《概率初步》单元测试1

合集下载

初中数学概率初步单元测试

初中数学概率初步单元测试

初中数学概率初步单元测试第一题:选择题1. 掷一个标准的六面骰子,其中一个面上标有字母"A",另外五个面上分别标有数字"1"、"2"、"3"、"4"和"5"。

如果掷骰子一次,出现"A"字母的概率是多少?A. 1/5B. 1/6C. 1/7D. 1/82. 一副标准扑克牌一共有52张牌,其中13张为红桃。

如果随机抽取一张牌,抽到红桃的概率是多少?A. 1/4B. 1/13C. 13/52D. 52/133. 一次抛两枚硬币,它们均为正面向上的概率是多少?A. 1/2B. 1/3C. 1/4D. 1/5第二题:计算题1. 小明有3个红球和5个蓝球,从中任意抽取一球,抽到红球的概率是多少?解:总共有8个球,其中3个红球。

所以抽到红球的概率为3/8。

2. 古灵精怪的小明抛掷一枚骰子100次,出现数字"6"的次数为70次。

根据这个数据,估计掷骰子出现数字"6"的概率。

解:根据大数定律,如果进行足够多的试验次数,事件发生的频率将逐渐接近事件的概率。

所以,掷骰子出现数字"6"的概率约为70%。

第三题:应用题某班级中有40个学生,其中15个学生喜欢打篮球,20个学生喜欢踢足球,5个学生既喜欢打篮球又喜欢踢足球。

从班级中任选一个学生,问他喜欢打篮球或者踢足球的概率是多少?解:喜欢打篮球或者踢足球的学生总数为15+20-5=30个。

从班级中任选一个学生的概率为1/40。

所以,喜欢打篮球或者踢足球的概率为30/40=3/4。

总结:通过此次初中数学概率初步单元测试,我们了解到了概率的基本概念和计算方法。

概率是描述事件发生可能性的数值,可以用分数、小数或百分数表示。

在计算概率时,我们需要根据事件发生的次数和总数来确定概率的值。

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)

人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。

初中-数学-人教版-人教版九上 第25章 概率初步 单元测试题(一)

初中-数学-人教版-人教版九上 第25章 概率初步 单元测试题(一)

人教版九上第25章概率初步单元测试题(一)一、选择题1、桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A. 能够事先确定抽取的扑克牌的花色B. 抽到黑桃的可能性更大C. 抽到黑桃和抽到红桃的可能性一样大D. 抽到红桃的可能性更大2、下列事件中是必然事件的是()A. 今年2月1日,房山区的天气是晴天B. 从一定高度落下的图钉,落地后钉尖朝上C. 长度分别是2cm,3cm,4cm的三根木条首尾相接,组成一个三角形D. 小雨同学过马路,遇到红灯3、如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、9.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A. 12B.14C.16D.184、有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟,刚把两人洗完,就听到两个小家伙在床上笑,“你们笑什么?”妈妈问“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为()A. 14B.13C.12D. 15、从是,0,π,227,6这五个数中随机抽取一个数,抽到有理数的概率是()A. 15B.25C.35D.456、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A. 13B.23C.14D.157、在班级体锻课上,有三名同学站在△ABC的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个凳子,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在△ABC的()A. 三边中线的交点B. 三条角平分线的交点C. 三边上高的交点D. 三边垂直平分线的交点8、在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A. 8B. 12C. 16D. 209、一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则此口袋中估计白球的个数是()个.A. 20B. 30C. 40D. 5010、一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是()A. 13B.14C.27D.23二、填空题11、如图,是可以自由转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码______上的可能性最大.12、“经过某交通信号灯的路口,遇到红灯“是______事件(填“必然”、“不可能“、“随机”)13、“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.有一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是.14、抛掷一枚均匀的硬币,前5次都正面朝上,则抛掷第50次正面朝上的概率是.15、一个暗箱里装有10个黑球,8个白球,6个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是.16、在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,他们随机从三个赛道中抽取两个不同赛道,则甲乙两名同学恰好抽中相邻赛道的概率为.17、盒子里放着一个黑球和一个红球,它们除了颜色外,其余都相同.甲、乙两人规定每人摸出一球,摸出后再放回,摸到红球甲赢,摸到黑球乙赢,如果甲先摸,乙后摸,那么这个游戏______(填“公平”或“不公平”).18、在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为______.三、解答题19、口袋A中有2个相同的小球,分别写有数字3,6,口袋B中有4个相同的小球,分别写有数字3,4,5,6,在口袋B中随机地抽出一个小球放入口袋A中.求以口袋A中的3个小球上的数字为边能构成等腰三角形的可能性大小.20、下列成语,哪些刻画的是必然事件?哪些刻画的是不可能事件?哪些刻画的是随机事件?(1)万无一失;(2)胜败乃兵家常事;(3)水中捞月;(4)十拿九稳;(5)海枯石烂;(6)守株待兔;(7)百战百胜;(8)九死一生.你还能举出类似的成语吗?21、如图,假设可以随机在图中取点,(1)这个点取在阴影部分的概率是_______;(2)在保留原阴影部分情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为3 7 .22、游戏者同时转动如图的两个转盘进行“配紫色游戏”,若要使游戏者获胜的概率为1 10,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由.23、在不透明的袋子中装有5个红球和8个黄球,每个球除颜色外都相同.(1)从中任意摸出一个球,摸到球的可能性大.(2)如果再放入若干个黄球并摇匀,随机摸出一个球是红球的概率是13,请问放入了多少个黄球?24、学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10 三张扑克牌,乙手中有5、8、9 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.25、小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.26、某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率0.680.740.680.690.680.70(结果保留小数点后两位)(1)转动该转盘一次,获得铅笔的概率约为______;(结果保留小数点后一位)(2)铅笔每支0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天大致需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.参考答案1、【答案】B【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:A、因为袋中扑克牌的花色不同,所以无法确定抽取的扑克牌的花色,故本选项错误;B、因为黑桃的数量最多,所以抽到黑桃的可能性更大,故本选项正确;C、因为黑桃和红桃的数量不同,所以抽到黑桃和抽到红桃的可能性不一样大,故本选项错误;D、因为红桃的数量小于黑桃,所以抽到红桃的可能性小,故本选项错误.选B.2、【答案】C【分析】此题涉及的知识点是必然事件,根据必然事件的定义用排除法就可以得到答案【解答】A. 今年2月1日,房山区的天气是晴天,某一天,天气没有办法准确预测,属于偶然事件。

