反馈电机控制

反馈电机控制
反馈电机控制

几种典型的步进电机闭环控制系统

默认分类 2010-08-15 13:46:09 阅读122 评论0 字号:大中小订阅

步进电机的闭环控制系统

郭宏(哈尔滨工业大学)

【摘要】系统阐述了步进电动机闭环控制系统的优点,给出了几种典型的闭环控制系统,并提出了步进电动机高精度定位系统的设计思想。

【叙词】步进电机闭环系统/高精度定位

l概述

步进电机是机电一体化产品中的关键元件之一,是一种性能良好的数字化执行元件。它能够将电的脉冲信号转换成相应的角位移,是一种离散型自动化执行元件。随着计算机控制系统的发展,步进电动机广泛应用于同步系统、直线及角位系统、点位系统、连续轨迹控制系统以及其它自动化系统中,是高科技发展的一个重要环节。

2步进电动机闭环系统与开环系统比较[1-5]

步进电机的主要优点之一是适于开环控制。在开环控制下,步进电动机受具有予定时间间隔的脉冲序列所控制,控制系统中无需反馈传感器和相应的电子线路。这种线路具有简单、费用低的特点,使步进电动机的开环控制系统得以广泛的应用。

但是,步进电机的开环控制无法避免步进电动机本身所固有的缺点,即共振、振荡、失步和难以实现高速。另一方面,开环控制的步进电动机系统的精度要高于分级是很困难的,其定位精度比较低。因此,在精度和稳定性标准要求比较高的系统中,就必须果用闭环控制系统。

步进电动机的闭环控制是采用位置反馈和(或)速度反馈来确定与转子位置相适应的相位转换,可大大改进步进电动机的性能。

在闭环控制的步进电机系统中,或可在具有给定精确度下跟踪和反馈时,扩大工作速度范围,或可在给定速度下提高跟踪和定位精度,或可得到极限速度指标和极限精度指标。步进电动机的闭环控制性能与开环控制性能相比,具有如下优点:

a.随着输出转矩的增加,二者的速度均以非线性形式下降,但是,闭环控制提高了矩频特性。

b.闭环控制下,输出功率/转矩曲线得以提高,原因是,闭环下,电机励磁转换是以转子位置信息为基础的,电流值决定于电机负载,因此,即使在低速度范围内,电流也能够充分转换成转矩。

c.闭环控制下,效率一转矩曲线提高。

d.采用闭环控制,可得到比开环控制更高的运行速度,更稳定、更光滑的转速。

e.利用闭环控制,步进电动机可自动地、有效地被加速和减速。

f.闭环控制相对开环控制在快速性方面提高的定量评价,可借助比较Ⅳ步内通过某个路径间隔的时间得出:

式中n-步进电动机转换拍数(N>n)

g.应用闭环驱动,效率可增到7.8倍,输出功率可增到3.3倍,速度可增到3.6倍。

闭环驱动的步进电机的性能在所有方面均优于开环驱动的步进电动机。步进电机闭环驱动具有步进电动机开环驱动和直流无刷伺服电机的优点。因此,在可靠性要求很高的位置控制系统中,闭环控制的步进电动机将获得广泛应用。

3编码器形式的步进电动机阕环控制系统

步进电机的闭环控制最早是采用编码器的形式,图1是其原理示意图。初始状态,系统受一相或几相激磁而静止。开始工作后,先把目标位置送入减法计数器;然后,“起动”脉冲信号加到控制单元上,控制单元在“起动”脉冲的作用下,立即把步进命令送入相序发生器,使激磁变化一次,后续的脉冲则由编码器装置产生。编码器每产生一个脉冲,就对法计数器减1,因而,减法计数器记录的是实际的转子位置。当减法计数器的计数减至零时,发出一个停止信号到控制单元,禁止以后的步进命令,系统停止工作。

