江苏省扬州市仪征市2020-2021学年九年级上学期期末数学试题
江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类
江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类一.一元二次方程的应用(共1小题)1.(2022秋•常州期末)常州大剧院举办文艺演出.经调研,如果票价定为每张50元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票将会减少20张.要使门票收入达到60500元,票价应定为多少元?二.三角形综合题(共1小题)2.(2022秋•常州期末)如果三角形一个内角的2倍与另一个内角的和等于90°,那么我们称这样的三角形为“类互余”三角形.(1)若△ABC是“类互余”三角形,∠C>90°,∠A=40°,则∠B= ;(2)如图1,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,△ABD是“类互余”三角形吗?请说明理由;(3)如图2,在△ABC中,,tan∠ABC=2,D是CB延长线上的一点.若△ABD 是“类互余”三角形,求BD的长.三.正方形的性质(共1小题)3.(2021秋•常州期末)【问题】老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:【方案一】小明构造了图1,在△ABC中,AC=2,∠B=30°,∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.【方案二】小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF =30°.第一步:连接AC,过点C作CG⊥EF,垂足为G,用含a的代数式表示AC和CG的长;第二步:在Rt△AGC中,计算sin75°.请分别按照小明和小华的思路,完成解答过程.四.直线与圆的位置关系(共1小题)4.(2021秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与⊙O的位置关系,并说明理由;(2)若AE=4,ED=2,求⊙O的半径.五.圆的综合题(共2小题)5.(2020秋•常州期末)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是 cm,⊙M与直线CD的位置关系是 ;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是 cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.6.(2021秋•常州期末)如图1,边长为6cm的等边△ABC中,AD是高,点P以cm/s 的速度从点D向A运动,以点P为圆心,1cm为半径作⊙P,设点P的运动时间为ts.(1)当⊙P与边AC相切时,求t的值;(2)如图2,若在点P出发的同一时刻,点Q以1cm/s的速度从点B向点C运动,一个点停止运动时,另一个点也随之停止运动.过点Q作BA的平行线,交AC于点M.当QM 与⊙P相切时,求t的值;(3)在运动过程中,当⊙P与△ABC的边共有两个公共点时,直接写出t的取值范围.六.相似三角形的性质(共2小题)7.(2020秋•常州期末)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.8.(2021秋•常州期末)如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.(1)在△ABC中,∠A=30°.①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是 ;(2)如图3,在△DEF中,DE=4,EF=6,DF=8,若EG是DEF的“形似线段”,求EG的长.七.相似三角形的判定(共1小题)9.(2022秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC.(1)过点D作⊙O的切线DE,交AC于点E(用直尺和圆规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接BD,△ADE与△ABD相似吗?为什么?八.作图-相似变换(共1小题)10.(2021秋•常州期末)如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆⊙P,并写出圆心P的坐标 ;(3)将△ABC绕(2)中的点P(3)将△ABC绕点P顺时针旋转90°,则点A运动的路线长是 .九.方差(共2小题)11.(2020秋•常州期末)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲 10 乙10 7(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?12.(2021秋•常州期末)“119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):八年级代表队:80,90,90,100,80,90,100,90,100,80;九年级代表队:90,80,90,90,100,70,100,90,90,100.(1)填表:代表队平均数中位数方差八年级代表队90 60九年级代表队 90 (2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?一十.列表法与树状图法(共3小题)13.(2020秋•常州期末)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.14.(2021秋•常州期末)小丽的爸爸积极参加社区志愿服务,根据社区安排,志愿者将被随机分配到以下小组中的一个:A组(交通疏导)、B组(环境消杀)、C组(便民代购),开展服务工作.(1)小丽的爸爸被分配到C组的概率是 ;(2)若小丽的班主任刘老师也参加了该社区的志愿者队伍,那么刘老师和小丽的爸爸被分到同一组的概率是多少?请用画树状图或列表的方法写出分析过程.15.(2022秋•常州期末)学校为了践行“立德树人,实践育人”的目标,开展劳动课程,组织学生走进农业基地,欣赏田园风光,体验劳作的艰辛和乐趣.该劳动课程有以下小组:A.搭豇豆架、B.斩草除根、C.趣挖番薯、D.开垦播种.学校要求每人只能参加一个小组,甲和乙准备随机报名一个小组.(1)甲选择“搭虹豆架”小组的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个小组的概率.江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一元二次方程的应用(共1小题)1.(2022秋•常州期末)常州大剧院举办文艺演出.经调研,如果票价定为每张50元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票将会减少20张.要使门票收入达到60500元,票价应定为多少元?【答案】55元.【解答】解:设票价应定为x元,由题意得:x[1200﹣20(x﹣50)]=60500,解得:x1=x2=55.答:票价应定为55元.二.三角形综合题(共1小题)2.(2022秋•常州期末)如果三角形一个内角的2倍与另一个内角的和等于90°,那么我们称这样的三角形为“类互余”三角形.(1)若△ABC是“类互余”三角形,∠C>90°,∠A=40°,则∠B= 25°或10° ;(2)如图1,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,△ABD是“类互余”三角形吗?请说明理由;(3)如图2,在△ABC中,,tan∠ABC=2,D是CB延长线上的一点.若△ABD 是“类互余”三角形,求BD的长.【答案】(1)25°或10°;(2)是,理由见解析;(3)或6.【解答】解:(1)∵∠C>90°,∴∠A+∠B<90°∵△ABC是“类互余”三角形,∠A=40°,∴∠A+2∠B=90°或2∠A+∠B=90°,∴∠B=25°或∠B=10°,故答案为:25°或10°.(2)△ABD是“类互余”三角形,理由如下,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,∴AC=AD+DC=4,∴,∴=,又∵∠C=∠C,∴△ACB∽△BCD,∴∠CBD=∠A,设∠CBD=∠A=α,则∠ADB=∠ABC﹣∠CBD=(90°﹣α)﹣α=90°﹣2α,∴2∠A+∠ABD=2α+90°﹣2α=90°,∴△ABD是“类互余”三角形;(3)设∠ADB=α,依题意,△ABD是“类互余”三角形,∠ABD>90°,当2∠ADB+∠BAD=90°时,如图所示,过点A作AE⊥BC于点E,则∠BAD=90°﹣α,∴∠EAB=α,∴∠EAB=∠ADB,∵tan∠ABC=2,,设AE=2a,则BE=a,∴,解得:a=2,∴AE=4,BE=2,∵∠EAB=∠ADB,∴,∴ED=8,∴BD=DE﹣BE=8﹣2=6;当∠ADB+2∠BAD=90°,如图所示,过点A作AE⊥BC于点E,过点B作BF⊥AD于点F,则∠BAD=α,∠ADB=90°﹣2α,∴∠EAB=∠BAD=α,∴BF=BE=2,设BD=x,则ED=2+x,∵,∴,即,解得:.即或6.三.正方形的性质(共1小题)3.(2021秋•常州期末)【问题】老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:【方案一】小明构造了图1,在△ABC中,AC=2,∠B=30°,∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.【方案二】小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF =30°.第一步:连接AC,过点C作CG⊥EF,垂足为G,用含a的代数式表示AC和CG的长;第二步:在Rt△AGC中,计算sin75°.请分别按照小明和小华的思路,完成解答过程.【答案】【方案一】.【方案二】.【解答】解:【方案一】如图1,过点A作AQ⊥BC于点Q,在△ABC中,AC=2,∠B=30°,∵∠C=45°.AC=2,∴AQ=CQ=AC=,∵∠B=30°,∴BQ=AQ=,∴BC=BQ+QC=+,∴CD=BC=,∵∠DAC=∠B+∠ACB=75°,∴sin75°==.【方案二】如图2,延长CB交FE于点H,∵正方形ABCD的边长为a,∴AC=a,∵∠DAF=30°.∴∠BAH=60°,∴∠H=30°,∴AH=2AB=2a,∴BH=AB=a,∴CH=BH+BC=a+a=(+1)a,∴CG=CH=,∵∠GAC=∠CAD+∠DAF=75°,∴sin75°===.四.直线与圆的位置关系(共1小题)4.(2021秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与⊙O的位置关系,并说明理由;(2)若AE=4,ED=2,求⊙O的半径.【答案】(1)直线DE与⊙O相切,理由见解析;(2).【解答】解:(1)直线DE与⊙O相切;理由:连接OD,∵∠CAB的平分线是AD,∴∠CAD=∠DAB.∵OA=OD,∴∠OAD=∠ODA.∴∠EAD=∠ADO,∴AE∥OD,∵∠AED=90°,∴∠ODE=90°.∵OD是⊙O的半径,∴直线DE与⊙O相切;(2)连接BD,∵ED=2,AE=4,∴AD==2,∵AB是⊙O的直径,∴∠ADB=90°,∵∠EAD=∠BAD,∴△ADE∽△ABD,∴=,∴AB=5,∴⊙O的半径为.五.圆的综合题(共2小题)5.(2020秋•常州期末)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是 cm,⊙M与直线CD的位置关系是 相离 ;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是 5 cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.【答案】见试题解答内容【解答】解:(1)如图1,过M作KN⊥AB于N,交CD于K,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,∴⊙M的直径是PQ,KN⊥CD,当t=1时,AP=3,CQ=4,∵AB=6,BC=8,∴PB=6﹣3=3,BQ=8﹣4=4,∴PQ==5,∴⊙M的半径为cm,∵MN∥BQ,M是PQ的中点,∴PN=BN,∴MN是△PQB的中位线,∴MN=BQ=×4=2,∴MK=8﹣2=6>,∴⊙M与直线CD的位置关系是相离;故答案为:,相离;(2)①如图2,由P、Q运动速度与AB,BC的比相等,∴圆心M在对角线BD上,由图可知:P和Q两点在t=2时在点B重合,当t=0时,直径为对角线AC,M是AC的中点,故M运动路径为OB=BD,由勾股定理得:BD==10,则圆心M的运动路径长是5cm;故答案为:5;②如图3,当⊙M与AD相切时,设切点为F,连接FM并延长交BC于E,则EF⊥AD,EF⊥BC,则BQ=8﹣4t,PB=6﹣3t,∴PQ=10﹣5t,∴PM==FM=5﹣t,△BPQ中,ME=PB=3﹣t,∵EF=FM+ME,∴5﹣t+3﹣t=6,解得:t=;(3)如图4,过D作DG⊥PQ,交PQ的延长线于点G,连接DQ,∵∠APD=∠NBQ,∠NBQ=∠NPQ,∴∠APD=∠NPQ,∵∠A=90°,DG⊥PG,∴AD=DG=8,∵PD=PD,∴Rt△APD≌Rt△GPD(HL),∴PG=AP=3t,∵PQ=10﹣5t,∴QG=3t﹣(10﹣5t)=8t﹣10,∵DC2+CQ2=DQ2=DG2+QG2,∴62+(4t)2=82+(8t﹣10)2,∴3t2﹣10t+8=0,(t﹣2)(3t﹣4)=0,解得:t1=2(舍),t2=.6.(2021秋•常州期末)如图1,边长为6cm的等边△ABC中,AD是高,点P以cm/s 的速度从点D向A运动,以点P为圆心,1cm为半径作⊙P,设点P的运动时间为ts.(1)当⊙P与边AC相切时,求t的值;(2)如图2,若在点P出发的同一时刻,点Q以1cm/s的速度从点B向点C运动,一个点停止运动时,另一个点也随之停止运动.过点Q作BA的平行线,交AC于点M.当QM 与⊙P相切时,求t的值;(3)在运动过程中,当⊙P与△ABC的边共有两个公共点时,直接写出t的取值范围.【答案】(1)t=3﹣;(2)(﹣)或(+);(3)t的取值范围为0≤t<或t=3﹣或3﹣<t≤3.【解答】解:(1)设⊙P与边AC相切点E,连接PE,如图,则PE⊥AC.∵△ABC是边长为6的等边三角形,AD是高,∴BD==3cm,∠DAC=∠BAC=30°.∴AD==3,由题意得:PD=tcm,∴AP=AD﹣PD=(3﹣t)cm.在Rt△APE中,∵sin∠PAE=,∴AP=.∴3﹣t=.解得:t=3﹣.∴当⊙P与边AC相切时,t的值为3﹣.(2)设QM与⊙P相切于点E,①当点E在AD的左侧时,设QM与AD交于点F,如图,连接EP,过点M作MH⊥AD于点H,∵QM与⊙P相切于点E,∴EP⊥QM.∵△ABC是边长为6的等边三角形,AD是高,∴∠DAB=∠DAC=∠BAC=30°.∵QM∥AB,∴∠QFD=∠BAD=30°.∵∠AFM=∠QFD,∴∠AFM=30°.∴∠FAM=∠AFM=30°.∴AM=FM.∵MH⊥AD,∴AH=FH=.由题意得:BQ=t,DP=t,∵∠B=∠BAC=60°,AB∥QM,∴四边形ABQM为等腰梯形,∴AM=BQ=t.∴AH=AM•cos∠DAC=t.∴AF=2AH=2t.∵EP⊥QM,∠EFP=30°,∴FP=2EP=2.∵AF+FP+PD=AD,∴t+2+t=3.解得:t=﹣;②当点P在AD的右侧时,设QM与AD交于点F,如图,连接EP,过点M作MH⊥AD于点H,∵QM与⊙P相切于点E,∴EP⊥QM.∵△ABC是边长为6的等边三角形,AD是高,∴∠DAB=∠DAC=∠BAC=30°.∵QM∥AB,∴∠QFD=∠BAD=30°.∵∠AFM=∠QFD,∴∠AFM=30°.∴∠FAM=∠AFM=30°.∴AM=FM.∵MH⊥AD,∴AH=FH=.由题意得:BQ=t,DP=t,∵∠B=∠BAC=60°,AB∥QM,∴四边形ABQM为等腰梯形,∴AM=BQ=t.∴AH=AM•cos∠DAC=t.∴AF=2AH=2t.∵EP⊥QM,∠EFP=30°,∴FP=2EP=2.∵AF+DP﹣FP=AD,∴t+t﹣2=3.解得:t=+.综上,当QM与⊙P相切时,t的值为(﹣)或(+).(3)①当0≤PD<1时,此时⊙P与BC相交,⊙P与BC边有两个公共点,符合题意,∴此时t的取值范围为0≤t<;②当1<PD<3﹣2时,此时⊙P与△ABC的三边均相离,没有公共点;③当PD=3﹣2时,此时⊙P与AB,AC边相切,此时⊙P与△ABC的边共有两个公共点;∴由(1)知:t=3﹣;④当3﹣2<PD<3﹣1时,此时⊙P与AB,AC边均相交,此时⊙P与△ABC的边共有四个公共点;⑤当3﹣1<PD≤3时,此时⊙P与AB,AC边均相交,但各只有一个交点,符合题意,∴此时t的取值范围为:3﹣<t≤3.综上,当⊙P与△ABC的边共有两个公共点时,t的取值范围为0≤t<或t=3﹣或3﹣<t≤3.六.相似三角形的性质(共2小题)7.(2020秋•常州期末)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.【答案】(1).(2)(0,3)或(0,).【解答】解:(1)如图,过点A作AH⊥OB于H.∵A(2,2),∴AH=OH=2,∴∠AOB=45°,∴sin∠AOB=.(2)由(1)可知,∠AOP=∠AOB=45°,OA=2,当△AOP∽△AOB时,=,可得OP′=OB=3,∴P′(0,3),当△AOP∽△BOA时,=,∴=,∴OP=,∴P(0,),综上所述,满足条件的点P的坐标为(0,3)或(0,).8.(2021秋•常州期末)如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.(1)在△ABC中,∠A=30°.①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是 或 ;(2)如图3,在△DEF中,DE=4,EF=6,DF=8,若EG是DEF的“形似线段”,求EG的长.【答案】(1)①作图见解析部分;②或;(2)3.【解答】解:(1)①如图1中,线段CM即为所求;②如图2中,当BH⊥AC时,线段BH是“形似线段”,∵∠ABC=90°,BC=1,∠A=30°,∴AC=2BC=2,AB=BC=,∵•AB•BC=•AC•BH,∴BH==.当CM平分∠BCA时,线段CT是“形似线段”,在Rt△CBT中,CT==.综上所述,△ABC的“形似线段”的长是或;(2)如图3中,当△DEG∽△DFE时,=,∴=,∴EG=3,当△FEG∽△FDE时,=,∴=,∴EG=3,∴EG=3.七.相似三角形的判定(共1小题)9.(2022秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC.(1)过点D作⊙O的切线DE,交AC于点E(用直尺和圆规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接BD,△ADE与△ABD相似吗?为什么?【答案】(1)见解析;(2)△ADE∽△ABD,理由见解析.【解答】解:(1)如图所示,DE即为所求,理由如下,连接OD,∵弦AD平分∠BAC,∴∠CAD=∠BAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)△ADE∽△ABD,理由如下,连接BD,如图,∵弦AD平分∠BAC,∴∠CAD=∠BAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴AC⊥DE,∵AB是⊙O的直径,∴∠ADB=90°,∴∠AED=∠ADB,∴△ADE∽△ABD.八.作图-相似变换(共1小题)10.(2021秋•常州期末)如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆⊙P,并写出圆心P的坐标 (3,4) ;(3)将△ABC绕(2)中的点P(3)将△ABC绕点P顺时针旋转90°,则点A运动的路线长是 π .【答案】(1)作图见解析部分;(2)作图见解析部分,P(3,4).(3)π.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,点P即为所求,P(3,4),故答案为:(3,4);(3)∵PA==,∴的长==π.故答案为:π.九.方差(共2小题)11.(2020秋•常州期末)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲 10 10 10 乙10 10.5 7(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?【答案】(1)10、10、10.5;(2)建议商家可多采购甲品牌冰箱,理由见解答.【解答】解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12,所以甲品牌销售数量的平均数为=10(台),众数为10台,乙品牌销售数量从小到大排列为7、7、10、11、12、13,所以乙品牌销售数量的中位数为=10.5(台),补全表格如下:平均数中位数众数甲101010乙1010.57故答案为:10、10、10.5;(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差=×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S2=,乙∴<S乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.12.(2021秋•常州期末)“119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):八年级代表队:80,90,90,100,80,90,100,90,100,80;九年级代表队:90,80,90,90,100,70,100,90,90,100.(1)填表:代表队平均数中位数方差八年级代表队90 90 60九年级代表队 90 90 80 (2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?【答案】(1)90、90、80;(2)八年级代表队的学生竞赛成绩更好,理由见解答;(3)九年级大约有180名学生可以获得奖状.【解答】解:(1)将八年级代表队成绩重新排列为80,80,80,90,90,90,90,100,100,100,所以其中位数为=90,九年级代表队成绩的平均数为=90,所以其方差为×[(70﹣90)2+(80﹣90)2+5×(90﹣90)2+3×(100﹣90)2]=80,故答案为:90、90、80;(2)八年级代表队的学生竞赛成绩更好,理由如下:∵八、九年级代表队的学生的竞赛成绩的平均数相等,而八年级代表队的学生的竞赛成绩的方差小于九年级,成绩更加稳定,∴八年级代表队的学生竞赛成绩更好;(3)600×=180(名),答:九年级大约有180名学生可以获得奖状.一十.列表法与树状图法(共3小题)13.(2020秋•常州期末)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.【答案】(1);(2).【解答】解:(1)甲选择“机器人”社团的概率是,故答案为:;(2)画树状图如图:共有9个等可能的结果,甲、乙两人选择同一个社团的结果有3个,∴甲、乙两人选择同一个社团的概率为=.14.(2021秋•常州期末)小丽的爸爸积极参加社区志愿服务,根据社区安排,志愿者将被随机分配到以下小组中的一个:A组(交通疏导)、B组(环境消杀)、C组(便民代购),开展服务工作.(1)小丽的爸爸被分配到C组的概率是 ;(2)若小丽的班主任刘老师也参加了该社区的志愿者队伍,那么刘老师和小丽的爸爸被分到同一组的概率是多少?请用画树状图或列表的方法写出分析过程.【答案】(1);(2).【解答】解:(1)小丽的爸爸被分配到C组的概率是,故答案为:;(2)画树状图如下:共有9种等可能的结果,刘老师和小丽的爸爸被分到同一组的结果有3种,∴刘老师和小丽的爸爸被分到同一组的概率为=.15.(2022秋•常州期末)学校为了践行“立德树人,实践育人”的目标,开展劳动课程,组织学生走进农业基地,欣赏田园风光,体验劳作的艰辛和乐趣.该劳动课程有以下小组:A.搭豇豆架、B.斩草除根、C.趣挖番薯、D.开垦播种.学校要求每人只能参加一个小组,甲和乙准备随机报名一个小组.(1)甲选择“搭虹豆架”小组的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个小组的概率.【答案】(1);(2).【解答】解:(1)甲选择“搭虹豆架”小组的概率是,故答案为:;(2)画树状图如下:共有16种等可能的结果,其中甲、乙两人选择同一个小组的结果有4种,∴甲、乙两人选择同一个小组的概率为=.。
2020-2021学年江苏省镇江市九年级上学期期末数学模拟试卷及答案解析
第 1 页 共 29 页
2020-2021学年江苏省镇江市九年级上学期期末数学模拟试卷
一.填空题(共12小题,满分24分,每小题2分)
1.若a b =c d =e f =12,则a+c+e b+d+f = .
2.某校八年级同学2020年4月平均每天自主学习时间统计如图所示,则这组数据的众数
是 .
3.如图,在四边形ABCD 中,AD ∥BC ∥EF ,EF 分别与AB ,AC ,CD 相交于点E ,M ,F ,
若EM :BC =2:5,则FC :CD 的值是 .
4.关于x 的一元二次方程x 2﹣2x +m =0有两个实数根,则m 的取值范围是 .
5.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD = °.
6.已知关于x 的元二次方程x 2﹣2kx ﹣8=0的一个根是2,则此方程的另一个根是 .
7.用一个半径为10cm 半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高
为 .