人教版数学九年级上册《概率初步》单元综合检测题含答案

人教版数学九年级上册《概率初步》单元综合检测题含答案

人教版数学九年级上学期《概率初步》单元测试(满分120分,考试用时120分钟)一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A. B. C. D.2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A. 个B. 个C. 个D. 个4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A. B. C. D.5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A. B. C. D.6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A. 次B. 次C. 次D. 次7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A. B. C. D. 不能确定8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A. B. C. D.9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A. 游戏对小明有利B. 游戏对小白有利C. 这是一个公平游戏D. 不能判断对谁有利10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A. B. C. D.二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.13.事件A发生的概率为0.05,大量重复做这种试验,事件A平均每100次发生的次数是.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.学|科|网...学|科|网...学|科|网...23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.24.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有个,黄球有个,现从中任意摸出一个是白球的概率为.试求袋中蓝球的个数;第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.25.,两个口袋中,都装有三个相同的小球,分别标有数字,,,小刚、小丽两人进行摸球游戏.游戏规则是:小刚从袋中随机摸一个球,同时小丽从袋中随机摸一个球,当两个球上所标数字之和为奇数时小刚赢,否则小丽赢.这个游戏对双方公平吗?通过列表或画树状图加以说明.26.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:请估计:当很大时,摸到白球的频率将会接近于多少?摸球的次数摸到白球的次数摸到白球的概率假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?试估算口袋中黑、白两种颜色的球各有多少个?参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A. B. C. D.【答案】D【解析】【分析】根据甲获胜的概率+和棋的概率+乙获胜的概率=1,求得乙获胜的概率,即可求得乙不输的概率.【详解】根据题意,乙获胜的概率是1-20%-40%=40%,∴乙不输的概率为::40%+40%=80%.故选D.【点睛】本题主要考查了概率的意义,根据“甲获胜的概率+和棋的概率+乙获胜的概率=1” 求得乙获胜的概率,是解决问题的关键.2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.【答案】D【解析】试题分析:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选D.考点:概率公式.视频3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A. 个B. 个C. 个D. 个【答案】B【解析】【分析】根据概率的意义依次判断后即可解答.【详解】①一事件发生的概率不可能大于1,正确,②大量试验中事件发生的频率就是事件发生的概率;不正确,概率是多次实验数据下的结果,频率只可近似的看作概率;③若一堆产品的合格率为95%,则从中任取100件就一定有95件合格品,5件次品,③错误,④用列举法求概率时列举出来的所有可能的结果应该是等可能的,正确.正确的有2个,故选B.【点睛】概率是反映事件的可能性大小的量.概率是大量实验数据下的结果,在小数据条件下,概率就失去意义了.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A. B. C. D.【答案】B【解析】试题分析:偶数有2、4、6,则P(向上的一面的点数为偶数)=.考点:概率的计算5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A. B. C. D.【答案】B【解析】【分析】列举出所有情况,看刚好能组成“细心”的情况占总情况的多少即可.【详解】画树状图:学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A. 次B. 次C. 次D. 次【答案】B【解析】【分析】因为只有两种颜色,所以如果前两次取出的颜色不同,则第三次取出的一定与前两次中的某一次的颜色相同.【详解】若第一次取出的是蓝色,第二次取出的若与第一次的颜色不同,是白色,则第三次取出的若是蓝色,就与第一次取出的颜色相同,若是白色就与第二次取出的颜色相同.所以最多取3次就能保证取得同样颜色的一双袜子.故选B.【点睛】本题考查了概率的意义,利用只有蓝、白两种颜色,取出的两种颜色各占一半是解题的关键.7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A. B. C. D. 不能确定【答案】A【解析】【分析】列出图表,然后根据概率公式列式进行计算即可得解.【详解】列表如下:共有100种情况,连续两次随机数相同的有10种情况,所以,P(连续两次随机数相同)=.故选A.【点睛】本题考查概率的求法,熟知概率公式(概率=所求情况数与总情况数之比)是解决问题的关键.8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A. B. C. D.【答案】C【解析】【分析】列举出所有情况,让甲的点数大于乙的情况数除以总情况数即为所求的概率.【详解】列表得:由表格可知,共有36种等可能的情况,甲的点数大于乙时,共有5+4+3+2+1=15种情况,甲获胜的机率是=.故选C.【点睛】本题考查了用列表法(或树状图法)求概率,列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果;当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A. 游戏对小明有利B. 游戏对小白有利C. 这是一个公平游戏D. 不能判断对谁有利【答案】C【解析】试题分析:根据游戏规则:总共结果有4种,分别是奇偶,偶奇,偶偶,奇奇,它们的和为奇,奇,偶,偶;由此可得:两人获胜的概率,进而得出答案.解:两人写得数字共有奇偶、偶奇、偶偶、奇奇四种情况,因此和为奇数或为偶数概率都为;所以这是一个公平游戏.故选:C.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.视频10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A. B. C. D.【答案】C【解析】【分析】由频率之和为1计算出白球的频率,再由数据总数×频率=频数,计算白球的个数即可.【详解】∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.40,∴口袋中白色球的个数可能是40×0.40=16个.故选C.【点睛】本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.解决本题的关键是根据频率之和为1计算出摸到白球的频率.二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.【答案】32【解析】【分析】已知小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,可得黄色球有40×20%=8个,而布袋中装有黄色、白色乒乓球共40个,所以口袋中白色球有40-8=32个.【详解】∵小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,∴黄色球有40×20%=8个,∵布袋中装有黄色、白色乒乓球共40个,∴口袋中白色球可能有40-8=32个.故答案为:32.【点睛】本题考查了利用频率估计概率.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.【答案】54【解析】【分析】利用大量反复试验下频率稳定值即概率,由估计出部分数目=总体数目乘以相应概率求出即可.【详解】∵在抛掷一个图钉的试验中,着地时钉尖触地的概率约为0.46,∴没有触地的概率是1-0.46=0.54.∴如果抛掷一个图钉100次,则着地时钉尖没有触地约为:100×0.54=54次.故答案为:54.【点睛】本题主要考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.事件A发生的概率为0.05,大量重复做这种试验,事件A平均每100次发生的次数是.【答案】5.【解析】试题解析:事件A发生的概率为0.05,大量重复做这种试验,则事件A平均每100次发生的次数为:100×0.05=5.考点:概率的意义.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)【答案】可能.【解析】试题解析:某同学期中考试数学考了100分,是随机事件,则他期末考试数学可能考100分,考点:随机事件.15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.【答案】【解析】【分析】从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,根据概率公式求解即可.【详解】∵从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,∴摸到的球不是红球的概率为.故答案为:.【点睛】本题考查了简单事件的概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.【答案】2【解析】【分析】根据概率的意义考虑出取得最后1粒的方法即可得解.【详解】根据游戏规则,先取的人第一次取2粒,然后保证第二次所取的粒数与另一人所取粒数之和为3即可取到最后1粒,从而使获胜的概率为1,所以,小明先取,要使小明获胜的概率为1,小明第一次应该取走2粒.故答案为:2.【点睛】本题考查了概率的意义,理解题目信息,判断出使两人所取的粒数之和是3是解题的关键.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.【答案】【解析】【分析】根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.【详解】根据题意分析可得:箱子里共有5个球,从箱子中任意摸出一个球是白球的概率是.故答案为:.【点睛】本题考查了简单事件概率的求法:①找出符合条件的情况数目;②找出全部情况的总数;二者的比值就是其发生的概率.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.【答案】【解析】【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽得卡片上数字的差的绝对值大于1的情况,再利用概率公式求解即可.【详解】画树状图得:∵共有9种等可能的结果,两次抽得卡片上数字的差的绝对值大于1的有2种情况,∴两次抽得卡片上数字的差的绝对值大于1的概率是:.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.【答案】一【解析】【分析】根据概率的求法,求出第一题使用“求助”小明顺利通关的概率及在第二题使用“求助”小明顺利通关的概率,再比较大小,即可判断出小明在第几题使用“求助”.【详解】第一题使用“求助”小明顺利通关的概率是:;第二题使用“求助”小明顺利通关的概率是:;∵,∴建议小明在第一题使用“求助”.故答案为:一.【点睛】本题主要考查了概率的意义和应用,解答本题的关键是分别求出第一题使用“求助”和第二题使用“求助”使小明顺利通关的概率.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.【答案】【解析】【分析】根据7批次种子粒数从1粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.【详解】∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故答案为:0.95.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?【答案】(数字之和为);要使这个游戏对双方公平,乙胜一次得分应为分.【解析】【分析】(1)用树状图法求得所以等可能的结果,再求得两个数字和为5的结果,利用概率公式求解即可;(2)分别计算甲、乙二人获胜的概率,由此即可求解.【详解】共有种等可能的情况,和为的有,,共种情况,可得:(数字之和为);因为(甲胜),(乙胜),故甲胜一次得分,要使这个游戏对双方公平,乙胜一次得分应为:(分).【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.【答案】所有可能出现的结果见表格;(甲获胜),(乙获胜).【解析】【分析】(1)根据题意列出表格,即可求得所有可能出现的结果;(2)根据表格可知:积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,根据概率公式求解即可.【详解】所有可能出现的结果如图:从上面的表格(或树状图)可以看出,所有可能出现的结果共有种,且每种结果出现的可能性相同,其中积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,∴甲、乙两人获胜的概率分别为:(甲获胜),(乙获胜).【点睛】本题考查了用列表法(或树状图法)求概率:当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.【答案】参加一次这种游戏活动得到福娃玩具的概率是;估计袋中白球接近的概率为.【解析】【分析】(1)根据概率的频率定义进行计算即可;(2)设袋中共有x个球,根据摸到红球的概率列出方程,解方程求的x的值,再求袋中白球接近的概率即可.【详解】根据题意可得:参加这种游戏活动为人次,公园游戏场发放的福娃玩具为;故参加一次这种游戏活动得到福娃玩具的概率为,∴参加一次这种游戏活动得到福娃玩具的概率是;∵实验系数很大,大数次实验时,频率接近与理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是,设袋中白球有个,根据题意得:,解得:,经检验,是方程的解.∴估计袋中白球接近个,。

人教版数学九年级上册《概率初步》单元测试附答案

人教版数学九年级上册《概率初步》单元测试附答案
∴P(两辆汽车一辆左转,一辆右转)= .
故选C.
9.如图,转动两个转盘,当指针所指的数之和为奇数时,小明胜,否则小亮胜,则小亮获胜的概率是()
A. B. C. D.
【答案】D
【解析】
【分析】
画出树状图,求出小亮获胜的概率即可.
【详解】如图,
和为偶数共有5中情况,
∴小亮获胜的概率是 .
故选D.
【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
人教版数学九年级上学期
《概率初步》单元测试
(满分120分,考试用时120分钟)
一、选择题(每小题3分,共30分)
1. “抛一枚均匀硬币,落地后正面朝上”这一事件是【】
A.必然事件B.随机事件C.确定事件D.不可能事件
2.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是P2,则()
7.一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是( )
A.6B.10C.18D.20
8.经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,那么经过这个十字路口的两辆汽车一辆左转、一辆右转的概率是( )
三、解答题(共8题,共72分)
17.布袋中装有1个红球,2个白球,3个黑球,它们除了颜色外完全相同,从袋中任意摸出一个球,求摸出 球是白球的概率.
18. 一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.