对于低分辨率的步进电动机,通常使用一个开了槽的圆盘和光电传感器作为反馈编码器的组合件,如图2所示,槽口的数目等于电机每转所走的步数。

对于高分辨率的步进电劭机,则需采用高分辨率的增量编码器,如旋转变压器增量编码器,感应同步器增量编码器等。

由于反馈编码器价格昂贵,而且为了把编码器安放到步进电动机的轴上,要求系统具有更大的体积,这二大缺陷限制了编码器形式的步进电动机闭环控制系统的应用。

4波形检测形式的步进电动机闭环控制系统

波形检测形式的步进电机闭环控制系统的原理是通过对步进电动机相电流或绕组反电势(或绕组反电势所引起的电流)的检测,间接得到转子位置信息,反馈到控制单元产生控制脉冲,控制步进电动机运动。

图3是其原理图。波形检测器是由简单的电子线路构成,价格便宜,如果需要,可直接安装在控制器逻辑线路中,步进电动机不需附加的机械连接。

4.1利用电流检测的步进电动机闭环控制系统

用电流检测的步进电机闭环控制是基于某些反应式步进电动机的相电流在一定速率范围内出现正的或负的极值这一概念进行的。对系统加初始起动脉冲,电机起动,当相电流出现极值的瞬间,波峰检测线路瞬时产生一个脉冲或者定时信号,反馈给控制单元,作为后续脉冲,实现了步进电动机的闭环控制。值得注意的是,电机导通相电流和截止相电流均可能出现若干个波峰,应在哪一种状态下进行检测,可根据电机的实际运行确定。如图4所示,电流检测可通过在电流回路中插入一个已知阻值的小电阻,测量电流通过时的电压实现。波峰检测线路一般均采用模拟微分法,波峰用di/dt经过零值表示。检测原理图如图5所示。

4.2利用反电势检测的步进电动机闭环控制系统

永磁步进电动机利用反电势检测的闭环控制系统具有其优越性。一台永磁步进电动机从实质上讲,就是一台交流两相同步电动机,可用图6所示的模墅描述。

相绕组的电压方程可表示成:

式中L——回路电感

R——回路电阻

Ii——相电流

θ——转子角位移

N——转子齿数

K——转矩常数

Ei——加在第i相上的电压

在电压方程里,-KsinNθ.θ和KcosNθ.θ是由于电机旋转时在绕组中产生的反电势。转子位置信号体现在反电势的相位上(sinNθ和cosNθ)。转子的速度可由反电势的幅值得出或根据反电势的频率计算。因此,从反电势中,可得到足够的控制电机性能的信步进电动机的闭环控制系统号。

由于步进电动机绕组中的反电势反映了转子的角位置和角速度,因此,构成反馈的关键是重新得到反电势波形,以便对其进行检测,产生后续脉冲。重现反电势波形的方法有两种:a.辅助线圈法

辅助线圈法的原理如图7所示,这个图示出的仅是1相的回路,检测线圈对绕在定子极上,检测线圈内产生的电压可写成:

变压器的初级线圈与定子绕组相串联,次级线圈的感应电压可写成:

设计咒值和Mi值使其满足关系式nL=M1,则电压V1可写成:

这意味着1相中的反电势可在两个相连线圈的两端重现。2相中的反电势可同样以V2 =nKcosNθ.θ形式检测。

b.逻辑仿真法

逻辑仿真法是通过一个运算放大器线路重现绕组中的反电势,利用式(1)可以得到反电势的表达式:

图8所示的线路可仿真式(9)右边的3项,其输出即为反电势Vim=KsinNθ·θ。

利用辅助线圈法和逻辑仿真法得到反电势Uim后,就可对反电势波形进行检测。反电势波形是一正弦波,利用过零比较器,对其正向过零点进行检测,产生脉冲,反馈到控制单元,作为后续脉冲,就可形成闭环控制。

这种反电势检测形式的闭环控制,在低速运行时是很难的,因此,在实际运行时,需要开、闭环结合使用。

4.3利用反电势电流检测的步进电动机闭环控制系统

检测由绕组反电势所引起的电流,从而进行闭环控制,是一种线路比较简单的闭环

控制方法。设I为电机一相绕组中的实际电流,Is为堵转时绕组中的电流,Id为二者的差值,它是仅存在反电势时,绕组中的电流,一般称作反电势电流。

在仅考虑绕组外加励磁电压(矩形波)的基波成分是,Id可以写成

式中ω——转角角速度(ω=θ)

