浅谈超导体
超导体 概念
超导体概念
超导体是指在低温条件下,电阻消失或接近零的材料。
当超导体受到外加电流或磁场时,可以产生超导电流或磁通排斥效应。
超导体的概念最早由荷兰物理学家海克·卡末林领导的研究小
组于1911年发现,并在1957年由美国物理学家J. Bardeen、L. Cooper和R. Schrieffer提出了著名的BCS理论,解释了超导
现象的机制。
超导体的主要特征是具有零电阻和完全磁场排斥效应。
在超导态下,电子通过原子晶格的正空穴形成库珀对,而不是单个电子运动。
这种库珀对的形成使得电子能够无碰撞地通过晶格,从而消除了电阻。
超导体的临界温度是指材料变为超导体的临界温度,不同的超导体材料临界温度各不相同,有些超导体的临界温度可以达到几百摄氏度。
超导体的输运性质还包括完全的磁场屏蔽效应、零电阻传导和极低的能量损耗等优点,因此在许多领域有广泛的应用,如磁共振成像、电能传输、粒子加速器和磁悬浮列车等。
然而,超导体需要在极低温度下才能实现超导态,并且通常需要极低的温度和复杂的制备工艺,限制了其实际应用范围。
因此,研究人员一直致力于开发更高临界温度的超导体材料,以便实现更广泛的应用。
超导体的基本性质和应用
超导体的基本性质和应用超导体是一种在极低温下表现出完全电阻为零的材料,是电学领域中独特且引人瞩目的现象。
超导体的发现和研究不仅极大地推动了科学领域的发展,也为行业的应用带来了巨大的潜力。
本文将介绍超导体的基本性质和一些重要的应用。
一. 超导体的基本性质超导体具有以下的基本性质:1. 零电阻:在超导态下,超导体内部没有电阻,电流可以在其中自由地流动。
这个性质让超导体在电力输送和能量储存方面具有巨大的潜力。
2. 迈出Meissner效应:超导体在过渡到超导态时,会对外部磁场产生排斥作用,将磁场排斥出体内。
这种现象被称为迈出Meissner效应,它是超导体的又一个重要性质。
3. 让低温成为关键:要使超导体发挥超导状态,需要将温度降到很低的极端。
对于常见的超导体材料来说,常规的液氮温度(77K)已经足够维持超导态。
二. 超导体的应用1. 增强能源传输:由于超导体的零电阻特性,能量在超导体中的传输效率非常高。
这使得超导体在能源传输方面具有广阔的应用前景。
超导体电缆可以大大提高电能传输的效率,降低能量损耗,并减少能源供应的对环境的影响。
2. 磁共振成像(MRI):超导磁体被广泛应用于医学成像领域中的核磁共振(NMR)和磁共振成像(MRI)技术。
超导磁体提供了一个强大的稳定磁场,可以更准确地检测疾病和生成高质量的影像。
3. 磁悬浮交通:超导磁悬浮技术利用超导体的穿透磁通特性,使列车浮起并在轨道上悬浮行驶。
这种无摩擦的悬浮方式可以大大提高列车的速度和运行平稳性,且不会产生噪音和振动,未来可能将成为一种重要的交通方式。
4. 快速电子元件:超导体的超快电子运输特性也为电子元件提供了可能。
超导元件可以实现更高的开关速度,更高的运行频率和更低的功耗。
这对于信息技术领域和计算机科学来说是非常有前途的。
5. 等离子体研究:超导体在等离子体物理研究中扮演着重要的角色。
超导磁体可以提供足够的磁场来约束等离子体,并使其保持稳定。
超导体的优点及应用
超导体的优点及应用超导体是一种在低温下能够表现出电阻为零的材料,具有许多优点和广泛的应用。
以下是对超导体的优点及应用的详细介绍:1.电阻为零:超导体在零下临界温度以下,电流通过时,能够表现出电阻为零的特性。
这意味着超导体可以传输电流而不会产生能量损失,节约能源损耗。
2.高电流密度:超导体在零阻态下可以传输高电流密度,大大优于传统金属导体。
这使得超导体在电力传输和能源存储方面具有重要应用。
3.强磁性:超导体在零阻态下能够承受很高的磁场,是最强大的永磁体。
利用超导体制成的超导磁体可以产生极高的磁场,用于医学成像、核磁共振等领域。
4.高频性能优良:超导体的高频性能优于传统材料,使其广泛应用于通信领域和微波器件。
5.高灵敏度:超导器件对外界的微小变化非常敏感,可以用于高灵敏度测量和传感器。
超导体的应用:1.能源传输:利用超导体的零电阻特性,可以大大减少电能转换的损耗。
超导电缆可以传输大量的电流,并且不会产生热量损耗,可用于高能粒子加速器、电力输电等领域。
2.能源存储:超导磁体可以用于能量的储存和释放。
储能装置利用超导体的零电阻特性和高电流密度,将能量存储在超导线圈中,并在需要时释放出来,用于调节电网稳定性和峰谷平衡。
3.磁共振成像:超导磁体可以产生非常强的恒定磁场,用于核磁共振成像(M R I)、磁共振成像(M R S)和核磁共振光谱仪(N M R)。
这些技术在医学诊断和科学研究中被广泛应用。
4.磁悬浮交通:超导体的磁场排斥性质可以应用于磁悬浮交通系统中,实现无摩擦悬浮、高速运输。
磁悬浮技术已经在一些城市的高铁项目中得到了应用。
5.加速器和粒子物理研究:超导磁体通常用于粒子加速器,用来产生强大的磁场,加速粒子以进行研究。
这是现代粒子物理学研究中必不可少的工具。
6.通信和微波器件:超导体的高频性能优良,用于制造微波滤波器、功率放大器等通信器件。
7.科学研究:超导体的独特性质使其成为科学研究中的重要工具。
例如,在凝聚态物理、超导物理、低温物理等领域中,用超导体来研究新的物理现象和性质。
浅谈超导体
