标准正态分布表(附表1-2)
正态分布z值表
正态分布z值表——见最下文首先我们得先来了解一下什么是正态分布:1.正态曲线(normal curve)正态曲线是簇曲线,呈对称钟形,均数所在处最高,两侧逐渐下降,两端在无穷处与横轴无限接近。
横坐标常使用观察值组段,纵坐标常使用频数、频率及概率密度(频率与组距之比)。
2.正态分布特征曲线概率密度函数:式中,有4个常数,μ为总体均数,σ为总体标准差,π为圆周率,е为自然对数的底数,其中μ、σ为不确定的常数,称为正态分布的参数。
μ是位置参数,决定着正态曲线在X轴上的位置;σ是形状参数,决定着正态曲线的分布形状由此决定的正态分布记作N(μ,σ2)。
仅X 为随机变量。
曲线位置形状与面积特征:标准差一样规定了曲线的形状相同,而均数不同,会使得曲线在在横轴上的位置不同,并且随着均数增大,曲线逐渐向右移动。
均数不变,标准差改变,标准差小的曲线变异度小,曲线形状就高瘦一点;标准差大的变异度大,曲线形状就矮胖一点。
标准正态分布均数为0,标准差为1的正态分布被称为标准正态分布(standard normal distribution)。
对于任意一个服从正态分布N(μ,σ2)的随机变量,可做标准化转换。
通过标准化转换后,任意一个正态分布曲线下面积求解问题都能转换成标准正态分布曲线下面积求解问题。
如下所示:2.标准正态分布的应用当Z的取值范围为(Z1,Z2)时,概率(面积)计算公式应为:P(Z1<Z<Z2)=φ(Z2)﹣φ(Z1)因为统计表中只有Z值的左侧尾部面积,所以根据上图所示,当Z>0时应有:φ(Z)=1-φ(﹣Z)所以对于一个一般的正态分布问题,我们可以先通过标准化转换求得Z值,然后查表找到所对应的值后代入面积公式即可进行求解。
注意:①曲线下面积总和为1。
②曲线下的面积是从﹣∞积分到当前Z的面积。
③曲线下对称于0的区间,面积相等。
④当μ,σ和X已知时,先求Z值,再用Z值查表,得到所求区间占总面积比例。
当μ,σ未知时,要用样本均数和样本标准差S来估计Z值。
正态分布 课件
总之,正态分布广泛存在于自然界、生产及科学技术的许多领域中。
正态分布在概率和统计中占有重要地位。
4、正态曲线的性质
(1)曲线在x轴的上方,与x轴不相交.
(μ-σ,μ+σ]
0.6826
(μ-2σ,μ+2σ]
0.9544
(μ-3σ,μ+3σ]
0.9974
(2)曲线是单峰的,它关于直线x=μ对称.
(4)曲线与x轴之间的面积为1.
(3)曲线在x=μ处达到峰值(最高点)
(5)若 固定, 随 值的变化而沿x轴平移, 故 称为位置参数
(6)当μ一定时,曲线的形状由σ确定 .σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.