闭环控制所需的反应脉冲可通过Id波形过零检测实现.电流差值信号Id则利用图9所示电路产生

无论是采取编码器形式,还是采取波形检测形式,要构成闭环检测,形成后续脉冲.但是,要构成闭环系统,单单能形成后续脉冲还是不过的,还必须能正确地悬着转换角,即选择形成检测脉冲的位置。

5转换角的选择

通常转换角小时所产生的稳态转速较高,而且不同运行频率下,能够产生最大(或最小)稳态转矩的转换角是不一样的。

设第K相的稳定平衡位置为靠不稳定平衡位置为阪,励磁位置为θK,则转换角α=θKon -θK,重叠角β=θkoff一θk+lon。β值一定时,即β=β时,能够产生极值平均转矩的转换角α,可表示成:

当α、β均不定时,能够产生极值表示成:

一台步进电动机的典型运动过程,包括加速、稳速、减速三个运动区段。这些运动状态的实现,就是通过转换转角的改变来完成的,从式(15)和式(16),可看出,只要通过速度反馈,适时改变转换角,就能达到整个运动过程的转矩最优控制,提高带载能力,另外,很值得说明的一点是,运动过程的转矩最优控制与运动过程的时间最优控制是一致的。

闭环系统中,改变转换角的方法有脉冲注入法和时间延迟法2种。

所谓脉冲注入法,就是在电机需要加速或减速时,在芷常的脉冲链中加入附加脉冲,使电机的换相顺序发生改变,从而达到改变转换角的目的。

所谓时间延迟法是在反馈器与控制单元之间加入一个时间延迟装置,使反馈器发出换相信号与实际换相之间产生一定的时间间隔。

在有些情况下,为了使控制系统简单化,常常选择一个固定不变的转换角。这个转换角的选择取决于电机一负载参数和要求走过的距离。如果目标位置离初始位置没有几步,或者负载惯量很大,则系统不可能加速到高速。这时主要考虑低速时得到的转矩应大,则系统不可能加速到高速。这时主要考虑低速时得到的转矩应大,因此,可选择大转换角。负载位移大时,则情况相反,因为达到最高速度所花的时间比这个最高速度工作所花的时间少,因此,应选择小转换角,低速时的转矩降低,初始加速度小,但这可由比较高的稳态工作速度加以补偿。

6步进电动机的高精度定位系统设想

经常作为伺服元件应用于数字控制系统的步进电动机,定位精度是一项基本的要求。对于一些特殊的高精度系统,如精密分度,精密加工或精密测试系统,普通步进电动机的分辨率及精度都显得不够。要达到秒级的定位精度。必须采用精度高的测角元件(感应同步器)作位置传感器构成闭环系统,而且驱动电源也必须采用细分的形式。图10是这种高精度定位系统的原理框图。

将指令所要求完成的角度作为预置角置入函数变压器,使其原端抽头处于预置位置,感应同步器作为检测元件将角度信号αD送到函数变压器,则函数变压器的输出为:

式中R-镇定电阻

X-对应匝数为Ⅳf函数变压器总匝数的感抗

P-电动机转子齿数

当所检测的角度信号与预置角不等时,误差信号E不为零,输入控制电路推动执行机构,直至误差为零,完成角度的精密修正。函数变压器预置角的改变,亦抽头位置的改变是通过电子开关控制实现的。