浅谈超导体徐建强河南省卢氏县第一高级中学来源人教网由于导体的电阻,在远距离输电等方面造成较大的电能浪费;如能生产一种超导体材料,没有电阻,电流流经它时将不受任何阻力,没有热损耗,于是就能以小的功率得到大的电流,从而产生几个甚至几十个特斯拉的超强磁场,将具有很高的应用价值。
今天,这一切以成为现实。
一、超导体的基本特性1. 零电阻效应超导现象的发现是与低温技术的发展分不开的。
1906年荷兰著名低温物理学家昂纳斯(H.K.Onnes,1853—1926)首次制备出液态氮,获得4开的低温(相当于-269℃),随后又获得了1.04开的低温。
这是继1898年制备出液态氢获得14开低温之后的巨大进展。
随着低温技术的进展,科学家已注意到纯金属的电阻随温度的降低而减小的现象。
昂纳斯首先研究低温下水银电阻的变化。
l911年发现了水银的超导现象。
在4.2开附近水银电阻突然变小。
图1是水银的电阻随温度的变化情况,纵坐标是该温度下水银电阻与0℃时电阻的比值:R(T)/R(0℃)。
较精确的测量给出水银的超导转变温度(临界温度)Tc=4.153 开。
继续降温到3开时,电阻降到仅为0℃时电阻值的10-7Ω,电阻值实际已可看作零了。
图1水银的零电阻效应1912—1913年间昂纳斯又发现锡(Sn)在3.8开低温时,也有零电阻现象。
随后科学家们又发现了其他许多金属或合金在低温下都有零电阻效应。
昂纳斯首先将这种特殊的电学性质称为超导。
昂纳斯由于液氦的制备和超导现象的研究获 l913 年诺贝尔物理学奖。
2 .完全抗磁性1933年,德国物理学家迈斯纳(W.Meissner) 通过实验发现:当置于磁场中的导体通过冷却过渡到超导态时,原来进入此导体中的磁感线会一下子被完全排斥到超导体之外 (见图2),超导体内磁感应强度变为零,这表明超导体是完全抗磁体。
这个现象称为迈斯纳效应。
3 .存在临界磁场实验表明,超导态可以被外磁场所破坏,在低于Tc的任一温度T下,当外加磁场的磁感应强度B小于某一临界值Bc时。
超导体是什么以及其应用领域
超导体是什么以及其应用领域超导体是一种特殊的材料,在低温下可以表现出零电阻和完全反磁性的特性。
这种材料的独特性质使其在许多领域中得到了广泛的应用。
超导体最早被发现于1911年,当时是由荷兰物理学家海克·卡梅林·奥克斯纳发现的。
他发现一种含铅的合金在接近绝对零度时表现出了完全的电阻为零。
随后的几十年中,其他材料也被发现具有类似的特性,包括铜氧化物和铁基超导体。
超导体的特性是由一个称为“库珀对”的现象所导致的。
在超导体中,电子形成成对移动,避免了单个电子导致的电阻。
这也解释了为什么只有在低温下这种特性才会表现出来,因为热会导致这些库珀对分解。
超导体的应用领域非常广泛,下面简单列举了一些:1. 超导磁体超导磁体是利用超导体制造的磁体。
这种磁体可以产生比常规磁体更强的磁场,并且溶解在液氦中不会导致热量的释放。
它们被广泛应用于核磁共振、医学成像和粒子加速器等领域。
2. 超导传输线超导体的电阻为零,使其可以制造出高效的电力传输线路。
这种传输线被用于高层建筑和城市之间大规模的电力传输。
3. 超导电动机超导电动机比传统的电动机更加高效,因为它们可以使用更强的磁场来驱动电机。
这些电动机被广泛应用于高速列车、船舶和飞机等领域。
4. 超导磁悬浮列车超导体可以用于制造磁悬浮列车的轨道。
这种列车可以在超高速下运转,并且非常节能。
5. 超导电缆超导电缆是利用超导体制造的电缆。
它们可以在大功率传输时具有更高的效率和更小的损耗。
超导体的应用领域还包括量子计算、超导量子干涉仪、量子传感器和量子密钥分发等。
这些领域还在发展中,未来还有更多可能的应用。
总之,超导体的独特性质使其在现代科技领域中得到了广泛的应用。
它们在制造高效电力传输、超高速列车、核磁共振成像和其他许多领域中都扮演着重要的角色。
随着科技的发展,我们有理由相信,超导体的应用领域还会不断扩展。
超导体的性质与应用
超导体的性质与应用超导体是一类在低温下具有零电阻和完全磁场排斥效应的材料。
自1908年Kamerlingh Onnes首次发现汞在低温下表现出超导性质以来,超导体一直引起科学家们的极大兴趣。
超导体不仅有着丰富多样的性质,还具有广泛的应用前景。
本文将介绍超导体的性质,并探讨其在不同领域的应用。
一、超导体的性质1. 零电阻性超导体的最显著特点是其在超导态下呈现出零电阻。
当超导体被冷却到临界温度以下,电流可以无阻力地通过超导体。
这种零电阻性使超导体在输电领域具有巨大的应用潜力,可以大大提高电能传输的效率。
2. 完全磁场排斥效应超导体在超导态下还表现出完全磁场排斥效应,即磁场线无法穿过超导体的内部,只能绕过。
这种磁场排斥性使超导体成为制造强大磁场的理想材料。
超导磁体广泛应用于磁共振成像(MRI)、粒子加速器等领域。
3. 迈斯纳效应超导体在外加磁场下,磁感应强度(磁场强度)发生量子化现象,即迈斯纳效应。
迈斯纳效应是超导体量子性质的重要表现,也是超导电子学的基础。
二、超导体的应用1. 超导电能传输超导体的零电阻性质使其成为高效率电力传输的理想材料。
将超导电缆应用于电力输送系统,可以降低能源损耗和环境污染。
此外,超导电缆还具有高带宽特性,可以满足现代信息传输的需求。
2. 超导磁体超导磁体是超导体应用最广泛的领域之一。
超导磁体可以产生强大的磁场,用于磁共振成像、粒子加速器、磁悬浮交通等领域。
与传统铜线磁体相比,超导磁体不仅能够提供更高的磁场强度,还可以显著减少能源消耗。
3. 超导电子器件超导体的零电阻性和迈斯纳效应为超导电子器件的发展提供了契机。