人教版数学九年级上册《概率初步》单元测试卷(附答案)

人教版数学九年级上册《概率初步》单元测试卷(附答案)

人教版数学九年级上学期《概率初步》单元测试【考试时间:90分钟分数:120分】一、选择题1.下列事件属于不可能事件的是()A. 抛一次骰子,向上的一面是点B. 打开电视机,正在转播足球比赛C. 地球上,向上抛的篮球会下落D. 从只有红球的袋子中,摸出个白球2.甲、乙、丙、丁四名选手参加米决赛,赛场共设,,,四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第道的概率是()A. 0B.C.D. 13.小刚掷一枚均匀的硬币,一连次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A. 0B. 1C.D.4.在一个不透明的口袋中,装有个除颜色不同其余都相同的球,如果口袋中装有个红球且摸到红球的概率为,那么等于()A. 10个B. 12个C. 16个D. 20个5.有两组扑克牌各三张,牌面数字均为,,,随意从每组牌中各抽一张,数字之和等于的概率是()A. B. C. D.6.袋中有个球,其中个是红球,个是白球,任意取出个球,这个球都是红球的概率是()A. B. C. D.7.掷两个骰子,下列说法错误的是()A. 点数之和为的可能性最大B. 点数之和为或者的可能性最小C. 点数之和为的概率为D. 点数之和不可能为8.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.9.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为红蓝,如果要使两人获胜机会相等,那么第颗骰子上蓝色的面数是()A. 6B. 5C. 4D. 310.下列说法错误的是()A. 在一定条件下必出现的现象叫必然事件B. 不可能事件发生的概率为C. 在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值D. 某种彩票中奖的概率是,买张该种彩票一定会中奖二、填空题11.在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.12.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.13.天阴了就会下雨是________事件,其发生的可能性在________到________之间.14.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.15.九年级有一个诗歌朗诵小组,其中男生人,女生人,先从中随机抽取一名同学参加表演,抽到男生的概率是________.16.有些事情我们事先能肯定它一定不会发生叫________事件.17.据永嘉气象预报,明天下雨的概率为,后天下雨的概率为,你校准备在这两天里选择一天举行运动会,应选择________天(仅从天气角度考虑).18.某机构发行福利彩票,在万张彩票中,中奖率是,那么下述推断①买万张彩票一定不中奖;②买万张彩票一定中奖;③买万张彩票一定不中奖;④买万张彩票可能会中奖.正确的是________.(只填序号)19.已知一个不透明的布袋里装有个红球和个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出个球,是红球的概率为,则等于________.20.从某鱼塘捕鱼条后做好标记放回,隔一段时间再捕条鱼,发现其中带标记的有条,那么鱼塘中约有________条鱼.三、解答题21.周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.22. 为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?23.不透明的口袋里装有红、白、蓝三种颜色的小球(大小、形状都相同),其中红球有个,蓝球有个,小王通过大量的反复实验(每次取一个球,放回搅匀后再取第二个),发现取出红球的频率稳定在左右.(1)请你估计袋中白球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用画树状图或列表法求两次都是蓝球的概率.24.小明和小红在讨论两个事件,小明说“中央电视台天气预报说明天小雨,明天一定会下雨”,而小红却说不一定,同时她还认为“‘供电局通知,明天电路检修,某小区停电’该小区明天一定会停电”他们俩意见不统一,各执己见,他们说得对吗?你能说说你的看法吗?25.有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4 .这6个球除所标数字以外没有任何其他区别.从甲、乙两袋各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.26.(阅读解答题)阅读下面的解题过程:妈妈给小明一串钥匙,共有把,小明决定先试试哪把是防盗门的钥匙.如果不开门,你能说明他第一次试开就成功的概率有多大吗?写出用计算器或其他替代物模拟试验的方法.解:方法一:可以用一枚正四面体骰子,掷得点为试开成功;方法二:可以用张扑克,红桃,黑桃,方块,梅花各一张,摸到红桃为试开成功;方法三:可用计算器模拟,在之间产生一个随机数,若产生的是,则表示试开成功.你认为上述解法对吗?为什么?27.一个盒子中装有两个红色球,两个白色和一个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.利用画树状图或列表的方法求摸到的两个球的颜色能配成紫色的概率(红色和蓝色可以配成紫色);若将题干中的“记下颜色后放回”改为“记下颜色后不放回”,请直接写出摸到的两个球的颜色能配成紫色的概率.28. 端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.答案与解析一、选择题1.下列事件属于不可能事件的是()A. 抛一次骰子,向上的一面是点B. 打开电视机,正在转播足球比赛C. 地球上,向上抛的篮球会下落D. 从只有红球的袋子中,摸出个白球【答案】D【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A、掷一次骰子,向上的一面是6点是随机事件,故A错误;B、打开电视机,正在转播足球比赛是随机事件,故B错误;C、地球上,向上抛的篮球会下落是必然事件,故C错误;D、从只有红球的袋子中,摸出1个白球是不可能事件,故D正确;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.甲、乙、丙、丁四名选手参加米决赛,赛场共设,,,四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第道的概率是()A. 0B.C.D. 1【答案】B【解析】【分析】由赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.【详解】∵赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:;故选:B.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.3.小刚掷一枚均匀的硬币,一连次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A. 0B. 1C.D.【答案】C【解析】小刚掷一枚硬币,他第十次掷硬币,出现正面朝上还是反而朝上,与前面九次没有任何联系,这十次掷硬币,是十个相互独立的事件,每一次正面朝上与反面朝上,都是概率相同的.故选C.4.在一个不透明的口袋中,装有个除颜色不同其余都相同的球,如果口袋中装有个红球且摸到红球的概率为,那么等于()A. 10个B. 12个C. 16个D. 20个【答案】A【解析】根据概率的定义,,解得n=10.考点:概率的计算点评:此题主要考查了求概率的问题,用到的知识点为:概率=所求情况与总情况数之比,得到所求的情况数是解决本题的关键.5.有两组扑克牌各三张,牌面数字均为,,,随意从每组牌中各抽一张,数字之和等于的概率是()A. B. C. D.【答案】B【解析】【分析】列举出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】列表得:1 2 31 1+1=2 2+1=3 3+1=42 1+2=3 2+2=4 3+2=53 1+3=4 2+3=5 3+3=6∴一共存在9种情况,数字之和等于4的有3种情况,∴随意从每组牌中各抽一张,数字之和等于4的概率是,故选:B.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.袋中有个球,其中个是红球,个是白球,任意取出个球,这个球都是红球的概率是()A. B. C. D.【答案】B【解析】【分析】可以认为分三次取球,第一次有10种可以选择,因而有10种情况,第二次剩余9个球,则第二次有9种情况可以选择,第三次有8种情况,因而可以得到三次取球得到的取法的种数,同理求得三次都是红球的取法,利用概率公式即可求解.【详解】任意取出3个球的情况有:10×9×8=720种;第一次取到红球的情况有7种,则取第二次,两次都是红球的情况有7×6种,第三次取球,三次都是红球的情况有7×6×5=210种.则这3个球都是红球的概率是.故选:B.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.掷两个骰子,下列说法错误的是()A. 点数之和为的可能性最大B. 点数之和为或者的可能性最小C. 点数之和为的概率为D. 点数之和不可能为【答案】C【解析】【分析】列举出所有情况,再把各选项事件的概率计算出来,加以比较即可.【详解】共有36种情况.1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知:点数之和为11的概率为,而不是,所以选项C不正确,故选:C.【点睛】本题考查了可能性大小以及概率求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.【答案】B【解析】将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,∴该组能够翻译上述两种语言的概率为:=.9.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为红蓝,如果要使两人获胜机会相等,那么第颗骰子上蓝色的面数是()A. 6B. 5C. 4D. 3【答案】D【解析】试题分析:据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.10.下列说法错误的是()A. 在一定条件下必出现的现象叫必然事件B. 不可能事件发生的概率为C. 在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值D. 某种彩票中奖的概率是,买张该种彩票一定会中奖【答案】D【解析】【分析】根据必然事件,随机事件,概率的定义进行判断.【详解】A、在一定条件下必出现的现象叫必然事件,说法正确,故本选项错误;B、不可能事件发生的概率为0,说法正确,故本选项错误;C、在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,说法正确,故本选项错误;D、某种彩票中是随机事件,买100张该种彩票不一定会中奖,说法错误,故本选项正确.故选:D.【点睛】本题考查了用频率估计概率的知识,解题的关键是了解多次重复试验事件发生的频率可以估计概率.二、填空题11.在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.【答案】从中任意摸出一个球是红球【解析】【分析】根据随机事件的概率是大于0小于1来设计即可.【详解】一种不透明的袋子中装有2个红球和3个白球,从中任意摸出一个球是红球;故答案为:从中任意摸出一个球是红球.【点睛】此题考查了模拟实验,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.【答案】【解析】【分析】让剩余黑球的个数除以剩余球的总数即为所求的概率.【详解】袋中有2个红球,3个白球和5个黑球,共10球,则每次摸出一只小球不放回,在连续2次摸出的都是黑球的情况下,第3次摸出黑球的概率是:.故答案为:.【点睛】本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.天阴了就会下雨是________事件,其发生的可能性在________到________之间.【答案】(1). 随机(2). 0(3). 1【解析】【分析】天阴了就会下雨是________事件,其发生的可能性在________到________之间.【详解】天阴了就会下雨是随机0事件,其发生的可能性在0到1之间.故答案是:随机;0;1.【点睛】本题考查了随机事件的定义,掌握随机事件就是可能发生也可能不发生的事件.14.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【答案】.【解析】试题分析:画树状图如下:∴P(两次摸到同一个小球)==.故答案为:.考点:列表法与树状图法;概率公式.15.九年级有一个诗歌朗诵小组,其中男生人,女生人,先从中随机抽取一名同学参加表演,抽到男生的概率是________.【答案】.【解析】试题分析:根据概率的求法,求出总人数17人,再求出男生的人数与总人数的比值就是其发生的概率.故答案是.考点:概率.106144216.有些事情我们事先能肯定它一定不会发生叫________事件.【答案】不可能【解析】【分析】根据不可能事件的定义直接解答即可.【详解】有些事情我们事先能肯定它一定不会发生叫不可能事件,故答案为:不可能.【点睛】本题考查了不可能事件的定义:不可能事件是指在一定条件下,一定不发生的事件.17.据永嘉气象预报,明天下雨的概率为,后天下雨的概率为,你校准备在这两天里选择一天举行运动会,应选择________天(仅从天气角度考虑).【答案】后【解析】【分析】根据相应概率判断即可.【详解】明天下雨的概率为80%大于后天下雨的概率为30%,运动会应选在下雨概率小的日子.故答案为:后.【点睛】本题考查了概率,解题的关键是理解概率是反映事件的可能性大小的量.18.某机构发行福利彩票,在万张彩票中,中奖率是,那么下述推断①买万张彩票一定不中奖;②买万张彩票一定中奖;③买万张彩票一定不中奖;④买万张彩票可能会中奖.正确的是________.(只填序号)【答案】④【解析】【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生,也不是一定不会发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【详解】概率值只是反映了事件发生的机会的大小,不是会一定发生,也不是一定不会发生.根据题意可知:①买10万张彩票一定不中奖,错误;②买30万张彩票一定中奖,错误;③买30万张彩票一定不中奖,错误;④买30万张彩票可能会中奖,正确.故答案为④.【点睛】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小.19.已知一个不透明的布袋里装有个红球和个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出个球,是红球的概率为,则等于________.【答案】【解析】【分析】由一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,根据概率公式可得:,解分式方程即可求得答案.【详解】根据题意得:,解得:a=6,经检验,a=6是原分式方程的解,所以a=6.故答案为6.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.20.从某鱼塘捕鱼条后做好标记放回,隔一段时间再捕条鱼,发现其中带标记的有条,那么鱼塘中约有________条鱼.【答案】2000【解析】【分析】带标记鱼的频率近似等于概率.利用概率求出鱼塘中鱼的总数即可.【详解】设池中有x条鱼,带标记的鱼的概率近似等于,解得x=2000,故鱼塘中约有2000条鱼.故答案为:2000【点睛】本题考查利用频率估算概率,得到带标记的鱼的概率是解题关键.三、解答题21.周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.【答案】此游戏对小明有利.【解析】【分析】利用树状图法得出所有的可能,进而分别求出获胜的概率即可.【详解】如图所示:,所有的可能为;(正,正),(正,反),(反,正),(反,反),故爸爸获胜的概率为:,妈妈获胜的概率为:,小明获胜的概率为:,故此游戏对小明有利.【点睛】本题考查了游戏公平性,正确利用树状图法求概率是解题的关键.22. 为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?【答案】解:(1)画树状图得:∵共有12种等可能结果,甲得1分的情况有6种,∴P(甲得1分)。