8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:
①b 2﹣4ac >0;②abc >0;③8a +c >0;④9a +3b +c <0. 其中,正确结论的有 .。
江苏省扬州市邗江区梅岭中学2020-2021学年九年级上学期数学12月月考试卷
江苏省扬州市邗江区梅岭中学2020-2021学年九年级上学期数学12月月考试卷一、单选题1.下列函数中,是二次函数的为()A. y=2x+1B. y=(x−2)2−x2C. y=2x2D. y=2x(x+1)2.已知P是线段AB的黄金分割点,且AP>BP,那么下列比例式能成立的是( )A. AB AP=AP BPB. AB AP=BP ABC. BP AP=AB BPD.AB AP=5−123.如图所示,在半径为10的⊙O中,弦AB=16,OC⊥AB于点C,则OC的长为()A. 5B. 6C. 7D. 84.如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为()A. 23B. 43C. 83D. 1635.如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m,门宽为2m.若饲养室长为xm,占地面积为y m2,则y关于x的函数表达式为()A. y=﹣12 x2+26x(2≤x<52)B. y=﹣12 x2+50x(2≤x<52)C. y=﹣x2+52x(2≤x<52)D. y=﹣12 x2+27x﹣52(2≤x<52)6.在同一坐标系中,一次函数y=−mx+n2与二次函数y=x2+m的图象可能是().A. B. C. D.7.已知函数y=(k−3)x2+2x+1的图象与x轴有交点.则k的取值范围是( )A. k<4B. k≤4C. k<4且k≠3D. k≤4且k≠38.如图,已知点A是第一象限内横坐标为2 3的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动,求当点P从点O运动到点N时,点B运动的路径长为().A. 3B. 22C. 4D. 23二、填空题9.抛物线y=2x2-bx+3的对称轴是直线x=−1,则b的值为 .10.若函数y=(m−3)x m2−3m+2+mx+1是二次函数,则m的值为11.用一个半径为6,圆心角为150°的扇形纸片,做成一个圆锥模型的侧面,则这个模型的底面半径为 .12.将抛物线y=2(x﹣1)2+2向下平移4个单位,那么得到的抛物线的表达式为 .13.如图,AB是⊙O的直径,点C、D在⊙O上.∠BDC=21°,则∠AOC的度数是14.等边△ABC的边长为4cm,内切圆的半径为 cm15.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=时,△CPQ与△CBA相似.16.二次函数y=a x2+bx+c的部分对应值如下表:x …-3 -2 0 1 3 5 …y …7 1 -8 -9 -5 7 …当x=2时,对应的函数值y= .17.如图,△ABC中,AB=BC,AC=8,点F是△ABC的重心(即点F是△ABC的两条中线AD、BE的交点),BF=6,则DF= .18.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4 2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为________.三、解答题19.若直线y=x+3与二次函数的图象y=−x2+2x+3与交A、B两点(A在B的左侧)(1).求A、B两点的坐标;(2).求三角形ABO的面积.20.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为多少?21.已知二次函数y=−x2+(m−2)x+m+1.试证明:不论m取何值,这个二次函数的图象必与x轴有两个交点22.如图,已知点A,B,C,D均在已知圆上,AD∥BC,CA平分∠BCD,∠ADC=120°,四边形ABCD的周长为10.(1).求此圆的半径;(2).求图中阴影部分的面积.23.抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1).求该抛物线的解析式.(2).一动点P在(1)中抛物线上滑动且满足S△ABP=10,求此时P点的坐标.24.如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交边BC于点D,过点D作DE⊥AC交AC于点E,延长ED交AB的延长线于点F,(1).求证:DE是⊙O的切线;(2).若AB=8,AE=6,求BF的长25.如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠B=∠ADE=∠C.(1)证明:△BDA∽△CED;(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),且△ADE是等腰三角形,求此时BD的长.26.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元) 15 20 30 …y(袋) 25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?27.如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1).求抛物线的解析式;(2).过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标;(3).在抛物线的对称轴上是否存在点M,使得由点M,A,C构成的△MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.28.如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N.(1).求过A、C两点直线的解析式;(2).当点N在半圆M内时,求a的取值范围;(3).过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M为顶点的三角形相似时,求点N的坐标.答案解析部分一、单选题1.【答案】 D2.【答案】 A3.【答案】 B4.【答案】 C5.【答案】 A6.【答案】 D7.【答案】 B8.【答案】 B二、填空题9.【答案】 -410.【答案】 011.【答案】 2.512.【答案】 y=2(x-1)2-213.【答案】 138°14.【答案】23315.【答案】 4.8或641116.【答案】 -817.【答案】5218.【答案】25﹣2三、解答题19.【答案】(1)解:由题意得:{y=x+3y=−x2+2x+3解得:{x=0y=3或{x=1y=4又A在B的左侧∴A(0,3),B(1,4);(2)解:如图所示:A(0,3),B(1,4);∴OA=3,OA边上的高为1,∴S△AOB=12·AO×1=12×3×1=3220.【答案】解:∵DE⊥EF,BC⊥CD,DF=50cm,EF=30cm,∴DE= D F2−E F2=502−302=40cm又∠EDF=∠CDB,∴△DEF∽DCB,∴DE EF=CD BC,即0.40.3=20BC,解得BC=15m,∵小明同学和树AB都垂直于底面,∴AC=1.5m,∴AB=BC+AC=16.5m,答:树高AB为16.5m.21.【答案】证明:由题意,知二次函数对应的方程−x2+(m−2)x+m+1=0的判别式为b2−4ac=(m−2)2−4×(−1)×(m+1)=m2−4m+4+4m+4=m2+8 .因为m2≥0,所以m2+8>0,即b2−4ac>0,所以不论m取何值,这个二次函数的图象必与x轴有两个交点.22.【答案】(1)解:∵AC平分∠BCD,∴∠ACD=∠ACB,又∵AD∥BC,∴∠ACB=∠DAC=∠ACD,而∠ADC=120°,∴∠ACB=∠DAC=∠ACD =30°,∠B=60°,∴AB=AD=DC,且∠BAC=90°,∴BC为直径,设AB=x,则BC=2AB=2x,又∵四边形ABCD的周长为10cm,∴x+x+x+2x=10,解得x=2,即⊙O的半径为2;(2)解:设圆心为O,连接OA、OD,由(1)可知OA=OD=AD=2,∴△AOD为等边三角形,∴∠AOD=60°;∵AD∥BC,∴SΔAOD=SΔACD34×22=3,∴S阴影=S扇形AOD−S△AOD=60π×22360−3=2π3−3 .23.【答案】(1)解:根据题意得:{1−b+c=09+3b+c=0解得:{b=−2c=−3,则方程的解析式是:y=x2﹣2x﹣3;(2)解:AB=3+1=4,设P的纵坐标是m,则12 ×4|m|=10,解得:|m|=5,则m=5或﹣5.当m=5时,x2-2x-3=5,x=-2或4,则P的坐标是(-2,5)或(4,5);当m=-5时,x2-2x-3=-5,方程无解.故P的坐标是(-2,5)或(4,5).24.【答案】(1)证明:连接OD,∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,又DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵OD∥AC,∴△FOD∽△FAE,∴OD AE=FO FA,即46=BF+4BF+8,解得,BF=4.25.【答案】(1)证明:如图可知:∠ADE+∠ADB+∠EDC=180°在△ABD中,∴∠B+∠ADB+∠DAB=180°又∵∠B=∠ADE=∠C∴∠EDC=∠DAB∴△BDA∽△CED.(2)解:∵∠B=∠ADE=∠C,∠B=45°∴△ABC是等腰直角三角形∴∠BAC=90°∵ BC=2,∴ AB=AC= 22 BC= 2①当AD=AE时,∴∠ADE=∠AED∵∠B=45°,∴∠B=∠ADE=∠AED=45°∴∠DAE=90°∴∠DAE=∠BAC=90°∵点D在BC上运动时(点D不与B、C重合),点E在AC上∴此情况不符合题意.②当AD=DE时,∴∠DAE=∠DEA∴由(1)结论可知:△BDA≌△CED∴ AB=DC= 2∴BD=2−2.③当AE=DE时,∠ADE=∠DAE=45°∴△AED是等腰直角三角形∵∠B=45°,∴∠B=∠C=∠DAE=45°∴∠ADC=90°,即AD⊥BC∴BD=12BC=1.综上所诉:BD=2−2或1.26.【答案】(1)解:依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得{25=15k+b20=20k+b,解得{k=−1b=40,故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)解:依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400,整理得w=﹣(x﹣25)2+225,∵﹣1<0,∴当x=2时,w取得最大值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元27.【答案】(1)解:﹣4a=4,解得:a=﹣1,则抛物线的表达式为:y=﹣x2+bx+4,将点A的坐标代入上式并解得:b=3,故抛物线的表达式为:y=﹣x2+3x+4…①;(2)解:抛物线的对称轴为:x=32,点D(3,4),过点D作x轴的垂线交BP于点H,交x轴于点G,过点H作HR⊥BD与点R,则BG=1,GD=4,tan∠BDG=14,∠DBP=45°,设:HR=BR=x,则DR=4x, BD=5x=1+16=17,x=175, BH=2 x,BG=1,则GH=2x2−1=35,故点H(3,35),而点B(4,0),同理可得直线HB的表达式为:y=﹣35 x+ 125…②,联立①②并解得:x=4或﹣25(舍去4),故点P(﹣25,6625);(3)解:设点M(32,m),而点A(﹣1,0)、点C(0,4),则AM2=254 +m2, CM2=94 +(m﹣4)2, AC2=17,①当AM是斜边时,254 +m2=94 +(m﹣4)2+17,解得:m=298;②当CM是斜边时,同理可得:m=﹣58;③当AC是斜边时,同理可得:m=52或32;综上,点M的坐标为:(32,298)或(32,﹣58)或(32,52)或(32,32).28.【答案】(1)解:在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),所以B(4,0),C(4,2)设过A、C两点直线解析式为y=kx+b,则{k+b=04k+b=2解得{k=23b=−23,故过A、C两点直线解析式为y=23x−23;(2)解:设过A、B两点抛物线的解析式为y=a(x−1)(x−4)整理得y=a x2−5ax+4a则顶点N的坐标为(52,−9a4),由抛物线、半圆的轴对称可知,抛物线的顶点在过点M且与CD垂直的直线上,又点N在半圆内,所以12<−9a4<2解得−89<a<−29;(3)解:设EF=x,则CF=x,BF=2−x,AF=2+x,AB=3在Rt△ABF中,由勾股定理得A B2+B F2=A F2,得x=98,BF=78①由△ABF∼△CMN得AB CM=BF MN,即MN=BF⋅CM AB=716当点N在CD的下方时,由−9a4=2−716=2516,得N1(52,2516)当点N在CD的上方时,由−9a4=2+716=3916,得N2(52,3916)②由△ABF∼△NMC得AB MN=BF CM,即MN=AB⋅CM BF=367当点N在CD的下方时,由−9a4=2−367=−227,得N3(52,−227)当点N在CD的上方时,由−9a4=2+367=507,得N4(52,507)综上点N的坐标为N1(52,2516),N2(52,3916),N3(52,−227),N4(52,507) .。
2020-2021学年九年级上学期期末考试数学试卷(有答案)
2020-2021学年九年级上学期期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.若y=(m﹣1)是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在2.如图,在平面直角坐标系中,A(6,0)、B(0,8),点C在y轴正半轴上,点D在x 轴正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于E、F,则线段EF的最大值为()A.3.6B.4.8C.3D.33.一次数学测试后,随机抽取九年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是()A.极差是15B.众数是88C.中位数是86D.平均数是87 4.近年来,我国石油对外依存度快速攀升,2017年和2019年石油对外依存度分别为64.2%和70.8%,设2017年到2019年中国石油对外依存度平均年增长率为x,则下列关于x的方程正确的是()A.64.2%(1+x)2=70.8%B.64.2%(1+2x)=70.8%C.(1+64.2%)(1+x)2=1+70.8%D.(1+64.2%)(1+2x)=1+70.8%5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为.其中,正确的结论是()A.①②④B.①③⑤C.②③④D.①④⑤7.如图,△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,则cos∠BPC=()A.B.C.D.8.设max{m,n}表示m,n(m≠n)两个数中的最大值.例如max{﹣1,2}=2,max{12,8}=12,则max{2x,x2+2}的结果为()A.2x﹣x2﹣2B.2x+x2+2C.2x D.x2+2二.填空题(共10小题,满分30分,每小题3分)9.方程x2=4的解为.10.已知点P是线段AB的黄金分割点(AP>PB),AB=6,那么AP的长是.11.若,则的值为.12.已知二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y之间满足下列数量关系:x0123y75713则代数式(4a+2b+c)(a﹣b+c)的值为.13.如图,某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是cm2.14.直角三角形中,两直角边分别是12和5,则斜边上的中线长是.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.如图,小明为了测量楼房MN的高,在离N点20m的A处放了一个平面镜,小明沿NA 方向后退到C点,正好从镜子中看到楼顶M点.若AC=1.6m,小明的眼睛B点离地面的高度BC为1.5m,则楼高MN=m.17.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt△ABC,∠C=90°,要截得的正方形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,如果AF=4,GB=9,那么正方形铁皮的边长为.三.解答题(共10小题,满分96分)19.(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=020.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD:∠DAB=1:2,求∠CAD的度数;(2)如果AC=1,tan B=,求∠CAD的正弦值.21.如图,在平面直角坐标系中,点A、点B的坐标分别为(1,3),(3,2).(1)画出△OAB绕点B顺时针旋转90°后的△O′A′B;(2)以点B为位似中心,相似比为2:1,在x轴的上方画出△O′A′B放大后的△O ″A″B;(3)点M是OA的中点,在(1)和(2)的条件下,M的对应点M′的坐标为.22.“共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图是四位院士(依次记为A、B、C、D)为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A、B、C、D四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报,求小明和小华查找同一位院士资料的概率.23.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”24.如图所示,已知:∠AOB=120°,PT切⊙O于T,A,B,P三点共线,∠APT的平分线依次交AT,BT于C,D.(1)求证:△CDT为等边三角形.(2)若AC=4,BD=1,求PC的长.25.已知函数y1=x2﹣(m+2)x+2m+3,y2=nx+k﹣2n(m,n,k为常数且n≠0).(1)若函数y1的图象经过点A(2,5),B(﹣1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当﹣1≤x≤2时,总有y1≤y2,求m+n的取值范围.26.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.27.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF•EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.28.如图,已知抛物线y=ax2+bx﹣3的图象与x轴交于点A(1,0)和B(3,0),与y轴交于点C.D是抛物线的顶点,对称轴与x轴交于E.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE上求作一点M,使△AMC的周长最小,并求出点M 的坐标和周长的最小值.(3)如图2,点P是x轴上的动点,过P点作x轴的垂线分别交抛物线和直线BC于F、G.设点P的横坐标为m.是否存在点P,使△FCG是等腰三角形?若存在,直接写出m的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:若y=(m﹣1)是关于x的二次函数,则,解得:m=﹣2.2.解:过CD的中点作EF的垂线与AB交于点M,连接GF,∵GM⊥EF,∴EF=2FM=2=2,当GM的值最小时,EF的值最小,根据垂线段最短可知,当直线过O点时,EF的值最大,∵A(6,0),B(0,8),∴AB=10,∵sin∠OAB==,∴OM=4.8,∵CD=6,∴OG=3,∴GM=1.8,∴FM=2.4,∴EF=4.8;故选:B.3.解:A、极差是15,故A正确;B、众数是88,故B正确;C、中位数是87,故C错误;D、平均数是87,故D正确.故选:C.4.解:设2017年到2019年中国石油对外依存度平均年增长率为x,由题意,得64.2%(1+x)2=70.8%.5.解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠ABO=(180°﹣120°)÷2=30°,故选:A.6.解:∵△ABC、△DCE都是等腰Rt△,∴AB=AC=BC=,CD=DE=CE;∠B=∠ACB=∠DEC=∠DCE=45°;①∵∠ACB=∠DCE=45°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE;即∠ECB=∠DCA;故①正确;②当B、E重合时,A、D重合,此时DE⊥AC;当B、E不重合时,A、D也不重合,由于∠BAC、∠EDC都是直角,则∠AFE、∠DFC 必为锐角;故②不完全正确;④∵,∴;由①知∠ECB=∠DCA,∴△BEC∽△ADC;∴∠DAC=∠B=45°;∴∠DAC=∠BCA=45°,即AD∥BC,故④正确;③由④知:∠DAC=45°,则∠EAD=135°;∠BEC=∠EAC+∠ECA=90°+∠ECA;∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;因此△EAD与△BEC不相似,故③错误;⑤△A BC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;由④的△BEC∽△ADC知:当AD最长时,BE也最长;故梯形ABCD面积最大时,E、A重合,此时EC=AC=,AD=1;故S=(1+2)×1=,故⑤正确;梯形ABCD因此本题正确的结论是①④⑤,故选D.7.解:过点A作AE⊥BC于点E,如图所示:∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE===3,∴cos∠BPC=cos∠BAE==.故选:C.8.解:∵x2+2﹣2x=(x﹣1)2+1,(x﹣1)2≥0,∴(x﹣1)2+1>0,∴x2+2>2x,∴max{2x,x2+2}的结果为:x2+2.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:开方得,x=±2,即x1=2,x2=﹣2.故答案为,x1=2,x2=﹣2.10.解:由于P为线段AB=6的黄金分割点,且AP是较长线段;则AP=6×=3﹣3.故答案为:3﹣3.11.解:∵=,∴b=a,∴==.故答案为:.12.解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x==1,∵x=3时,y=13,∴x=﹣1时,y=13,∴4a+2b+c=7,a﹣b+c=13,∴(4a+2b+c)(a﹣b+c)的值为91,故答案为91.13.解:圆锥侧面积公式为:s侧面积=πrR=π×10×40=400π.故答案为:400π.14.解:∵直角三角形中,两直角边分别是12和5,∴斜边为=13,∴斜边上中线长为×13=6.5.故答案为:6.5.15.解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为:.16.解:∵BC⊥CA,MN⊥AN,∴∠C=∠N=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴,即,∴MN=(m),答:楼房MN的高度为m,故答案为:.17.解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+x2=(8﹣x)2,解得:x=3,即OE=5,DE=3,过D作DF⊥OA,∵S=OD•DE=OE•DF,△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)18.解:根据题意知,∠AFE=∠BDG=∠C=90°,∴∠A=BDG(同角的余角相等).∴△AEF∽△DBG,∴=.又∵EF=DG,AF=4,GB=9,∴=.∴EF=6.即正方形铁皮的边长为6.故答案是:6.三.解答题(共10小题,满分96分)19.解:(1)原式=1+2×﹣2+﹣1=1+﹣2+﹣1=0;(2)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1.20.解:(1)∵∠CAD:∠DAB=1:2∴∠DAB=2∠CAD在Rt△ABC中,∠CAD+∠DAB+∠DBA=90°∵DE垂直平分AB交边BC、AB于点D、E∴∠DAB=∠DBA∴∠CAD+∠DAB+∠DBA=∠CAD+2∠CAD+2∠CAD=90°解得,∠CAD=18°(2)在Rt△ABC中,AC=1,tan∠B==,∴BC=2由勾股定理得,AB===∵DE垂直平分AB交边BC、AB于点D、E∴BE=AE=∵∠DAE=∠DBE∴在Rt△ADE中tan∠B=tan∠DAE==∴DE=∴由勾股定理得AD===∴cos∠CAD===∴sin∠CAD===则∠CAD的正弦值为21.解:(1)如图,△O′A′B即为所求;(2)如图,△O″A″B即为所求;(3)如图,∵点M是OA的中点,∴M的对应点M′的坐标为(2,7).故答案为:(2,7).22.解:根据题意画树状图如下:共有16种等可能的结果数,其中小明和小华查找同一位院士资料的有4种结果,∴小明和小华查找同一位院士资料的概率为=.23.解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴=,∴=,x=<,∴该直角三角形能容纳的正方形边长最大是(步).24.(1)证明:∵∠AOB=120°,∴∠ATB==60°,∵PT切⊙O于T,∴∠BTP=∠TAP,∵PC平分∠APT,∴∠APC=∠CPT,∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT,∴∠TCD=∠CDT==60°,∴△CDT为等边三角形;(2)解:设CT=DT=x,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB,∴,∵∠DTP=∠PAC,∠APC=∠DPT,∴△ACP∽△TDP,∴,∴,即,∴x2=4,∴x=±2,∵x>0,∴x=2,∴,PC=4.25.解:(1)对于函数y1=x2﹣(m+2)x+2m+3,当x=2时,y=3,∴点A不在抛物线上,把B(﹣1,3)代入y1=x2﹣(m+2)x+2m+3,得到3=1+3m+5,解得m=﹣1,∴抛物线的解析式为y=x2﹣x+1.(2)①∵函数y1经过定点(2,3),对于函数y2=nx+k﹣2n,当x=2时,y2=k,∴当k=3时,两个函数过定点M(2,3).②∵m≤2,∴抛物线的对称轴x=≤2,∴抛物线的对称轴在定点M(2,3)的左侧,由题意当1+(m+2)+2m+3≤﹣n+3﹣2n时,满足当﹣1≤x≤2时,总有y1≤y2,∴3m+3n≤﹣3,∴m+n≤﹣1.26.(1)证明:连接OD.∵O为AB中点,D为BC中点,∴OD∥AC.∵DF为⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)过O作OE⊥BD,则BE=ED.在Rt△BEO中,∠B=30°,∴OE=OB,BE=OB.∵BD=DC,BE=ED,∴EC=3BE=OB.在Rt△OEC中,tan∠BCO=.27.证明:(1)∵AB是直径,∴∠BDA=90°,∴∠DBA+∠DAB=90°,∵∠CAD=∠AED,∠AED=∠ABD,∴∠CAD=∠ABD,∴∠CAD+∠DAB=90°,∴∠BAC=90°,即AB⊥AC,且AO是半径,∴AC为⊙O的切线;(2)∵DE2=EF•EA,∴,且∠DEF=∠DEA,∴△DEF∽△AED,∴∠EDF=∠DAE,∵∠EDF=∠BAE,∴∠BAE=∠DAE,∴AE平分∠BAD;(3)如图,过点F作FH⊥AB,垂足为H,∵AE平分∠BAD,FH⊥AB,∠BDA=90°,∴DF=FH=2,=AB×FH=×BF×AD,∵S△ABF∴2AB=4BF,∴AB=2BF,在Rt△ABD中,AB2=BD2+AD2,∴(2BF)2=(2+BF)2+16,∴BF=,BF=﹣2(不合题意舍去)∴AB=,∴⊙O的半径为.28.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)如下图,连接BC交DE于点M,此时MA+MC最小,又因为AC是定值,所以此时△AMC的周长最小.由题意可知OB=OC=3,OA=1,∴BC==3,同理AC=,∴此时△AMC的周长=AC+AM+MC=AC+BC=+3;∵DE是抛物线的对称轴,与x轴交点A(1,0)和B(3,0),∴AE=BE=1,对称轴为x=2,由OB=OC,∠BOC=90°得∠OBC=45°,∴EB=EM=1,又∵点M在第四象限,在抛物线的对称轴上,∴M(2,﹣1);(3)存在这样的点P,使△FCG是等腰三角形.∵点P的横坐标为m,故点F(m,﹣m2+4m﹣3),点G(m,m﹣3),则FG2=(﹣m2+4m﹣3+3﹣m)2,CF2=(m2﹣4m)2+m2,GC2=2m2,当FG=FC时,则(﹣m2+4m﹣3+3﹣m)2=m2+(m2﹣4m)2,解得m=0(舍去)或4;当GF=GC时,同理可得m=0(舍去)或3;当FC=GC时,同理可得m=0(舍去)或5或3(舍去),综上,m=5或m=4或或3.。
苏科版2020-2021学年度九年级数学第一学期期末模拟基础达标测试题3(附答案详解)