超导量子干涉器件、超导量子比特等在未来量子计算和量子通信领域具有巨大的潜力。
4. 其他领域应用超导体还可以应用于能源存储、磁悬浮列车、地下磁铁等领域。
超导能源存储技术可以高效储存电能,为电网调峰、新能源平稳供应提供支持。
磁悬浮列车利用超导磁体产生的强大磁场实现列车的悬浮和运行。
超导体原理
超导体原理超导体是一种具有零电阻和完全磁通排斥的物质,它的发现和应用引起了科学界和工业界的广泛关注。
超导体的研究和应用在电力、电子、医学等领域有着广泛的应用前景。
本文将介绍超导体的基本原理、发现历史、应用等方面的内容。
一、超导体的基本原理超导体是指在低温下电阻消失的物质。
在超导状态下,电流可以在超导体内部无阻力地流动,因此,超导体具有非常高的电导率。
在超导状态下,磁场也会受到排斥,并且磁通量量子化,即磁通量只能取2.07×10^-15 Wb的整数倍。
这些特性使得超导体在电力传输、磁共振成像、磁悬浮列车等领域有着广泛的应用。
超导体的基本原理可以通过BCS理论来解释。
BCS理论是由约翰·巴丁、利昂·库珀和约翰·施里弗在1957年提出的。
该理论认为,在超导体中存在一种称为库珀对的电子对,它们可以在晶格中形成一种称为布洛赫波的电子波。
这些布洛赫波会相互干涉,导致电子对之间的相互作用发生变化。
在低温下,这种相互作用会导致电子对之间形成一种称为玻色凝聚的状态。
在这种状态下,电子对可以无阻力地流动,从而导致电阻消失。
二、超导体的历史超导体的历史可以追溯到1911年,当时荷兰物理学家海克·卡末林发现,当汞被冷却到4.2K以下时,它的电阻消失。
这是第一次发现超导现象。
在随后的几十年里,科学家们发现了一些其他的超导体,如铅、铝等金属。
然而,这些超导体只能在极低的温度下工作,因此它们的应用受到了很大的限制。
在1957年,BCS理论的提出使得超导体的研究进入了一个新的阶段。
科学家们开始探索更高温度下的超导体。
在1986年,两个独立的研究小组几乎同时地发现了一种新型的高温超导体,它的临界温度高达30K以上。
这个发现引起了科学界的轰动,并且使得高温超导体的研究进入了一个新的时代。
三、超导体的应用超导体的应用非常广泛。
在电力传输方面,超导体可以用于制造超导电缆,它可以将电力传输效率提高到极高的水平。
超导体是什么
超导体是什么
超导体是一种在低温下能够以零电阻电流传输的材料。
当超导体被冷却至其临
界温度以下时,材料的电阻会突然消失,电流可以无阻碍地在其中流动。
这种特殊的电性质使得超导体在许多领域有着广泛的应用。
超导体的发现历程
超导现象最早于1911年被荷兰物理学家海克·卡梅林·奥姆斯发现。
他发现在
液态氦的温度下,汞的电阻突然消失,电流可以持续流过汞而不损失能量。
这一现象被后来的研究者称为超导现象,对于科学界来说是一次重大的突破。
超导体的分类
超导体可分为低温超导体和高温超导体两种。
低温超导体是指其临界温度较低,通常需要接近绝对零度才能展现超导性质,如铅、汞等金属;而高温超导体则是指其临界温度相对较高,甚至可以达到液氮温度以下,如YBCO、BiSrCaCuO等化合物。
超导体的应用领域
超导体在科学研究和工程领域有着广泛的应用。
在磁共振成像(MRI)、粒子
加速器、磁悬浮列车等领域,超导体的零电阻特性被广泛应用,能够提高系统的效率和性能。
此外,超导体还被用于制造高灵敏度的量子比特、超导量子干涉仪等高端科技产品。
超导体的未来发展
随着对超导体研究的深入,科学家们正在不断探索新的超导材料和机制。
希望
未来可以发现更高临界温度的超导体,以实现室温超导的梦想。
超导体的发展将为能源传输、电子器件、计算机科学等领域带来巨大的变革。
超导体的奇妙性质和广泛应用使其成为科学界的热点研究领域之一。
对超导体
的研究将为未来科技的发展和人类社会带来更多惊喜和挑战。
超导体以及超导体的应用简单介绍
超导体以及超导体的应用简单介绍超导体是一种在低温下表现出无电阻的材料,具有很高的导电性能。
在超导状态下,电流可以无损耗地在材料中流动,使其具有重要的科学和工程应用。
本文将对超导体的基本概念和一些常见的应用进行简要介绍。
一、超导体的基本概念超导体是指在一定的温度下,通过冷却或外界条件的改变,电阻为零并且磁场也会完全排斥的材料。
超导体常见的特性包括零电阻、零磁滞、等等。
根据材料的类型和性质,超导体被分为多种不同的类型,如I型超导体、II型超导体等。
二、超导体的应用1. 磁共振成像(MRI)超导体在医学成像领域有着广泛的应用。
目前常见的核磁共振成像(NMR)和磁共振成像(MRI)技术都使用了超导体。
超导体材料可以通过冷却至低温状态来维持超导态,使得医疗设备的磁场强度得以提升,从而提高成像的分辨率和准确度。
2. 高速磁悬浮列车超导体的磁性能使其在交通运输领域有着广泛的应用前景。
高速磁悬浮列车利用超导磁体产生巨大的磁场,通过磁悬浮和线圈之间的相互作用,实现列车的悬浮和运行。
超导体的应用使得列车可以高速运行,并且具备较低的摩擦和噪音。
3. 环境保护超导体的应用还可以帮助解决环境保护领域的一些难题。
例如,超导磁体可以用于磁场污染治理,通过控制磁场来降低电磁辐射对环境和人体健康的影响。
此外,超导体还可以用于高能粒子探测器、核聚变装置等领域,为科学研究提供有力的工具。
4. 能源传输和储存超导体在能源领域也有着广泛的应用前景。
超导电缆可以有效降低电能传输过程中的能量损耗,提高能源利用效率。