概率初步单元测试题一和答案

概率初步单元测试题一和答案

概率初步单元测试题一一、选择题(每题3分,共30分)1、下列事件中,属于随机事件的有()①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币有国徽的一面朝下;④小明长大会成为一名宇航员.A.①②③B.①③④C.②③④D.①②④2、下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖概率是1%”表示买100张彩票一定会中奖D.“抛一枚正方体骰子朝正面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数3、 6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A. B. C. D.4、袋中放有一套(五枚)北京2008年奥运会吉祥物福娃纪念币,依次取出(不放回)两枚纪念币,恰好能够组成“欢迎”的概率是()A.B. C.D.5、同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是()A. B.C.D.6、有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b 为实数,那么a+b=b+a.其中是必然事件的有()A.1个 B.2个 C.3个 D.4个7、抛一枚硬币,正面朝上的概率为P 1;掷一枚普通的正方体骰子,掷得的点数小于7的概率为P 2;口袋中有红、黄、白球各一个,从中一次摸出两个红球的概率为P 3.则P 1、P 2、P 3的大小关系是 ( )A.P 3<P 2<P 1.B.P 1<P 2<P 3.C.P 3<P 1<P 2.D.P 2<P 1<P 3.8、把标有号码1,2,3,……,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是( )A 、B 、C 、D 、9、 从标有号数1到100的100张卡片中,随意抽取一张,其号数为3的倍数的概率是( ) A. B. C. D. 无法确定10、某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

数学九年级上册《概率初步》单元测试卷(带答案)

数学九年级上册《概率初步》单元测试卷(带答案)
16.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:
(1)朝上的点数有哪些结果?他们发生的可能性一样吗?
(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?
(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?
参考答案
一.选择题(共10小题,满分40分,每小题4分)
1.任意掷一枚骰子,下列情况出现的可能性比较大的是( )
A.面朝上的点数是6B.面朝上的点数是偶数
C.面朝上的点数大于2D.面朝上的点数小于2
【答案】C
【解析】
【分析】
根据题意与概率的计算公式,比较四个选项中包含的情况数目,比较可得答案.
【详解】解:A.面朝上的点数为6点的情况为1种;
13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____.
14.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m2.
A. 小亮明天 进球率为10%
B. 小亮明天每射球10次必进球1次
C 小亮明天有可能进球
D. 小亮明天肯定进球
【答案】C

人教版九年级上册数学《概率初步》单元测试卷(含答案)

人教版九年级上册数学《概率初步》单元测试卷(含答案)

人教版九年级上册数学《概率初步》单元测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,是二等品的概率等于()A.112 B.16C.14D.7122.学校从5位骨干教师中(含有甲)抽调3人组成,则甲一定抽调到的概率是()A.35 B.25C.45D.153.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