5、特殊区间的概率:
m-a
m+a
x=μ
若X~N ,则对于任何实数a>0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。
4
0.04
[0.5,1)
8
0.08
[1,1.5)
15
0.15
[1.5,2)
22
0.22
[2,2.5)
25
0.25
[2.5,3)
14
0.14
[3,3.5)
6
0.06
[3.5,4)
4
0.04
[4,4.5)
2
0.02
11
高尔顿钉板实验的 频率分布直方图
这条曲线具有 “中间高,两头低” 的特征,像这种类型的曲线, 就是(或近似地是)以下函数的图像:
标准正态分布示意图
lgG = lg(12571032040)=lg(571032040)1/12=1/1 2(7lg5+3lg10+lg20+lg40)=0.89966
为简化计算, 可两边取对数
G = lg-1(lgG)= lg-10.89966 = 7.94
加权法: G=lg-1( lgx/ ), 当变量值个数 较多或变量值为频数表资料时
(3) (4)=(2)(3) (5)=(2)(4)
1 127
16129
• 129 131
4 524
68644
• 133 135
9 1215
164025
• 137 139
28 3829
540988
• 141 143
35 5005
715715
• 145 147
27 3969
583443
• 149 151
11 1661
250811
• 153 155
4 620
96100
• 157161 159 • 合计 •
1 159
120 17172
(ƒ)( ƒx)
25181
2461136
( ƒx2)
•
2461136 - (17172)2/120
• s=
•
120 - 1
•
• 三、变异系数: 又称离散系数。代号为CV。
甲的变异程度>乙组
一、极差和四分位间距
• (一)全距: R(range), 亦称极差。即一组变量 值中最大值与最小值之差。
• R甲=4.0 - 2.8 = 1.2 • R乙=3.8 - 3.0 = 0.8 • 优点: 简单明了 • 缺点: 仅考虑了资料的最大值与最小值, 不能反
第三节 正态分布
主要内容: 主要内容: 一、正态分布概念 二、正态分布的特点 三、应用
一、正态分布概念
正态分布又称高斯分布,常态分布,是一种数据的 波动规律的表达,主要反映了试验的随机误差。
强度分组为横坐标,以频数为纵坐标,绘成强 度—频数直方图
12 10 8 6 4 2 0 18 20 22 24 26 3 7 5 2 10
应用
1.可疑数据的舍弃; A. 莱 特 准 则 ( 3σ 原 则 ) : 由 于 落 在 (u3σ,u+3σ)的概率为99.73%,处在3σ之外的 概率(即误差概率)仅为0.27%,接近0,对于 常规一般仅进行几十次的测量,如处在3σ之 外则说明属于随机误差,应剔除。 由于次判据是建立在n趋向于无穷得基础上得, 所以当n有限时,尤其是n较小时这一判据并不 十分可靠。但是由于其使用方便,故常常被使 用。
(一)正交设计的基本方法
试验设计包括三方面的内容: 1. 因素和水平选择 2. 误差控制:试验方案的制定 3. 数据处理:分析试验结果
一般来说,为保证结论的可靠性,在选取因素时 应把所有影响较大的因素选入试验,某些因素 之间可能还有交互作用,所谓交互作用,就是 这些因素在同时改变水平时,其效果会超过单 独改变某一因素水平时的效果。影响较大的因 素还应包括那些单独变化水平时效果可能不太, 大与其他因素同时变化时交互作用较大的因素, 这样才能保证试验的代表性。因素变化越多越 好,取值不能少于3个,这样才能看出曲线,看 出其变化的趋势。某一因素取值变化的次数即 水平数,为了减少试验次数,往往取两水平(现 行工艺水平和新工艺水平)或三水平(低于现行 工艺水平或理论值、现行工艺水平、高于现行 工艺水平)。 水平变化的范围不宜太大。
且从图12-2还可以看出,按趋势,增加 水分与碾压料重、抗折强度,还有可能 提高,因此还应扩大试验范围,试探其 强度趋势。
正态分布及参考值范围
u x
0.8531
0.0655
78.0
u 78.0 73.9 3.9
0.1469
-1.51
0 1.05
Φ(-1.51)=0.0655,故P(X<68.0)=0.0655 Φ(-1.05)=0.1469,故P(X<78.0)=1-0.1469=0.8531
P(X≥78.0)=0.1468
(4)下结论。该地正常女子血清总蛋白含量 <68.0g/L者占总人数的6.55%, <78.0g/L者占总人 数的85.31%,≥78.0g/L者占总人数的14.69%。
内容
1 正态分布的特点
2 标准正态分布 正态分布的应用
3
35
30
25
人数
某地140名正常
20
成年男子红细
15 10
胞数(1012/L
5
) 频数分布图 观察人数不断
0
3.7
4.1 4.5 4.9 5.3 5.7
红细胞数(1012/L)
增加,组段不 断细分,直条 不断变窄
顶端逐渐接近一 条光滑的曲线
人数
解: (1)计算均数、标准差。
X 7982.0 73.(9 g / L) 108