此外,超导体还可以用于储能设备的研发,例如超导磁体储能和超导磁体储能蓄电池等技术,这些技术可以在储能方面提供更高效、更可靠的解决方案。
5. 其他应用除了以上提到的应用领域外,超导体还有很多其他的应用。
例如,超导器件可以用于极低温实验、量子计算和量子通信等前沿领域。
此外,超导体还在磁共振能谱学、磁测量、精密测量等领域中发挥着重要作用。
什么是超导体
什么是超导体
超导体是一类具有超凡特性的材料,它们可以用来制造极具潜力的新
型电子设备。
要了解超导体的用处,先来了解一些其基本定义和性质。
本文通过以下内容介绍超导体及其应用。
一、定义
超导体是一类低温下强磁性物质,其电导率能大大超过普通金属,以
及可进行电力传输时无损耗的物质。
由于它没有电阻性,所以当电流
穿过它时会出现非常强大的磁场,使它成为量子物理学中最有趣的物
质之一。
二、形成原理
超导体形成的原理大致可以概括为:在低温下利用费米子的二重性对
电子的多寡导致电子进化出新的物理性质。
由于费米子的二重性,电
子在其中不会分散,而是紧紧附着在一起,形成了量子一致性,然后
再继续流动,从而形成无损耗的超导电流。
三、特性
超导体有特殊的磁性特性,就是抵抗外部磁场,即使给它施加特别强
大的磁场,也不会对它产生任何影响,这叫做Meissner效应。
另外,
它也具有超传导性和超流动性,即没有电阻。
四、应用
超导体应用场景十分的广泛,目前主要应用于磁性共振成像(MRI)、脉冲磁共振成像(MRS)、核磁共振(NMR)、等离子体领域等等。
在未来,超导体将在高速计算领域和电能传输领域发挥更重要的作用。
总之,超导体具有它独特的性质,是科技领域一项非常具有潜力的材料。
深入了解超导体,能够发掘它们无穷的可能性,从而实现一系列
新奇的技术和设备。
物理研究性学习--浅析超导体
浅析超导体学习设计方案一、课题产生的背景和依据所谓超导是指某些材料被冷却到低于某个转变温度时电阻突然消失的现象。
处于这种状态的物体叫超导体。
它是1911年荷兰科学家昂内斯首先发现的,经历了近90年的不平凡路程,超导技术正进入发展的大好时机。
超导技术的进一步发展,必将带来一场与能源、电子、交通有关的工业革命。
我们正悄然进入超导时代。
我们国家有着得天独厚的超导资源,在超导材料方面的研究也居世界先进行列,因此我们有着良好的学习和研究超导的氛围.很容易了解到相关信息,学生经常从各种媒体中看到有关超导新产品问世的消息,如我国的第一辆磁悬浮列车,长江三峡将要使用的超导发电机,美国研制每秒运算万次的超导计算机等。
他们对此有着强烈的好奇心,并已具备一定的电磁学知识,完全有能力去探索超导世界的奥秘。
二、课题实施过程l.准备阶段(1)基本知识的准备学生阅读相关物理资料或科普读物,了解有关超导体的物理概念、物理现象、物理实验,为以后的深入研究打好基础o(2)研究方法的准备学生学会如何在图书馆有针对性地查找资料,如何在网上有效、快速搜索所需资料,如何进行正确的实验设计,如何翻译原版资料等。
(3)课题基本框架准备⑦基本理论学习,②物理学史回顾,③实验探索,④应用例举,⑤总结。
2.实施阶段在具体实施时,对超导体的研究又分为几个子课题。
课题1 研究超导体的基本特性学生对超导体的初步研究是通过阅读科普文章开始,如《科学探奇》、《2I世纪十万个早知道》、《金属新秀》等。
他们了解到超导体除了零电阻现象外,还具有完全抗磁性,即超导体内部的磁感应强度等于零,磁感线作用于超导体时会统统被排斥,从超导体的旁边绕过去。
以上两种特性是对超导体的两个基本宏观判断,学生在本课题的实施过程中,将通过设计实验验证这两个基本特性。
实验一:研究低温下的导体电阻变化学生取用一个“25W,220V”灯泡中的钨丝,置于冰块中用数字电阻表测其电阻,发现其电阻未显著下降,设法用液氮(温度为如K左右)再次降温后,发现电阻大大下降,证明了温度降低导致导体阻值减小,但其电阻未减小至零,也证明超导现象须达到该金属的临界温度才行。
超导体性质及其在能源传输中的应用
超导体性质及其在能源传输中的应用超导体是一种在低温下能够完全消除电阻的材料。
它具有许多独特的性质,使其在能源传输中有着广泛的应用。
本文将详细介绍超导体的性质以及在能源传输中的应用。
首先,我们来看一下超导体的性质。
超导体的最主要的性质是完全消除了电阻。
在室温下,正常的导体会有一定的电阻,电流通过时会产生能量损失。
但超导体在低温下能够让电流无阻碍地流过,从而消除了能源的损耗。
这使得超导体在能源传输中具有重要的意义。
其次,超导体还具有电流密度高、磁场响应好的特点。
正常导体在面对强磁场时会产生磁场耦合效应,使得电流难以流过。
而超导体在低温下可以承受较高的电流密度,不会受到磁场的干扰。
这使得超导体可以在高磁场环境下运行,为能源传输提供了更大的灵活性。
超导体的一个重要应用是超导电缆。
超导电缆是利用超导体的性质来传输电能的一种技术。
它可以将大量的电能以较高的效率传输到远距离的地方。
传统的电缆在长距离输送电能时会有能量损耗,但使用超导体材料的电缆可以无损地传输电能。
这种技术在长距离高压输电和船舶电力系统中有着重要的应用。
此外,超导体还可以用于电感器和磁体。
由于超导体具有良好的磁场响应特性,可以在制造强大的电磁场设备时发挥重要作用。
超导体磁体广泛应用于核磁共振成像(MRI)、加速器和磁悬浮列车等领域。
这些设备需要强大的磁场来实现其功能,并且超导体磁体可以在较低的能量消耗下实现更高的磁场强度。