其中必测项目为耐力类,抽测项目为:速度类有50米、100米、50米×2往返跑三项,力量类有原地掷实心球、立定跳远,引体向上(男)或仰卧起坐(女)三项。

市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.13B.23C.16D.194.6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A.16 B.13C.12D.235.下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上6.如下图,大厅中铺了3种地砖(除了颜色外无其他差别),一种宠物在地板上自由地走来走去,它最后停留在哪种地砖上的概率较大?()A、砖 B 、砖 C 砖 D 、砖或砖. 7.下列成语所描述的事件是必然发生的是 ( )A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 8.下列事件是必然事件的是( )A .抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA 球赛 C.射击运动员射击一次,命中十环 D.若a 是实数,则0a 9.下列说法正确的是( )A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C .“彩票中奖的概率是1%”表示买100张彩票一定会中奖D .“抛一枚正方体骰子朝正面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数10.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425 B .525 C .625 D .925二 、填空题(本大题共5小题,每小题3分,共15分)11.为迎接2024年奥运会,小甜同学设计了两种乒乓球,一种印有奥运五环图案,另一种印有奥运福娃图案.若将8个印有奥运五环图案和12个印有奥运福娃图案的乒乓球放入一个空袋中,且每个球的大小相同,搅匀后在口袋中随机摸出一个球,则摸到印有奥运五环图案的球的概率是 .987655432112.在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是.13.从1-,1,2三个数中任取一个,作为一次函数3=+的k值,则所得一次函数y kx中y随x的增大而增大的概率是。

人教版数学九年级上册《概率初步》单元综合检测(带答案)

人教版数学九年级上册《概率初步》单元综合检测(带答案)
A. B. C. D.
11.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在 的()
A.三边中垂线的交点B.三边中线的交点
C.三条角平分线的交点D.三边上高的交点
12.在一个不透明的布袋中,有黄色、白色的玻璃球共有10个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是( )
A. B. C. D.1
【答案】A
【解析】
【分析】
根据概率公式即可得到结论.
【详解】从甲、乙、丙、丁四人中任选1名代表,甲被选中 可能性是 .
故选A.
【点睛】本题考查了可能性的大小,解题的关键是掌握概率公式.
3.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( )
18.甲盒中装有3个乒乓球,分别标号为1、2、3;乙盒中装有2个乒乓球,分别标号为1、2.现分别从每个盒中随机取出1个乒乓球,则取出的两个乒乓球的标号之和为4的概率是________________.
19.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.
A. B. C. D.
【答案】B
【解析】
【分析】
求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.
【详解】∵黄扇形区域的圆心角为90°,
所以黄区域所占的面积比例为 ,
即转动圆盘一次,指针停在黄区域的概率是 ,

概率初步单元测试卷

概率初步单元测试卷

一、选择题(每题5分,共30分)1.下列事件是必然发生的是()A.早晨的太阳一定从东方升起B.今年中秋节晚上一定能看到月亮C.打开电视机,正在播少儿节目D.小漩今年14岁了,她一定是初中生2.将4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好是红球、白球、黑球都能摸到,这件事件()A.可能发生 B.不可能发生 C.很可能发生D.必然发生3.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1•~6的点数,掷得面朝上的点数为奇数的概率为()A.16B.13C.14D.124.在一个不透明的口袋中,装有若干个除颜色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为()A.12个B.9个C.6个D.3个5.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是()A.12B.13C.23D.16图 1图2第6题第5题6.如图,一个小球从A点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H点的概率是()A.12B.14C.16D.18二、填空题(每空4分,共32分)7.抛掷两枚均匀正六面体骰子,写出这个试验中的一个随机事件:,写出这个试验中的一个必然发生的事件:.8.在50件产品中有一等品30件,二等品15件,次品5件,从中任取一件.求(1)它的一等品的概率是;(2)它不是次品的概率是.9.在中考体育达标跳绳项目测试中,1min跳160次为达标.小敏记录了他预测时1min跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是.10.某声讯台综艺节目接到热线电话3000个,现要从中抽取“幸运听众”10名,刘强同学打通了一次热线电话,那么她成为“幸运听众”的概率为.11.在一个盒子中有红球、黑球和黄球共20个,每个球除颜色外,得到黑球都相同,从中任意摸出一球,得到红球的概率为12的概率为1,则这20个球中黄球有个.512.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04、0.2、0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为米2(精确到0.01米2).三、解答题(共38分)13.(20分)布袋中有红、黄、蓝三种颜色的球各一个.(1)从中先摸出一个球,记录下它的颜色,将它放回布袋,搅匀,再摸出一个球,记录下颜色.求得到的两个颜色中有“一红一黄”的概率;(2)如果摸出第一个球之后不放回布袋,再摸出第二个球,这时得到的两个颜色中有“一红一黄”的概率是多少?14.(18分)交通信号灯俗称“红绿灯”.“红灯停,绿灯行”是我们日常生活中必须遵守的交通规则,这样才能保障交通的顺畅和行人的安全,下面这个问题你能解决吗?小刚每天骑自行车上学都要经过三个安装有红灯和绿灯的路口,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到红灯的概率是多少?他最多遇到一次红灯的概率是多少?(请用树形图分析)。

概率初步单元测试(北师版)(含答案)

概率初步单元测试(北师版)(含答案)

学生做题前请先回答以下问题问题1:在一定条件下,有些事情我们事先能肯定它一定发生,这些事情称为________事件;有些事情我们事先能肯定它一定不会发生,这些事情称为________事件;有些事情我们事先无法确定它会不会发生,这些事情称为不确定事件,也称________事件.问题2:事件分为___________和___________,确定事件又分为___________和___________.问题3:事件分为必然事件、不可能事件和不确定事件,通常用1(或100%)表示___________发生的可能性,用0表示___________发生的可能性,用0~1之间的数表示___________发生的可能性,该数据越接近1,表示该事件发生的可能性越大.问题4:频率:在n次重复试验中,不确定事件A发生了m次,则比值_____称为事件A发生的频率.问题5:概率:刻画事件A发生的可能性大小的数值,称为事件A发生的________,记为________.必然事件发生的概率为________,不可能事件发生的概率为________,不确定事件A发生的概率P(A)的范围是___________________.概率初步单元测试(北师版)一、单选题(共15道,每道6分)1.下列事件是确定事件的是( )A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在学校操场上向上抛出的篮球一定会下落答案:D解题思路:确定事件包括必然事件和不可能事件,根据题意,在学校操场上向上抛出的篮球一定会下落,是必然事件,故选D.试题难度:三颗星知识点:随机事件2.下列事件中是不可能事件的是( )A.有两边及一角对应相等的三角形全等B.随机掷一枚硬币,落地后正面朝上C.在足球赛中,弱队战胜强队D.度量三角形的内角和,结果是360°答案:D解题思路:不可能事件指我们事先知道一定不会发生的事件,三角形内角和是180°,所以结果为360°是一定不会发生的.故选D.试题难度:三颗星知识点:随机事件3.从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是( )A.标号小于6B.标号大于6C.标号是奇数D.标号是3答案:A解题思路:必然事件是指在一定条件下,我们事先能肯定它一定会发生的事件,从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张,标号小于6是一定会发生的.故选A.试题难度:三颗星知识点:随机事件4.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( )A.事件A,B都是随机事件B.事件A,B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件答案:D解题思路:必然事件是指在一定条件下,我们事先能肯定它一定会发生的事件,随机事件指我们事先不能确定它会不会发生的事件.事件A,一年最多有366天,所以367人中必有2人的生日相同,是必然事件;事件B,抛掷一枚均匀的骰子,朝上的面点数为1,2,3,4,5,6中的一种,点数为偶数是随机事件.故选D.试题难度:三颗星知识点:随机事件5.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A.3个B.不足3个C.4个D.5个或5个以上答案:D解题思路:根据取到白球的可能性较大,可以判断出白球的数量大于红球的数量,因为袋中有红球4个,要使袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.试题难度:三颗星知识点:可能性6.5个红球、4个白球放入一个不透明的盒子里,从中摸出6个球,恰好红球与白球都摸到,这件事情属( )A.不可能发生B.可能发生C.很可能发生D.必然发生答案:D解题思路:5个红球、4个白球放入一个不透明的盒子里,从中摸出6个球,恰好红球与白球都摸到,这件事情一定会发生,是必然事件.故选D.试题难度:三颗星知识点:可能性7.“a是有理数,”这一事件是( )A.必然事件B.不确定事件C.不可能事件D.随机事件答案:A解题思路:试题难度:三颗星知识点:随机事件8.如图所示,一个可以自由转动的均匀的转盘被等分成6个扇形,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:概率9.用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:概率10.四张质地、大小相同的卡片上,分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张,则抽取的卡片是轴对称图形的概率为( )A. B.C. D.1答案:A解题思路:试题难度:三颗星知识点:概率11.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到的卡片上算式正确的概率是( )A. B.C. D.1答案:A解题思路:试题难度:三颗星知识点:概率12.九张同样的卡片分别写有数字-4,-3,-2,-1,0,1,2,3,4,任意抽取一张,所抽卡片上数字的绝对值小于2的概率是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:概率13.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个答案:D解题思路:试题难度:三颗星知识点:利用频率估计概率14.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:概率15.如图,A,B是数轴上两点.在线段AB上任取一点C,则点C到表示-1的点的距离不大于2的概率是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:概率。