苏科版2020-2021学年度九年级数学第一学期期末模拟基础达标测试题3(附答案详解)1.如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是( )A.18°B.36°C.54°D.72°2.如图,已知二次函数y1=23x2﹣43x的图象与正比例函数y2=23x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2B.x<0或x>3C.2<x<3D.0<x<3 3.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元B.12元C.13元D.14元4.如图,AB是斜靠在墙上的梯子,梯脚距墙2米,梯子上的点D距墙1.8米,BD长0.6米,则梯子的长为( )A.5.6米B.6米C.6.1米D.6.2米5.2005年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是()A.100(1+x)2=250B.100(1+x)+100(1+x)2=250C.100(1-x)2=250D.100(1+x)2=2506.方程x2﹣3x=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根7.下列事件发生的可能性为0的是()A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C.今天是星期天,昨天必定是星期六8.1x =是下列哪个方程的解( )A .2111x x x =-- B 2x =-C .2x y +=D .310x +=9.如图,MN 为⊙O 的弦,∠M =50°,则∠MON 等于( )A .50°B .55°C .65°D .80°10.如图,△ABC 内接于⊙O ,连接OA ,OB ,若∠C=35°,则∠OBA 的度数是( )A .60°B .55°C .50°D .45°11.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋楼的影长为50m ,则这栋楼的高度为________m .12.如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的函数关系式是__________,面积S 的最大值是__________.13.在实数范围内定义运算“☆”,其规则为:a ☆b=a 2﹣b 2,则方程(4☆3)☆x=13的解为x=______. 14.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题: 已知:∠ACB 是△ABC 的一个内角. 求作:∠APB =∠ACB . 小明的做法如下:①作线段AB 的垂直平分线m ;②作线段BC 的垂直平分线n ,与直线m 交于点O ; ③以点O 为圆心,OA 为半径作△ABC 的外接圆; ④在弧ACB 上取一点P ,连结AP ,BP . 所以∠APB =∠ACB . 老师说:“小明的作法正确.” 请回答:(1)点O 为△ABC 外接圆圆心(即OA =OB =OC )的依据是_____; (2)∠APB =∠ACB 的依据是_____.15.如图为△ABC 与△DEC 重叠的情形,其中E 在BC 上,AC 交DE 于F 点,且AB ∥DE .若△ABC 与△DEC 的面积相等,且EF =2,AB =3,则DF 的长等于_________. 16.一元二次方程x (x ﹣3)=3﹣x 的根是____.17.如图,AB//EF//DC ,DE 2AE =,CF 2BF =,且DC 5=,AB 8=,则EF =________.18.如图①:要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD . 结合以上分析完成填空:如图②:用含x 的代数式表示:AB =________cm ;AD =________cm ;矩形ABCD 的面积为________2cm ;列出方程并完成本题解答.19.如图△ABC 中,∠A=30°,∠C=90°,作△ABC 的外接圆.若弧AB 的长为12cm ,那么弧AC 的长是_____.20.如图,P A ,PB 分别与⊙O 相切于A 、B 两点,点C 为劣弧AB 上任意一点,过点C 的切线分别交AP ,BP 于D ,E 两点.若AP =8,则△PDE 的周长为__________.21.解方程:(x+3)2=2x+6.22.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O 的切线与AC 的延长线交于点E ,且ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD=∠DAE ; (2)若DF=115, AD=5,求⊙O 的半径.23.如图:在ABC 中,5AB =,4AC =,P 是AB 上一点,且3AP =,若Q 在AC 上,试确定Q 点的位置,使以A 、P 、Q 为顶点的三角形与ABC 相似.下表,试问这两种鸡哪个产蛋量比较稳定?25.教材的《课题学习》要求同学们用一张正三角形纸片折叠成正六边形,小明同学按照如下步骤折叠:请你根据小明同学的折叠方法,回答以下问题:()1如果设正三角形ABC的边长为a,那么CO=______ (用含a的式子表示);()2根据折叠性质可以知道CDE△的形状为______ 三角形;()3请同学们利用()1、()2的结论,证明六边形KHGFED是一个六边形.26.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出4件.(1)要想平均每天销售这种童装上盈利2400元,那么每件童装应降价多少元?(2)用配方法说明:要想盈利最多,每件童装应降价多少元?27.任意作一个等边三角形,它的高与边长的比是多少?28.如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG 于点F.(1) 求证:DE-BF = EF;(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.参考答案1.B【解析】试题分析:∵AB是直径,AB⊥CD,∴BC=BD,∴∠BCD=∠CAB=36°,故选B.2.D【解析】直接利用已知函数图象得出y1在y2下方时,x的取值范围即可.解:如图所示:若y1<y2,则二次函数图象在一次函数图象的下面,此时x的取值范围是:0<x<3.故选D.点睛:此题主要考查了二次函数与不等式,正确利用数形结合求出是解题关键.3.D【解析】设利润为w,由题意得,每天利润为:w=(2+x)(20–2x)=–2x2+16x+40=–2(x–4)2+72.所以当涨价4元(即售价为14元)时,每天利润最大,最大利润为72元.故选D.4.B【解析】分析:由题意易得DE∥BC,那么可得△ADE∽△ABC,利用对应边成比例可得AB的长.详解:如图:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴△ADE∽△ABC,∴AB BCAD DE,且DE=1.8,BC=2,AB-AD=0.6.∴AB=6.故选B.点睛:本题考查了相似三角形的应用:三边对应成比例.5.B【解析】【分析】设平均每月的增长率为x,根据一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,可列出方程.【详解】解:设平均每月的增长率为x,100(1+x)+100(1+x)2=250.故选:B.【点睛】本题考查的是一个增长率问题,关键是知道一月份的,和增长两个月后三月份的,列出方程.6.A【解析】【分析】根据∆=b2﹣4ac求出∆的值,然后根据根的判别式与根的关系判断即可.【详解】∵∆=b2﹣4ac=9-4=5>0,∴方程x2﹣3x=0有两个不相等的实数根.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 7.D【解析】对于A,掷两枚骰子,同时出现数字“6”朝上,可能性为1 36;对于B,小明从家里到学校用了10分钟,从学校回到家里却用了15分钟是可能是,比如去学校时下坡,则回家时上坡,当然回家比去学校用时多;对于C,今天是星期天,昨天必定是星期六这是一个必然发生的事件,可能性为1;对于D,小明步行的速度是每小时40千米,是不存在的.一般人步行的速度为3-5公里每小时,所以D发生的可能性为0.故选D.8.B【解析】【分析】可以把x=1,逐个代入到每项的方程中进行检验,x=1不但使方程左边=右边,而且必须使分式和根式有意义.【详解】A. 当x=1时,原方程的最简公分母x−1=0,所以x=1不是原方程的解,故本选项错误,B. 当x=1时,方程的左边=1,右边=1,所以x=1是原方程的解,故本选项正确,C. 当x=1时,x+y=2整理为,1+y=2,y的值不确定,所以x=1不一定是原方程的解,故本选项错误,D. 当x=1时,原方程的左边=2,右边=0,左边≠右边,所以x=1不是原方程的解,故本选项错误,故选:B.【点睛】考查方程的解的概念,使方程左右两边相等的未知数的值就是方程的解.9.D【解析】因为∠M=50°,∠N=50°,所以∠MON=80°.故选D.10.B【解析】【分析】由圆周角定理得出∠AOB=70°,然后由OA=OB,根据等边对等角的性质和三角形内角和定理,可求得∠OBA的度数.【详解】解:∵∠C=35°,∴∠AOB=70°,∵OA=OB,∴∠OAB=∠OBA=55°.故选:B.【点睛】此题考查了圆周角定理与等腰三角形的性质.注意掌握数形结合思想的应用.11.30【解析】【分析】根据同时同地物高与影长成正比列式计算即可得解.【详解】解:设这栋楼的高度为x米,由题意得,1.8350x,解得x=30.故答案为30.【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.12.210=-+25S a a【解析】S=a(10-a)=-a2+10a=-(a-5)2+25,所以函数关系式为:S=-a2+10a,面积的最大值是25,故答案为S= -a2+10a,25.13.±6【解析】【分析】运用题目中所给的运算规则列出方程,解方程即可解答.【详解】其规则为:a☆b=a2-b2,则方程(4☆3)☆x=13解的步骤为:(42-32)☆x=13,7☆x=13,49-x2=13,x2=36,∴x=±6.故答案为:±6.【点睛】本题是典型的新定义题型,解题的关键是要根据所给的规则把数或字母代入相应的位置,进行计算.解决本题用到了直接开平方法解方程,熟记直接开平方法解方程的方法是解决问题的关键.14.①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换同弧所对的圆周角相等【解析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.(2)根据同弧所对的圆周角相等即可得出结论.【详解】(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案是:(2)∵AB AB,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质.15.2.5【解析】解:∵△ABC与△DEC的面积相等,∴△CDF与四边形AFEB的面积相等.∵AB∥DE,∴△CEF∽△CBA.∵EF=2,AB=3,∴EF:AB=2:3,∴△CEF和△CBA的面积比=4:9,设△CEF的面积为4k,则四边形AFEB的面积=5k.∵△CDF与四边形AFEB的面积相等,∴△CDF的面积=5k.∵△CDF与△CEF是同高不同底的三角形,∴面积比等于底之比,∴DF:EF=5k:4k,∴DF=2.5.故答案为:2.5.16.x1=3,x2=﹣1.【解析】整体移项后,利用因式分解法进行求解即可.【详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x1=3,x2=﹣1.17.7【解析】【分析】延长AD、BC交于G,根据相似三角形的性质可得GD:GA=5:8,进一步得到DC:EF=5:7,依此即可求解.【详解】延长AD、BC交于G.∵AB∥EF∥DC,∴△GDC∽△GAB,△GDC∽△GEF,∴GD:GA=DC:AB=5:8.∵DE=2AE,∴GD:GE=5:7,∴DC:EF=5:7,解得:EF=7.故答案为:7.【点睛】本题考查了相似三角形的判定与性质.解题的关键是构造相似三角形.18.()206x - ()304x - ()224x 260x 600-+ 【解析】【分析】因为每个竖彩条的宽为3x ,图中有两个竖条,得到2023206AB x x =-⨯=-,又每个横彩条的宽为2x ,图中有两个横条,所以3022304BC x x =-⨯=-,然后用AB•BC 即为矩形ABCD 的面积,从题中已知可知矩形ABCD 的面积等于总体面积的23,根据题中的等量关系:矩形ABCD 的面积1130203⎛⎫=-⨯⨯ ⎪⎝⎭,列出方程求解,再根据条件取值. 【详解】 2023206AB x x =-⨯=-,3022304BC x x =-⨯=-矩形ABCD 的面积为:()()220630424260600,AB BC x x x x ⋅=--=-+ 根据题意,得2124260600120303x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭,整理,得2665500x x -+=, 解方程,得125,106x x == (不合题意,舍去), 则552,332x x ==, 每个横、竖彩条的宽度分别为55cm,cm.32 故答案为(1). ()206x - (2). ()304x - (3). ()224x 260x 600-+ 【点睛】考查一元二次方程的实际问题,难度适中,是常考题型,用含x 的代数式表示出矩形的面积是解题的关键.19.8cm .【解析】【分析】根据圆周角定理以及弧AB 与弧AC 所对圆周角度数即可得出弧长比与圆周角比相等,即可得出结论.【详解】解:∵ABC 中,3090A C ∠=︒∠=︒,,∴60B ∠=︒,AB 是直径,∵12cm AB = ∴6012890AC =⨯=(cm ), 故答案为:8cm .【点睛】此题考查了圆周角定理以及弧长与圆周角的关系.利用弧长比与圆周角比相等是解题的关键. 20.16【解析】解:∵DA 、DC 、EB 、EC 分别是⊙O 的切线,∴DA =DC ,EB =EC ,∴DE =DA +EB ,∴PD +PE +DE =PD +DA +PE +BE =P A +PB .∵P A 、PB 分别是⊙O 的切线,∴P A =PB =8,∴△PDE 的周长=16.故答案为16.21.x 1=﹣3,x 2=﹣1.【解析】【分析】利用因式分解法解方程即可.【详解】(x+3)2=2(x+3) ,(x+3)2﹣2(x+3)=0 ,(x+3)(x+3﹣2)=0,(x+3)(x+1)=0 ,∴x 1=﹣3,x 2=﹣1.22.(1)证明见解析(2)3【解析】【分析】(1)连接OD ,由ED 为⊙O 的切线,根据切线的性质得到OD ⊥ED ,由AB 为⊙O 的直径,得到∠ACB=90°,根据平行线的判定和性质得到角之间的关系,又因为OA=OD ,得到∠BAD=∠ADO ,推出结论∠BAD=∠DAE ;(2)连接BD ,得到∠ADB=90°,证明△DBF ∽△DAB ,可得BD AD =DF BD,从而得BD2=DF•AD=115×5=11,在Rt△ADB中,利用勾股定理求得AB=6,即可得⊙O的半径为3.【详解】(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED,∵AB为⊙O的直径,∴∠ACB=90°,∵BC∥ED,∴∠ACB=∠E=∠EDO=90°,∴AE∥OD,∴∠DAE=∠ADO,∵OA=OD,∴∠BAD=∠ADO,∴∠BAD=∠DAE;(2)连接BD,∴∠ADB=90°,∵∠BAD=∠DAE=∠CBD ,∠ADB=∠ADB,∴△DBF∽△DAB,∴BDAD=DFBD,∴BD2=DF×AD=115×5=11,在Rt△ADB中,==6,∴⊙O的半径为3.【点睛】本题考查了切线的性质、相似三角形的判定与性质等,结合图形、已知条件恰当地添加辅助线是解题的关键.23.当125AQ=或154时,以A、P、Q为顶点的三角形与ABC相似.【解析】【分析】由∠A是公共角,可得当AP:AB=AQ:AC时,△APQ∽△ABC,当AP:AC=AQ:AB时,△APQ∽△ACB,继而求得答案.【详解】A∠是公共角,∴当AP:AB AQ=:AC时,APQ∽ABC,即3:5AQ=:4,解得:125 AQ=;当AP:AC AQ=:AB时,APQ∽ACB,即3:4AQ=:5,解得:154 AQ=;∴当125AQ=或154时,以A、P、Q为顶点的三角形与ABC相似.【点睛】此题考查了相似三角形的判定.注意掌握分类讨论思想的应用是解此题的关键.24.乙种鸡比甲种鸡产蛋量稳定【解析】【分析】分别计算甲乙两组数据的方差,比较即可.【详解】∵S甲2=0.84,S乙2=0.61,S甲2>S乙2,∴可以估计,乙种鸡比甲种鸡产蛋量稳定.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定;25a等边【解析】试题分析:(1)根据折叠的性质即可得到结论;(2)根据折叠的性质即可得到结论;(3)由(2)知△CDE为等边三角形,根据等边三角形的性质得到CD=CE=DE=12CO÷cos30°=1 3a,求得∠ADE=∠BED=120°,同理可得,AH=AK=KH=13a,BG=BF=GF=13a,∠CKH=∠BHK=120°,由于AB=BC=AC=a,于是得到结论.试题解析:(1)∵正三角形ABC的边长为a,由折叠的性质可知,点O是三角形的重心,∴CO=3a;故答案为3a;(2)△CDE为等边三角形;故答案为等边;(3)由(2)知△CDE为等边三角形,∴CD=CE=DE=12CO÷cos30°=13a,∠ADE=∠BED=120°,同理可得,AH=AK=KH=13a,BG=BF=GF=13a,∠CKH=∠BHK=120°,∵AB=BC=AC=a,∴DE=DK=KH=HG=GF=FE=13a,∠ADE=∠BED=∠CKH=∠BHK=∠CFG=∠AGF=120°,∴六边形KHGFED是一个正六边形.26.(1)20;(2)15.【解析】【分析】(1)设每件童装应降价x元,根据每件童装降价1元,那么平均每天就可多售出4件,分别表示出降价后的利润与销量,列出方程,求出方程的解即可得到结果;(2)设利润为y,列出y与x的二次函数解析式,配方即可确定出y最多时x的值.【详解】(1)设每件童装应降价x元,根据题意得:(40﹣x)(40+4x)=2400,整理得:x2﹣30x+200=0,即(x﹣20)(x﹣10)=0,解得:x=20或x=10(不合题意,舍去),则每件童装应降价20元;(2)根据题意得:利润y=(40﹣x)(40+4x)=﹣4x2+120x+1600=﹣4(x﹣15)2+2500,当x=15时,利润y最多,即要想利润最多,每件童装应降价15元.【点睛】本题考查了配方法的应用,以及一元二次方程的应用,熟练掌握完全平方公式是解答本题的关键.272【解析】【分析】设等边三角形的边长为a,根据等边三角形的性质求出等边三角形的高即可得答案. 【详解】解:如图,△ABC是等边三角形,AD⊥BC,AB=a,∵△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BC,∴∠BAD=30°,∠ADB=90°,∴BD=12AB=12a,∴,∴ AD::a:2,:2.【点睛】本题考查了等边三角形的性质、勾股定理、线段的比,熟练掌握等边三角形的性质以及灵活应用勾股定理是解题的关键.28.(1)证明见解析;(2)EF = 2FG,理由见解析.【解析】分析:(1)本题的关键是求△ADE≌△ABF,以此来得出DE=AF=AE+EF=BE+EF,这两个三角形中已知的条件有AD=BA,一组直角,关键是再找出一组对应角相等,可通过证明∠DAF 和∠ABF 来实现.(通过平行和等角的余角相等来证得)(2)通过证明△AFB ∽△BFG ∽△ABG ,得出AB ,BG ;AF ,BF ;BF ,BG 之间的比例关系,根据点G 为BC 边中点,来得出AF ,BF ,BF ,FG 之间的比例关系,然后根据(1)中得出的结果来求BF ,FG 的大小关系.详解:(1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG∴ DA=AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴ ∠BAF = ∠ADE ∴ △ABF ≌ △DAE∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG∴2AB AF BF BG BF FG=== ∴ AF = 2BF , BF =2FG由(1)知, AE = BF ,∴ EF = BF = 2 FG点睛:本题中通过全等三角形得出简单的线段相等以及利用相似三角形的对应边成比例是解题的关键所在.。
人教版2020---2021学年度上学期九年级数学期末考试卷及答案含5套
第41页,共90页 第42页,共90页密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级 数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题每小题3分,满分42分) 1.2-的相反数是( )A.21 B.21- C.2- D.22.在实数2、0、1-、2-中,最小的实数是( ) A .2 B .0 C .1- D .2- 3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( )A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 4.下列运算,正确的是( )A.523a a a =⋅B.ab b a 532=+C.326a a a =÷D.523a a a =+ 5. 下列各图中,是中心对称图形的是( )6. 方程042=-x的根是( )A. 2,221-==x xB. 4=xC. 2=xD. 2-=x7. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 8.函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x 9.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)10.一次函数2+=x y 的图象不经过...( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m) 1.501.551.601.651.70 1.75跳高人数1 323 5 1这些运动员跳高成绩的中位数和众数分别是( ) A .1.65,1.70 B .1.70,1.65 C .1.70,1.70 D .3,5 12.某农科院对甲、乙两种甜玉米各用10块相同条件的试验题号 一 二 三 总分 得分ABCD第7页,共90页 第8页,共90页田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s 乙2=0.03,则( ) A .甲比乙的产量稳定 B .乙比甲的产量稳定 C .甲、乙的产量一样稳定D .无法确定哪一品种的产 量更稳定13. 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB长为半径作⋂AC ,则图中阴影部分的面积为( ) A.2)4(cm π- B. 2)8(cm π- C. 2)42(cm -π D. 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15. 计算:=-283.16.在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是54,则n = .17.如图3,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6则AE = cm .18. 如图4,∠ABC=90°,O 为射线BC 上一点,以点O 21BO长为半径作⊙O ,当射线BA 绕点B 度时与⊙0相切.三、解答题(本大题满分56分) 19.计算(满分8分,每小题4分)(12314(2)2-⨯+-(2)化简:(a +1)(a -1)-a (a20.(满分8分)某商场正在热销2008年北京奥运会吉祥物A BC图3E DA B CO E1D图1A密封线学校班级姓名学号密封线内不得答题图10“福娃”玩具和一枚徽章的价格各是多少元?21.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?22.(本题满分8分)如图的方格纸中,ABC∆的顶点坐标分别为()5,2-A、()1,4-B和()3,1-C(1)作出ABC∆关于x轴对称的111CBA∆,并写出点A、B、C的对称点1A、1B、1C的坐标;(2)作出ABC∆关于原点O对称的222CBA∆,并写出点A、B、C的对称点2A、2B、2C的坐标;(3)试判断:111CBA∆与222CBA∆是否关于y轴对称(只需写出判断结果).23.(本大题满分11分)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;yAOxBC共计145元共计280元第21题图第41页,共90页第42页,共90页第7页,共90页 第8页,共90页(2)求证:AE=FC+EF.24.(13分)如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围;②线段PE 的长h 是否存在最大值?若存在,求出它的最大值及此时的x 值;若不存在,请说明理由?参考答案一、选择题(本大题每小题3ABCDE FG第41页,共90页 第42页,共90页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题二、填空题(本大题满分12分,每小题3分)15.25 16. 8 17. 6 18. 60°或120 °三、解答题(本大题满分56分) 19.(本题满分8分,每小题4分)(1)原式=3 - 2 +(-8) (2)原式=a 2-1-a 2+a= -7 =a -120.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元.21、(本题满分8分) 解:(1)∵,∴这次考察中一共调查了60名学生.(2)∵∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3),∴补全统计图如下图(4)∵∴可以估计该校学生喜欢篮球活动的约有450人22.满分(8分)解:(1)111C B A ∆如图,)5,2(1--A 、)1,4(1--B 、)3,1(1--C (2)222C B A ∆如图,)5,2(2-A 、)1,4(2-B 、)3,1(2-C(3)111C B A ∆与222C B A ∆关于y 轴对称23. (满分11分) (1) ΔAED ≌ΔDFC.60%106=%25%20%20%10%251=----︒=⨯︒90%2536012%2060=⨯450%251800=⨯题号 1 2 3 4 5 6 7 选择项 D D C A B A D 题号8 9 10 11 12 13 14 选择项ACDAACAADE FB 2yCAB C 1B 1A 1C 2A 2Ox∵四边形ABCD是正方形,∴ AD=DC,∠ADC=90º.又∵ AE⊥DG,CF∥AE,∴∠AED=∠DFC=90º,…∴∠EAD+∠ADE=∠FDC+∠ADE=90º,∴∠EAD=∠FDC.∴ΔAED≌ΔDFC (AAS).(2) ∵ΔAED≌ΔDFC,∴ AE=DF,ED=FC. …∵ DF=DE+EF,∴ AE=FC+EF. )24. (1) ∵点A(3,4)在直线y=x+m上,∴ 4=3+m.∴ m=1.设所求二次函数的关系式为y=a(x-1)2.∵点A(3,4)在二次函数y=a(x-1)2的图象上,∴ 4=a(3-1)2,∴ a=1.∴所求二次函数的关系式为y=(x-1)2.即y=x2-2x+1.(2) 设P、E两点的纵坐标分别为y P和y E .∴ PE=h=y P-y E=(x+1)-(x2-2x+1)=-x2+3x.…即h=-x2+3x (0<x<3).(3)略图7第7页,共90页第8页,共90页第41页,共90页 第42页,共90页密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是( )A .1B .﹣1C .D .﹣2.数据1,2,3,3,5,5,5的中位数和众数分别是( ) A .5,4 B .3,5 C .5,5 D .5,33.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S 甲2=0.63,S 乙2=0.51,S 丙2=0.48,S 丁2=0.42,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁4.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°5.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A . B . C . D .6.二次函数y=ax 2+bx+c 图象上部分点的坐标满足表格:x … ﹣3 ﹣2 ﹣1 0 1 …y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 … 则该函数图象的原点坐标为( )A .(﹣3,﹣3)B .(﹣2,﹣2)C .(﹣1,﹣3)D .(0,﹣6) 7.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C .y=x 2+1D .y=x 2+3 8.如图,函数y=﹣x 与函数的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( )A .2B .4C .6D .8线内不得答二、填空题(共6小题,每小题3分,满分18分)9.已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=______.10.如图,网格图中每个小正方形的边长为1,则弧AB的弧长l=______.11.二次函数y=﹣2(x﹣5)2+3的顶点坐标是______.12.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为______.(结果保留π)13.如图,点A、B、C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积的和是______.14.如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB线段CD的长度和为______.三、解答题(共10小题,满分78分)15.解方程:x2+4x﹣7=0.16.在一个不透明的箱子中装有3个小球,分别标有A,B,C3第7页,共90页第8页,共90页第41页,共90页 第42页,共90页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题17.为了了解我校开展的“养成好习惯,幸福一辈子”的活动情况,对部分学生进行了调查,其中一个问题是:“对于这个活动你的态度是什么?”共有4个选项: A .非常支持 B .支持 C .无所谓 D .反感根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)计算本次调查的学生人数和图(2)选项C 的圆心角度数; (2)请根据(1)中选项B 的部分补充完整;(3)若我校有5000名学生,你估计我校可能有多少名学生持反感态度.18.为落实国务院房地产调控政策,使“居者有其屋”,长春市加快了廉租房的建设力度,2013年市政府共投资2亿元人民币建设路廉租房8万平方米,预计到2015年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同,试求出市政府投资的增长率.19.