除了以上应用外,超导体还可以用于储能系统。
传统的电池储能系统能量密度相对较低,而超导体储能系统可以提供更高的能量密度。
这使得超导体储能系统成为一个有潜力的能源存储解决方案,可以为可再生能源的发展提供支持。
此外,超导体还可以用于制造高性能的电子器件,如超导量子比特。
超导量子比特是一种基于超导体的量子计算单元,具有超快的计算速度和信息存储能力。
它们有望在未来的量子计算领域发挥重要作用。
综上所述,超导体具有独特的性质,在能源传输中有着广泛的应用。
浅谈超导体特性及应用
浅谈超导体特性及应用浅谈超导体特性及应用姓名:蒲凌霄学号:10707020118摘要:简单介绍超导体的重要特点,超导现象,高温超导体,及其结构的特殊性,以及超导体的一些有关应用。
外加上自己在学习超导体过程中的疑问和心得体会。
此外,我还找来一些课外书籍作为参考,具体的分析了超导体以及有关于超导体的特性及其应用的有关知识和认识,具体内容看正文所述。
关键词:超导体,超导现象,超导应用及特性1.超导体的特性:1.1超导体特性的探索足迹1911年,荷兰科学家(Ones)用液冷却,当温度下降到,.,K时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。
根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。
但这里所说的「高温」,其实仍然是远低于冰点摄氏0?的,对一般人来说算是极低的温度。
1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。
经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。
1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。
1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K的高温超导性。
此后,科学家们几乎每隔几天,就有新的研究成果出现。
1986年,美国研究的超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。
1987年,美国华裔科学家以及中国科学家相继在钇,钡,铜,氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了。
1987年底,铊,钡,钙,铜,氧系材料又把临界超导温度的记录提高到125K。
从1986,1987年的短短一年多的时间里,临界超导温度提高了近100K。
来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6,δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。
浅谈超导体
浅谈超导体由于导体的电阻,在远距离输电等方面造成较大的电能浪费;如能生产一种超导体材料,没有电阻,电流流经它时将不受任何阻力,没有热损耗,于是就能以小的功率得到大的电流,从而产生几个甚至几十个特斯拉的超强磁场,将具有很高的应用价值。
今天,这一切以成为现实。
一、超导体的基本特性1.零电阻效应超导现象的发现是与低温技术的发展分不开的。
1906年荷兰著名低温物理学家昂纳斯(H.K.Onnes,1853—1926)首次制备出液态氮,获得4开的低温(相当于-269℃),随后又获得了1.04开的低温。
这是继1898年制备出液态氢获得14开低温之后的巨大进展。
随着低温技术的进展,科学家已注意到纯金属的电阻随温度的降低而减小的现象。
昂纳斯首先研究低温下水银电阻的变化。
1911年发现了水银的超导现象。
在4.2开附近水银电阻突然变小。
图1是水银的电阻随温度的变化情况,纵坐标是该温度下水银电阻与0℃时电阻的比值:R(T)/R(0℃)。
较精确的测量给出水银的超导转变温度(临界温度)T c=4.153 开。
继续降温到3开时,电阻降到仅为0℃时电阻值的10-7Ω,电阻值实际已可看作零了。
图1 水银的零电阻效应1912—1913年间昂纳斯又发现锡(Sn)在3.8开低温时,也有零电阻现象。
随后科学家们又发现了其他许多金属或合金在低温下都有零电阻效应。
昂纳斯首先将这种特殊的电学性质称为超导。
昂纳斯由于液氦的制备和超导现象的研究获 l913 年诺贝尔物理学奖。
2.完全抗磁性1933年,德国物理学家迈斯纳(W.Meissner)通过实验发现:当置于磁场中的导体通过冷却过渡到超导态时,原来进入此导体中的磁感线会一下子被完全排斥到超导体之外(见图2),超导体内磁感应强度变为零,这表明超导体是完全抗磁体。
这个现象称为迈斯纳效应。
3.存在临界磁场实验表明,超导态可以被外磁场所破坏,在低于Tc的任一温度T 下,当外加磁场的磁感应强度B小于某一临界值Bc时。
超导体简述
超导体简述一、超导体的定义:一般材料在温度接近绝对零度的时候,物体分子热运动几乎消失,材料的电阻趋近于0,此时称为超导体,达到超导的温度称为临界温度。
二、超导体的发展史:1911年,荷兰科学家昂内斯(Onnes)用液氦冷却汞,当温度下降到绝对温标4.2K 时水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。
根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。