人教版九年级上册数学《概率初步》单元测试(含答案)

人教版九年级上册数学《概率初步》单元测试(含答案)
2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为
A. B. C. D.
3.下列说法中正确的是()
A.不确定事件发生的概率是不确定的
B.事件发生的概率可以是任何小于 的正数
C.事件发生的概率可以等于事件不发生的概率
C,必然事件是一定会发生的事件,则对于选项C很明显不一定能发生,故此选项错误;
D,此试卷确实共24小题,所以是必然事件,故此选项正确.
故选D.
2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为
A. B. C. D.
4.在“红桃 、红桃 、红桃 ”这三张扑克牌中任取一张,抽到“红桃 ”的概率是()
A.
B.
C.
D.
【答案】B
【解析】
【分析】
根据题意,共3张扑克牌,其中有1张为“红桃7”,根据概率的计算公式计算可得答案.
【详解】解:根据题意,共3张扑克牌,其中有1张为“红桃7”,则抽到“红桃7”的概率是 ,
故选B.
0.074
0.069
0.069
0.071
0 070
0.069
根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).
12.在用模拟试验估计50名同学中有两个是同一天生日 概率中,将小球每次搅匀的目的是_________.
13.一个布袋里面装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是_______.
14.除颜色外完全相同的五个球上分别标有1,2,3,4,5五个数字,装入一个不透明的口袋内搅匀.从口袋内任摸一球记下数字后放回.搅匀后再从中任摸一球,则摸到的两个球上数字和为5的概率是________.

概率初步单元测试(人教版)(含答案)

概率初步单元测试(人教版)(含答案)

概率初步单元测试(人教版)试卷简介:检测学生概率章节的知识掌握情况,包括随机事件的分类,可能性的大小,以及用列表法或者树状图法来计算一个事件的概率.主要检测学生对于事件的认识,以及概率意义的理解,同时检测学生用树状图法来计算概率的操作是否完善.一、单选题(共17道,每道5分)1.下列事件为必然事件的是( )A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球答案:D解题思路:必然事件是指在一定条件下,必然会发生的事件;随机事件是指在一定条件下,有可能发生,也有可能不发生的事件.A,B,C选项中的事件可能发生也可能不发生的事件,属于随机事件,只有D选项中所描述的是必然事件.试题难度:三颗星知识点:必然事件2.下列说法正确的是( )A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近答案:D解题思路:随机事件的概率是指其发生可能性的大小,是对结果可能性大小的猜测.A选项“明天降雨的概率是80%”是指“明天降雨”这个事件发生的可能性是80%,而具体会不会下雨,下多长时间的雨事先无法预计.B选项“抛一枚硬币正面朝上的概率为”是指“抛一枚硬币正面朝上”这个事件发生的可能性是,是一种可能性,抛两次可能一次也没有正面朝上.C选项“彩票中奖的概率为1%”是指“彩票中奖”这个事件发生的可能性是1%,而买100张彩票会不会中奖无法确定,可能根本就不会中奖.D选项“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近,并且抛掷次数越多,频率越稳定在,符合用大量的重复试验,利用频率估计概率的方法.试题难度:三颗星知识点:概率的意义3.下列事件中是确定事件的是( )A.篮球运动员身高都在2米以上B.弟弟的体重一定比哥哥的轻C.明年教师节一定是晴天D.吸烟有害身体健康答案:D解题思路:确定事件包括必然事件和不可能事件.必然事件是指在一定条件下,一定发生的事件,概率为1.不可能事件是指在一定条件下,一定不发生的事件,概率为0.只有D是必然事件,属于确定事件.试题难度:三颗星知识点:事件的分类4.事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为,,,则,,的大小关系正确的是( )A. B.C. D.答案:C解题思路:先判定事件A,B,C分别属于什么事件,再对其概率可能性进行比较.事件A:打开电视,它正在播广告,可能发生可也能不发生,是一个随机事件,所以对于此事件本身;事件B:抛掷一个均匀的骰子,朝上的点数小于7,是必然发生的,属于必然事件,所以;事件C:在标准大气压下,温度低于0℃时冰融化,是一定不会发生的,属于不可能事件,所以.∴.试题难度:三颗星知识点:概率的意义5.抛一枚硬币,正面朝上的可能性是0.5.现在已经抛了三次,都是正面朝上,若再抛第四次,则正面朝上的可能性是( )A.大于0.5B.等于0.5C.小于0.5D.无法判断答案:B解题思路:第四次抛掷的结果与前三次无关,是相互独立的,所以在第四次抛掷时,正面朝上的可能性仍旧是0.5.试题难度:三颗星知识点:概率的意义6.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”,如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是( )A. B.C. D.答案:B解题思路:从1,3,4,5中任选两数,所有可能出现的结果如下,共有12种结果,每种结果的可能性相同,其中是“V数”的结果有6种:324,325,423,425,523,524,故能与2组成“V数”的概率是.试题难度:三颗星知识点:列表法与树状图法7.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A.12个B.16个C.20个D.30个答案:A解题思路:∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,∴白球的个数为4×3=12.试题难度:三颗星知识点:模拟实验8.在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,.现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,若点P在反比例函数的图象上,则点P落在正比例函数y=x的图象上方的概率是( )A. B.C. D.答案:C解题思路:首先需要确定P点坐标的所有情况,再判断P点落在正比例函数y=x的图象上方的可能情况,进而确定概率.点P的坐标有4种结果:,每种结果出现的可能性相同,在坐标系中分别标出他们的位置,以及y=x的图象如图所示在正比例函数y=x的图象上方的结果只有一种:,故点P落在正比例函数y=x的图象上方的概率是.试题难度:三颗星知识点:反比例函数图象上点的坐标特征9.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则孵化的三只雏鸟中恰有两只雌鸟的概率是( )A. B.C. D.答案:B解题思路:画树状图,如图所示:所有等可能的情况有8种,其中三只雏鸟中恰有两只雌鸟的情况有3种,则.故选B.试题难度:三颗星知识点:列表法与树状图法10.为支援灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2,这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是( )A. B.C. D.答案:C解题思路:小慧所拨字母的所有可能的组合用树状图表示如图所示,共6中可能,则一次就拨通电话的概率为.试题难度:三颗星知识点:列表法与树状图法11.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )A. B.C. D.答案:B解题思路:注意是从剩余两张卡片抽取,是不放回型.用树状图画出坐标(a,b)的所有情况以及符合题意的情况如图所示:共有6种可能,其中在第二象限的有2种,所以点(a,b)在第二象限的概率为.试题难度:三颗星知识点:列表法与树状图法12.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是( )A. B.C. D.答案:B解题思路:注意是不放回型.用树状图画出所有可能以及符合题意的情况,如图所示:共有12种可能,其中符合题意的有8种,所以两次摸出的小球的标号的和为奇数的概率.试题难度:三颗星知识点:列表法与树状图法13.在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( )A. B.C. D.答案:C解题思路:注意是放回型.用树状图法表示所有情况以及符合题意的情况,如图所示:共有16种可能,符合题意的有4种,则两次都摸到白球的概率为.试题难度:三颗星知识点:列表法与树状图法14.在一个不透明的口袋里有红、鸀、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个鸀球,若随机摸出一个球是鸀球的概率是,则随机摸出一个球是蓝球的概率是( )A.9B.C. D.答案:D解题思路:由题意得摸到任何一种颜色球的概率是相同的.设口袋中有蓝球x个,由题意得,,解得,即有蓝球9个.∴随机摸出一个球是蓝球的概率是.试题难度:三颗星知识点:概率公式15.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为( )A. B.C. D.答案:A解题思路:至多有一次正面朝下,也就是一次也不朝下,或者只有一次朝下,用树状图法画出所有情况以及符合题意的情况如图所示,共4种情况,符合题意的有3种,∴至多有一次正面朝下的概率为.试题难度:三颗星知识点:概率公式16.小刚与小亮一起玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用“1”,“2”,“3”表示.固定指针,同时转动两个转盘,任其自由停止.若两指针指的数字和为奇数,则小刚获胜;否则,小亮获胜.则在该游戏中小亮获胜的概率是( )A. B.C. D.答案:C解题思路:由题意得,转盘指针指向三个区域的概率是等可能的,并且第一个转盘指向某个数字与第二个转盘无关.用树状图表示所有情况以及结果是奇数的情况如图所示:共有9种可能,小刚获胜的有4种可能,所以小刚获胜的概率,小亮获胜的概率为.试题难度:三颗星知识点:几何模型概率—转盘概率17.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A. B.C. D.答案:D解题思路:由题意得,第一个转盘指向某种颜色与第二个转盘无关,第一个转盘中,指针指向两种颜色的概率是等可能的,第二个转盘中,指针指向两种颜色的概率不相同,所以先将第二个转盘化成等可能的(将蓝色区域分成相等的两块,指针指向某一块的区域的概率是等可能的).用树状图表示所有情况以及符合题意的情况如图所示:共有6种可能,符合题意的有3中,则可配成紫色的概率是.试题难度:三颗星知识点:几何模型概率—转盘概率第11页共11页。