高精度定位系统采用感应同步器作为角度检测元件,目前,感应同步器的测角精度可达到峰峰优于“1”的程度。

要完成高精度定位系统的研制还需锯决的一个关键是细分驱动电路。细分驱动电路有很多形式,如正弦波采样驱动方式、阶梯波驱动穷式、采用脉冲移相电路的模拟电源驱动方式

步进电机控制实验

步进电机控制实验 一、实验目的: 了解步进电机工作原理,掌握用单片机的步进电机控制系统的硬件设计方法,熟悉步进电机驱动程序的设计与调试,提高单片机应用系统设计和调试水平。 二、实验容: 编写并调试出一个实验程序按下图所示控制步进电机旋转: 三、工作原理: 步进电机是工业过程控制及仪表中常用的控制元件之一,例如在机械装置中可以用丝杠把角度变为直线位移,也可以用步进电机带螺旋电位器,调节电压或电流,从而实现对执行机构的控制。步进电机可以直接接收数字信号,不必进行数模转换,用起来非常方便。步进电机还具有快速启停、精确步进和定位等特点,因而在数控机床、绘图仪、打印机以及光学仪器中得到广泛的应用。 步进电机实际上是一个数字/角度转换器,三相步进电机的结构原理如图所示。从图中可以看出,电机的定子上有六个等分磁极,A、A′、B、B′、C、C ′,相邻的两个磁极之间夹角为60o,相对的两个磁极组成一相(A-A′,B-B′,C-C′),当某一绕组有电流通过时,该绕组相应的两个磁极形成N极和S极,每个磁极上各有五个均匀分布矩形小齿,电机的转子上有40个矩形小齿均匀地分布的圆周上,相邻两个齿之间夹角为9°。 当某一相绕组通电时,对应的磁极就产生磁场,并与转子形成磁路,如果这时定子的小齿和转子的小齿没有对齐,则在磁场的作用下,转子将转动一定的角度,使转子和定子的齿相互对齐。由此可见,错齿是促使步进电机旋转的原因。 三相步进电机结构示意图 例如在三相三拍控制方式中,若A相通电,B、C相都不通电,在磁场作用下使转子齿和A相的定子齿对齐,我们以此作为初始状态。设与A相磁极中心线对齐的转子的齿为0

现代控制理论及其在直流电机位置控制中的应用

中文论文题目:现代控制理论及其在直流电机位置控制中的 应用 英文论文题目:Modern Control Theory and Application in The DC Motor Location Control 姓名: 指导教师: 专业名称: 所在学院: 论文提交日期

摘要 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。现代控制理论极点配置控制方法是线性系统综合中的重要问题,它是一种寻求一个反馈控制律,使得闭环传递函数的极点位于希望位置的一种控制器设计方法。本文首先介绍了现代控制理论的产生、发展、容及其与经典控制理论的差异,提出了学习现代控制理论的重要意义。随后介绍了采用现代控制理论极点配置的控制方法为小型直流电机设计位置控制系统,并应用Matlab/Simulink软件对控制系统进行辅助分析和设计。 关键词:现代控制理论,极点配置,控制系统

Abstract Control theory as a science and technology, has been widely used in all aspects of our social life. Modern control theory pole placement control method is linear system integration is an important issue, it is a search for a feedback control law, the closed-loop transfer function poles in a desired position controller design method. This paper describes the generation of modern control theory, development, content and the differences with classical control theory is proposed to learn the significance of modern control theory. Then introduced the use of modern control theory pole placement control method for small DC motor position control system design and application of Matlab / Simulink software control system aided analysis and design. Keywords: Modern control theory, Pole placement, Control system

步进电动机控制方法

<<技能大赛自动线的安装与调试>>项目二等奖 心得二 心得二:步进电机的控制方法 我带队参加《2008年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2008年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。以下是我这个作为教练参加大赛的心得二:步进电机的控制方法 《2008年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。 一、 S7-200 PLC 的脉冲输出功能 1、概述 S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。 当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电 机的速度和位置的开环控制。置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。但应用程序必须通过PLC内置I/O 提供方向和限位控制。 为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。 2、开环位控用于步进电机或伺服电机的基本信息 借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下: ⑴最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED) 图1是这2 个概念的示意图。 MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。

三相步进电机原理与控制方法资料(精)

本模块由45BC340C型步进电机及其驱动电路组成。 (一步进电机: 一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。每输入一个脉冲信号,该电动机就转过一定的角度(有的步进电动机可以直接输出线位移,称为直线电动机。因此步进电动机是一种把脉冲变为角度位移(或直线位移的执行元件。 步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。由于输入的是脉冲信号,输出的角位移是断续的,所以又称为脉冲电动机。 随着数字控制系统的发展,步进电动机的应用将逐渐扩大。 步进电动机的种类很多,按结构可分为反应式和激励式两种;按相数分则可分为单相、两相和多相三种。 图1 反应式步进电动机的结构示意图 图1是反应式步进电动机结构示意图,它的定子具有均匀分布的六个磁极,磁极上绕有绕组。两个相对的磁极组成一组,联法如图所示。