但这里所说的“高温”,其实仍然是远低于冰点摄氏0℃的,对一般人来说算是极低的温度。
1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。
经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。
超导现象1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。
1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K的高温超导性。
此后,科学家们几乎每隔几天,就有新的研究成果出现。
1986年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。
1987年,中国科学家赵忠贤以及美国华裔科学家朱经武相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了。
1 987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。
从19 86-1987年的短短一年多的时间里,临界超导温度提高了近100K。
2001年,二硼化镁(MgB2)被发现其超导临界温度达到39K [1]。
此化合物的发现,打破了非铜氧化物超导体(non-cuprate superconductor)的临界温度纪录。
1990至2000年代,具ZrCuAsSi结构的稀土过渡金属氮磷族化合物(rare-earth tran sition-metal oxypnictide, ReTmPnO)陆续被发现[2] [3]。
超导体讲座心得体会
在这次关于超导体的讲座中,我受益匪浅,不仅对超导现象有了更为深入的了解,也对物理学的发展和应用有了新的认识。
以下是我对此次讲座的一些心得体会。
一、超导现象的发现与探索讲座伊始,主讲人向我们介绍了超导现象的发现历程。
超导现象是指在特定条件下,某些材料的电阻突然降为零的现象。
这一现象最早由荷兰物理学家海克·卡末林·昂内斯在1911年发现。
从此,超导现象成为了物理学研究的热点。
在讲座中,我们了解到,超导现象的发现并非偶然。
在此之前,科学家们对低温下的物质性质进行了长期的研究。
昂内斯发现超导现象后,引发了全球科学家的广泛关注。
随后,超导材料的研究取得了许多突破性进展。
二、超导材料的特性与应用讲座中,主讲人详细介绍了超导材料的特性。
超导材料在达到临界温度时,电阻会突然降为零,这一特性使得超导材料在许多领域具有广泛的应用前景。
1. 电力传输:超导材料在电力传输领域的应用具有显著优势。
与传统导体相比,超导材料在传输电流时几乎不产生热量,从而提高了电力传输的效率,降低了能源损耗。
2. 磁悬浮列车:超导材料在磁悬浮列车中的应用可以极大地提高列车的速度和稳定性。
磁悬浮列车利用超导体的磁悬浮特性,使列车与轨道之间没有直接接触,从而减少了摩擦和能量损耗。
3. 核磁共振成像(MRI):超导材料在MRI设备中发挥着重要作用。
MRI利用超导量子干涉器(SQUID)进行磁场的精确测量,从而实现对人体内部的成像。
4. 量子计算:超导材料在量子计算领域具有潜在的应用价值。
超导量子比特(qubit)是实现量子计算的关键,而超导材料是实现量子比特的理想材料。
三、超导材料的制备与挑战尽管超导材料在许多领域具有广泛应用前景,但其制备和研究的挑战依然存在。
1. 临界温度:目前,大多数超导材料的临界温度较低,这限制了它们在实际应用中的普及。
科学家们正致力于寻找临界温度更高的超导材料。
2. 制备工艺:超导材料的制备工艺复杂,成本较高。
超导体原理
超导体原理超导体是一种在低温下表现出零电阻和完全抗磁性的材料。
它们在电力输送、磁共振成像、磁浮列车等领域有着广泛的应用。
超导体的原理是基于超导电性,即在超导态下电流可以无阻力地流动,磁通量可以完全被排斥。
超导体的原理涉及到凝聚态物理、电磁学和量子力学等多个领域的知识。
本文将从超导体的基本特性、超导体的类型、超导体的临界温度和超导体的应用等方面进行探讨。
首先,超导体的基本特性包括零电阻和完全抗磁性。
在超导态下,电流可以在不受阻碍的情况下流动,这意味着超导体可以在不损耗能量的情况下传输电流。
此外,超导体在超导态下会完全排斥外部磁场,表现出完全抗磁性。
这些基本特性使得超导体在电力输送和磁共振成像等领域有着重要的应用。
其次,超导体可以分为Type I超导体和Type II超导体两种类型。
Type I超导体在临界磁场以下会完全变为超导态,而在临界磁场以上会恢复为正常导体。
而Type II超导体在临界磁场以上会出现一部分的磁通量穿透,形成一种新的状态,称为Flux Flow状态。
这两种类型的超导体在不同的温度和磁场条件下表现出不同的超导性质。
另外,超导体的临界温度是指在该温度以下材料会变为超导态。
目前,研究人员通过不断改进材料和结构,已经发现了多种高温超导体,使得超导体的临界温度得到了大幅提高。
这为超导体的实际应用提供了更广阔的空间,也为超导体的研究和发展带来了新的动力。
最后,超导体在电力输送、磁共振成像、磁浮列车等领域有着重要的应用。
在电力输送领域,超导体可以大大减少能量损耗,提高输电效率,减少能源浪费。
在磁共振成像领域,超导体可以提供强大的磁场,用于医学诊断和科学研究。