人教版九年级上册概率初步单元测试卷1

人教版九年级上册概率初步单元测试卷1

人教版九年级上册概率初步单元测试卷1一、选择题(共10小题;共50分)1. 下列事件发生的概率为的是A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上B. 今年冬天黑龙江会下雪C. 随意掷两个均匀的骰子,朝上面的点数之和为D. 一个转盘被分成个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域2. 下列各事件中,属于必然事件的是A. 抛一枚硬币,正面朝上B. 早上出门,在第一个路口遇到红灯C. 在平面内,度量一个三角形的内角度数,其和为D. 本书分放在个抽屉,至少一个抽屉内有本书3. 让图6-7-1中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是的倍数或的倍数的概率等于A. B. C. D.4. 下列说法:“明天的降水概率为”是指明天有的时间在下雨;连续抛一枚硬币次,出现正面朝上的次数一定是次A. 只有正确B. 只有正确C. 都正确D. 都错误5. 新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:下面四个推断合理的是A. 当抽检口罩的数量是个时,口罩合格的数量是个,所以这批口罩中“口罩合格”的概率是B. 由于抽检口罩的数量分别是和个时,口罩合格率均是,所以可以估计这批口罩中“口罩合格”的概率是C. 随着抽检数量的增加,“口罩合格”的频率总在附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是D. 当抽检口罩的数量达到个时,“口罩合格”的概率一定是6. 太原是我国生活垃圾分类的个试点城市之一,垃圾分类的强制实施也即将提上日程.根据规定,我市将垃圾分为了四类:可回收物、厨余垃圾、有害垃圾和其他垃圾(如图).现有投放这四类垃圾的垃圾桶各个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,则投放正确的概率是C. D.7. 下列不是必然事件的是A. 角平分线上的点到角两边的距离相等B. 三角形任意两边之和大于第三边C. 面积相等的两个三角形全等D. 三角形内心到三边距离相等8. 小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是D.9. 小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第()个图案中有个正方体,第()个图案中有个正方体,第()个图案中有个正方体,按照此规律,从第()个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是A. B. C. D.10. 掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有至六个数.连续掷两次,掷得面向上的点数之和是的倍数的概率为A.二、填空题(共6小题;共30分)11. 有两辆车按,编号,舟舟和嘉嘉两人可任意选坐一辆车.则两个人同坐号车的概率为.12. 王刚的身高将来会长到,这个事件的概率为.13. 用万元资金投资一项技术改造项目,如果成功,则可盈利万元;如果失败,将亏损全部投资.已知成功的概率是,这次投资项目期望大致可盈利万元.14. 一个暗箱里放有个白球和个红球,它们除颜色外完全相同.若每次将球搅匀后,任意摸出个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在附近,那么可以推算出的值大约是.15. “太阳每天从东方升起”,这是一个事件.(填“确定”或“不确定”).16. 如图,以等腰三角形的斜边为直角边向外作第个等腰直角三角形,再以等腰直角三角形的斜边为直角边向外作第个等腰直角三角形,,如此作下去,若,则第个等腰直角三角形的面积.三、解答题(共8小题;共104分)17. 转动如图所示的转盘一次,比较下列个事件发生的可能性大小后,用“很可能”、“可能”、“不太可能”、“不可能”填空:(1)转到红色;(2)转到白色;(3)转到蓝色;(4)转到黑色.18. 判定下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)从地面往上抛出的篮球会落下.(2)两个负数的和可能为正数.(3)买一张彩票中大奖.(4)抛掷一枚硬币,落地后正面朝上.(5)两个正整数的和是,其中一个正整数必定小于或等于.19. 集市上有一个人在设摊“摸彩”只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球个,且每一个球上都写有号码(号),另外袋中还有个红球,而且这个球除颜色外其余完全相同.规定每次只摸一个球,摸前交元钱且在内写一个号码,摸到红球奖元,摸到号码数与你写的号码相同奖元.(1)你认为该游戏对“摸彩”者有利吗?说明你的理由.(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?20. 一个口袋中放有个涂有红、黑、白三种颜色的质地相同的小球,若红球个数是黑球个数的倍多个,从袋中任取一个球是白球的概率是.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.21. 在一个口袋中有个完全相同的小球,它们分别标上,,,随机地摸出一个小球,记录后放回,再随机摸出一个小球.(1)列出所有可能的结果.(2)求两次摸出小球的数字之和为奇数的概率.22. 在一个不透明的盒子里装有红、黑两种颜色的球共只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七()班的数学学习小组做了摸球实验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表中的一组统计数据:(1)请估计:当次数足够大时,摸到红球的频率将会接近.(精确到)(2)假如你去摸一次,则摸到红球的概率的估计值为.(3)试估算盒子里红球的数量为个,黑球的数量为个.23. 请回答下列问题.(1)如图,将,,三个字母随机填写在三个空格中(每空填一个字母,每空中的字母不重复),请你用画树状图或列表的方法求从左往右字母顺序恰好是,,的概率.(2)若在如图三个空格的右侧增加一个空格,将,,,四个字母任意填写其中(每空填一个字母,每空中的字母不重复),从左往右字母顺序恰好是,,,的概率为.24. 用个除颜色外其余都相同的球设计一个游戏,且满足下列条件:()摸到红球的概率为()摸到绿球的概率为()摸到黄球的概率为()摸到白球的概率为答案第一部分1. C2. D3. C4. D 【解析】“明天的降水概率为”是指是指明天下雨的可能性是,不是有的时间在下雨,故错误;“连续抛一枚硬币次,出现正面朝上的次数一定是次”,这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,故错误;和都是错误的.5. C6. C 【解析】可回收物、厨余垃圾、有害垃圾和其他垃圾对应的垃圾桶分别用,,,表示,垃圾分别用,,,表示.设分类打包好的两袋不同垃圾为,,画树状图如图:共有个等可能的结果,分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的结果有个,分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率为.7. C8. B 【解析】如图,基本事件是,颜色都对号了的事件是,所以答案是9. D 【解析】由图可知:第个图形共有个正方体,最下面有个带“心”字正方体;第个图形共有个正方体,最下面有个带“心”字正方体;第个图形共有个正方体,最下面有个带“心”字正方体;第个图形共有个正方体,最下面有个带“心”字正方体;第个图形共有个正方体,最下面有个带“心”字正方体;则:第个图形共有个正方体,最下面有个带“心”字正方体;从第()个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是,故选:D.10. C第二部分12.13.【解析】(万元)14.【解析】根据题意知,解得,经检验:是原分式方程的解,所以推算出的值大约是.15. 确定16.【解析】根据直角三角形的面积公式,得;根据勾股定理,得:,则;,则,依此类推,发现:.第三部分17. (1)可能(2)很可能(3)不太可能(4)不可能18. (1)(5)是必然事件;(2)是不可能事件;(3)(4)是随机事件;19. (1)(摸到红球)(摸到同号球),故不利.(2)每次的平均收益为,故每次平均损失元.20. (1)口袋中放有个涂有红、黑、白三种颜色的质地相同的小球,从袋中任取一个球是白球的概率是,白球的个数为,设黑球的个数为,则红球的个数是,依题意得解得则袋中红球的个数为.(2)由()可知从袋中任取一个球是黑球的概率为.21. (1)和分别为,,,,,,,,,共有种结果.(2).22. (1)(2)(3);【解析】估算盒子里红球的数量为个,黑球的个数为个.23. (1)如表格所示,一共有六种等可能的结果,其中从左往右字母顺序恰好是,,(记为事件)的结果有一种,.(2)【解析】由()可知从左往右字母顺序恰好是,,,的概率为:.24. 在这个球中,红球个,绿球个,黄球个,白球个,将它们放入一个不透明的袋子中,每次摸出一个,记录颜色后放回,摸出不同颜色球获得不同的奖品.。