如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P=∠BAC .(1)求证:PA 为⊙O 的切线; (2)若OB=5,OP=,求AC 的长.20.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线y=﹣x+3交AB ,BC 分别于点M ,N ,反比例函数y=的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.密21.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.22.如图,已知抛物线y=ax2+bx(a≠0)经过A(﹣2,0),B(﹣3,3),顶点为C.(1)求抛物线的解析式;(2)求点C的坐标;(3)若点D在抛物线上,点E在抛物线的对称轴上,且以O、D、E为顶点的四边形是平行四边形,直接写出点D23.已知某种水果的批发单价与批发量的函数关系如图(1所示.(1)请说明图(1)中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(之间的函数关系式;在图(2)指出金额在什么范围内,该种水果.(3)经调查,某经销商销售该种水果的日最高销量y(kg零售价x所示,该经销商拟每日售出不低于64kg得日获得的利润z(元)最大.第7页,共90页第8页,共90页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.如图,在菱形ABCD 中,AB=6,∠ABC=60°,动点E 、F 同时从顶点B 出发,其中点E 从点B 向点A 以每秒1个单位的速度运动,点F 从点B 出发沿B ﹣C ﹣A 的路线向终点A 以每秒2个单位的速度运动,以EF 为边向上(或向右)作等边三角形EFG ,AH 是△ABC 中BC 边上的高,两点运动时间为t 秒,△EFG 和△AHC 的重合部分面积为S .(1)用含t 的代数式表示线段CF 的长; (2)求点G 落在AC 上时t 的值; (3)求S 关于t 的函数关系式;(4)动点P 在点E 、F 出发的同时从点A 出发沿A ﹣H ﹣A 以每秒2单位的速度作循环往复运动,当点E 、F 到达终点时,点P 随之运动,直接写出点P 在△EFG 内部时t 的取值范围.参考答案一、选择题(共8小题,每小题3分,满分24分) 1. B .2.B .3.D . 4.D . 5.D .6.B .7C .8.D . 二、填空题(共6小题,每小题3分,满分18分) 9.已知一元二次方程x 2+mx ﹣2=0的两个实数根分别为x 1,x 2,则x 1•x 2= ﹣2 .得 答 题10.如图,网格图中每个小正方形的边长为1,则弧AB 的弧长l=.11.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 (5,3) . 12.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A=60°,BC=4,则图中阴影部分的面积为 π .(结果保留π)13.如图,点A 、B 、C 在一次函数y=﹣2x+m 的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积的和是 3 .14.如图,在平面直角坐标系中,抛物线y=a (x ﹣1)2+k (a 、k 为常数)与x 轴交于点A 、B ,与y 轴交于点C ,CD ∥x 轴,与抛物线交于点D .若点A 的坐标为(﹣1,0),则线段OB 与线段CD 的长度和为 5 . 三、解答题(共10小题,满分78分) 15.解方程:x 2+4x ﹣7=0. 解:x 2+4x ﹣7=0, 移项得,x 2+4x=7, 配方得,x 2+4x+4=7+4, (x+2)2=11, 解得x+2=±,即x 1=﹣2+,x 2=﹣2﹣16.解:如图所示:P (两次摸出的小球所标字母不同)==.17.解:(1)根据题意得:60÷30%=200(名),30÷200×=54°,则本次调查的学生人数为200名,图(2)选项C 数为54°;(2)选项B 的人数为200﹣(60+30+10)=100(名)形统计图,如图(1)所示,(3)根据题意得:5000×5%=250(名), 则估计我校可能有250名学生持反感态度.密学校 班级 姓名 学号密 封 线 内 不 得 答 题18.解:设每年市政府投资的增长率为x ,根据题意,得:2+2(1+x )+2(1+x )2=9.5, 整理,得:x 2+3x ﹣1.75=0, 解得:x 1=0.5,x 2=﹣3.5(舍去).答:每年市政府投资的增长率为50%. 19.(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°, ∴∠BAC+∠B=90°. 又∵OP ∥BC , ∴∠AOP=∠B , ∴∠BAC+∠AOP=90°. ∵∠P=∠BAC . ∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA ⊥AP . 又∵OA 是的⊙O 的半径, ∴PA 为⊙O 的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5, ∴OA=OB=5. 又∵OP=,∴在直角△APO 中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°. ∵∠BAC=∠P , ∴△ABC ∽△POA , ∴=. ∴=,解得AC=8.即AC 的长度为8.20.解:(1)∵B (4,2),四边形OABC 是矩形, ∴OA=BC=2,将y=2代入y=﹣x+3得:x=2, ∴M (2,2),把M 的坐标代入y=得:k=4, ∴反比例函数的解析式是y=;(2)把x=4代入y=得:y=1, 即CN=1,不 得 答∵S 四边形BMON =S 矩形OABC ﹣S △AOM ﹣S △CON =4×2﹣×2×2﹣×4×1=4, 由题意得: OP ×AM=4, ∵AM=2, ∴OP=4,∴点P 的坐标是(0,4)或(0,﹣4).21.解:(1)设线段BC 所在直线对应的函数关系式为y=k 1x+b 1. ∵图象经过(3,0)、(5,50), ∴∴线段BC 所在直线对应的函数关系式为y=25x ﹣75. 设线段DE 所在直线对应的函数关系式为y=k 2x+b 2. ∵乙队按停工前的工作效率为:50÷(5﹣3)=25, ∴乙队剩下的需要的时间为:÷25=,∴E (,160),∴, 解得:∴线段DE 所在直线对应的函数关系式为y=25x ﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x ﹣112.5,得y=25×8﹣112.5=87.5. 答:当甲队清理完路面时,乙队铺设完的路面长为87.522.解:(1)根据题意得:,解得:,则抛物线的解析式是y=x 2+2x ; (2)y=x 2+2x=(x+1)2﹣1, 则C 的坐标是(﹣1,﹣1); (3)抛物线的对称轴是x=﹣1,当OA 是平行四边形的一边时,D 和E 一定在x 轴的上方.OA=2,密学校 班级 姓名 学号密 封 线 内 不 得 答 题则设E 的坐标是(﹣1,a ),则D 的坐标是(﹣3,a )或(1,a ).把(﹣3,a )代入y=x 2+2x 得a=9﹣6=3,则D 的坐标是(﹣3,3)或(1,3),E 的坐标是(﹣1,3);当OA 是平行四边形的对角线时,D 一定是顶点,坐标是(﹣1,﹣1),则E 的坐标是D 的对称点(﹣1,1).23. 解:(1)当批发量在20kg 到60kg 时,单价为5元/kg 当批发量大于60kg 时,单价为4元/kg … (2)当20≤m ≤60时,w=5m 当m >60时,w=4m …当240<w ≤300时,同样的资金可以批发到更多的水果.… (3)设反比例函数为则,k=480,即反比列函数为∵y ≥64, ∴x ≤7.5, ∴z=(x ﹣4)=480﹣∴当x=7.5时,利润z 最大为224元.24.解:(1)根据题意得:BF=2t , ∵四边形ABCD 是菱形, ∴BC=AB=6,∴CF=BC ﹣BF=6﹣2t ;(2)点G 落在线段AC 上时,如图1所示:∵四边形ABCD 是菱形, ∴AB=BC , ∵∠ABC=60°, ∴△ABC 是等边三角形, ∴∠ACB=60°, ∵△EFG 是等边三角形,密 封 线 内 不 得 答∴∠GFE=60°,GE=EF=BF •sin60°=t , ∵EF ⊥AB ,∴∠BFE=90°﹣60°=30°, ∴∠GFB=90°, ∴∠GFC=90°, ∴CF==t ,∵BF+CF=BC , ∴2t+t=6, 解得:t=2; (3)分三种情况: ①当0<t ≤时,S=0; ②当<t ≤2时,如图2所示,S=S △EFG ﹣S △MEN =×(t )2﹣××(﹣+2)2=t 2+t ﹣3, 即S=t 2+t ﹣3;③当2<t ≤3时,如图3所示:S=t 2+t ﹣3﹣(3t ﹣6)2,即S=﹣t 2+t ﹣;(4)∵AH=AB •sin60°=6×=3,∴3÷2=, ∴3÷2=,∴t=时,点P 与H 重合,E 与H 重合, ∴点P 在△EFG 内部时,﹣<(t ﹣)×2<t ﹣(2t ﹣3)+(2t ﹣3), 解得:<t <;即:点P 在△EFG 内部时t 的取值范围为:<t <.密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知四条线段满足,将它改写成为比例式,下面正确的是( ) A .B .C .D .2.二次函数y=﹣2(x ﹣1)2+3的图象的顶点坐标是( ) A .(1,3) B .(﹣1,3) C .(1,﹣3) D .(﹣1,﹣3) 3.下列事件中,必然事件是( ) A .抛出一枚硬币,落地后正面向上 B .打开电视,正在播放广告C .篮球队员在罚球线投篮一次,未投中D .实心铁球投入水中会沉入水底4.如图,点A ,B ,C ,D 都在⊙O 上,AC ,BD 相交于点E ,则∠ABD=( )A .∠ACDB .∠ADBC .∠AED D .∠ACB5.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=96.若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为( ) A .1:2 B .2:1 C .1:4 D .4:17.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是( )A .﹣4B .0C .2D .38.一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( )A .12πcm 2B .15πcm 2C .20πcm 2D .30πcm 2二、填空题(本大题共有10小题,每小题3分,共30分) 9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 .密封线内不得答题10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.11.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x2+px﹣2=0的一个根为2,则p的值.14.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)16.二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:(1)x2﹣4x+1=0;(2)x(x﹣2)+x﹣2=0.18.如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1,B的对称点是B1,C的对称点是C1);(2)直接写出点B1、C1的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题19.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC=140°.求∠EBC 的度数.20.一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果; (2)求两次摸出的球都是编号为3的球的概率.四、解答题(本大题共有4小题,共39分)21.如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB 于D .(1)求证:△ACB ∽△ADE ;(2)求AD 的长度.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x 的值.23.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且AC 平分∠BAD ,点E 为AB 的延长线上一点,且∠ECB=∠CAD . (1)①填空:∠ACB= ,理由是 ; ②求证:CE 与⊙O 相切;(2)若AB=6,CE=4,求AD 的长.密封 线 内 不 得五、解答题(本大题共有3小题,共35分)24.如图1,在△ABC 中,∠A=120°,AB=AC ,点P 、Q 同时从点B 出发,以相同的速度分别沿折线B →A →C 、射线BC 运动,连接PQ .当点P 到达点C 时,点P 、Q 同时停止运动.设BQ=x ,△BPQ 与△ABC 重叠部分的面积为S .如图2是S 关于x 的函数图象(其中0≤x ≤8,8<x ≤m ,m <x ≤16时,函数的解析式不同).(1)填空:m 的值为 ;(2)求S 关于x 的函数关系式,并写出x 的取值范围; (3)请直接写出△PCQ 为等腰三角形时x 的值.25.如图(1),将线段AB 绕点A 逆时针旋转2α(0°<α<90°)至AC ,P 是过A ,B ,C 的三点圆上任意一点. (1)当α=30°时,如图(1),求证:PC=PA+PB ;(2)当α=45°时,如图(2),PA ,PB ,PC 它们的数量关系.26.如图,抛物线y=a (x ﹣m )2﹣m (其中m >1)与其对称轴l 相交于点P ,与y 轴相交于点A (0,m ).点A 关于直线l 的对称点为B ,作BC ⊥x 轴于点C ,连接PC 、PB ,与抛物线、x 轴分别相交于点D 、E ,连接DE .将△PBC 沿直线PB 翻折,得到△PBC ′.(1)该抛物线的解析式为 (用含m 的式子表示);(2)探究线段DE 、BC 的关系,并证明你的结论; (3)直接写出C ′点的坐标(用含m 的式子表示).密学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(共8小题,每小题3分,满分24分) 1.C 2.A .3.D .4.A .5.D .6.C .7.B .8.B . 二、填空题(本大题共有10小题,每小题3分,共30分)9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 c <4 .10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 15 m . 11.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= 70 °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值 ﹣1 .14.如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 3 .15.如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是 ∠C=∠BAD (填一个即可)16.二次函数y=ax 2+bx+c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,y 1),(﹣3,y 2),(0,y 3),则y 1、y 2、y 3的大小关系是 y 3<y 2<y 1 (用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:解:(1)方程变形得:x 2﹣4x=﹣1,配方得:x 2﹣4x+4=3,即(x ﹣2)2=3, 开方得:x ﹣2=±,得 答 题则x 1=2+,x 2=2﹣;(2)(x+1)(x ﹣2)=0, (x+1)(x ﹣2)=0, 解得x 1=﹣1,x 2=2. 18.解:(1)如图所示:.(2)根据上图可知,B 1(2,2),C 1(5,﹣1).19. 解:由圆周角定理得,∠D=∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°. 20.解:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为. 四、解答题(本大题共有4小题,共39分) 21. (1)证明:∵DE ⊥AB ,∠C=90°,∴∠EDA=∠C=90°, ∵∠A=∠A ,∴△ACB ∽△ADE ;(2)解:∵△ACB ∽△ADE ,∴=, ∴=,∴AD=4.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m 系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:(1)由图可得,扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=(30xm+m )(20xm+m )=600x 2m 2+50xm 2+m 2,即扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=600x 2m 2+50xm 2+m 2;(2)∵扩充后的绿地面积y 是原矩形面积的2倍, ∴600x 2m 2+50xm 2+m 2=2×30xm ×20xm , 解得(舍去),即扩充后的绿地面积y 是原矩形面积的2倍,x 的值是.23.解:(1)①∵AB 为⊙O 的直径, ∴∠ACB=90°,故答案为90°,直径所对的圆周角是直角; ②连接OC ,则∠CAO=∠ACO , ∵AC 平分∠BAB , ∴∠BAC=∠CAD , ∵∠ECB=∠CAD . ∴∠BAC=∠ECB .∴∠ECB=∠ACO ,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE ⊥OC .∴CE 与⊙O 相切; (2)∵CE 与⊙O 相切, ∴CE 2=BE •AE , ∵AB=6,CE=4, ∴42=BE (BE+6), ∴BE=2, ∴AE=6+2=8, ∵△ACE ∽△CBE ,∴=,即=,∴AC=4, ∴AC=CE=4, ∴∠CAB=∠E , ∴∠ECB=∠E ,∴∠ABC=2∠ECB=2∠BAC ,BC=BE=2, ∴∠DAB=∠ABC , ∴AD=BC=2.五、解答题(本大题共有3小题,共35分)24.解:(1)如图1中,作AM ⊥BC ,PN ⊥BC ,垂足分别为M ,N .密 封 线 内 不 得 答 题由题意AB=AC=8,∠A=120°, ∴∠BAM=∠CAM=60°,∠B=∠C=30°, ∴AM=AB=4,BM=CM=4, ∴BC=8, ∴m=BC=8, 故答案为8.(2)①当0≤m ≤8时,如图1中,在RT △PBN 中,∵∠PNB=90°,∠B=30°,PB=x , ∴PN=x . s=•BQ •PN=•x ••x=x 2.②当8<x ≤16,如图2中,在RT △PBN 中,∵PC=16﹣x ,∠PNC=90°,∠C=30°, ∴PN=PC=8﹣x ,∴s=•BQ •PN=•x •(8﹣x )=﹣x 2+4x . ③当8<x ≤16时,s=•8•(8﹣•x )=﹣2x+32.(3)①当点P 在AB 上,点Q 在BC 上时,△PQC 不可能是等腰三角形.②当点P 在AC 上,点Q 在BC 上时,PQ=QC , ∵PC=QC ,∴16﹣x=(8﹣x ), ∴x=4+4.③当点P 在AC 上,点Q 在BC 的延长线时,PC=CQ , 即16﹣x=x ﹣8, ∴x=8+4.∴△PCQ 为等腰三角形时x 的值为4+4或8+4.25.证明:(1)如图(1),在PA 上截取PD=PA , ∵AB=AC ,∠CAB=60°, ∴△ABC 为等边三角形, ∴∠APC=∠CPB=60°, ∴△APD 为等边三角形, ∴AP=AD=PD ,∴∠ADC=∠APB=120°, 在△ACD 和△ABP 中,,∴△ACD ≌△ABP (AAS ),密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴CD=PB ,∵PC=PD+DC , ∴PC=PA+PB ; (2)PC=PA+PB ,如图(2),作AD ⊥AP 与PC 交于一点D , ∵∠BAC=90°,∴∠CAD=∠BAP , 在△ACD 和△ABP 中,,∴△ACD ≌△ABP ,∴CD=PB ,AD=AP , 根据勾股定理PD=PA , ∴PC=PD+CD=PA+PB .26.解:(1)把点A (0,m )代入y=,得:2am 2﹣m=m , am ﹣1=0, ∵am >1,∴a=, ∴y=,故答案为:y=;(2)DE=BC . 理由:又抛物线y=,可得抛物线的顶点坐标P (m ,﹣m ),由l :x=m ,可得:点B (2m ,m ), ∴点C (2m ,0).设直线BP 的解析式为y=kx+b ,点P (m ,﹣m )和点B (2m ,m )在这条直线上, 得:,解得:,∴直线BP 的解析式为:y=x ﹣3m , 令y=0, x ﹣3m=0,解得:x=,∴点D (,0);设直线CP 的解析式为y=k 1x+b 1,点P (m ,﹣m )和点C (2m ,0)在这条直线上,得:,解得:, ∴直线CP 的解析式为:y=x ﹣2m ;密 封 线 内 不 得 答 题抛物线与直线CP 相交于点E ,可得:,解得:,(舍去), ∴点E (,﹣);∵x D =x E , ∴DE ⊥x 轴,∴DE=y D ﹣y E =,BC=y B ﹣y C =m=2DE , 即DE=BC ; (3)C ′(,).连接CC ′,交直线BP 于点F , ∵BC ′=BC ,∠C ′BF=∠CBF , ∴CC ′⊥BP ,CF=C ′F ,设直线BP 的解析式为y=kx+b ,点B (2m ,m ),P (m ,﹣m )在直线上, ∴,解得:,∴直线BP 的解析式为:y=x ﹣3m , ∵CC ′⊥BP ,∴设直线CC ′的解析式为:y=x+b 1,∴,解得:b 1=2m ,联立①②,得:,解得:,∴点F (,),∴CF==, 设点C ′的坐标为(a ,), ∴C ′F==,解得:a=,∴, ∴C ′(,).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题:每小题3分,共36分. 1.方程x 2=4x 的解是( )A .x=4B .x=2C .x=4或x=0D .x=0 2.在下列事件中,是必然事件的是( ) A .购买一张彩票中奖一百万元B .抛掷两枚硬币,两枚硬币全部正面朝上C .在地球上,上抛出去的篮球会下落D .打开电视机,任选一个频道,正在播新闻3.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1﹣x )=121C .100(1+x )2=121 D .100(1﹣x )2=1214.关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣3m+2=0的常数项为0,则m 等于( )A .1B .2C .1或2D .05.对于抛物线y=﹣(x ﹣5)2+3,下列说法正确的是( )A .开口向下,顶点坐标(5,3)B .开口向上,顶点坐标(5,3)C .开口向下,顶点坐标(﹣5,3)D .开口向上,顶点坐标(﹣5,3)6.二次函数y=kx 2﹣6x+3的图象与x 轴有交点,则k 的取值范围是( )A .k <3 B .k <3且k ≠0 C .k ≤3 D .k ≤3且k ≠0 7.二次函数y=ax 2+bx+c 的图象如图所示,则下列关系式中错误的是( )A .a <0B .c >0C .b 2﹣4ac >0 D .a+b+c >0 8.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )封线内不A. B. C. D.9.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是()A.内切 B.相交 C.外切 D.外离10.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25π B.65πC.90π D.130π11.如图,四个边长为2的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30° B.45° C.60° D.90°12.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形 D.梯形二、填空题:每小题3分,共18分.13.已知关于x的方程x2﹣3x+k=0有一个根为1,个根为.14.抛物线y=3x2向右平移1个单位,再向下平移2所得到的抛物线是.15.如图,⊙O的直径AB=12,弦CD⊥AB于M,且M是半径的中点,则CD的长是(结果保留根号).16.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣•x2= .17.如图,已知以直角梯形ABCD的腰CD为直径的半圆O形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.如图,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于 .三、解答题:本大题共7小题,19题10分,其余每题6分,共46分. 19.解方程:(1)3x 2﹣2x=4x 2﹣3x ﹣6 (2)3x 2﹣6x ﹣2=0.20.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.21.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x ,y )落在坐标轴上的概率;(2)直接写出点(x ,y )落在以坐标原点为圆心,2为半径的圆内的概率.。
江苏省扬州市仪征市2020-2021学年度第一学期二年级数学期末测试卷(苏教版)
小学数学二年级(上册)期末测试卷(2021.1)成绩一、计算(共24分)1.直接写得数。
(每小题1分,共16分)12÷3=4×7=36÷6=43-20=8×2=1×1=5×9=4÷4=50-5=42÷7=8×4=3+27=4×9+3=5×6-7=9×2÷3=56÷7÷4=2.用竖式计算。
(每小题2分,共8分)21+15+36=80-54-19=46+37-38=55-26+30=二、填空(第1、7题每道算式1分,其余每空1分,共28分)1.看图写算式。
(1)()×()=()()÷()=()()÷()=()计算时用到的乘法口诀是()。
(2)跳3次,能跳到多少?()×()=()2.在()里填上“米”或“厘米”。
(1)一支铅笔长约18()。
(2)宁宁从家到学校大约要走400()。
3.小兰家栽了2行桃树,每行7棵;小芳家也栽了2行桃树,一行7棵,一行6棵。
()家栽的桃树多,多()棵。
051015203.在里填上“>”“<”或“=”。
3×44×516+20352×22+22×8+88×3-840÷530÷670厘米1米4.壮壮玩抛硬币的游戏,他用画“正”字的方法记录每次落下后朝上的正面朝上正正正正正反面朝上正正正正正面朝上的有()次,反面朝上的有()次。
5.距学校“六一”艺术节开幕还有35天,再过()个星期艺术节开幕。
6.观察上图,填写下图。
7.想不同..的口诀,填下面的算式。
()×()=1824÷()=()()×()=1824÷()=()8.找规律填数。
(1)9、12、15、18、()、()。
(2)2、5、10、17、26、()、()。
2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)