在磁浮列车领域,超导体可以产生强大的磁场,使列车悬浮在轨道上,大大减少了摩擦阻力,提高了列车的运行速度和效率。
总之,超导体的原理涉及到多个领域的知识,包括凝聚态物理、电磁学和量子力学等。
超导体的基本特性、类型、临界温度和应用都展现了超导体在科学研究和工程技术中的重要作用。
超导体知识点
超导体知识点超导体是一种在低温下表现出无电阻和完全磁通排斥现象的材料。
在超导体中,电流可以在没有任何耗散的情况下持续循环流动,这使得超导体在电磁学和能源应用等领域具有巨大的潜力。
本文将介绍超导体的基本概念、超导机制、超导材料和超导应用等方面的知识。
一、超导体的基本概念超导体是指在一定的温度下,电阻可以降至零的材料。
超导现象的发现可以追溯到1911年,在极低温下,荷兰物理学家海克·卡末林发现了汞的超导性。
此后,人们又陆续发现了其他材料也具有类似的特性。
二、超导机制超导现象的产生与电子之间的库仑相互作用密切相关。
在常规金属中,电子在受到温度和其它杂质的影响下会散射,从而产生电阻。
但在超导体中,电子可以通过与晶格振动相互作用,形成库伦对并在晶格中自由传输。
这种电子的凝聚状态使得电流可以在超导体中无阻力地流动。
三、超导材料超导材料可以分为低温超导体和高温超导体两类。
1. 低温超导体低温超导体需要在极低的温度下才能表现出超导特性。
常见的低温超导体包括铅(Pb)、汞(Hg)和锡(Sn)等。
2. 高温超导体高温超导体是指在相对较高的温度下表现出超导特性的材料。
这些材料通常包含氧化物,如铜氧化物(cuprate)、铁基超导体和镨钐铁钛基超导体等。
高温超导体的发现极大地推动了超导技术的发展,因为相对较高的工作温度使得超导体可以更方便地应用于实际生活中。
四、超导应用超导体在多个领域具有广泛的应用前景。
1. 能源传输超导体的无电阻特性使其成为输电线路的理想选择。
通过将输电线路用超导体替代传统的铜导线,可以大大减少能量损失。
2. 磁共振成像(MRI)超导体在医学领域的应用主要体现在磁共振成像技术中。
磁共振成像利用超导体产生的高强度磁场和射频脉冲,可以获得人体内部组织的高清影像,用于诊断和研究。
3. 磁悬浮交通超导体还可以应用于磁悬浮交通领域。
由于超导体可以在磁场中排斥磁通线,使得超导体制成的轨道可以与磁浮车辆产生浮力,从而实现摩擦减小、高速运行的效果。
超导体的功能和应用研究
超导体的功能和应用研究超导体是指在低温下电阻为零的材料,这是一种特殊的物质,其具有很多的优异性能和应用前景。
在近年来人们的广泛研究和应用中,超导体不仅被应用于传输电力和制备超导电子器件等领域,也在纳米技术、能源等方面展示出非常好的应用前景。
超导体的功能和性质1.超导体是电导材料超导体是一种电导材料,但在具有一定温度和条件下可以达到真正的超导态。
在超导态下,电子在材料中行进而不产生阻力,导致电导率变得非常大,在实际应用中大大提高了电能输送的效率。
2.超导体具有零电阻超导体在超导态下具有从零电阻特性,无论电流大小如何,都不会产生电阻。
这是所有材料中仅有的一个物理现象。
这种零电阻状态可以使超导体传输电能更加高效,并使电能在传输过程中的损失减少。
3.超导体具有磁性超导体在磁场下具有很强的磁性,可以将磁场完全排除,并产生一定的磁反应。
此外,在磁田中流动的电流不会发生磁阻尼和散失,具有较高的传输效率。
4.超导体具有强的耐热性能超导体常温时的电阻性能非常差,但在低温下可以形成超导态并具有强的耐热性。
这种特性在超导体应用温度较高的情况下,能够有效防止超导体的变形和损坏。
超导材料的应用超导体具有很高的应用前景,涉及电能传输、计算机技术、通信技术等许多领域并有着广泛的应用。
1.超导互联超导互联是利用超导体创建低阻/无阻的通道,提高信号数据传输速度和密度。
在超导互联技术中,通信效率相对于其他材料有较大提高,从而提升了计算机处理能力和存储速度。
2.能源管理超导体在电力传输方面的应用非常广泛,将其引入电力传输系统中能有效降低传输损失和保持电压稳定,同时,也能够提高能源使用效率。
3.制备超导电子器件将超导体材料制备成超导电子器件,用于放大、滤波、控制、存储等方面都有很广泛的应用。
在该领域中,超导材料的应用稳定性和精度具有重要作用。
4.用于核磁共振成像超导体在医学领域中的应用也非常广泛,尤其在核磁共振成像领域中发挥着重要作用。
超导体的基本原理及应用
超导体的基本原理及应用超导体是一种在一定的条件下能够表现出完全的电阻为零的性质的材料,这种材料可以产生强大的磁场,并且能够有效地传输电能。
超导体的基本原理是由于材料内部的电子在低温条件下,能够在材料内部形成一种超导状态,这种状态下,电子会形成电子对,从而减少电子自身的散射,使得电子能够更好地在材料内部传导,从而表现出完全的电阻为零的性质。
超导体已经得到了广泛的研究和应用,包括在磁共振成像、能量传输和量子计算等方面。
超导体的基本原理超导体的基本原理是由于材料内部的电子在低温条件下,能够形成一个电子对,从而产生一种超导状态,这种状态下,电子能够更好地在材料内部传导,从而表现出完全的电阻为零的性质。
这种超导状态下的电子受到的阻力非常小,因此能够产生非常强大的磁场。
超导材料通常需要在非常低的温度下才能表现出超导特性,例如常用的银(Tc=0.94K),铜(Tc=1.02K),镉(Tc=0.56K),铅(Tc=7.18K)等材料,需要在液氦的温度(4K)以下才能表现出超导特性。