人教版数学九年级 概率初步 单元测试题1 含答案

人教版数学九年级  概率初步 单元测试题1 含答案

《概率初步》测试题一、选择题:(本大题10个小题,每小题4分,共40分)每小题只有一个答案是正确的,请将正确答案的代号填入题后的括号内。

1.下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.下列事件是必然事件的是( )(A )通常加热到100℃水沸腾 (B )抛一枚硬币,正面朝上 (C )明天会下雨(D )经过城市中某一有交通信号灯的路口,恰好遇到红灯3.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为41,那么袋中球的总个数为( ) (A )15个 (B )12个 (C )9个 (D )3个 4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率是( ) (A )121 (B )31 (C )125 (D )21 5.布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是( ) (A )31 (B )61 (C )21 (D )65 6.甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球。

现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为( )(A )94 (B )95 (C )32 (D )97 7.甲、乙、丙三个同学排成一排照相,则甲排在中间的概率是( ) (A )61 (B )41 (C )31 (D )21 8.某晚会上有一个闯关活动:将五张正面分别画有等腰梯形、圆、平行四边形、等腰三角形、菱形的卡片(背面相同)任意摆放,将所有卡片的正面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是( )(A )51 (B )52 (C )53 (D )54 9.已知函数5-=x y ,令21=x ,1,23,2,25,3,27,4,29,5可得函数图象上的10个点,在这10个点中,随机取两个点P (1x ,1y ),Q (2x ,2y ),则P 、Q 两点在同一反比例函数图象上的概率是( ) (A )91 (B )454 (C )457 (D )5210.从编号为1到100的100张卡片中任取一张,所得编号是8的倍数的概率为( ) (A )1001 (B )501(C )81 (D )253 二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章概率初步
单元测试
一、填空题:
1.给出以下结论:
①如果一件事发生的机会只有十万分之一,那么它就不可能发生;
②二战时期美国某公司生产的降落伞合格率达99.9%,使用该公司的降落伞不会发生危险;
③如果一件事不是必然发生的,那么它就不可能发生;
④从1、2、3、4、5中任取一个数是奇数的可能性要大于偶数的可能性.
其中正确的结论是_______________.
2.小明和小华做抛硬币的游戏,实验结果如下:
在小华的10次实验中,抛出两个正面_____次,出现两次正面的概率为_____,小明抛出两个正面的概率是_____.
3.10名学生计划“五一”这天去郊游,任选其中的一人带20根香肠,则10人中的小亮被选中的概率是_____.
4.三名同学站成一排,其中小明站在中间的概率是_____,站在两端的概率是_____.
5.从8名男医生和7名女医生中选一人作为医疗小组的组长,是男医生的概率是_____,是女医生的概率是_____.
6.某科学考察队有3名老队员,3名新队员,考察某溶洞时,任选其中一人下去考察,是老队员的概率是_____.
7.小明和小亮各写一张贺卡,先集中起来,然后每人拿一张贺卡,则他们各自拿到对方送出的贺卡的概率是_____.
8.从4台A型电脑和5台B型电脑中任选一台,选中A型电脑的概率为_____,B型电脑的概率为_____.
9.小亮从3本语文书,4本数学书,5本英语书中任选一本,则选中语文书的概率为_____,选中数学书的概率为_____,选中英语书的概率为_____.
10.某停车厂共有12个停车位置,今从中任取一个给某车停放,两端停车位置被选中的概率为_____.
11.在标号为1、2、3……19的19个同样的小球中任选一个,则选中标号为偶数的小球的可能性_____选中标号为奇数的小球的可能性.
12.从小明、小亮、小丽3名同学中选一人,当语文课代表,选中小丽的可能性_____小丽不被选中的可能性. 二、选择题:
13.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( )
A.能开门的可能性大于不能开门的可能性;
B.不能开门的可能性大于能开门的可能性
C.能开门的可能性与不能开门的可能性相等
D.无法确定 14.给出下列结论:
①打开电视机它正在播广告的可能性大于不播广告的可能性; ②小明上次的体
育测试是“优秀”,这次测试它百分之百的为“优秀”; ③小明射中目标的概率为3
1

因此,小明连射三枪一定能够击中目标; ④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等. 其中正确的结论有( ) A.1个
B.2个
C.3个
D.4个
15.一个口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一球,得到白球”这个事件是( )
A.必然事件
B.不能确定事件
C.不可能事件
D.不能确定
16.有5个人站成一排,则甲站在正中间的概率与甲站在两端的概率的比值为( )
A.
2
1 B.
2 C.
2
1
或2 D.无法确定
17.如图,阴影部分表示在一定条件下小明击中目标的概率,
空白部分表示小亮击中目标的概率,图形说明了 ( ) A.小明击中目标的可能性比小亮大 B.小明击中目标的可能性比小亮小
C.因为小明和小亮击中目标都有可能,且可能性都不是100%, 因此,他们击中目标的可能性相等
D.无法确定
18.将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是 ( ) A.
27
19 B.
2712; C.3
2 D.
27
8
三、解答题:
19.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如果选得男生的概率为3
2
,求男女生数各多少?
20.将一枚硬币连掷3次,出现“两正,一反”的概率是多少?
21.某同学抛掷两枚硬币,分10级实验,每组20次,下面是共计200次实验中记录下的结果.
①在他的每次实验中,抛出_____、_____和_____都是不确定事件.
②在他的10组实验中,抛出“两个正面”概率最多的是他第_____组实验,抛出“两个正面”概率最少的是他的第_____组实验.
③在他的第1组实验中抛出“两个正面”的概率是_____,在他的前两组(第1组和第2组)实验中抛出“两个正面”的概率是_____.
④在他的10组实验中,抛出“两个正面”的概率是_____,抛出“一个正面”的概率是_____,“没有正面”的概率是_____,这三个概率之和是_____.
22.以下有三种情况,根据你的实践,用序号字母填写下表(有几种可能情况填写几个字母)
A.在三角形的内部;
B.在三角形的边上;
C.在三角形的外部.
23.已知:如图,AB∥CD,AE平分∠CAB,CE平分∠ACD,求证:AE⊥CE.
A B
E
C D
24.准备三张纸片,两张纸片上各画一个三角形,另一张纸片上画一个正方形,如果将这三张纸片放在一个盒子里搅匀,那么,随机地抽取两张纸片,可能拼成一个菱形(取出的是两张画三角形的纸片),也可能拼成一个房子(取出的是一张画三角形,一张画正方形的纸片),这个游戏的规则是这样的:若拼成一个菱形甲赢,若拼成一个房子乙赢,你认为这个游戏是公平的吗?请玩一玩这个游戏,用你的数据说明你的观点.
参考答案
一、1.④ 2.2 20% 10%
3.
10
1 4. 61 31
5.158 157
6.21
7.21
8.94 95
9.41 31 125 10.6
1
11.小于 12.小于 二、13.B 14.A 15.B 16.A 17.B 18.D
三、19.男生24人,女生12人 20.8
3
21.①“两个正面” “一个正面” “没有正面” ②7 9 ③
103 51 ④20053 20043 25
13 1
22.AAA AAA AAA AAA AAA AAA AAA ABB ACC
23.证:∵AB ∥CD
∴∠BAC +∠DCA =180° 又∵AE 为∠BAC 的平分线
∴∠CAE =21
∠CAB
同理∠ACE =21
∠DCA
即:∠CAE +∠ACE =90° ∴AE ⊥CE 24.略.。

相关文档
最新文档