S 591524.0 7982.02 /108 3.( 9 g / L) 108 1
(2)进行u转换
。此例样本量较
大,可用 X 代替
μ,S代替σ计算
。
68.0
73.9
u 68.0 73.9 3.9
(3)查附表1 标准正态分布表 ,(Φ(u)值 ,u≤0),计算 曲线下面积。
应用
➢估计医学参考值范围 ➢质量控制:临床检验、生物鉴定、食品卫生 监督 ➢其他许多统计方法的基础
医学统计学(第2章)正态分布
dx
(2-18) )
F(X)
p(a〈x〈b)
0 12.00 14.50 17.00 19.50 22.00 24.50 27.00 29.50 32.00
正态分布曲线下面积的含义
1.表示变量值(x)在a-b区间变量值所占 1.表示变量值 表示变量值( 全部(总体)变量值的比例或概率 比例或概率(p)。 全部(总体)变量值的比例或概率(p)。 2变量值在整个曲线下的面积为100%,或 变量值在整个曲线下的面积为100%,或 出现的概率为1 出现的概率为1。
第五节 医学参考值范围的制定
一、概念 医学参考值是指包括绝大多数“ 医学参考值是指包括绝大多数“正 常人” 的各种生理及生化指标常数, 常人 ” 的各种生理及生化指标常数 , 也 称正常值。 称正常值。 正常值是指在一定范围内波动的值, 正常值是指在一定范围内波动的值, 医学上常用95% 医学上常用95%的范围作为判定正常或 异常的参考标准。 异常的参考标准。
二、 标准正态分布
1.标准正态分布及标准化变量值(u) 标准正态分布及标准化变量值( ) 标准正态分布及标准化变量值 任何正态分布的X值通过 值转换后,称为标 任何正态分布的 值通过u值转换后 称为标 准化的正态分布, 准化的正态分布,即u ~N( µ=0 , σ2=1) ( ) 概率密度函数为: 。概率密度函数为: 2
Φ(−u) 表示从-∞到- u值对应曲线范围 表示从- 值分布比例。 内X值分布比例。
例1: :
Φ(u = −1) = 0.1587 Φ(µ =1) =1− Φ(u = −1)
=1− 0.1587 = 0.8413
例2:标准正态变量值u=(-1,1)和u= 标准正态变量值u=( 1.96,1.96)区间内面积各为多少? ( -1.96,1.96)区间内面积各为多少?
标准正态分布
P(|u|<u1==1-2Φ(-u1)
P(u1≤u<u2)=Φ(u2)-Φ(u1)
10
计算
已知u~N(0,1),试求:
(1) P(u<-1.64)=?
(2) P (u≥2.58)=?
(3) P (|u|≥2.56)=? (4) P(0.34≤u<1.53) =?
(standard normal distribution)
(u )
(u )
1 2
1 2
e
u
e
u2 2
1 2 u 2
du
随机变量u服从标准正态分布,记作u~
N(0,1)
7
标准正态分布
对于任何一个服从正态分布N(μ,σ2)的随机
变量x,都可以通过标准化变换 u=(x-μ)/σ
P(|u|≥3)=1-0.9973=0.0027
P(|u|≥1.96)=1-0.95=0.05 P(|u|≥2.58)=1-0.99=0.01
14
由表4—2可见,实际频率与理论概率相当接近,说明126 头基础母羊体重资料的频率分布接近正态分布,从而可推 断基础母羊体重这一随机变量很可能是服从正态分布的
= 1, ..., n)为相互独 立,都服从标准正态分布,则定义: 2 i zi2 , i = 1, ..., n 变量2服从自由度等于n卡方分布(chi – square distribution)。
19
卡方分布曲线
图4-1 不同自由度下的2分布
图4-2 2分布的 上侧和下侧分位数 示意图
P(x<μ-1.96σ)=P(x>μ+1.96σ)=0.025
医学统计学4 正态分布与参考值
X
f(X)
a
b
b
X
P(a X b) f ( x)dx F (b) F (a)
a
f(X)
f ( x) N (0,1)
a
a
0
-a
X
F (a) f ( x)dx
F (a) f ( x)dx 1 F (a)
a
三. 曲线下面积
u -3.0 -2.9 …… -2.5 …… -1.9 …… -0.1 0.0 0.00 0.0013 0.0019 …… 0.0062 …… 0.0287 …… 0.4602 0.5000 0.01 0.0013 0.0018 …… 0.0060 …… 0.0281 …… 0.4562 0.4960 0.02 0.0012 0.0018 …… 0.0059 …… 0.0274 …… 0.4522 0.4920 …… …… …… …… …… …… …… …… …… ……
16
12
1000
3000 1000 5000
10
15
9.0 16.5 16.0
15-60 5.5‰ >60 16.0‰ 合计 8.2‰
35 63
15
40
7500
41.5
SMR=63/7 4.5=0.864 间接标化率 =8.2‰×0.864=6.9‰
SMR=40/41.5 =0.964 间接标化率 =8.2‰×0.964=7.9‰
(1012/L )频数分布图
f(x) .3 .2
.1
.0 0 f(x) .3 .2 .1 2 4 6 8 10
x
.0
