理论分析可得,半波偶极子天线的输入阻抗为73.2Ω,为了达到良好的阻抗匹配,将负载阻抗也设置为73.2 Ω。

随后进行端口积分线的设置。

此处积分线为矩形下边缘中点到矩形上边缘中点。

3)、设置辐射边界条件要在仿真软件中计算分析天线的辐射场,必需先设置辐射边界条件。

本次设计中采纳辐射边界和天线的距离为1/4个工作波长。

天线实验报告(DOC)

天线实验报告(DOC)

实验一 半波振子天线的制作与测试一、实验目的1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。

2、掌握半波振子天线的制作方法。

3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。

4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。

二、实验原理(1)天线阻抗带宽的测试 测试天线的反射系数(S 11),需要用到公式(1-1):)ex p(||011θj Z Z Z Z S A A Γ=+-=(1-1)根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。

天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述:||1||1Γ-Γ+=ρ(1-2)|)lg(|20Γ-=RL [dB](1-3)对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。

表1-1 工程上对天线的不同要求(供参考)(2)同轴电缆的特性阻抗本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数 2.2r ε=)。

其特性阻抗计算公式如下:0b Z a ⎛⎫=⎪⎝⎭(1-4)式中 a ——内芯直径; b ——外皮内直径。

三、实验仪器(1)Anritsu S331D天馈线测试仪图1-1 Anritsu S331D天馈线测试仪表1-2 Anritsu S331D天馈线测试仪主要性能指标参数名称参数值频率范围25MHz-4000MHz频率分辨率100kHz输出功率< 0dBm回波损耗范围0.00-54.00dB(分辨率:0.01dB)驻波比范围0.00-65.00 (分辨率:0.01)撑和固定天线)和酒精棉等。

(3)工具,主要包括:裁纸刀、尖嘴钳子、斜口钳子、砂纸、挫、尺和电烙铁等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 半波振子天线仿真设计一、实验目的:1、 熟悉HFSS 软件设计天线的基本方法;2、 利用HFSS 软件仿真设计以了解半波振子天线的结构和工作原理;3、 通过仿真设计掌握天线的基本参数:频率、方向图、增益等。

二、预习要求1、 熟悉天线的理论知识。

2、 熟悉天线设计的理论知识。

三、实验原理与参考电路 3.1天线介绍天线的定义:用来辐射和接收无线电波的装置。

天线的作用:将电磁波能量转换为导波能量,或将导波能量转换为电磁波能量。

3.1.1天线的基本功能天线应尽可能多的将导波能量转变为电磁波能量,要求天线是一个良好的开放系统,其次要与发射机(或接收机)良好匹配;(1)、 天线应使电磁波能量尽量集中于需要的方向, (2)、 对来波有最大的接收;(3)、 天线应有适当的极化,以便于发射或接收规定极化的电磁波; (4)、 天线应有只够的工作带宽; 3.1.2天线的分类(1)、 按用途分:通信天线、广播电视天线、雷达天线等;(2)、 按工作波长分:长波天线、中波天线、短波天线、超短波天线、微波天线等; (3)、 按辐射元分:线天线和面天线; 3.1.3天线的技术指标大多数天线电参数是针对发射状态规定的,以衡量天线把高频电流能量转变成空间电波能量以及定向辐射的能力。

(1) 天线方向图及其有关参数所谓方向图,是指在离天线一定距离处,辐射场的相对场强 (归一化模值)随方向变化的曲线图。

如图1所示。

若天线辐射的电场强度为E (r ,θ,φ),把电场强度(绝对值)写成 60(,,(,)IE r f rθϕθϕ=式式中I 为归算电流,对于驻波天线,通常取波腹电流I m 作为归算电流;f (θ,φ)为场强方向函数。

因此,方向函数可定义为(,,)(,)260/E r f I rθϕθϕ=式为了便于比较不同天线的方向性,常采用归一化方向函数, 用F (θ,φ)表示,即max max(,)(,)(,)3(,)E f F f E θϕθϕθϕθϕ==式图1 方向图球坐标系式中,f max(θ,φ)为方向函数的最大值;E max为最大辐射方向上的电场强度;E(θ,φ)为同一距离(θ,φ)方向上的电场强度。