2020-2021学年北师大新版九年级上册数学期末复习试卷一.选择题(共10小题,满分20分,每小题2分)1.方程x2﹣6x+5=0较小的根为p,方程5x2﹣4x﹣1=0较大的根为q,则p+q等于()A.3B.2C.1D.22.如图所示几何体的左视图正确的是()A.B.C.D.3.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃4.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2 6.若,则的值为()A.1B.C.D.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB =1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.88.如图,在△ABC中,中线AD,BE相交于点F,EG∥BC,交AD于点G,下列说法:①BD =2GE;②AF=2FD;③△AGE与△BDF面积相等;④△ABF与四边形DCEF面积相等,结论正确的是()A.①③④B.②③④C.①②③D.①②④9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=1610.正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.小明想知道学校旗杆的高,他在某一时刻测得直立的标杆高1米时影长0.9米,此时他测旗杆影长时,因为旗杆靠近建筑物,影子不全落在地面上,有一部分影子在墙上,他测得落在地面上的影长BC为2.7米,又测得墙上影高CD为1.2米,旗杆AB的高度为米.12.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A'B'O.若点A的坐标是(1,2),则点A'的坐标是.13.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.14.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.15.如图,在菱形ABCD中,∠C=60°,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为.16.如图,在△ABC中,AB=AC=9,过点B、C分别作AB、BC的垂线相交于点D,延长AC、BD相交于点E,若tan∠BDC=2,则DE=.三.解答题(共3小题,满分22分)17.计算:2cos45°tan30°cos30°+sin260°.18.如图,是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,每个扇形上分别标上,1,﹣1三个数字.小明转动转盘,小亮猜结果,如果转盘停止后指针指向的结果与小亮所猜的结果相同,则小亮获胜,否则小明获胜.(1)如果小明转动转盘一次,小亮猜的结果是“正数”,那么小亮获胜的概率是.(2)如果小明连续转动转盘两次,小亮猜两次的结果都是“正数”,请用画树状图或列表法求出小亮获胜的概率.19.如图,在菱形ABCD中,对角线AC和BD交于点O,分别过点B、C作BE∥AC,CE ∥BD,BE与CE交于点E.(1)求证:四边形OBEC是矩形;(2)当∠ABD=60°,AD=2时,求BE的长.四.解答题(共1小题,满分8分,每小题8分)20.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A 和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五.解答题(共1小题,满分10分,每小题10分)21.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?六.解答题(共3小题,满分34分)22.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式及点B的坐标;(2)若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.23.【方法提炼】解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线策略.【问题情境】如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.小明在分析解题思路时想到了两种平移法:方法1:平移线段FG使点F与点B重合,构造全等三角形;方法2:平移线段BC使点B与点F重合,构造全等三角形;【尝试应用】(1)请按照小明的思路,选择其中一种方法进行证明;(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC 的值;(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD 与正方形PBEF,连结DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连结AC交DE于点H,求的值.24.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:方程x2﹣6x+5=0较小的根为p=1,方程5x2﹣4x﹣1=0较大的根为q=1,则p+q=2,故选:B.2.解:从几何体的左面看所得到的图形是:故选:A.3.解:A、在“石关、剪刀、布”的游戏中,小时随机出的是“剪刀”为,不符合这一结果,故此选项错误;B、掷一个质地均匀的正六面体骰子,向上的面点数是偶数的概率是==0.5,符合这一结果,故此选项正确;C、从一个装有1个红球2个黄球的袋子中任取一球,取到的是黄球的概率为:,不符合这一结果,故此选项错误;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;故选:B.4.解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.5.解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.6.解:∵,∴=2=2﹣=;故选:B.7.解:作CE⊥x轴于E,∵AC∥x轴,OA=2,OB=1,∴OA=CE=2,∵∠ABO+∠CBE=90°=∠OAB+∠ABO,∴∠OAB=∠CBE,∵∠AOB=∠BEC,∴△AOB∽△BEC,∴=,即=,∴BE=4,∴OE=5,∵点D是AB的中点,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.解:∵中线AD,BE相交于点F,∴BD=CD,AE=CE,BF=2EF,AF=2FD,②正确;∵EG∥BC,∴△BDF∽△EGF,∴==2,∴BD=2GE,①正确;∵AF=2FD,∴△ABF的面积=2△BDF的面积=△ABD的面积=△ABC的面积,△BDF的面积=△ABC的面积,∵EG∥BC,AE=CE,∴△AGE∽△ADC,=,∴=()2=,∴△AGE的面积=△ADC的面积△ABC的面积,∴△AGE与△BDF面积不相等,③不正确;∵BD=CD,AE=CE,∴△ABD的面积=△ADC的面积=△ABC的面积=△ABE的面积=△BCE的面积,∴△ABD的面积=△BCE的面积,∴△ABD的面积﹣△BDF的面积=△BCE的面积﹣△BDF的面积,即△ABF与四边形DCEF面积相等,④正确;故选:D.9.解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.10.解:∵BF∥AD∴△BNF∽△DNA∴,而BF=BC=1,AF=,∴AN=,又∵AE=BF,∠EAD=∠FBA,AD=AB,∴△DAE≌△ABF(SAS),∴∠AED=∠BFA∴△AME∽△ABF∴,即:,∴AM=,∴MN=AN﹣AM=.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:过点D作DE⊥AB于点E,则BE=CD=1.2m,∵他在某一时刻测得直立的标杆高1米时影长0.9米,∴=,即=,解得:AE=3m,∴AB=AE+BE=3+1.2=4.2(m).故答案为:4.2.12.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).13.解:根据图表可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.14.解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据题意得:(30﹣3x)(24﹣2x)=480.故答案为:(30﹣3x)(24﹣2x)=480.15.解:∵E、F分别是AB、AD的中点,∴EF=BD,∵EF=5,∴BD=10,∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∴AB=BD=10,∴菱形ABCD的周长=4×10=40,故答案为:40.16.解:作CF⊥BD于F,作AG⊥BC于G,如图所示:∵AB=AC=9,AG⊥BC,∴BG=CG,∵BE⊥AB,CD⊥BC,∴∠ABG+∠CBD=90°,∠CBD+∠BDC=90°,∴∠ABG=∠BDC,∴tan∠ABG==tan∠BDC==2,∴AG=2BG,BC=2CD,设BG=x,则AG=2x,在Rt△ABG中,由勾股定理得:x2+(2x)2=92,解得:x=,∴BC=2BG=,CD=BC=,∴BD===9,∵CF⊥BD,∴△BCD的面积=BD×CF=BC×CD,∴CF==,∴DF===,∵AB⊥BD,CF⊥BD,∴CF∥AB,∴△CFE∽△ABE,∴=,即=,解得:DE=3;故答案为:3.三.解答题(共3小题,满分22分)17.解:原式=2×﹣××+()2=﹣+=.18.解:(1)∵每个扇形上分别标上,1,﹣1三个数字,其中是“正数”的有2个数,∴小亮猜的结果是“正数”,那么小亮获胜的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中两次的结果都是“正数”的有4种,∴小亮获胜的概率是.19.(1)证明:∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC是矩形;(2)解:∵四边形ABCD为菱形,∴AD=AB,OB=OD,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AD=AB=2,∴OD=OB=,在Rt△AOD中,AO===3∴OC=OA=3,∵四边形OBEC是矩形,∴BE=OC=3.四.解答题(共1小题,满分8分,每小题8分)20.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40,∵AB=57,∴BE=17∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17,∴BC=EF=30﹣17=13.答:教学楼BC高约13米.五.解答题(共1小题,满分10分,每小题10分)21.解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),,得,即y与x之间的函数关系式为y=﹣50x+1100;(2)由题意可得,w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,∵a=﹣50<0∴w有最大值∴当x<16时,w随x的增大而增大,∵12≤x≤15,x为整数,∴当x=15时,w有最大值,此时,w=﹣50(15﹣16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.六.解答题(共3小题,满分34分)22.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=,∴k=1×2=2;∴反比例函数的表达式为y=,解得,,,∴B(2,1);(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),∵A(1,2),∴AC==2,过A作AD⊥x轴于D,∴OD=1,CD=AD=2,当AP=AC时,PD=CD=2,∴P(﹣1,0),当AC=CP=2时,△ACP是等腰三角形,∴OP=3﹣2或OP=3+2∴P(3﹣2,0)或(3+2,0),当AP=CP时,△ACP是等腰三角形,此时点P与D重合,∴P(1,0),综上所述,所有点P的坐标为(﹣1,0)或(3﹣2,0)或(3+2,0)或(1,0).23.解:(1)①平移线段FG至BH交AE于点K,如图1﹣1所示:由平移的性质得:FG∥BH,∵四边形ABCD是正方形,∴AB∥CD,AB=BC,∠ABE=∠C=90°,∴四边形BFGH是平行四边形,∴BH=FG,∵FG⊥AE,∴BH⊥AE,∴∠BKE=90°,∴∠KBE+∠BEK=90°,∵∠BEK+∠BAE=90°,∴∠BAE=∠CBH,在△ABE和△CBH中,,∴△ABE≌△CBH(ASA),∴AE=BH,∴AE=FG;②平移线段BC至FH交AE于点K,如图1﹣2所示:则四边形BCHF是矩形,∠AKF=∠AEB,∴FH=BC,∠FHG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=90°,∴AB=FH,∠ABE=∠FHG,∵FG⊥AE,∴∠HFG+∠AKF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠HFG,在△ABE和△FHG中,,∴△ABE≌△FHG(ASA),∴AE=FG;(2)将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:∴∠AOC=∠FDC,设正方形网格的边长为单位1,则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,根据勾股定理可得:CF===,CD===2,DF===5,∵()2+(2)2=52,∴CF2+CD2=DF2,∴∠FCD=90°,∴tan∠AOC=tan∠FDC===;(3)①平移线段BC至DG处,连接GE,如图3﹣1所示:则∠DMC=∠GDE,四边形DGBC是平行四边形,∴DC=GB,∵四边形ADCP与四边形PBEF都是正方形,∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°∴DC=AD=AP=GB,∴AG=BP=BE,在△AGD和△BEG中,,∴△AGD≌△BEG(SAS),∴DG=EG,∠ADG=∠EGB,∴∠EGB+∠AGD=∠ADG+∠AGD=90°,∴∠EGD=90°,∴∠GDE=∠GED=45°,∴∠DMC=∠GDE=45°;②如图3﹣2所示:∵AC为正方形ADCP的对角线,∴∠DAC=∠PAC=∠DMC=45°,∴AC=AD,∵∠HCM=∠BCA,∴∠AHD=∠CHM=∠ABC,∴△ADH∽△ACB,∴===.24.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).。
2022-2023学年人教版九年级上册数学期末必刷常考题-旋转
2022-2023学年上学期初中数学人教版九年级期末必刷常考题之旋转一.选择题(共5小题)1.(2021春•万山区期末)如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°2.(2021春•金台区期末)在平面直角坐标系中,点P(3,﹣1)关于坐标原点中心对称的点P′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(﹣1,3)3.(2021春•榆阳区期末)如图,AC、BD为四边形ABCD的对角线,将△ACD绕点A顺时针旋转60°,得到△AEB(点C、D的对应点分别为点E、B),若点C、B、E在一条直线上,则下列说法错误的是()A.∠ABC+∠ADC=180°B.∠BCD=120°C.AC=BC+CD D.AE=BD4.(2021春•曹县期末)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△A′B′C′,若点B′恰好落在BC边上,AB′=CB′,则∠C′的度数为()A.18°B.20°C.22°D.24°5.(2021春•西山区期末)如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是()A.(3038,1)B.(3032,1)C.(2021,0)D.(2021,1)二.填空题(共5小题)6.(2021春•锦州期末)如图,这个正六边形是由Rt△ABC绕点O经过多次旋转变换得到,则∠ABC=.7.(2020秋•綦江区期末)如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为.8.(2021春•靖边县期末)如图,将△ABC绕点A逆时针旋转得到△AB′C′,延长CB 交B′C′于点D,若∠BAB′=40°,则∠C′DC的度数是°.9.(2021春•广陵区校级期末)如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是.10.(2020秋•兰陵县期末)如图,正方形ABCD中,E为DC边上一点,且DE=2,将AE绕点E逆时针旋转90°得到EF,连接AF、FC,则线段FC的长度是.三.解答题(共5小题)11.(2021春•武陵区期末)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC 绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,连接BE、DF、BF.(1)证明:△CFD≌△ABC;(2)证明:四边形BEDF是平行四边形.12.(2021春•曹县期末)如图,四边形ABCD是矩形,以点B为中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C的对应点分别为点G,F,E,点D恰好在FG的延长线上,BG与CD相交于点H,求证:DH=BH.13.(2020秋•铁西区期末)如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A、B、C、D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D;(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)写出所画图形围成的面积.(结果保留π)14.(2020秋•斗门区期末)如图1,在△ABC中,BA=BC,D、E是AC边上的两点,且满足∠DBE=∠ABC.以点B为旋转中心,将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.15.(2020秋•铁西区期末)在平面直角坐标系中,已知点A(2,0),点B在y轴正半轴上,且∠BAO=60°,点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B 旋转后的对应点为A',B',记旋转角为α.(1)如图1,A'B'恰好经过点A时,①求此时旋转角α的度数;②求出此时点B'的坐标;(2)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,猜测AA'与BB'的位置关系,并说明理由.2022-2023学年上学期初中数学人教版九年级期末必刷常考题之旋转参考答案与试题解析一.选择题(共5小题)1.(2021春•万山区期末)如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°【考点】旋转的性质.【专题】平移、旋转与对称;推理能力.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.2.(2021春•金台区期末)在平面直角坐标系中,点P(3,﹣1)关于坐标原点中心对称的点P′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(﹣1,3)【考点】关于原点对称的点的坐标.【专题】平面直角坐标系;平移、旋转与对称;模型思想;应用意识.【分析】根据关于原点对称的两个点的坐标之间的关系,即纵横坐标均互为相反数,可得答案.【解答】解:点P(3,﹣1)关于坐标原点中心对称的点P′的坐标为(﹣3,1),故选:C.【点评】本题考查关于原点对称的点的坐标,掌握关于原点对称的两个点坐标之间的关系是得出正确答案的前提.3.(2021春•榆阳区期末)如图,AC、BD为四边形ABCD的对角线,将△ACD绕点A顺时针旋转60°,得到△AEB(点C、D的对应点分别为点E、B),若点C、B、E在一条直线上,则下列说法错误的是()A.∠ABC+∠ADC=180°B.∠BCD=120°C.AC=BC+CD D.AE=BD【考点】全等三角形的判定与性质;旋转的性质.【专题】平移、旋转与对称;运算能力;推理能力.【分析】由旋转的性质可得出∠ADC=∠ABE,AC=AE,AD=AB,∠ACD=∠AEB,∠CAE=∠DAB=60°,得出△CAE和△DAB都是等边三角形,可判断A,B,C选项正确,则可得出结论.【解答】解:∵将△ACD绕点A顺时针旋转60°,得到△AEB,∴∠ADC=∠ABE,∵∠ABE+∠ABC=180°,∴∠ADC+∠ABC=180°,故选项正确,不符合题意,∵将△ACD绕点A顺时针旋转60°,得到△AEB,∴AC=AE,AD=AB,∠ACD=∠AEB,∠CAE=∠DAB=60°,∴△CAE和△DAB都是等边三角形,∴∠ACD=∠AEB=60°,∠ACE=60°,∴∠BCD=120°,故B选项正确,不符合题意;∵△ACE为等边三角形,∴AC=CE=BE+BC,又∵BE=CD,∴AC=CD+BC,故C选项正确,不符合题意,∵BD=AB,AB≠AE,∴AE≠BD,故D选项错误,符合题意.故选:D.【点评】本题主要考查旋转的性质,等边三角形的判定与性质,熟练掌握旋转的性质是解题的关键.4.(2021春•曹县期末)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△A′B′C′,若点B′恰好落在BC边上,AB′=CB′,则∠C′的度数为()A.18°B.20°C.22°D.24°【考点】等腰三角形的性质;旋转的性质.【专题】图形的相似;应用意识.【分析】根据图形的旋转性质,得AB=AB′,已知AB′=CB′,结合等腰三角形的性质及三角形的外角性质,得∠B、∠C的关系为解决问题的关键.【解答】解:∵AB′=CB′,∴∠C=CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴C=24°,∴∠C′=∠C=24°,故选:D.【点评】本题主要考查了等腰三角形的性质及图形的旋转性质.5.(2021春•西山区期末)如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是()A.(3038,1)B.(3032,1)C.(2021,0)D.(2021,1)【考点】规律型:点的坐标;坐标与图形变化﹣旋转.【专题】规律型;平移、旋转与对称;几何直观;运算能力;推理能力.【分析】分析A1,A2,A3,A4,A5点坐标,找到规律求解.【解答】解:根据图形分析,从A开始旋转,当旋转到A4,时,A回到矩形的起始位置,所以为一个循环,故坐标变换规律为4次一循环.A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0),A7(9,0),A8(11,2),A9(14,1),A10(15,0),A11(15,0),A12(17,2),A4n+1(6n+2,1),A4n+2(6n+3,0),A4n+3(6n+3,0),A4n+4(6n+5,0),当A2021时,即4n+1=2021,解得n=505,∴横坐标为6n+2=6×505+2=3032,纵坐标为1,则A2021的坐标(3032,1),故选:B.【点评】本题主要考查图形的旋转变换,解题关键是找到图形在旋转的过程中,点坐标变化规律进而求解.二.填空题(共5小题)6.(2021春•锦州期末)如图,这个正六边形是由Rt△ABC绕点O经过多次旋转变换得到,则∠ABC=30°.【考点】多边形内角与外角;旋转对称图形.【专题】平移、旋转与对称;几何直观.【分析】依据多边形内角和公式求得正六边形每个角的度数,再根据角的和差关系进行计算即可.【解答】解:由旋转可得,该多边形是正六边形,∴该正六边形每个角为=120°,∴∠ABC=120°﹣90°=30°,故答案为:30°.【点评】本题主要考查了旋转对称图形,如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.7.(2020秋•綦江区期末)如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为2.【考点】勾股定理;正方形的性质;旋转的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】连接FH,由正方形的性质得出∠B=∠C=90°,AB=BC,由旋转的性质得出EF=EH,证明Rt△EBF≌Rt△HCE(HL),得出∠EFB=∠HEC,证出∠FEH=90°,由勾股定理可得出答案.【解答】解:连接FH,∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC,∵AF=2,BF=4,∴AB=6,∵BE=2,∴CE=4,∴BF=CE,∵将△BEF绕点E顺时针旋转,得到△GEH,∴EF=EH,在Rt△EBF和Rt△HCE中,,∴Rt△EBF≌Rt△HCE(HL),∴∠EFB=∠HEC,∵∠EFB+∠BEF=90°,∴∠BEF+∠CEH=90°,∴∠FEH=90°,∵BF=4,BE=2,∴EF===2,∴FH=EF=2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质,勾股定理.8.(2021春•靖边县期末)如图,将△ABC绕点A逆时针旋转得到△AB′C′,延长CB 交B′C′于点D,若∠BAB′=40°,则∠C′DC的度数是40°.【考点】旋转的性质.【专题】平移、旋转与对称;推理能力.【分析】由旋转的性质得到∠BAC=∠B′AC′,∠C=∠C′,进而推出∠CAC′=40°,根据三角形内角和定理证得∠C′DC=∠CAC′,即可求得∠C'DC的度数.【解答】解:∵将△ABC绕点A逆时针旋转得到△AB'C',∴△ABC≌△AB'C',∴∠BAC=∠B′AC′,∠C=∠C′,∵∠BAB'=40°,∴∠CAC′=40°,∵∠C'DC=180°﹣∠DEC′﹣∠C′,∠CAC′=180°﹣C﹣∠AEC,∠DEC′=∠AEC,∠C′DC=∠CAC′=40°,故答案为:40.【点评】本题主要考查了旋转的性质,三角形内角和定理,能灵活运用旋转的性质是解决问题的关键.9.(2021春•广陵区校级期末)如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是4.【考点】正方形的性质;轴对称﹣最短路线问题;旋转的性质.【专题】图形的全等;平移、旋转与对称;推理能力.【分析】连接BF,过点F作FG⊥AB交AB延长线于点G,通过证明∴△AED≌△GFE (AAS),确定F点在BF的射线上运动,作点C关于BF的对称点C',由三角形全等得到∠CBF=45°,从而确定C'点在AB的延长线上,当D,F,C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,求出DC'=4即可.【解答】解:连接BF,过点F作FG⊥AB交AB延长线于点G,∵将ED绕点E顺时针旋转90°到EF,∴EF⊥DE,且EF=DE,∴∠EDA=∠FEG,在△AED与△GFE中,,∴△AED≌△GFE(AAS),∴FG=AE,∴F点在BF的射线上运动,作点C关于BF的对称点C',∵EG=DA,FG=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC'的角平分线,即F点在∠CBC'的角平分线上运动,∴C'点在AB的延长线上,当DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,∴DC'===4,故答案为4.【点评】本题考查了旋转的性质,正方形的性质,轴对称求最短路径,能够将线段和通过轴对称转化为共线线段是解题的关键.10.(2020秋•兰陵县期末)如图,正方形ABCD中,E为DC边上一点,且DE=2,将AE绕点E逆时针旋转90°得到EF,连接AF、FC,则线段FC的长度是2.【考点】勾股定理;正方形的性质;旋转的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】过点F作FH⊥CD于H,如图,利用正方形的性质得DA=CD,∠D=90°,再根据旋转的性质得EA=EF,∠AEF=90°,接着证明△ADE≌△EHF得到DE=FH=2,AD=EH,所以EH=DC,则DE=CH=2,然后利用勾股定理计算FC的长.【解答】解:过点F作FH⊥CD于H,如图,∵四边形ABCD为正方形,∴DA=CD,∠D=90°,∵AE绕点E顺时针旋转90°得到EF,∴EA=EF,∠AEF=90°,∵∠DAE+∠AED=90°,∠FEH+∠AED=90°,∴∠EAD=∠FEH,在△ADE和△EHF中,,∴△ADE≌△EHF(AAS),∴DE=FH=2,AD=EH,∴EH=DC,即DE+CE=CH+EC,∴DE=CH=2,在Rt△CFH中,FC===2,【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三.解答题(共5小题)11.(2021春•武陵区期末)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC 绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,连接BE、DF、BF.(1)证明:△CFD≌△ABC;(2)证明:四边形BEDF是平行四边形.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定;旋转的性质.【专题】图形的全等;多边形与平行四边形;推理能力.【分析】(1)由旋转的性质可得CB=CE,AB=DE=BF,由“SSS”可证△ABC≌△CFD;(2)延长BF交CE于点G,可证BF∥ED,由一组对边平行且相等可证四边形BEDF 是平行四边形.【解答】证明:(1)∵点F是边AC中点,∴CF=AC,∵∠BCA=30°,∴BA=AC,∠A=60°,∴AB=CF,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴AC=CD,∠ACD=60°,∴∠ACB=∠DCE,在△ABC和△CFD中,,∴△ABC≌△CFD(SAS);(2)延长BF交CE于点G,由(1)得,FC=BF,∴∠BCF=∠FBC=30°,∵∠BCE=60°,∴∠BCE+∠CBG=∠BGE=90°,∵∠DEC=∠ABC=90°∴∠BGE=∠DEC,∴BF∥ED,∵,AB=DE,∴BF=DE,∴四边形BEDF是平行四边形.【点评】本题考查了旋转的性质,全等三角形的判定和性质,平行四边形的判定等知识,灵活运用这些知识进行推理是本题的关键.12.(2021春•曹县期末)如图,四边形ABCD是矩形,以点B为中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C的对应点分别为点G,F,E,点D恰好在FG的延长线上,BG与CD相交于点H,求证:DH=BH.【考点】全等三角形的判定与性质;矩形的性质;旋转的性质.【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;推理能力.【分析】证明Rt△BDA≌Rt△BDG,得到∠ABD=∠GBD,再利用矩形性质求解.【解答】证明:∵旋转矩形ABCD得到矩形GBEF,∴AB=BG,∠A=∠DGB=90°,在Rt△BDA和Rt△BDG中,,∴Rt△BDA≌Rt△BDG(HL),∴∠ABD=∠GBD,∵四边形ABCD是矩形,∴∠ABD=∠BDH,∴∠BDH=∠HBD,∴DH=BH.【点评】本题主要考查了旋转的性质、矩形的性质、解题关键是证明Rt△BDA≌Rt△BGA,得到∠ABD=∠GBD,再利用矩形性质求解.13.(2020秋•铁西区期末)如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A、B、C、D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D;(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称图形;(3)写出所画图形围成的面积.(结果保留π)【考点】作图﹣旋转变换.【专题】平移、旋转与对称;几何直观;运算能力.【分析】(1)根据要求画出图形即可.(2)根据轴对称图形的定义判断即可.(3)根据所画图形的面积=S半圆+S+S﹣S矩形,利用扇形的面积公式计算可得.【解答】解:(1)点D→D1→D2→D经过的路径如图所示.(2)所画图形是轴对称图形;故答案为:轴.(3)所画图形的面积=S半圆+S+S﹣S矩形=•π•42+×2﹣4×8=8π+4π+4π﹣32=16π﹣32.【点评】本题考查作图﹣旋转变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(2020秋•斗门区期末)如图1,在△ABC中,BA=BC,D、E是AC边上的两点,且满足∠DBE=∠ABC.以点B为旋转中心,将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.【考点】全等三角形的判定与性质;等腰三角形的性质;勾股定理;旋转的性质.【专题】图形的全等;等腰三角形与直角三角形;平移、旋转与对称;推理能力.