0 2 4 6 8 10
x
正态分布
正态分布函数积分
正态分布函数积分$$ f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} $$其中,$\mu$ 是分布的均值,$\sigma$ 是标准差。
我们需要求解正态分布函数的积分,即求解累积密度函数(cumulative distribution function, CDF)。
CDF 被定义为随机变量在负无穷到其中一点的取值概率之和。
一、表格法表格法是一种常用的近似计算积分的方法。
当我们无法直接计算积分时,可以通过查表的方式获得积分的近似值。
我们先来介绍标准正态分布函数的表格。
在表格中,我们将正态分布函数的值对应于不同的 $\Phi(z)$ 值进行了标注。
其中,$z$ 表示标准正态分布的变量,它与原始正态分布的变量 $x$ 之间通过以下公式进行关联:$$ z = \frac{x - \mu}{\sigma} $$注意,$z$的取值范围是从负无穷到正无穷。
接下来,我们可以通过标准正态分布表格查找 $\Phi(z)$ 对应的值。
对于给定的 $z$ 值,我们可以找到相应的积分概率值,即 $\Phi(z)$。
如果要求的是左侧的概率,我们只需查找表格中对应的 $z$ 值的$\Phi(z)$。
如果要求的是右侧的概率,我们可以使用 $1-\Phi(z)$。
当我们得到 $\Phi(z)$ 后,我们可以使用以下公式来计算给定$x$ 值的概率:$$ P(X \leq x) = \Phi\left(\frac{x - \mu}{\sigma}\right) $$二、逆变换法逆变换法是一种通过求解逆函数得到精确值(而非近似值)的方法。
我们可以通过求解逆标准正态分布函数得到原始正态分布函数的积分结果。
具体而言,我们可以使用以下公式来计算概率:$$ P(X \leq x) = \Phi^{-1}\left(\frac{x - \mu}{\sigma}\right) $$其中,$\Phi^{-1}(p)$ 表示标准正态分布函数的逆函数,即通过概率值 $p$ 反推出对应的 $z$ 值。
正态分布的概念及表和查表方法
正态分布概念及图表正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A·棣莫弗在求二项分布的渐近公式中得到。
.高斯在研究测量误差时从另一个角度导出了它。
P·S·拉普拉斯和高斯研究了它的性质。
是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
当μ = 0,σ = 1时的正态分布是标准正态分布。
目录1历史发展2定理3定义▪一维正态分布▪标准正态分布4性质5分布曲线▪图形特征▪参数含义6研究过程7曲线应用▪综述▪频数分布▪综合素质研究▪医学参考值历史发展正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。
但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。
这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。
在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。
这要到20世纪正态小样本理论充分发展起来以后。
拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。
正态分布
或 x Z s
23
例题:
例9-11 利用表9-1的资料计算95%参考值范围。
表9-1的资料近似服从正态分布,可以利用正
态分 布法计算95%参考值范围。
X 350.24,S 32.97
双侧95%的参考值范围:
X 1.96 S 350.24 1.96 32.97 ( 285.62 ~ 414.86) 20-29岁正常成年男子的尿酸浓度的95%参考值
25
(二) 质量控制: 随机误差 系统误差
26
判断异常的8种情况
有一个点距中心线的距离超过3个标准差(控制限以外) 在中心线的一侧连续有9个点 连续6个点稳定地增加或减少 连续14个点交替上下 连续3个点中有两个点距中心线距离超过2个标准差(警戒限 以外) 连续5个点中有4个点距中心线距离超过1个标准差 中心线一侧或两侧连续15个点距中心线距离都超出1个标准差 以内 中心线一侧或两侧连续8个点距中心线距离都超出1个标准差 范围。
的疾病和有关因素的同质人群。
一般认为至少应在 120 例以上。例数过少,
确定的参考值范围往往不够准确。
19
B.对选定的正常人进行准确的测量;
C.决定取单侧范围还是双侧范围值; 根据研究目的和专业知识确定单双侧 例:白细胞计数过低过高均异常,故双侧; 肺活量过低为异常,故单侧; 血铅、发汞含量过高为异常,故单侧。
知道面积求U值。 查附表1 得:0.10 对应的U值为-1.28
0.10
0.80
0.10
则: 80%的男孩身高集中: (116.9cm,129.2cm)
X 1.28 s
17
三、正态分布的应用 (一) 确定医学参考值范围(reference range) :
正态分布应用实例