通常采用两个互相垂直的平面方向图来表示。

(A)E平面所谓E平面就是电场强度矢量所在并包含最大辐射方向的平面;(B)H平面所谓H平面就是磁场强度矢量所在并包含最大辐射方向的平面。

实际天线的方向图要比电基本振子的复杂,通常有多个波瓣,它可细分为主瓣、副瓣和后瓣,如图2所示。

用来描述方向图的参数通常有:图2 天线方向图的一般形状(A)零功率点波瓣宽度(Beam Widthbetween FirstNulls,BWFN)2θ0E或2θ0H(下标E、H表示E、H面,下同):指主瓣最大值两边两个零辐射方向之间的夹角。

(B )半功率点波瓣宽度(HalfPower Beam Width, HPBW )2θ0.5E 或2θ0.5H :指主瓣最大值两边场强等于最大值的0.707倍(或等于最大功率密度的一半)的两辐射方向之间的夹角,又叫3分贝波束宽度。

(C )副瓣电平(Side Lobe Lever,SLL ):指副瓣最大值与主瓣最大值之比,一般以分贝表示,即(D )前后比:指主瓣最大值与后瓣最大值之比,通常也用分贝表示。

(2)方向系数方向系数的定义是:在同一距离及相同辐射功率的条件下,某天线在最大辐射方向上的辐射功率密度S max (或场强|E max |2的平方)和无方向性天线(点源)的辐射功率密度S 0(或场强|E 0|2的平方)之比,记为D 。

用公式表示如下: 式中P r 、P r0分别为实际天线和无方向性天线的辐射功率。

无方向性天线本身的方向系数为1。

(3)天线效率天线效率定义为天线辐射功率P r 与输入功率P in 之比,记为ηA ,即辐射功率与辐射电阻之间的联系公式为类似于辐射功率和辐射电阻之间的关系,也可将损耗功率P l 与损耗电阻R l 联系起来,即R l 是归算于电流I 的损耗电阻,这样一般来讲,损耗电阻的计算是比较困难的,但可由实验确定。

从式9可以看出,若要提高天线效率,必须尽可能地减小损耗电阻和提高辐射电阻。

通常,超短波和微波天线的效率很高,接近于1。

值得提出的是,这里定义的天线效率并未包含天线与传输线失配引起的反射损失,考虑到天线输入端的电压反射系数为Γ,则天线的总效率为η=(1-|Γ|2)ηA 式10(4)增益系数增益系数的定义是:在同一距离及相同输入功率的条件下,某天线在最大辐射方向上的辐射功率密度S max (或场强|E max |2的平方)和理想无方向性天线(理想点源)的辐射功率密度S 0(或场强|E 0|2的平方)之比,记为G 。

用公式表示如下:,max2max2,max max 10lg20lg4av av SESLL dB SE==式2max max205r ro r ro P P P P E S D S E ====式6r A inP P η=式2172r r P I R =式2182l l P I R =式9r r A r l r lP R P P R R η==++式002max max211in in in in P P P P E S G S E ====式式中P in 、P in0分别为实际天线和理想无方向性天线的输入功率。

理想无方向性天线本身的增益系数为1。

考虑到效率的定义,在有耗情况下,功率密度为无耗时的ηA 倍,式11可改写为由此可见,增益系数是综合衡量天线能量转换效率和方向特性的参数,它是方向系数与天线效率的乘积。

在实际中,天线的最大增益系数是比方向系数更为重要的电参量,即使它们密切相关。

(5)天线的极化天线的极化(Polarization)是指该天线在给定方向上远区辐射电场的空间取向。

一般而言,特指为该天线在最大辐射方向上的电场的空间取向。

实际上,天线的极化随着偏离最大辐射方向而改变,天线不同辐射方向可以有不同的极化。

所谓辐射场的极化,即在空间某一固定位置上电场矢量端点随时间运动的轨迹,按其轨迹的形状可分为线极化、圆极化和椭圆极化,其中圆极化还可以根据其旋转方向分为右旋圆极化和左旋圆极化。

就圆极化而言,一般规定:若手的拇指朝向波的传播方向,四指弯向电场矢量的旋转方向,这时若电场矢量端点的旋转方向与传播方向符合右手螺旋,则为右旋圆极化,若符合左手螺旋,则为左旋圆极化。

(6)输入阻抗与辐射阻抗天线通过传输线与发射机相连,天线作为传输线的负载,与传输线之间存在阻抗匹配问题。

天线与传输线的连接处称为天线的输入端,天线输入端呈现的阻抗值定义为天线的输入阻抗(Input Resistance),即天线的输入阻抗Z in 为天线的输入端电压与电流之比:其中,R in 、X in 分别为输入电阻和输入电抗,它们分别对应有功功率和无功功率。