【分析】(1)先根据∠DBE=∠ABC可知∠ABD+∠CBE=∠DBE=∠ABC,再由图形旋转的性质可知BE=BF,∠ABF=∠CBE,故可得出∠DBF=∠DBE,由全等三角形的性质即可得出△DBE≌△DBF,故可得出结论;(2)把△CBE逆时针旋转90°,由于△ABC是等腰直角三角形,故可知图形旋转后点C与点A重合,∠F AB=∠BCE=45°,所以∠DAF=90°,由(1)证DE=DF,再根据勾股定理即可得出结论.【解答】(1)证明:∵∠DBE=∠ABC,∴∠ABD+∠CBE=∠DBE=∠ABC,∵△ABF由△CBE旋转而成,∴BE=BF,∠ABF=∠CBE,∴∠DBF=∠DBE,在△DBE与△DBF中,,∴△DBE≌△DBF(SAS),∴DF=DE;(2)证明:∵将△CBE按逆时针方向旋转得到△ABF,∴BA=BC,∠ABC=90°,∴∠BAC=∠BCE=45°,∴图形旋转后点C与点A重合,CE与AF重合,∴AF=EC,∴∠F AB=∠BCE=45°,∴∠DAF=90°,在Rt△ADF中,DF2=AF2+AD2,∵AF=EC,∴DF2=EC2+AD2,同(1)可得DE=DF,∴DE2=AD2+EC2.【点评】本题考查的是图形的旋转及勾股定理,熟知旋转前、后的图形全等是解答此题的关键.15.(2020秋•铁西区期末)在平面直角坐标系中,已知点A(2,0),点B在y轴正半轴上,且∠BAO=60°,点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B 旋转后的对应点为A',B',记旋转角为α.(1)如图1,A'B'恰好经过点A时,①求此时旋转角α的度数;②求出此时点B'的坐标;(2)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,猜测AA'与BB'的位置关系,并说明理由.【考点】含30度角的直角三角形;坐标与图形变化﹣旋转.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】(1)①根据旋转的性质得到OA=OA',∠A'=∠BAO=60°,推出△OAA'是等边三角形,于是得到α=∠AOA'=60°;②如图1,过B'作B'C⊥x轴于C,根据三角形的内角和定理得到∠OBA=30,根据勾股定理得到,求得,得到,于是得到答案;(2)如图2,等腰三角形的性质得到,推出∠BP A'=360°﹣(180°﹣α)﹣(90°+α)=90°,由垂直的定义得到结论.【解答】解:(1)①由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°;②如图1,过B'作B'C⊥x轴于C,∵∠BAO=60°,∴∠OBA=30°,在Rt△OAB中,∠OBA=30°,∴AB=2OA=4,∴,∴,又∵∠AOA'=60°,∴∠B'OC=90°﹣∠AOA'=30°,∵∠B'CO=90°,∴,∴,∴;(2)AA'⊥BB',理由:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴,∵∠BOA'=90°﹣α,四边形OBP A'的内角和为360°,∴∠BP A'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB'.【点评】主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和定理,解决问题的关键是熟练掌握旋转的性质.考点卡片1.规律型:点的坐标规律型:点的坐标.2.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.3.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.4.含30度角的直角三角形(1)含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.5.直角三角形斜边上的中线(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可以用来判定直角三角形.6.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.7.多边形内角与外角(1)多边形内角和定理:(n﹣2)•180°(n≥3且n为整数)此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.(2)多边形的外角和等于360°.①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2)•180°=360°.8.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.9.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.10.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.11.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.13.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.14.关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.15.坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.16.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等。
2020-2021学年江苏省扬州市仪征市九年级(上)期中物理试卷(Word+答案)
2020-2021学年江苏省扬州市仪征市九年级(上)期中物理试卷一、选择题(本题共12小题,每小题2分,共24分每小题只有一个选项正确)1.(2分)如图所示的机械是人们在日常生活里常见的,其中能省距离的是()A.扳手B.筷子C.核桃夹D.钳子2.(2分)一小孩从公园中的滑梯上匀速滑下,对于动能和势能的变化情况,下列说法中正确的是()A.重力势能减小,动能不变B.重力势能减小,动能增加C.重力势能不变,动能不变D.重力势能增大,动能减小3.(2分)关于温度、热量、内能,以下说法正确的是()A.0℃的冰变成0℃的水,温度不变,内能不变B.物体的温度越高,所含的热量越多C.温度相同的两个物体间不能发生热传递D.反复弯折铁丝,铁丝温度升高,这是通过热传递的方式增加了铁丝的内能4.(2分)陈宇同学发现教室里一共有12盏日光灯,分别由三只开关控制,即一只开关同时控制四盏日光灯,这四盏日光灯的连接方式是()A.串联B.并联C.可能串联D.一定串联5.(2分)教学大楼每层楼高为3m,小明提着一重为50N的箱子,沿楼梯从一楼登上三楼,再沿三楼水平走廊走了4m进入教室,则小明从一楼到教室过程中对箱子做的功为()A.300J B.450J C.500J D.650J6.(2分)小李的质量为60kg,可以举起90kg的杠铃,小胖的质量为80kg,可以举起70kg的杠铃。
他们两人通过如图所示的装置来比赛,双方都竭尽全力,看谁能把对方拉起来,比赛结果应是()A.小李把小胖拉起B.小胖把小李拉起C.两个都拉不起D.两个都拉起7.(2分)如图所示,某同学用重为10N的动滑轮匀速提升重为70N的物体,不计绳重和摩擦,则该同学所用拉力F的可能值是()A.30N B.35N C.40N D.45N8.(2分)如图所示,甲乙两个质量相同的小球,从相同高度同时开始运动,甲球由静止释放,乙球以一水平初速度抛出。
甲球下落过程中经过P、Q两点,忽略空气阻力,则下列说法错误的是()A.释放瞬间,两球的重力势能相等B.着地瞬间,两球的动能相等C.两球下落过程中的受力情况相同D.甲球先后经过在P、Q两点的机械能相等9.(2分)一根直杆可以绕O点转动,在直杆的中点挂一个重为G的重物,在杆的另一端施加一个力F,如图所示,在力F从水平方向缓慢转动到沿竖直向上的方向过程中,为使直杆保持在图示位置平衡,则拉力F的变化情况是()A.一直变大B.一直变小C.先变大,后变小D.先变小,后变大10.(2分)如图所示甲、乙两套装置所用滑轮质量均相等,用它们分别将所挂重物在相等时间内竖直向上匀速提升相同高度。
江苏省南京市联合体2020-2021学年九年级上学期期末数学试卷 解析版
2020-2021学年江苏省南京市联合体九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.方程x2﹣x=0的根为()A.x1=x2=0B.x1=1,x2=0C.x1=x2=﹣1D.x1=﹣1,x2=0 2.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝三种颜色.固定指针,自由转动转盘,停止后指针所指区域(指针指向区域分界线时,忽略不计)的颜色为黄色的概率是()A.B.C.D.3.若△ABC∽△DEF,相似比为1:2,AB=4,则DE的长为()A.2B.4C.6D.84.二次函数y=(x﹣2)2+1的图象的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)5.如图,在△ABC中,∠ACB=90°,AC=4.点O在BC上,OC=2.以点O为圆心,OC长为半径的圆恰与AB相切于点D,交BC于点E.则BE的长为()A.B.C.1D.6.若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象不经过第二象限,下列结论:①a<0;②b<0;③c≤0;④b2﹣4ac>0.其中,所有正确结论的序号是()A.①②B.②④C.①③D.③④二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答.题.卡.相.应.的.位.置.上.)y7.若2x=3y,则=.8.设x1、x2是方程x2﹣3x+1=0的两个根,则x1x2=.9.甲、乙两人5次射击命中的环数如下:甲798610乙78988则这两人射击成绩波动较大的是.(填“甲”或“乙”)10.一个圆锥的底面半径为1,母线长为2,则这个圆锥的侧面积为.11.点C是线段AB的黄金分割点(AC>BC),若AB=2cm,则AC=cm.12.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x,则可列方程.13.如图,某学生身高AB=1.6m,在灯光下,他从灯杆底部点D处,沿直线前进到达点B 处,在B处他的影长为PB,经测量此时恰有BD=2PB,则灯杆CD高度为m.14.二次函数y=mx2+2mx+c(m、c是常数,且m≠0)的图象过点A(3,0),则方程mx2+2mx+c =0的根为.15.如图,在△ABC中,AB=9,AC=6,BC=12,点M在边AB上,AM=3,过点M作直线MN与边AC交于点N,使截得的三角形与原三角形ABC相似,则MN的长为.16.如图,⊙O的半径长为4,弦AB的长为,点C在⊙O上,若∠BAC=135°,则AC 的长为.三、解答题(本大题共11小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x2+2x﹣3=0;(2)3x(x﹣1)=2(1﹣x).18.(7分)如图,四边形ABCD是⊙O的内接四边形,AB∥CD,AD的延长线与BC的延长线交于点E.求证:△ABE是等腰三角形.19.(8分)如图,正方形ABCD的边长为4,点E在边AD上,AE=3,连接BE交AC于点F,过点F作FG∥BC,交CD于点G.(1)求FG的长;(2)求DG的长.20.(7分)某公司15名营销人员某月销售某种商品的数量如下(单位:件):月销售数量600500400350300250人数131352(1)请补全下列表格:月销售量的平均数(件)月销售量的中位数(件)月销售量的众数(件)370(2)根据上表,你认为用平均数、中位数、众数中的哪一个描述该公司全体营销人员月销售量的“集中趋势”较为合适?说明理由.21.(8分)甲、乙两人分别从《流浪地球》、《熊出没原始时代》、《战狼2》三部电影中任意选择一部观看.(1)甲选择电影《流浪地球》观看的概率为;(2)求甲、乙两人选择不同的电影观看的概率.22.(8分)已知二次函数的函数值y与自变量x的部分对应值如下表:x…﹣2﹣10123…y…100﹣6﹣8﹣60…(1)求该二次函数的表达式;(2)当﹣1<x<4时,y的取值范围是.23.(8分)如图,△ABC∽△A′B′C′,AD、A′D′分别是它们的中线,求证:AD:A′D′=AB:A′B′.24.(8分)经过市场调查发现,某商品的售价为每件70元时,每周可卖出300件.为扩大销售、增加盈利,采取降价措施,每降价2元,每周可多卖出30件.若商品的进价为每件40元,售价为多少时每周利润最大?最大利润是多少?25.(8分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,过点C作CE∥BD交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若CD=CE=6,DE=4,求⊙O的半径.26.(9分)已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象经过点A(﹣3,0)、B(0,3)、C(﹣2,m)三点.(1)若点A为该函数图象的顶点,求m的值;(2)若该函数图象关于直线x=n对称,当﹣3<n<﹣2时,m的取值范围为;(3)该函数图象所经过的象限随着m值的变化而变化,写出函数图象所经过的象限及对应的m的取值范围.27.(9分)如图①,将正方形ABCD的边AB绕点A逆时针旋转至AB',记旋转角为α,连接BB',过点D作DE⊥BB',交BB'的延长线于点E,连接DB',CE.(1)当0°<α<90°时,求∠BB'D的度数;(2)当0°<α<180°且α≠90°时,利用图②证明:BB'=CE;(3)当0°<α<360°时,若正方形ABCD的边长为a,则△CED面积的最大值为.(用含有a的代数式表示)2020-2021学年江苏省南京市联合体九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分。
江苏省扬州市仪征市新集初级中学2020-2021学年九年级上学期12月月考数学试题
江苏省扬州市仪征市新集初级中学2020-2021学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列点中,一定在二次函数y=x2﹣1图象上的是()A.(0,0)B.(1,1)C.(1,0)D.(0,1)2.样本数据3、6、a、4、2的平均数是5,则这个样本的方差是()A.8B.5C.D.33.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的大小等于( )A.25°B.20°C.40°D.50°5.如图,在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于( )A.5∶8B.3∶8C.3∶5D.2∶56.如图是二次函数y=ax2+bx+c(a≠0)的图象与x轴的相交情况,关于下列结论:①方程ax2+bx=0的两个根为x1=0,x2=﹣4;②b﹣4a=0;③9a+3b+c<0;其中正确的结论有()A .0个B .1个C .2个D .3个7.已知二次函数y =ax 2+bx +c 中,自变量x 与函数y 之间的部分对应值如下表:在该函数的图象上有A (x 1,y 1)和B (x 2,y 2)两点,且-1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是( )A .y 1≥y 2B .y 1>y 2C .y 1≤y 2D .y 1<y 28.小华从二次函数y =ax 2+bx +c 的图象(如图)中观察得到了下面五条信息:①abc >0 ②2a ﹣3b =0 ③b 2﹣4ac >0 ④a +b +c >0 ⑤4b <c则其中结论正确的个数是( )A .2个B .3个C .4个D .5个二、填空题9.已知43x y =,则x y y-=____; 10.抛物线y =ax 2+2ax ﹣1(a ≠0)的对称轴为直线_____.11.某果园2021年水果产量为100吨,2021年水果产量为144吨,则该果园水果产量的年平均增长率为_______________.12.将二次函数22y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是________.13.两相似三角形的相似比为1:3,则它们的面积比是_____.14.已知圆锥的底面半径为4cm ,母线长为5cm ,则圆锥的侧面积是___________ 15.小明数学学科课堂表现及平时作业为90分、期中考试为88分、期末考试为96分,若这三项成绩分别按30%、30%、40%的比例计入总评成绩,则小明数学学科总评成绩是_____分.16.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.17.如图,正方形OABC 的顶点B 在抛物线y =x 2的第一象限部分,若B 点的横坐标与纵坐标之和等于6,则正方形OABC 的面积为_____.18.已知二次函数 2(23)y x m x m =---,当-1<m <2时,该函数图像顶点纵坐标y 的取值范围是 .三、解答题19.解方程:(1)221x x += (2)2(3)2(3)0x x -+-=20.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.21.如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F .(1)ΔABE 与ΔDF A 相似吗?请说明理由;(2)若AB =3,AD =6,BE =4,求DF 的长.22.某校为了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示).(1)请分别计算这50名学生在这一天课外阅读所用时间的众数、中位数和平均数; (2)请你根据以上调查,估计全校学生中在这一天课外阅读所用时间在1.0小时以上(含1.0小时)的有多少人?23.如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线;(2)若⊙O的半径是4,24.观察表格:根据表格解答下列问题:(l) a=______,b=_____,c=_____;(2) 在下图的直角坐标系中画出函数y=ax2+bx+c的图象,并根据图象,直接写出当x取什么实数时,不等式ax2+bx+c > -3成立;(3)该图象与x轴两交点从左到右依次分别为A、B,与y轴交点为C,求过这三个点的外接圆的半径.25.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少? 26.如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且AB=26m ,OE ⊥CD 于点E .水位正常时测得OE ∶CD=5∶24(1)求CD 的长;(2)现汛期来临,水面要以每小时4 m 的速度上升,则经过多长时间桥洞会刚刚被灌满?27.定义:对于给定的两个函数,任取自变量x 的一个值,当x<0时,它们对应的函数值互为相反数;当x ⩾0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数。
上册 期末复习强化训练卷1(一元二次方程)-2020-2021学年苏科版九年级数学上学期(机构)
期末复习强化训练卷1(一元二次方程)-苏科版九年级数学一、选择题1、方程||(2)4310m m x x m ++++=是关于的一元二次方程,则( )A .2m =±B .2m =C .2m =-D .2m ≠±2、下列关于x 的方程:①ax 2+bx +c =0;②2x +21x-3=0;③x 2﹣4+x 5=0;④3x =x 2.其中是一元二次方程的有( )A .1个B .2个C .3个D .4个3、已知m 是方程2210x x --=的一个根,则代数式2242019m m -+的值为( )A .2022B .2021C .2020D .20194、如果0是关于x 的一元二次方程(a +3)x 2﹣x +a 2﹣9=0的一个根,那么a 的值是( ) A .3 B .﹣3 C .±3 D .±25、方程2(5)6(5)x x x -=-的根是( )A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =6、关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定7、等腰三角形的一边长是3,另两边的长是关于x 的方程x 2﹣4x +k =0的两个根,则k 的值为( )A .3B .4C .3或4D .78、若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( )A .10B .9C .7D .59、直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( )A .0个B .1个C .2个D .1个或2个10、某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( )A .(40)(60010)10000x x +-=B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=11、近年来天府新区加大了对教育经费的投入,2017年投入3000万元,2019年投入4320万元.假设投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3000x 2=4320B .3000(1+x ) 2=4320C .3000(1+x %)2=4320D .3000(1+x )+3000(1+x ) 2=432012、方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,则方程a (x +m +2)2+b =0的解是( ) A .x 1=﹣2,x 2=1 B .x 1=﹣4,x 2=﹣1C .x 1=0,x 2=3D .x 1=x 2=﹣2二、填空题13、若关于x 的方程(1-a )12+a x -7=0是一元二次方程,则a = .14、关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项是0,则m 的值( )A .1B .1或2C .2D .±115、已知关于x 的方程x 2+6x +k =0有一根为2,则k 的值为 .16、已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 .17、若关于x 的一元二次方程(k ﹣1)x 2﹣x ﹣1=0有两个不相等实数根,则k 的取值范围是 . 18、已知周长为40的矩形的长和宽分别是关于x 的一元二次方程x 2﹣mx +9=0的两个实数根,则m 的值为 .19、已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= 1 .20、已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = .21、已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若2111x x +=﹣1, 则k 的值为_____.22、一个三角形的两边长分别为2和3,第三边长是方程210210x x -+=的根,则三角形的周长为 . 23、在实数范围内定义一种运算“*”,其规则为a *b =a 2﹣b 2,根据这个规则,方程(x +2)*5=0的解为_____. 24、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面 积为80平方米,则小路的宽度为 米.三、解答题25、用指定的方法解下列方程:(1)24(1)360x --=(直接开平方法) (2)22510x x -+= (配方法)(3)(1)(2)4x x +-=(公式法) (4)2(1)(1)0x x x +-+=(因式分解法)(5)2x 2﹣5x ﹣4=0(配方法); (6)3(x ﹣2)+x 2﹣2x =0(因式分解法)26、关于x 的一元二次方程为22(2)0x x m m --+=(1)求证:无论m 为何实数,方程总有实数根;(2)m 为何整数时,此方程的两个根都为正数.27、已知m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,求:(1)(m ﹣1)(n ﹣1);(2)m 2+3n ﹣5的值.28、已知关于x 的一元二次方程x 2﹣4x ﹣2k +8=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若x 13x 2+x 1x 23=24,求k 的值.29、2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?30、某医疗设备工厂生产的呼吸机一月份产量为80台,一月底因突然爆发新冠肺炎疫情,市场对呼吸机需求量大增,为满足市场需求,工厂决定从二月份起持续扩大产能,一、二、三月总产量为560台.(1)求呼吸机产量的月平均增长率;(2)按照这个月平均增长率,求五月份产量为多少台?31、有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.32、某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.33、某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?34、如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P,Q之间的距离为cm?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P,Q同时出发,几秒后,△PBQ的面积为1cm2?期末复习强化训练卷1(一元二次方程)-苏科版九年级数学(答案)一、选择题1、方程||(2)4310m m x x m ++++=是关于x 的一元二次方程,则( ) A .2m =±B .2m =C .2m =-D .2m ≠± 【答案】解:由题意得:|m |=2且m +2≠0,由解得得m =±2且m ≠﹣2,∴m =2.故选:B .2、下列关于x 的方程:①ax 2+bx +c =0;②2x +21x -3=0;③x 2﹣4+x 5=0;④3x =x 2.其中是一元二次方程的有( A )A .1个B .2个C .3个D .4个3、已知m 是方程2210x x --=的一个根,则代数式2242019m m -+的值为( )A .2022B .2021C .2020D .2019【答案】解:∵m 是方程x 2﹣2x ﹣1=0的一个根,∴m 2﹣2m ﹣1=0,∴m 2﹣2m =1,∴2m 2﹣4m +2019=2(m 2﹣2m )+2019=2×1+2019=2021. 故选:B .4、如果0是关于x 的一元二次方程(a +3)x 2﹣x +a 2﹣9=0的一个根,那么a 的值是( ) A .3 B .﹣3 C .±3 D .±2解:把x =0代入一元二次方程(a +3)x 2﹣x +a 2﹣9=0得a 2﹣9=0,解得a 1=﹣3,a 2=3,而a +3≠0,所以a 的值为3.故选:A .5、方程2(5)6(5)x x x -=-的根是( )A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =解:2(5)6(5)0x x x ---=,(5)(26)0x x ∴--=,则50x -=或260x -=,解得5x =或3x =,故选:D .6、关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】解:△=(k ﹣3)2﹣4(1﹣k )=k 2﹣6k +9﹣4+4k =k 2﹣2k +5=(k ﹣1)2+4,∴(k ﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A .7、等腰三角形的一边长是3,另两边的长是关于x 的方程x 2﹣4x +k =0的两个根,则k 的值为()A .3B .4C .3或4D .7【答案】解:当3为腰长时,将x =3代入x 2﹣4x +k =0,得:32﹣4×3+k =0,解得:k =3,当k =3时,原方程为x 2﹣4x +3=0,解得:x 1=1,x 2=3,∵1+3=4,4>3,∴k =3符合题意;当3为底边长时,关于x 的方程x 2﹣4x +k =0有两个相等的实数根,∴△=(﹣4)2﹣4×1×k =0,解得:k =4,当k =4时,原方程为x 2﹣4x +4=0,解得:x 1=x 2=2,∵2+2=4,4>3,∴k =4符合题意.∴k 的值为3或4.故选:C .8、若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( )A .10B .9C .7D .5【答案】解:根据题意得α+β=2,αβ=﹣3,所以α2+β2+αβ=(α+β)2﹣αβ=22﹣(﹣3)=7.故选:C .9、直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( )A .0个B .1个C .2个D .1个或2个 解:直线y x a =+不经过第二象限,∴a ≤0,当0a =时,关于x 的方程2210ax x ++=是一次方程,解为12x =-, 当0a <时,关于x 的方程2210ax x ++=是二次方程,△2240a =->,∴方程有两个不相等的实数根.故选:D .10、某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( )A .(40)(60010)10000x x +-=B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=解:售价上涨x 元后,该商场平均每月可售出(60010)x -个台灯,依题意,得:(40)(60010)10000x x +-=,故选:A .11、近年来天府新区加大了对教育经费的投入,2017年投入3000万元,2019年投入4320万元.假设投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是(B )A .3000x 2=4320B .3000(1+x ) 2=4320C .3000(1+x %)2=4320D .3000(1+x )+3000(1+x ) 2=432012、方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,则方程a (x +m +2)2+b =0的解是( )A .x 1=﹣2,x 2=1B .x 1=﹣4,x 2=﹣1C .x 1=0,x 2=3D .x 1=x 2=﹣2解:∵方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,∴方程a (x +m +2)2+b =0的两个解是x 3=﹣2﹣2=﹣4,x 4=1﹣2=﹣1,故选:B .