1、正态分布法
(1)适用范围:(近似)正态分布或对数正 态分布资料
(2)计算公式: x±uS
单侧
双侧
上限
95%x+1.645S
x 95% ±1.96S x 99% ±2.58S
99%x+2.326S
下限
95% x-1.645S
x 99% -2.326S
2、百分位数法
(1)适用范围: a.偏态分布资料 b.分布不清资料 c.开口资料
(2)肺活量只过低为异常,只需制定医学 参考值范围的下限; 尿铅只过高为异常, 只需制定医学参考值范围的上限;均称 单侧医学参考值范围。
5、选定适当的百分界限。
正常值范围的意思:绝大多数正常人 的某项观察值均在该范围之内。这个绝 大多,习惯上指正常人的80%、90%、 95%、99%(最常用是95%)。
6、选择适当制定方法(见下)。 1、抽取足够数量的“正常人”作为调查对象
μ越小,曲线越向左移动。 当μ一定时, μ越小,曲线越向左移动。 99% P99
(一)医学参考值范围意义: 2、对选定的正常人进行统一而准确的测定 u服从均数为0、标准差为1的正态分布 范围,“正常人” 的条件是:
Ф99(%u1()-=Ф2.(-1三. )制定医学参考值范围常用方法:
= - 1.15
4.72
119.0-121.95 u2=
= - 0.63
4.72
例3.3 已知 X=121.95cm, S=4.72cm 欲估计身高界于116.5-119.0cm
范围内的7岁男童比例及人数。
求该面积
-1.15 -0.63
Ф(u1) =Ф(-1.15)=0.1251 Ф(u2) =Ф(-0.63)=0.2643
正态分布的概念及表和查表方法
正态分布的概念及表和查表方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March正态分布概念及图表正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A·棣莫弗在求二项分布的渐近公式中得到。
.高斯在研究测量误差时从另一个角度导出了它。
P·S·拉普拉斯和高斯研究了它的性质。
是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
当μ = 0,σ = 1时的正态分布是标准正态分布。
目录1历史发展2定理3定义▪一维正态分布▪标准正态分布4性质5分布曲线▪图形特征▪参数含义6研究过程7曲线应用▪综述▪频数分布▪综合素质研究▪医学参考值历史发展正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。
但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。
这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。
在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。
这要到20世纪正态小样本理论充分发展起来以后。
拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。
正态分布
高斯与正态分布1809年,高斯(Carl Friedrich Gauss,1777—1855)发表了其数学和天体力学的名著《绕日天体运动的理论》。
在此书末尾,他写了一节有关“数据结合”(data combination)的问题,实际涉及的就是这个误差分布的确定问题。
他的做法与拉普拉斯相同。
但在往下进行时,他提出了两个创新的想法。
一是他不采取贝叶斯式的推理方式,测量误差是由诸多因素形成,每种因素影响都不大。
按中心极限定理,其分布近似于正态分布是势所必然。
其实,早在1780年左右,拉普拉斯就推广了狄莫佛的结果,得到了中心极限定理的比较一般的形式。
可惜的是,他未能把这一成果用到确定误差分布的问题上来。
高斯的第二点创新的想法是:他把问题倒过来,先承认算术平均是应取的估计,然后去找误差密度函数条件下才能成立,这就是正态分布。
一种概率分布。
正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。
遵从正态分布的随机变量的概率规律为取μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。
正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。
它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。
当μ=0,σ2=1时,称为标准正态分布,记为N(0,1)。
μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。
多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。
C.F.高斯在研究测量误差时从另一个角度导出了它。
P.S.拉普拉斯和高斯研究了它的性质。
高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。