在低温条件下,电子对不断地在材料内部移动,形成了一个不可逆的电流环,这种电流环会产生一个相应的磁场,这种磁场可以通过放置一个外部磁体来寻找。
超导体的应用超导体已经得到了广泛的应用,在磁共振成像、能量传输和量子计算等方面都有重要的应用。
1. 磁共振成像磁共振成像是一种通过扫描方法来获取人体内部结构的医学技术。
在这种技术中,利用一个非常强大的磁场来对人体内部的水分子进行定向,然后利用射频来观察这些水分子的旋转。
这种技术需要使用超导体来产生强大的磁场,以便能够对人体内部进行精确定位。
2. 能量传输超导体的完全电阻为零的性质可以让电流在其内部传输变得非常有效率。
因此,超导体可以用来进行能量传输,例如用于输电线路中。
利用超导体可以使得电能的传输损失减少到最低,从而提高电能的传输效率。
3. 量子计算超导体可以用于量子计算,这是一种比传统计算机更快更强大的计算机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高温超导研究所以会引起世界各国科学家的关注,就是因其有巨大的科学和经济价值。
在交通运输方面,利用超导体的无电阻和抗磁性的特点,已研制出时速超过550千米的磁悬浮列车。
在节能方面可制造功率极大、体积小、效率高的超导发电机,这种电机载流能力比常规电机高1—2个数量级。利用超导电缆可实现无损耗长距离输电,而目前30%的电能在输送电路上损耗掉。1998年我国第一根铋系高温超导输电电缆研制成功,运载电流达到1200安培,使我国成为世界上少数几个掌握这一技术的国家。
浅谈超导体
由于导体的电阻,在远距离输电等方面造成较大的电能浪费;如能生产一种超导体材料,没有电阻,电流流经它时将不受任何阻力,没有热损耗,于是就能以小的功率得到大的电流,从而产生几个甚至几十个特斯拉的超强磁场,将具有很高的应用价值。今天,这一切以成为现实。
一、超导体的基本特性
1.零电阻效应
超导现象的发现是与低温技术的发展分不开的。1906年荷兰著名低温物理学家昂纳斯(H.K.Onnes,1853—1926)首次制备出液态氮,获得4开的低温(相当于-269℃),随后又获得了1.04开的低温。这是继1898年制备出液态氢获得14开低温之后的巨大进展。随着低温技术的进展,科学家已注意到纯金属的电阻随温度的降低而减小的现象。昂纳斯首先研究低温下水银电阻的变化。1911年发现了水银的超导现象。在4.2开附近水银电阻突然变小。图1是水银的电阻随温度的变化情况,纵坐标是该温度下水银电阻与0℃时电阻的比值:R(T)/R(0℃)。较精确的测量给出水银的超导转变温度(临界温度)Tc=4.153开。继续降温到3开时,电阻降到仅为0℃时电阻值的10-7Ω,电阻值实际已可看作零了。
超导核磁共振成像仪已在医学上应用,用常规电磁铁一般能产生的最高磁场强度约2特斯拉,而用超导磁体可产生几十特斯拉的强磁场,而功耗降低到1/100。
超导磁体在磁约束的受控热核聚变反应堆中也是必不可少的,只有利用超导磁体才有可能在几十立方米的空间中产生十几特斯拉的磁场作为等离子体的加热和约束之用。
目前超导应用上的主要困难已不是提高T c,而是要提高材料能承受的电流强度(不致破坏超导态)和增强材料的展延性,以拉伸成材。超导应用前景十分广阔,随着应用领域的扩大,这一高科技领域的产业化必将得到迅速ห้องสมุดไป่ตู้展。
图1水银的零电阻效应
1912—1913年间昂纳斯又发现锡(Sn)在3.8开低温时,也有零电阻现象。随后科学家们又发现了其他许多金属或合金在低温下都有零电阻效应。昂纳斯首先将这种特殊的电学性质称为超导。昂纳斯由于液氦的制备和超导现象的研究获l913年诺贝尔物理学奖。
2.完全抗磁性
1933年,德国物理学家迈斯纳(W.Meissner)通过实验发现:当置于磁场中的导体通过冷却过渡到超导态时,原来进入此导体中的磁感线会一下子被完全排斥到超导体之外(见图2),超导体内磁感应强度变为零,这表明超导体是完全抗磁体。这个现象称为迈斯纳效应。
3.存在临界磁场
实验表明,超导态可以被外磁场所破坏,在低于Tc的任一温度T下,当外加磁场的磁感应强度B小于某一临界值Bc时。超导态可以保持;当B大于Bc时,超导态会被突然破坏而转变成正常态。临界磁场Bc不仅与超导体本身性质有关,还与温度T有关。
4.同位素效应
超导体的临界温Tc与其同位素质量M有关。M越大,Tc越低,这称为同位素效应。例如,原子量为199.55的汞同位素,它的Tc是4.18开,而原子量为203.4的汞同位素,Tc为4.146开。
合金型目前主要是铌钛合金(NbTi,Tc=9.5开),比较成熟,已达到了商品化。另外,用得较多的一些化合物超导材料主要有铌三锡(Nb 3 Sn,T c=18.3开)、钒三镓(V3Ga,Tc=16.5开)和钒三硅(V3Si,Tc=17.1开)等。由此可见临界温度也是非常低,制约了超导材料的发展。直到1987年2月24日中国科学院宣布,赵忠贤领导的科研组已将钇钡铜氧(YBaC)材料的T c提高到了92.8开以上,从而实现了超导在高温区的突破,大大扩展了超导的应用前景。
二、常规超导与高温超导
常规超导材料按其化学组成可分为三种:元素超导体、合金超导体和化合物超导体。大部分金属元素都具有超导电性,但是在室温下,导电性能非常好的一些金属元素(如金、银、铜等)却在很低的温度下都不是超导体。实用超导材料主要是合金型和化合物型两大类,这是由于它们具有易制备、成本低、塑性好等优点。