模块中用到的45BC340型步进电机为三相反应式步进电机,下面介绍它单三拍、六拍及双三拍通电方式的基本原理。 1、单三拍通电方式的基本原理 设A相首先通电(B、C两相不通电,产生A-A′轴线方向的磁通,并通过转子形成闭合回路。这时A、A′极就成为电磁铁的N、S极。在磁场的作用下,转子总是力图转到磁阻最小的位置,也就是要转到转子的齿对齐A、A′极的位置(图2a;接着B相通电(A、C 两相不通电,转了便顺时针方向转过30°,它的齿和C、C′极对齐(图2c。不难理解,当脉冲信号一个一个发来时,如果按A→C→B→A→…的顺序通电,则电机转子便逆时针方向转动。这种通电方式称为单三拍方式。 图2 单三拍通电方式时转子的位置 2、六拍通电方式的基本原理 设A相首先通电,转子齿与定子A、A′对齐(图3a。然后在A相继续通电的情况下接通B相。这时定子B、B′极对转子齿2、4产生磁拉力,使转子顺时针方向转动,但是A、A′极继续拉住齿1、3,因此,转子转到两个磁拉力平衡为止。这时转子的位置如图3b所示,即转子从图(a位置顺时针转过了15°。接着A相断电,B相继续通电。这时转子齿2、4和定子B、B′极对齐(图c,转子从图(b的位置又转过了15°。

伺服电机位置速度转矩控制的区别

伺服电机位置、速度、转矩控制的区别? “位置”、”速度”、”转矩”是伺服系统由外到内的三个闭环控制方式。 位置控制方式有伺服完成所有的三个闭环的控制,计算机只需要发送脉冲串给伺服单元即可,计算机一侧不需要完成 PID控制算法;使用速度控制方式时,伺服完成速度和扭矩(电流)两个闭环的控制,计算机需要发送模拟量给伺服单元,计算机一侧需要完成PID 位置控制算法,然后通过D/A输出。 一般来讲,我们的需要位置控制的系统,既可以使用伺服的位置控制方式,也可以使用速度控制方式,只是上位机的处理不同。另外,有人认为位置控制方式容易受到干扰。 扭矩控制方式是伺服系统只进行扭矩的闭环控制,即电流控制,上位机的算法也简单,只需要发送给伺服单元一个目标扭矩值,是一个模拟量。多用在单一的扭矩控制场合,比如在印刷机系统中,一个电机用速度或位置控制方式,用来确定印刷位置,另一个电机用作扭矩控制方式,用来形成恒定的张力。这三种工作方式实际上由三个控制回路来实现的。 位置控制方式由位置环实现,即将输出位置与指令位置比较生成控制量,使输出位置与输入位置保持一致。 位置控制模式是上位机给到电机的设定位置和电机本身的编码器位置反馈信号,或者设备本身的直接位置测量、反馈进行比较形成位置环,以保证伺服电机运动到设定的位置。位置环的输出给到速度环作为速度环的设定。 速度方式时,由速度环实现,速度回路则将输出速度与指令速度比较,生成控制量,位置环断开。使输出速度与输入速度信号保持一致。 速度模式下就是电机速度设定和电机上所带编码器的速度反馈形成闭环控制。以伺服电机实际速度和和设定速度一致。速度环的控制输出就是转矩模式的下的电流环的力矩给定。 转矩方式时,由电流环实现,速度环与位置环均断开,它的用途是使输出的电流与输入的电流保持一致。 转矩控制模式,就是让伺服电机按给定的转矩进行旋转就是保持电机电流环的输出恒定。如果外部负载转矩大于或等于电机设定的输出转矩则电机的输出转矩会保持在设定转矩不变,电机会跟随负载来运动。如果外部负载转矩小于电机设定的输出转矩则电机会一直加速直到超出电机或驱动的最大允许转速后报警停在。 电流环为最内环,速度环为次外环,位置环为外环。所以说,转矩控制模式是利用了伺服电机控制最基层的电流控制环,速度控制环是建立在电流环之上的,位置控制环又是建立在速度环之上的还有底层的电流环。 早期的伺服驱动一般没有位置环。由定位模块和数控装置实现位置环。