有功功率以损耗和辐射两种方式耗散掉,而无功功率则驻存在近区中。

天线的输入阻抗决定于天线的结构、工作频率以及周围环境的影响。

输入阻抗的计算是比较困难的,因为它需要准确地知道天线上的激励电流。

除了少数天线外,大多数天线的输入阻抗在工程中采用近似计算或实验测定。

(7)频带宽度天线的所有电参数都和工作频率有关。

当工作频率变化时,天线的有关电参数变化的程度在所允许的范围内,此时对应的频率范围称为频带宽度(Bandwidth)。

根据天线设备系统的工作场合不同,影响天线频带宽度的主要电参数也不同。

根据频带宽度的不同,可以把天线分为窄频带天线、宽频带天线和超宽频带天线。

若天线的最高工作频率为f max ,最低工作频率为f min ,对于窄频带天线,常用相对带宽,即[(f max -f min )/f 0]×100%来表示其频带宽度。

而对于超宽频带天线,常用绝对带宽,即f max /f min 来表示其频带宽度。

通常,相对带宽只有百分之几的为窄频带天线,例如引向天线;相对带宽达百分之几十的为宽频带天线,例如螺旋天线;绝对带宽可达到几个倍频程的称为超宽频带天线,例如对数周期天线。

3.2对称振子如图2所示,对称振子(Symmetrical Center ―Fed Dipole)是中间馈电,其两臂由两段等长导线构成的振子天线。

一臂的导线半径为a ,长度为l 。

两臂之间的间隙很小,理论上可忽略不计,所以振子的总长度L=2l 。

对称振子的长度与波长相比拟,本身已可以构成实用天线。

图2 对称振子结构及坐标图00max max 0012in in r r A P P P P A S SG D S S ηη=====式13in in in in inU Z R jX I ==+式3.2.1 电流分布若想分析对称振子的辐射特性,必须首先知道它的电流分布。

为了精确地求解对称振子的电流分布,需要采用数值分析方法,但计算比较麻烦。

实际上,细对称振子天线可以看成是由末端开路的传输线张开形成,理论和实验都已证实,细对称振子的电流分布与末端开路线上的电流分布相似,即非常接近于正弦驻波分布,若取图2的坐标,并忽略振子损耗,则其形式为式中,I m 为电流波腹点的复振幅;k=2π/λ=ω/c 为相移常数。

根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心点对称;超过半波长就会出现反相电流。

3.2.2 对称振子的辐射场确定了对称振子的电流分布以后,就可以计算它的辐射场。

欲计算对称振子的辐射场,可将对称振子分成无限多电流元,对称振子的辐射场就是所有电流元辐射场之和由于对称振子的辐射场与φ无关,而观察点P(r,θ)距对称振子足够远,因而每个电流元到观察点的射线近似平行,因而各电流元在观察点处产生的辐射场矢量方向也可被认为相同,和电基本振子一样,对称振子仍为线极化天线。

由理论得知:此式说明,对称振子的辐射场仍为球面波;其极化方式仍为线极化;辐射场的方向性不仅与θ有关,也和振子的电长度有关。

根据方向函数的定义式5,对称振子以波腹电流归算的方向函数为()cos(cos )cos()()1660/sin m E kl kl f I r θθθθθ-==式上式实际上也就是对称振子E 面的方向函数;在对称振子的H 面(θ=90°的xOy 面)上,方向函数与φ无关,其方向图为圆。

在一定频率范围内工作的对称振子,为保持一定的方向性,一般要求最高工作频率时,l/λmin<0.7。

在所有对称振子中,半波振子(l=0.25λ,2l=0.5λ)最具有实用性,它广泛地应用于短波和超短波波段,它既可以作为独立天线使用,也可作为天线阵的阵元,还可用作微波波段天线的馈源。

将l =0.25λ代入式16可得半波振子的方向函数sin ()0()sin ()14sin ()0m m mI k l z z I z I k l z I k l z z -≥⎧⎪=-=⎨+<⎪⎩式60cos(cos )cos()()15sin jkrm I kl kl E j e θθθλθ--=式()F θ=0200400Ωl / λ图3 对称振子的方向系数与辐射电阻随一臂电长度变化的图形其E 面波瓣宽度为78°。

相关文档
最新文档