二、填空题13、若关于x 的方程(1-a )12+a x -7=0是一元二次方程,则a = .【答案】解:∵关于x 的方程(a ﹣1)xa 2+1﹣7=0是一元二次方程,∴a 2+1=2,且a ﹣1≠0,解得,a =﹣1.故答案为:﹣1.14、关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项是0,则m 的值( )A .1B .1或2C .2D .±1【答案】解:由题意,得m 2﹣3m +2=0且m ﹣1≠0,解得m =2,故选:C .15、已知关于x 的方程x 2+6x +k =0有一根为2,则k 的值为 .解:根据题意知,x =2满足关于x 的方程x 2+6x +k =0,则22+6×2+k =0,解得k =﹣16. 故答案是:﹣16.16、已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 .解:设2x 2+3=t ,且t ≥3,∴原方程化为:t 2+2t ﹣15=0,∴t =3或t =﹣5(舍去),∴2x 2+3=3,故答案为:317、若关于x 的一元二次方程(k ﹣1)x 2﹣x ﹣1=0有两个不相等实数根,则k 的取值范围是 . 解:根据题意得:△=b 2﹣4ac =1+4(k ﹣1)=4k ﹣3>0,且k ﹣1≠0,解得:k >且k ≠1.故答案为:k >且k ≠1.18、已知周长为40的矩形的长和宽分别是关于x 的一元二次方程x 2﹣mx +9=0的两个实数根,则m 的值为 .解:周长为40的矩形的长和宽的和为40÷2=20,∵矩形的长和宽是一元二次方程x 2﹣mx +9=0的两个实数根,∴m =20.故答案为:20.19、已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= 1 . 解:m 是方程210x x +-=的根,210m m ∴+-=,即21m m +=,221m m n mn m n mn ∴++-=+-+,m 、n 是方程210x x +-=的根,21m m ∴+=,1m n +=-,1mn =-,222()1111m m n mn m m m n mn ∴++-=+++-=-+=. 故答案为:1.20、已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = .解:根据题意得△2(5)420c =--⨯⨯=,解得258c =.故答案为:258.21、已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若2111x x +=﹣1, 则k 的值为__3___.22、一个三角形的两边长分别为2和3,第三边长是方程210210x x -+=的根,则三角形的周长为 .解:210210x x -+=,(3)(7)0x x --=,30x -=或70x -=,所以13x =,27x =,2357+=<,∴三角形第三边长为3,∴三角形的周长为2338++=.故答案为8.23、在实数范围内定义一种运算“*”,其规则为a *b =a 2﹣b 2,根据这个规则,方程(x +2)*5=0的解为_3或-7____.24、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面 积为80平方米,则小路的宽度为 米.解:设小路的宽度为x 米,则小正方形的边长为4x 米,依题意得:(304244)80x x x +++=整理得:2427400x x +-=解得18x =-(舍去),254x =. 故答案为:54.三、解答题25、用指定的方法解下列方程:(1)24(1)360x --=(直接开平方法) (2)22510x x -+= (配方法)(3)(1)(2)4x x +-=(公式法) (4)2(1)(1)0x x x +-+=(因式分解法)(5)2x 2﹣5x ﹣4=0(配方法); (6)3(x ﹣2)+x 2﹣2x =0(因式分解法)【答案】解:(1)方程变形得:(x ﹣1)2=9,开方得:x ﹣1=3或x ﹣1=﹣3,解得:x 1=4,x 2=﹣2;(2)方程变形得:x 2﹣x =﹣,配方得:x 2﹣x +=(x ﹣)2=, 开方得:x ﹣=±, 则x 1=,x 2=; (3)方程整理得:x 2﹣x ﹣6=0,这里a =1,b =﹣1,c =﹣6,∵△=1+24=25,∴x =, 则x 1=3,x 2=﹣2;(4)分解因式得:(x +1)(2﹣x )=0,解得:x 1=﹣1,x 2=2.(5)2x 2﹣5x ﹣4=0,变形得:x 2x =2, 配方得:x 2x ,即(x )2,开方得:x ±,则x 1,x 2;(6)3(x ﹣2)+x 2﹣2x =0,变形得:3(x ﹣2)+x (x ﹣2)=0,即(x ﹣2)(x +3)=0,可得x ﹣2=0或x +3=0,解得:x 1=2,x 2=﹣3.26、关于x 的一元二次方程为22(2)0x x m m --+=(1)求证:无论m 为何实数,方程总有实数根;(2)m 为何整数时,此方程的两个根都为正数.【答案】(1)证明:△=(﹣2)2﹣4×[﹣m (m +2)]=4m 2+8m +4=4(m +1)2,∵4(m +1)2≥0,∴△≥0,∴无论m 为何实数,方程总有实数根;(2)解:x ==1±(m +1),所以x 1=m +2,x 2=﹣m ,根据题意得m +2>0且﹣m >0,所以﹣2<m <0,所以整数m 为﹣1.27、已知m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,求:(1)(m ﹣1)(n ﹣1);(2)m 2+3n ﹣5的值.解:∵m ,n 是方程x 2﹣3x ﹣10=0,∴根据一元二次方程根与系数的关系得:m +n =3,mn =﹣10.(1)(m ﹣1)x (n ﹣1)=mn ﹣(m +n )+1=﹣10﹣3+1=﹣12;(2)由m ,n 是一元二次方程x 2﹣3x ﹣10=0两个实数根,得m 2﹣3m ﹣5=0,则m 2﹣3m =5.故m 2+3n ﹣5=m 2﹣3m +3(m +n )﹣5=5+3×3﹣5=9;28、已知关于x 的一元二次方程x 2﹣4x ﹣2k +8=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若x 13x 2+x 1x 23=24,求k 的值.【答案】解:(1)由题意可知,△=(﹣4)2﹣4×1×(﹣2k +8)≥0,整理得:16+8k﹣32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)由题意得:=24,由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,整理得:k2﹣4k+3=0,解得:k1=3,k2=1,又由(1)中可知k≥2,∴k的值为k=3.故答案为:k=3.29、2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?【答案】解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.30、某医疗设备工厂生产的呼吸机一月份产量为80台,一月底因突然爆发新冠肺炎疫情,市场对呼吸机需求量大增,为满足市场需求,工厂决定从二月份起持续扩大产能,一、二、三月总产量为560台.(1)求呼吸机产量的月平均增长率;(2)按照这个月平均增长率,求五月份产量为多少台?解:(1)设呼吸机产量的月平均增长率为x,根据题意,得80+80(1+x)+80(1+x)2=560,解得x1=﹣4(舍去),x2=1=100%,答:呼吸机产量的月平均增长率为100%.(2)80×(1+1)4=1120(台).答:五月份产量为为1120台.31、有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.【答案】解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.32、某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.解:设每箱饮料降价x元,商场日销售量(10020)x+箱,每箱饮料盈利(12)x-元;(1)依题意得:(123)(100203)1440-+⨯=(元)答:每箱降价3元,每天销售该饮料可获利1440元;(2)要使每天销售饮料获利1400元,依据题意列方程得,(12)(10020)1400x x-+=,整理得27100x x-+=,解得12x=,25x=;为了多销售,增加利润,5x∴=,答:每箱应降价5元,可使每天销售饮料获利1400元.(3)不能,理由如下:要使每天销售饮料获利1500元,依据题意列方程得,(12)(10020)1500x x-+=,整理得27150x x-+=,因为△4960110=-=-<,所以该方程无实数根,即不能使每天销售该饮料获利达到1500元.33、某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?【答案】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.34、如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,点P,Q之间的距离为cm?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s 的速度移动,P,Q同时出发,几秒后,△PBQ的面积为1cm2?【答案】解:(1)设经过x 秒,点P ,Q 之间的距离为cm ,则AP =x (cm ),QB =2x (cm ),∵AB =6cm ,BC =8cm ∴PB =(6﹣x )(cm ),∵在△ABC 中,∠B =90°,∴由勾股定理得:(6﹣x )2+(2x )2=6化简得:5x 2﹣12x +30=0∵△=(﹣12)2﹣4×5×30=144﹣600<0∴点P ,Q 之间的距离不可能为cm .(2)设经过x 秒,使△PBQ 的面积等于8cm 2,由题意得:21(6﹣x )•2x =8 解得:x 1=2,x 2=4, 检验发现x 1,x 2均符合题意∴经过2秒或4秒,△PBQ 的面积等于8cm 2.(3)①点P 在线段AB 上,点Q 在线段CB 上设经过m 秒,0<m ≤4,依题意有21(6﹣m )(8﹣2m )=1,∴m 2﹣10m +23=0 解得;m 1=5(舍),m 2=5, ∴m =5符合题意; ②点P 在线段AB 上,点Q 在射线CB 上设经过n 秒,4<n ≤6,依题意有21(6﹣n )(2n ﹣8)=1,∴n 2﹣10n +25=0 解得n 1=n 2=5, ∴n =5符合题意;③点P 在射线AB 上,点Q 在射线CB 上设经过k 秒,k >6,依题意有21(k ﹣6)(2k ﹣8)=1 解得k 1=5,k 2=5(舍), ∴k =5符合题意; ∴经过(5)秒,5秒,(5)秒后,△PBQ 的面积为1cm 2.。
2019-2020学年江苏省扬州市仪征市新集中学九年级(上)月考数学试卷(10月份)
2019-2020学年江苏省扬州市仪征市新集中学九年级(上)月考数学试卷(10月份)一、选择题(每小题3分,共24分)1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0D.x2+2x+c=x2﹣12.若=,则的值为()A.1B.C.D.3.使分式的值等于零的x是()A.6B.﹣1或6C.﹣1D.﹣64.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4B.7C.3D.125.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠06.已知线段a、b、c,其中c是a、b的比例中项,若a=9,b=4,则c长()A.18B.5C.6D.±67.两个相似三角形的最长边分别是35和14,它们的周长差是60,则大三角形的周长为()A.80B.36C.40D.1008.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A 点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.5二、填空题(每小题3分,共30分)9.如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是千米.10.若(x2+y2)2﹣4(x2+y2)﹣5=0,则x2+y2=.11.已知点C为线段AB的黄金分割点(AC>BC),且AB=4,则AC≈(精确到0.1).12.若4a﹣2b+c=0且a≠0,则一元二次方程ax2+bx+c=0必有一个根是.13.如图,正△ABC中,P为BC上一点,D为AC上一点,∠APD=60°,BP=1,CD=,则△ABC的边长为.14.如图,梯形ABCD对角线AC、BD交于点O,若S△AOD:S△ACD=1:4,则S△AOD:S△BOC=.15.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为.16.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为.17.同一时刻,高为1.5m标杆影长为2.5m,一古塔在地面的影长为50m,那么古塔的高为m.18.如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=.三、解答题(共计96分)19.用适当的方法解方程:(1)x2+4x+3=0(2)7(x﹣5)=(x﹣5)220.如图,在平面直角坐标系中,△ABC的顶点都在小方格的格点上.(1)点A的坐标是;点C的坐标是;(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A1B1C1与△ABC对应边的比为1:2,请在网格中画出△A1B1C1;(3)△A1B1C1的面积为.21.某钢厂1月份钢产量4万吨,2,3月份产量持续增长,第一季度共生产13.24万吨,求2,3月份平均每月的增长率.22.已知关于x的一元二次方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程总有两个不相等的实数根.(2)若此方程的一个根是1,求出方程的另一个根及m的值.23.如图,要建一个面积为140平方米的仓库,仓库的一边靠墙,这堵墙的长为18米,在与墙垂直的一边要开一扇2米宽的门,已知围建仓库的现有木板材料可使新建板墙的总长为32米,那么这个仓库的宽和长分别为多少米?24.如图,在△ABC中,EF∥CD,DE∥BC.求证:AF:FD=AD:DB.25.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)每件童装降价多少元时,能让利于顾客并且商家平均每天能赢利1200元.(2)要想平均每天赢利2000元,可能吗?请说明理由.26.如图,一路灯距地面6.4米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,求:(1)小方在A处时的影子AB的长;(2)小方行走的路程AC.27.阅读下面的例题:解方程x2﹣|x|﹣2=0解:当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去);当x<0时,原方程化为x2+x﹣2=0,解得:x1=1,(不合题意,舍去)x2=﹣2;∴原方程的根是x1=2,x2=﹣2.请参照例题解方程x2﹣|x﹣1|﹣1=0.28.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t为何值时,△EPQ为等腰三角形?(直接写出答案即可).2019-2020学年江苏省扬州市仪征市新集中学九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题((每小题3分,共24分)1.【解答】解:A、是一元二次方程,故A正确;B、是分式方程,故B错误;C、a=0时是元一次方程,故C错误;D、是一元一次方程,故D错误;故选:A.2.【解答】解:∵=,∴==.故选:D.3.【解答】解:∵=0∴x2﹣5x﹣6=0即(x﹣6)(x+1)=0∴x=6或﹣1又x+1≠0∴x=6故选:A.4.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴,∵EF=3,∴,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选:B.5.【解答】解:∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0,解得:k>﹣1且k≠0.故选:D.6.【解答】解:根据比例中项的概念,得c2=ab=36,c=±6,又线段不能是负数,﹣6应舍去,取c=6,故选:C.7.【解答】解:∵两个相似三角形的最长边分别是35和14,∴两个相似三角形的相似比是5:2,∴两个相似三角形的周长比是5:2,设较大的三角形的周长是5x,则较小的三角形的周长是2x,由题意得,5x﹣2x=60,解得,x=20,则5x=100,故选:D.8.【解答】解:∵Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=2BC=4(cm),∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm),若∠BED=90°,当A→B时,∵∠ABC=60°,∴∠BDE=30°,∴BE=BD=(cm),∴t=3.5,当B→A时,t=4+0.5=4.5.若∠BDE=90°时,当A→B时,∵∠ABC=60°,∴∠BED=30°,∴BE=2BD=2(cm),∴t=4﹣2=2,当B→A时,t=4+2=6(舍去).综上可得:t的值为2或3.5或4.5.故选:D.二、填空题((每小题3分,共30分)9.【解答】解:根据题意,3.4÷=3400000厘米=34千米.即实际距离是34千米.故答案为:34.10.【解答】解:设x2+y2=t,则原式变形为:t2﹣4t﹣5=0,∴(t﹣2)2﹣9=0,∴(t﹣2)2=9,∴t=5或﹣1.∵x2+y2≥0,∴x2+y2=5.11.【解答】解:∵点C为线段AB的黄金分割点(AC>BC),∴AC=AB=×4=2(﹣1)≈2.5.故答案为2.5.12.【解答】解:由题意,一元二次方程ax2+bx+c=0满足4a﹣2b+c=0且a≠0,∴当x=﹣2时,代入方程ax2+bx+c=0,有4a﹣2b+c=0;综上可知,方程必有一根为﹣2.故答案为:﹣2.13.【解答】解:设△ABC的边长为x,∵△ABC是等边三角形,∴∠DCP=∠PBA=60°.∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,∴∠BAP=∠CPD.∴△ABP∽△CPD.∴,∴=.∴x=3.即△ABC的边长为3.故答案为:3.14.【解答】解:∵AD∥BC,∴△AOD∽△BOC,∵S△AOD:S△ACD=1:4,AD是两三角形的底边,∴AD边上的高的比是1:4,即△AOD与梯形的高的比是1:4,∴△AOD与△BOC对应高的比为1:(4﹣1)=1:3,∴S△AOD:S△BOC=1:9.15.【解答】解:设BC的中线是AD,BC的高是AE,由重心性质可知:AD:GD=3:1,∵GH⊥BC,∴△ADE∽△GDH,∴AD:GD=AE:GH=3:1,∴AE=3GH=3×3=9,故答案为9.16.【解答】解:设该果园水果产量的年平均增长率为x,则2012年的产量为100(1+x)吨,2013年的产量为100(1+x)(1+x)=100(1+x)2吨,根据题意,得100(1+x)2=144,故答案为100(1+x)2=144.17.【解答】解:设古塔的高度为xm,∵=,即,解得,x=30米.即古塔的高度为30米.18.【解答】解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.三、解答题(共计96分)19.【解答】解:(1)∵x2+4x+3=0,∴(x+1)(x+3)=0,∴x=﹣1或x=﹣3;(2)∵7(x﹣5)=(x﹣5)2∴(x﹣5)2﹣7(x﹣5)=0,∴(x﹣5)(x﹣5﹣7)=0,∴x=5或x=12;20.【解答】解:(1)点A的坐标是:(2,8);点C的坐标是:(6,6).故答案为:(2,8),(6,6);(2)如图所示:△A1B1C1,即为所求;(3)△A1B1C1的面积为:×3×1=.故答案为:.21.【解答】解:设2、3月份平均每月的增长率是x.4+4×(1+x)+4×(1+x)2=13.24.(x+3.1)(x﹣0.1)=0,∴x+3.1=0,x﹣0.1=0,解得x1=﹣3.1(不合题意,舍去),x2=10%.答:2,3月份平均每月的增长率为10%.22.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,而(m﹣2)2≥0,∴△>0.∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴12﹣(m+2)+2m﹣1=0,解得:m=2,∴原方程为:x2﹣4x+3=0,解得:x1=1,x2=3.即m的值为2,方程的另一个根是3.23.【解答】解:设这个仓库的长为x米,由题意得:x×(32+2﹣x)=140,解得:x1=20,x2=14,∵这堵墙的长为18米,∴x=20不合题意舍去,∴x=14,宽为:×(32+2﹣14)=10(米).答:这个仓库的宽和长分别为14米、10米.24.【解答】解:∵EF∥CD,DE∥BC,∴=,=,∴=,即AF:FD=AD:DB.25.【解答】解:(1)设每件童装降价x元,则销售量为(20+2x)件,根据题意得:(120﹣80﹣x)(20+2x)=1200,整理得:x2﹣30x+200=0,解得:x1=10,x2=20.∵要让利于顾客,∴x=20.答:每件童装降价20元时,能让利于顾客并且商家平均每天能赢利1200元.(2)设每件童装降价y元,则销售量为(20+2y)件,根据题意得:(120﹣80﹣y)(20+2y)=2000,整理得:y2﹣30y+600=0.∵△=(﹣30)2﹣4×1×600=﹣1500<0,∴该方程无解,∴不可能每天盈利2000元.26.【解答】解:(1)∵AE⊥OD,FC⊥OD,∴△AEB∽△OGB,∴=,即=,解得:AB=m,答:小方在A处时的影子AB的长为m;(2)∵OA所在的直线行走到点C时,人影长度增长3米,∴DC=5m同理可得△DFC∽△DGO,∴=,即=,解得AC=9m.答:小方行走的路程AC为9m.27.【解答】解:当x﹣1≥0即x≥1时,原方程化为x2﹣(x﹣1)﹣1=0 即x2﹣x=0,解得x1=0,x2=1,∵x≥1,∴x=1;当x﹣1<0即x<1时,原方程化为x2+(x﹣1)﹣1=0 即x2+x﹣2=0,解得x1=﹣2,x2=1∵x<1,∴x=﹣2,∴原方程的根为x1=1,x2=﹣2.28.【解答】解:(1)如图1中,在Rt△ABC中,AC=6,BC=8,∴AB==10.∵D、E分别是AC、AB的中点.AD=DC=3,AE=EB=5,DE∥BC且DE=BC=4,①PQ⊥AB时,∵∠PQB=∠ADE=90°,∠AED=∠PEQ,∴△PQE∽△ADE,,由题意得:PE=4﹣t,QE=2t﹣5,即,解得t=;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴,∴,∴t=,∴当t为s或s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)如图3中,当点Q在线段BE上时,由EP=EQ,可得4﹣t=5﹣2t,t=1.如图4中,当点Q在线段AE上时,由EQ=EP,可得4﹣t=2t﹣5,解得t=3.如图5中,当点Q在线段AE上时,由EQ=QP,可得(4﹣t):(2t﹣5)=4:5,解得t=.如图6中,当点Q在线段AE上时,由PQ=EP,可得(2t﹣5):(4﹣t)=4:5,解得t=.综上所述,t=1或3或或秒时,△PQE是等腰三角形.。
江苏省扬州市仪征市2022-2023学年九年级上学期期中数学试题
江苏省扬州市仪征市2022-2023学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.一元二次方程22310x x --=的二次项系数是( )A .-3B .2C .1-D .32.一组数据分别为:2、4、5、1、9,则这组数据的中位数是( )A .5B .1C .4D .53.已知O e 的半径为2cm ,点P 到圆心O ,则点P 在O e ( )A .上B .内C .外D .内或外 4.如果关于x 的方程()241x m -=-可以用直接开平方法求解,那么m 的取值范围是( )A .m 1≥B .1m >C .1m >-D .1m ≥- 5.如图,点A 、B 、C 在O e 上,110ABC ∠=︒,则AOC ∠的度数是( )A .110︒B .120︒C .130︒D .140︒6.某数学兴趣小组四人以接龙的方式用配方法解一元二次方程,每人负责完成一个步骤.如图所示,老师看后,发现有一位同学所负责的步骤是错误的,则这位同学是( )A .甲B .乙C .丙D .丁7.关于x 的方程()20a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程()220a x m b -++=的解是( )A .10x =,23x =-B .10x =,23x =C .14x =-,21x =-D .无法求解 8.如图,点O 是正方形AB C D '''和正五边形ABCDE 的中心,连接AD 、CD '交于点P ,则APD '∠=( )A .72︒B .81︒C .76︒D .80︒二、填空题9.某地某日最高气温为12C ︒,最低气温为4C -︒,则该日气温的极差是_________C ︒. 10.圆锥侧面积为26cm π,侧面展开扇形的半径为3cm ,则圆锥底圆半径为_________cm .11.若一条弦所对的圆心角是100︒,那么它所对的圆周角为_________.12.已知一组数据16,17,18,19,20,则这组数据的方差是_________.13.为了农民能种植高产、易发芽的种子,某农科实验基地,大力开展种子实验,该实验基地两年前有64种种子,经过两年不断的努力,现在有100种种子,若培育的种子平均每年的增长率为x ,则根据题意可列方程是_________.14.如图,已知点A ,B ,C 依次在O e 上,30B A ∠-∠=︒,则AO B ∠的度数为_________︒.15.如图,O e 是ABC V 的内切圆,切点分别为D 、F 、G ,=60B ∠︒,40C ∠=︒,则DGF ∠的度数是_________︒.16.已知函数y kx b =+的图象如图所示,则一元二次方程2210x x k -+-=的根的存在情况是_________.17.如图,矩形ABCD ,过B 、C 两点的O e 恰好与AD 相切,若4AB =,6BC =,则O e 的半径为_________.18.新定义,若关于x 的一元二次方程:2()0m x a b -+=与2()0n x a b -+=,称为“同类方程”.如22(1)30x -+=与26(1)30x -+=是“同类方程”.现有关于x 的一元二次方程:22(1)10x -+=与2(6)(8)60a x b x +-++=是“同类方程”.那么代数式22022ax bx ++能取的最大值是_________.三、解答题19.解方程:(1)20x x -=(2)2(2)5(2)60x x ---+=20.某食品商店将甲、乙、丙3种糖果的质量按5:4:1配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/kg 、20元/kg 、27元/kg .若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.21.某校为了提升九年级学生的身体素质,释放学业压力,锻炼意志,激发进取精神,开展“奔跑吧,你最棒”活动,每天利用大课间让学生在操场上伴随着音乐进行800米跑步.为了解学生跑步后身体状况,随机抽取部分学生测量跑步后1min 的脉搏次数,其中脉搏次数x 满足140150x ≤<的结果如下(单位:次):149 148 147 146 146 144 144 143 141 149 144根据以上信息回答下列问题:(1)填写表格:(2)脉搏次数x 满足140150x ≤<的这组数据,众数是_________;(3)根据运动后正常脉搏公式可知:九年级学生800米跑步后1分钟脉搏次数130160x ≤<都属于身体素质较好的情况,如果该校九年级有300名学生,那么身体素质较好的学生大约有多少人?22.已知关于x 的一元二次方程2()210x k x k ++-=-.(1)求证:无论k 取何值,此方程总有两个不相等的实数根;(2)已知5是关于x 的方程2()210x k x k ++-=-的一个根,而这个方程的两个根恰好是等腰ABC V 的两条边长,求ABC V 的周长.23.如图,在平面直角坐标系中,已知ABC V 三个顶点的坐标分别是()2,2A -,()0,4B ,()4,4C .(1)ABC V 外接圆的圆心P 坐标为_________,外接圆的半径是_________;(2)作出弧AC ,并求弧AC 的长度.24.如图,四边形ABCD 中,90B C ∠=∠=︒,点E 是边BC 上一点,且DE 平分AEC ∠,作ABE V 的外接圆O e .(1)求证:DC 是O e 的切线;(2)若O e 的半径为5,3CD =,求DE 的长.25.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元/件的小商品进行直播销售,如果按每件50元销售,那么可卖出200件.通过市场调查发现,售价每增加1元,销售量减少10件.如果这种商品全部销售完,那么该商店可盈利2000元.问:该商店每件售价多少元?26.数学兴趣小组的同学在探究等分问题的过程中,得到了很多成果.成果一:制作了三分角仪.图(1)是示意图,点B 在半径OC 的延长线上,CD OC ⊥,BC OC =,CD 足够长.若要将GAH ∠三等分,只需要适当放置三分角仪,使点A 在CD 上,点B 落在AG 上,当AH 与半O e 相切时,AC 、AO 就将GAH ∠三等分了.成果二:创造了只用圆规将圆四等分的方法.如图(2),具体步骤为:①将O e 六等分,等分点分别是点A 、B 、C 、D 、E 、F ;②分别以点A 、D 为圆心,AE 长为半径作弧,交于点G ;③以点A 为圆心,OG 长为半径作弧,交O e 于点M 、N ,则点A 、M 、D 、N 将O e 四等分.(1)请你说明三分角仪的正确性;(2)证明点A 、M 、D 、N 是O e 四等分点.27.阅读下面材料,回答下列问题:构造法是依据问题的条件和结论给出的信息,把问题做适当的加工处理,构造与问题相关的数学模式,揭示问题的本质,从而疏通解题思路的方法.构造方程是常用的一种构造方法,它能使得问题被简化,得以迅速解决.材料:已知x =22111x x x x ⎛⎫-+ ⎪--⎝⎭的值; 分析:这道题如果将代数式化简,再直接将x 代入求值比较困难,观察x 的值,发现x ==,对比一元二次方程求根公式x ,不难发现x 是方程2510x x -+=的根,所以251x x =-,215x x +=,所以原式25115145145(1)51(1)1(1)111x x x x x x x x x x x x x x x x --+---=-=-=-==-------. (1)以2,3-为根的方程可以是_________;(2)已知x =32x x --(3)求代数式322a -+-⎝⎭⎝⎭⎝⎭的值. 28.问题提出:苏科版九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在O e 的内接四边形ABCD 中,BD 是O e 的直径.A ∠与C ∠、ABC ∠与ADC ∠有怎样的数量关系?2.如图(2),若圆心O 不在O e 的内接四边形ABCD 的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的A ∠与C ∠、ABC ∠与ADC ∠都满足互补关系,请帮助他完善问题1的证明:∵BD 是O e 的直径,∴__________________,∴180A C ∠+∠=︒,∵四边形内角和等于360︒,∴__________________.(2)请回答问题2,并说明理由.深入探究:如图3,O e 的内接四边形ABCD 恰有一个内切圆I e ,切点分别是点E 、F 、G 、H ,连接GH ,EF .(1)直接写出四边形ABCD 边满足的数量关系_________;(2)探究EF 、GH 满足的位置关系;(3)如图4,若90C ∠=︒,3BC =,2CD =,请直接写出图中阴影部分的面积.。