西门子200系列PLC直流步进电机控制方法

直流步进电机plc控制方法 系统功能概述: 本系统采用PLC通过步进电机驱动模块控制步进电机运动。当按下归零按键时,电机1和电机2回到零点(零点由传感器指示)。当按下第一个电机运行按键时,第一个电机开始运行,直到运行完固定步数或到遇到零点停止。当按下第二个电机运行按键时,第二个电机开始运行,运行完固定步数或遇到零点停止。两电机均设置为按一次按键后方向反向。电机运行时有升降速过程。 PLC输入点I0.0为归零按键,I0.1为第一个电机运行按键,I0.2为第二个电机运行按键,I0.3为第一个电机传感器信号反馈按键,I0.4为第二个电机传感器信号反馈按键。 PLC输出点Q0.0为第一个电机脉冲输出点,Q0.1为第二个电机脉冲输出点,Q0.2为第一个电机方向控制点,Q0.3为第二个电机方向控制点,Q0.4为电机使能控制点。 所用器材: PLC:西门子S7-224xpcn及USB下载电缆。编程及仿真用软件为V4.0 STEP 7 MicroWIN SP3。 直流步进电机2个,微步电机驱动模块2个。按键3个。24V开关电源一个。导线若干。 各模块连接方法: PLC与步进电机驱动模块的连接:

驱动模块中EN+、DIR+、CP+口均先接3k电阻,然后接24V 电源。 第一个驱动模块CP-接PLC的Q0.0,DIR-接PLC的Q0.2,EN-接PLC的Q0.4 第二个驱动模块CP-接PLC的Q0.1,DIR-接PLC的Q0.3,EN-接PLC的Q0.4 注意: 1、PLC输出时电压为24V,故和驱动器模块连接时,接了3k 电阻限流。 2、由于PLC处于PTO模式下只有在输出电流大于140mA时,才能正确的输出脉冲,故在输出端和地间接了200欧/2w下拉电阻,来产生此电流。(实验室用的电阻功率不足,用200欧电阻时功率至少在24*24/200=2.88w,即用3w的电阻) 3、PLC与驱动模块连接时,当PLC输出低电平时不能将驱动模块电平拉低,故在EN-和DIR-上接了200欧/2W下拉电阻 驱动模块与电机接法: 驱动模块的输出端分别与电机4根线连接 电机传感器与PLC连接: 传感器电源接24v,信号线经过240欧电阻(试验中两个470电阻并联得到)与24v电源上拉后,信号线接到PLC的I0.3和I0.4

伺服电机速度环、位置环、扭矩环的控制原理

运动伺服一般都是三环控制系统,从内到外依次是电流环、速度环、位置环。 1、电流环:电流环的输入是速度环PID调节后的那个输出,电流环的输入值和 电流环的反馈值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。任何模式都必须使用电流环,电流环是控制的根本,在系统进行速度和位置控制的同时系统也在进行电流/转矩的控制以达到对速度和位置的相应控制。 2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值, 速度环输入值和速度环反馈值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出到电流环。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。速度环控制包含了速度环和电流环。 3、位置环:位置环的输入就是外部的脉冲,外部的脉冲经过平滑滤波处理和电 子齿轮计算后作为“位置环的设定”,位置环输入值和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在经过位置环的PID调节(比例增益调节,无积分微分调节)后输出和位置给定的前馈值的和构成速度环的给定。 位置环的反馈也来自于编码器。位置控制模式下系统进行了3个环的运算,系统运算量大,动态响应速度最慢。 编码器安装于伺服电机尾部,它和电流环没有任何联系,他采样来自于电机的转动而不是电机电流,和电流环的输入、输出、反馈没有任何联系。而电流环是在驱动器内部形成的,即使没有电机,只要在每相上安装模拟负载(例如电灯泡)电流环就能形成反馈工作。 三种控制模式 位置控制:通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的数量来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中