2020-2021学 年上 学期人教版九年级数学试题
2020-2021上学期人教版九年级数学期末试卷一.选择题(共12小题)1.如果一个数的绝对值小于另一个数,则这两个数的和是()A.正数B.正数或零C.负数D.负数或零2.下列各数:1,,4.112134,0,,3.14,其中分数有()A.6个B.3个C.4个D.5个3.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个4.等式就像平衡的天平,能与如图的事实具有相同性质的是()A.如果a=b,那么ac=bc B.如果a=b,那么=(c≠0)C.如果a=b,那么a+c=b+c D.如果a=b,那么a2=b25.若M在第三象限,则M点的坐标可能是()A.(1,2)B.(2,﹣3)C.(﹣5,﹣6)D.(﹣3,5)6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(,0),顶点D的坐标为(0,),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A₂,作正方形A2B2C2C1,…,按这样的规律进行下去,第2021个正方形的周长为()A.()2020B.()2021C.4×()2020D.4×()2021 7.下列几何体,用一个平面去截,不能截得三角形截面的是()A.圆柱B.圆锥C.三棱柱D.正方体8.已知正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积是()A.27cm3B.27πcm3C.18cm3D.18πcm39.如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.如图,在等边△ABC中,点D和点B关于直线AC对称,过点D做DE⊥BC,交BC 的延长线于点E,若CE=5,则BE的长为()A.5B.10C.5D.1511.某市有9个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是()A.测试该市某一所中学初中生的体重B.测试该市某个区所有初中生的体重C.测试全市所有初中生的体重D.每区随机抽取5所初中,测试所抽学校初中生的体重12.﹣2和2对应的点将数轴分成3段,如果数轴上任意n个不同的点中至少有3个在其中之一段,那么n的最小值是()A.5B.6C.7D.8二.填空题(共6小题)13.若向前进10米记为+10,那么向后退10米记为.14.方程(b﹣3)b+2015=1的解是b=.15.点P到x轴和y轴的距离分别为2和3,且点P在第四象限,则P点的坐标为.16.一个直棱柱一共有21条棱,那么这个棱柱的底面的形状是.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序.(只填序号)三.解答题(共9小题)19.为全力迎接全国第十四届运动会,西安市将继续加快交通高质量发展,不断增强市民获得感和幸福感.某检修小组从O地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下,(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣4+7﹣9+8+6﹣5﹣1(1)求收工时距O地多远?(2)在第几次记录时距O地最远?(3)若每千米耗油0.2升,问共耗油多少升?20.把下列各数填在相应的集合中:22,,0.81,﹣3,,﹣3.1,0,3.14,π,1.6整数集合{…};负分数集合{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.已知方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,求a的值.23.已知点P(2x﹣6,3x+1)在y轴上,求P的坐标.24.计算下面圆锥的体积.25.国庆期间,广场上对一片花圃做了美化造型(如图所示),整个造型构成花的形状.造型平面呈轴对称,其正中间“花蕊”部分(区域①)摆放红花,两边“花瓣”部分(区域②)摆放黄花.(1)两边“花瓣”部分(区域②)的面积是.(用含a的代数式表示)(2)已知a=2米,红花价格为220元/平方米,黄花价格为180元/平方米,求整个造型的造价(π取3).26.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.27.若干个人相聚,其中有些人彼此认识,已知:(1)如果某两个人有相等数目的熟人,则他两没有公共的熟人;(2)有一个人至少有56个熟人.证明:可找出一个聚会者,他恰好有56个熟人.2020-2021上学期人教版九年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据一个数的绝对值小于另一个数,可知另一个数是正数,并且另一个数的绝对值较大,根据有理数的加法法则即可确定答案.【解答】解:∵一个数的绝对值小于另一个数,∴另一个数是正数,并且另一个数的绝对值较大,∴这两个数的和一定是正数.故选:A.2.【分析】根据有理数的分类判断即可.【解答】解:在1,,4.112134,0,,3.14中,分数有4.112134,,3.14,共3个.故选:B.3.【分析】分别求出四个方程的解各是多少,判断出x=3是所给方程的解的有多少个即可.【解答】解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.4.【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:观察图形,是等式a=b的两边都加c,得到a+c=b+c,利用等式性质1,所以成立.故选:C.5.【分析】根据在第三象限的点的横坐标和纵坐标均为负数判断即可.【解答】解:A.点(1,2)在第一象限;B.(2,﹣3)在第四象限;C.(﹣5,﹣6)在第三象限,D.(﹣3,5)在第二象限,故选:C.6.【分析】根据相似三角形的判定定理,得出△AA1B∽△A1A2B1,继而得知∠BAA1=∠B1A1A2;利用勾股定理计算出正方形的边长;最后利用正方形的周长公式计算三个正方形的周长,从中找出规律,问题也就迎刃而解了.【解答】解:设正方形的周长分别为C1,C2 (2021)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(两直线平行,同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,∵顶点A的坐标为(,0),顶点D的坐标为(0,),∴OA=,OD=,在直角△ADO中,根据勾股定理,得:AD==1,∴AD=AB=1,∵cot∠DAO==,∵tan∠BAA1==cot∠DAO,∴BA1=AB=,∴CA1=1+=,同理,得:C1A2=+==()2,由正方形的周长公式,得:C1=4×()0C2=4×()1,C3=4×()2,…由此,可得∁n=4×()n﹣1,∴C2021=4×()2020.故选:C.7.【分析】当截面的角度和方向不同时,圆柱,球的截面不相同,无论什么方向截取圆柱都不会截得三角形.【解答】解:用一个平面截一个几何体,不能截得三角形的截面的几何体有圆柱.故选:A.8.【分析】首先根据题意可得将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,再计算体积即可.【解答】解:直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,∴所得几何体的体积=32•π•3=27π(cm3),故选:B.9.【分析】利用轴对称画图可得答案.【解答】解:如图所示,,球最后落入的球袋是2号袋,故选:B.10.【分析】连接CD,构造含30°角的直角三角形DCE,根据BC=DC进行计算即可.【解答】解:如图,连接CD,∵△ABC是等边三角形,点D和点B关于直线AC轴对称,∴BC=DC,∠ACB=∠ACD=60°,∴∠DCE=60°,∵DE⊥CE,CE=5,∴∠CDE=30°,∴CD=2CE=10,∴BC=10.∴BE=BC+CE=10+5=15.故选:D.11.【分析】利用抽样调查的中样本的代表性即可作出判断.【解答】解:某市有9个区,为了解该市初中生的体重情况,设计了四种调查方案.比较合理的是:每区随机抽取5所初中,测试所抽学校初中生的体重,故选:D.12.【分析】将数轴上的3段看成3个抽屉,先考虑相反的情况,得到的结果再取反即为答案.令每个抽屉最多有2个点,则最多有6个点,由此可得出结论.【解答】解:∵令每个抽屉最多有2个点,则最多有6个点,∴n≥7.故选:C.二.填空题(共6小题)13.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:若向前进10米记为+10,那么向后退10米记为﹣10.故答案为:﹣10.14.【分析】根据零指数幂的性质得到b+2015=0,右侧求得b的值.【解答】解:根据题意,得b+2015=0,或b﹣3=1.解得b=﹣2015或b=4故答案是:﹣2015或4.15.【分析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【解答】解:∵点P(x,y)在第四象限,P到x轴,y轴的距离分别等于2和3,∴点P的横坐标是3,纵坐标是﹣2,∴点P的坐标为(3,﹣2).故答案为:(3,﹣2).16.【分析】根据n棱柱有3n条棱可得答案.【解答】解:∵一个直n棱柱有3n条棱,∴21÷3=7,故答案为:7.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据调查的一般步骤,得出结论.【解答】解:调查的一般步骤:先随机抽样,再收集整理数据,然后分析数据,最后得出结论.故答案为:③④②①.三.解答题(共9小题)19.【分析】(1)首先把题目的已知数据相加,然后根据结果的正负即可确定相距O多少千米;(2)分别写出各次记录时距离O地的距离,然后判断即可;(3)首先把所给的数据的绝对值相加,然后乘以0.2升,即可求解.【解答】解:(1)﹣4+7+(﹣9)+8+6+(﹣5)+(﹣1)=2(千米).答:收工时检修小组在O地东面2千米处;(2)第一次距O地|﹣4|=4千米;第二次:|﹣4+7|=3(千米);第三次:|3﹣9|=|﹣6|=6(千米);第四次:|﹣6+8|=2(千米);第五次:|2+6|=8(千米);第六次:|8﹣5|=3(千米);第七次:|3﹣1|=2(千米).所以距O地最远的是第5次;(3)从出发到收工汽车行驶的总路程:|﹣4|+|+7|+|﹣9|+|+8|+|+6|+|﹣5|+|﹣1|=40;从出发到收工共耗油:40×0.2=8(升).答:从出发到收工共耗油8升.20.【分析】根据整数包括正整数、0和负整数,可得整数集合;根据小于0的分数为负分数,可得负分数集合.【解答】解:整数集合{22,﹣3,0…};负分数集合{,﹣3.1…}.故答案为:22,﹣3,0;,﹣3.1.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】先求出每个方程的解,根据相反数得出关于a的方程,求出方程的解即可.【解答】解:解方程3x+2a﹣1=0得:x=,解方程x﹣2a=0得:x=2a,∵方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,∴2a+(﹣)=0,解得:a=﹣.23.【分析】根据y轴上点的横坐标为0列方程求出x的值,再求解即可.【解答】解:∵点P(2x﹣6,3x+1)在y轴上,∴2x﹣6=0,解得x=3,所以,3x+1=9+1=10,故P(0,10).24.【分析】根据圆锥的体积解答即可.【解答】解:圆锥的体积:=(cm3).25.【分析】(1)区域②的面积=2个正方形的面积.(2)分别求出区域①,②的面积,再乘以单价即可.【解答】解:(1)区域②的面积=2a2.故答案为:2a2.(2)整个造型的造价:220(2×22﹣×22)+180(2×22+•π•22)=2960(元).26.【分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行判断;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.【解答】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.27.【分析】考虑聚会中熟人最多的人(如果不止一个,则任取其中之一),记为A,设A认识了n个人,设为B1,B2,…,B n,由条件(1)知B i,B j熟人的数目不相等,于是B1,B2,…,B n,各人的熟人数互不相等,且均不超过n(根据的最大性),因此,必然是1,2,…,n,再根据条件(2)知n≥56,从而求解.【解答】解:考虑聚会中熟人最多的人(如果不止一个,则任取其中之一),记为A,设A认识了n个人,设为B1,B2,…,B n,由于任意两人B i,B j都以A为共同熟人,由条件(1)知B i,B j熟人的数目不相等,于是B1,B2,…,B n,各人的熟人数互不相等,且均不超过n(根据的最大性),因此,必然是1,2,…,n,再根据条件(2)知n≥56,因此1,2,…,n中包含着56,即B1,B2,…,B n中必有人恰好认识56人.。
江苏省扬州市仪征市2023-2024学年八年级上学期期中考试数学试卷(含答案)
2023-2024学年第一学期期末试题八年级数学(考试时间:120分钟总分:150分)一、选择题(本大题共有8小题,每小题3分,共24分,下面各题均有四个选项,其中只有一个是符合题意的,请将正确选项前的字母填涂在答题卡中相应的位置上)1.以下新能源汽车标志是轴对称图形的是()A .B .C .D .2.下列四个数是无理数的是()A .0.3B .911-C D .03.在平面直角坐标系中,()2,1-所在象限是()A .第一象限B .第二象限C .第三象限D .第四象限4.如图,AC 和BD 相交于点O ,若OA OD =,用“SAS ”证明AOB DOC ≌△△,还需要()第4题图A .AB DC=B .AOB DOC ∠=∠C .A D∠=∠D .OB OC=5.若点()()3,2,m n -、都在直线41y x =-+图像上,则m 与n 的大小关系是()A .m n>B .m n<C .m n=D .无法确定6.在ABC △中,A B C ∠∠∠、、对边是a b c 、、,哪个条件不能判断ABC △是直角三角形()A .AB C∠+∠=∠B .::1:2:3A B C ∠∠∠=C .::3:4:5A B C ∠∠∠=D .222b a c+=7.如图,90C ∠=︒,点D 为AB 上一点,且BD BC =,过点D 作DE AB ⊥交AC 于点E ,若2,5DE AC ==,则AE 是()第7题图A .4B .3C .3.5D .2.58.如图,80,60A B ∠=∠=︒︒,折叠后点C 落在ABC △内,若130∠=︒,则2∠的度数是()第8题图A .30︒B .40︒C .50︒D .60︒二、填空题(本大题共有10小题,每小题3分,共30分,请将每小题的答案填写在答题卡中相应的位置上)9.实数4的算术平方根是______.10.小亮的体重是46.75kg ,精确到0.1kg 得到的近似值是______kg .11.点()3,1-关于x 轴对称的点的坐标是______.12.如图,90,20ACB A ︒∠=∠=︒,点D 是AB 的中点,则DCB ∠的度数是______.第12题图13.在等腰三角形中,有一个内角的度数是40︒,则它的顶角度数是______.14.如图,在ABC △中,BD 是ABC ∠的平分线,交AC 于点D ,过点D 作DE AB ⊥,垂足为E ,若4,5DE BC ==,则BDC △的面积是______.第14题图15.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以AB BC CD DA 、、、为边向外作正方形,若乙的面积是22,丙的面积是18,丁的面积是9,则AB =______.第15题图16.若直线()30y kx k =-≠与直线y x m =-交于点()4,m ,则关于x y 、的方程组3y kx y x m=-⎧⎨=-⎩的解是______.17.如图,ABC △是等边三角形,点M 在AC 上,点N 在CB 延长线上,且AM BN =,过M 作ME AB⊥于点E ,连接MN 交AB 于点F ,若4AC =,则EF 的长是______.第17题图18.在直线443y x =-+的图像上有一个动点(),M m n ,则22m n +的最小值是______.三、解答题(本大题共有10小题,共计96分,请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.(本题满分8分)(1)计算:231584-+(2)解方程:()221490x --=.20.(本题满分8分)已知2y -与x 成正比,且当2x =-时,8y =.(1)求y 与x 的函数关系式;(2)当x 取什么范围时,4y >-.21.(本题满分8分)如图,在ABC △和AEF △中,点E 在BC 边上,,C F AC AF ∠=∠=,,CAF BAE EF ∠=∠与AC 交于点G .(1)试说明:ABC AEF ≌△△;(2)若55,20B C ∠=∠=︒︒,求EAC ∠的度数.22.(本题满分8分)如图,限速牌AB 在路灯CD 照射下地面的影子为BE ,点E B D 、、在同一条直线上,AB CD 、均与地面垂直.经过测量得知:2m,3m,9m AB BE BD ===,根据这些信息,你能求出路灯CD 的高度吗?(提示:选择合适的点作为坐标原点,在图中画出坐标轴,建立平面直角坐标系,用一次函数知识解决问题)23.(本题满分10分)已知31m +的平方根是5,5n m ±-的立方根是3.(1)求m n -的平方根;(2)若4a m +的算术平方根是4,求32a n -的立方根.24.(本题满分10分)如图,在ABC △中,2,B C AC ∠=∠的垂直平分线交CB 于点D ,连接AD .(1)判断ABD △的形状,并说明理由;(2)过点A 作AE BD ⊥,垂足为点E ,若ABD △的周长是10,求CE 的长.25.(本题满分10分)在剪纸活动中,小明将一张长方形纸片剪去了一角得到如图所示的图形.经过测量:6cm,8cm,4cm,7cm AB BC CD AE ====.(1)求DE 的长;(2)连接BD BE 、,判断BDE △的形状,并说明理由.26.(本题满分10分)知识迁移课本130页的阅读材料介绍了用方位角、距离描述物体的位置.如图1,现作出规定:把yOM ∠这样的角称为方位角,Oy 绕点O 顺时针旋转则度数为正,逆时针旋转则度数为负,方位角yOM ∠度数的取值范围是:180180yOM -<∠≤︒︒.可以这样描述王家庄的位置:王家庄M 在红星镇O 的方位角为45︒,距离为7km 的位置,记为()7,45︒;赵庄组N 在红星镇O 的方位角为30-︒,距离为3km 的位置,记为()3,30-︒.图1图2图3(1)在图2正方形网格中标出点的位置:()()()45,2,90,3,180A B C -︒︒︒;(2)直接写出点()5,30P ︒关于点O 的对称点记为______;(3)如图3,()()5,20,12,110E F ︒︒,过点O 作OH EF ⊥,垂足为H ,求OH .27.(本题满分12分)如图,数轴上点O 表示的数是0,点A 表示的数是3-.点P 是数轴上一动点,表示的数是x ,它与点A 之间的距离AP 用y 表示.(1)填写下表,在平面直角坐标系内画出y 关于x 的图像;x…5-4-3-2-1-0…y…21______12______…(2)若5y =,则x 的值是______;(3)下列说法正确的序号是______;①变量x是变量y的函数②y 随x 的增大而减小③图像经过第一、二、三象限④当3x =-时,y 有最小值(4)若4AP OP <,则x 的取值范围是______.28.(本题满分12分)类比探究在ABC △中,90,BCA CB CA ︒∠==.模型建立图1图2图3(1)如图1,点F 在BC 上,22.5BAF ∠=︒,过点B 作BE AF ⊥,交AF 的延长线于点E .判断线段BE 与AF 的数量关系,并说明理由.小敏认为:可以延长AC BE 、交于点G ,容易得到ACF △与BCG △全等,从而解决问题.请你判断数量关系,并根据她的思路补全证明过程;模型拓展(2)如图2,点F 在BC 上,点D 在AB 上,22.5BDF ∠=︒,过点B 作BE DF ⊥,交DF 的延长线于点E .判断线段BE 与DF 的数量关系,并说明理由;模型应用(3)如图3,将等腰ABC Rt△放入平面直角坐标系,点C 在y 轴负半轴上,点A 在x 轴正半轴上,且AO 平分CAB ∠,线段AB 交y 轴于点D ,过点D 作DF x ∥轴交BC 于点F .若点A 的坐标是(),0m ,点D 的坐标是()0,n ,直接写出点F 的坐标是______.(用m n 、的代数式表示)2023—2024学年第一学期期末测试八年级数学参考答案一、选择题(本大题共有8小题,每小题3分,共24分)题号12345678答案DCBDACBC二、填空题(本大题共有10小题,每小题3分,共30分)9.210.46.811.()3,112.70︒13.40︒或70︒14.101516.42x y =⎧⎨=⎩17.218.14425三、解答题(本大题共有10小题,共96分)19.(本题满分8分)(1)152;(2)4x =或3x =-20.(本题满分8分)(1)32y x =-+;(2)2x <21.(本题满分8分)(1)证明略;(2)35EAC ∠=︒22.(本题满分8分)画出坐标系求出函数表达式求出CD 的长度23.(本题满分10分)(1)8m =,7n =,m n -的平方根为1±(2)2a =,23n a -+的立方根为2-24.(本题满分10分)(1)等腰三角形,理由略(2)5CE =25.(本题满分10分)(1)DE =(2)直角三角形,理由略26.(本题满分10分)(1)图略(2)()5,150-︒(3)601327.(本题满分12分)(1)03画图略(2)2和8-(3)④(4)1x >或35x <-28.(本题满分12分)(1)12BE AF =,ACF BCG ≌△△,AGE ABE ≌△△,得出12BE AF =(2)12BE DF =,理由略(3)点F 的坐标是()24,m n n -+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省扬州市仪征市2020-2021学年九年级上学期期末数学试题
一、单选题
1. 抛物线的对称轴是
A.B.
C.D.
码号33 34 35 36
人数7 6 15 2
A.33 B.34 C.35 D.36
3. 视力表用来测量一个人的视力.如图是视力表的一部分,其中开口向下的两个“E”之间的变换是
A.平移B.旋转C.轴对称D.位似
4. 如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为()
A.9 B.8 C.7 D.6
5. 新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x,可列方程为()A.50.7(1+x)2=125.6 B.125.6(1﹣x)2=50.7
C.50.7(1+2x)=125.6 D.50.7(1+x2)=125.6
6. 生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下与全身的高度比值接近0.618,可以增加视觉美感,若图中为2米,则约为()
A.1.24米B.1.38米C.1.42米D.1.62米
7. 如图,四边形OABC是平行四边形,以点O为圆心,OA为半径的⊙O与BC相切于点B,CO的延长线交⊙O于点E,连接AE,若AB=2,则图中阴影的面积为().
A.B.π
C.
D.π
8. 将关于x的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如
…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,则
的值为()
A.3 B.4 C.5 D.6
二、填空题
9. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的的点数大于4的概率是______________.
10. 若△ABC∽△DEF,,且相似比为1:2,则△ABC与△DEF面积比
_____________.
11. 若关于的一元二次方程无实数根,则的取值范围是
_________.
12. 圆锥的母线长为5,圆锥高为3,则该圆锥的侧面积为____.(结果保留π)
13. 如图,AB是⊙O的直径,点C、D在⊙O上,若∠DAB=28°,则∠C的度数是____°.
14. 如图所示,将一量角器放置在一组平行线l1、l2、l3中,AB⊥l1,交l2于点
C、D两点,若BC=1,AC=3,则CD的长为____.
15. 将抛物线沿x轴向左平移2个单位,则平移后抛物线的解析式是__.
16. 《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.8米,BD=1米,BE=0.2米,那么井深AC为
____米.
三、解答题
17. 已知二次函数中,函数与自变量的部分对应值如下表:
…-1 0 1 2 3 4 …
…10 5 2 1 2 5 …
若,两点都在该函数的图象上,若≥,则m的取值范围为______.
四、填空题
18. 如图,已知矩形ABCD中,AB=6,BC=8,点F在边CD上,连接BF,沿BF 折叠矩形使点C落在点E处.连接AE,则AE长度的最小值为___.
五、解答题
19. 解方程
(1)
(2)
20. 为了迎接2021年江苏省“时代杯”数学竞赛,某校要从小孙和小周两名同学中挑选一人参加比赛,在最近的五次选拔测试中,两人的成绩等有关信息如
第一次第二次第三次
第四
次
第五次平均分方差
小孙75 90 75 90 70 a70
小周70 80 80 90 80 80 b
= = ;
(2)根据以上信息,若你是数学老师,你会选择谁参加比赛,理由是什么?
21. 在一个不透明的布袋中,有个红球,个白球,这些球除颜色外都相同.(1)搅匀后从中任意摸出个球,摸到红球的概率是________;
(2)搅匀后先从中任意摸出个球(不放回),再从余下的球中任意摸出个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)
22. 已知关于的一元二次方程的一根为2.
(1)用含的代数式表示;
(2)试说明:关于的一元二次方程总有两个不相等的实数根.
23. 如图,在阳光下,某一时刻,旗杆AB的影子一部分在地面上,另一部分在建筑物的墙面上.设旗杆AB在地上的影长BC为20m,墙面上的影长CD为4m;同一时刻,竖立于地面长1m的木杆的影长为0.8m,求旗杆AB的高度.
24. 如图,已知二次函数y=-x2+ax+1的图象经过点P(2,1).
(1)求a的值和图象的顶点坐标.
(2)点Q(m,n)在该二次函数图象上,
①当m=3时,求n的值;
②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.
25. 2021年世界园艺博览会在我市枣林湾举行,旅游景点销售一批印有会标的文化衫,平均每天可以售出20件,每件盈利40元,为了扩大销售,增加盈利,景点决定采取降价措施,经过一段时间的销售发现,文化衫的单价每降1元,平均每天可以多售出2件.
(1)若降价后商场销售这批文化衫每天盈利1200元,那么单价降了多少元?(2)当文化衫的单价降多少元时,才能使每天的利润最大?最大利润是多少?
26. 如图1,已知矩形ABCD中,AD=3,点E为射线BC上一点,连接DE,以DE为直径作⊙O
(1)如图2,当BE=1时,求证:AB是⊙O的切线
(2)如图3,当点E为BC的中点时,连接AE交⊙O于点F,连接CF,求证:CF=CD
(3)当点E在射线BC上运动时,整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值;若不存在,请说明理由.
27. 如图1,在△ABC中,AB=AC=10,BC=16,点D为BC边上的动点,以D为顶点作∠ADE=∠B,射线DE交AC边于点E.
(1)求证:△ABD∽△DCE;
(2)当DE∥AB时,求AE的长;
(3)如图2,在点D从点B运动到点C的过程中,过点A作AF⊥AD交射线DE 于点F,请直接写出点F运动的路径长.
28. 如图1,在△ABC中,∠B=30°,AB=4 cm,AC=6 cm,点D从点B出发以2cm/s的速度沿折线B—A—C运动,同时点E也从点B出发以1cm/s的速度沿BC运动,当某一点运动到C点时,两点同时停止运动.设运动时间为x(s),△BDE的面积为y(cm2).
(1)如图2,当点D在AC上运动时,x为何值,△ABD∽△ACB;
(2)求y(cm2)关于x(s)的函数表达式;
(3)当点D在AC上运动时,存在某一时段的△BDE的面积大于D在AB上运动的任意时刻的△BDE的面积,请你求出这一时段x的取值范围.。