(完整word)MIMO非线性系统的反馈线性化初步理论

第五章 MIMO 非线性系统的反馈线性化初步理论 引言: 对于多输入多输出系统仍可以用下列紧缩的形式的方程来描述: )()()(x h y u x g x f x =+=& (*) n R x ∈ 若输入的个数与输出的个数的数目相同时,可令 ) 1( )](),...,([)()1()](),...,([)()()](),...,([)() 1() ,...,() 1(),...,(11111?=?=?=?=?=m x h x h Col x h n x f x f Col x f m n x g x g x g m y y Col y m u u Col u m n m m m )(),...,(),(1x g x g x f m 均是光滑的向量场,)(),...,(1x h x h m 是光滑的函数,均定义在n R 的某个开集上。 5.1 向量相对阶和总相对阶: 一个多变量非线性系统(*),在οx 处有向量相对阶},...,{1m r r 是指: (i) 0)(=x h L L i k f g j 对所有:111-<≤≤≤≤i r k m i m j οx x ∈?的邻域 (ii) m m ?矩阵 ?? ?? ? ? ?????? ??=------)(.. ) (. ...)(..)() (.. )()(11212111 11 12211 1 1x h L L x h L L x h L L x h L L x h L L x h L L x A m r f g m r f g r f g r f g r f g r f g m m m m m 在οx x =处是非奇异的。 注意: (1)该定义涵盖了SISO 系统。 (2)整数m r r ,...,1中的某个i r 是与系统第i 个输出)(x h i 有关的。行向量: )](),...,([111x h L L x h L L i r f g i r f g i m i --,至少有一个元素是非零的,

步进电机控制速度的方法

步进电机只能够由数字信号控制运行的,当脉冲提供给驱动器时,在过于短的时间里,控制系统发出的脉冲数太多,也就是脉冲频率过高,将导致步进电机堵转。要解决这个问题,必须采用加减速的办法。就是说,在步进电机起步时,要给逐渐升高的脉冲频率,减速时的脉冲频率需要逐渐减低。这就是我们常说的“加减速”方法。 步进电机转速度是根据输入的脉冲信号的变化来改变的,从理论上讲,给驱动器一个脉冲,步进电机就旋转一个步距角(细分时为一个细分步距角)。实际上,如果脉冲信号变化太快,步进电机由于内部的反向电动势的阻尼作用,转子与定子之间的磁反应将跟随不上电信号的变化,将导致堵转和丢步。 所以步进电机在高速启动时,需要采用脉冲频率升速的方法,在停止时也要有降速过程,以保证实现步进电机精密定位控制。加速和减速的原理是一样的。以加速实例加以说明:加速过程是由基础频率(低于步进电机的直接起动最高频率)与跳变频率(逐渐加快的频率)组成加速曲线(降速过程反之)。跳变频率是指步进电机在基础频率上逐渐提高的频率,此频率不能太大,否则会产生堵转和丢步。 步电机系统解决方案

加减速曲线一般为指数曲线或经过修调的指数曲线,当然也可采用直线或正弦曲线等。使用单片机或者PLC,都能够实现加减速控制。对于不同负载、不同转速,需要选择合适的基础频率与跳变频率,才能够达到最佳控制效果。指数曲线,在软件编程中,先算好时间常数存贮在计算机存贮器内,工作时指向选取。通常,完成步进电机的加减速时间为300ms以上。如果使用过于短的加减速时间,对绝大多数步进电机来说,就会难以实现步进电机的高速旋转。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓(SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、减速步进电机、带刹车步进电机、直线步进电机、空心轴步进电机、防水步进电机以及步进驱动器、减振垫、制振环、电机引线、拖链线、齿轮、同步轮、手轮等专业配套产品。我们还供应德国TRINAMIC驱动芯片和日本NPM运动控制芯片。根据客户配套需要,我们还可以 步电机系统解决方案

如何选择伺服电机控制方式

如何选择伺服电机控制方式? 如何选择伺服电机控制方式? 一般伺服电机都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。

反馈线性化原理的应用共23页文档

第四章 反馈线性化原理的应用 在这一章中将介绍在局部坐标变换和反馈线性化原理基础上的一些推论及其在控制系统设计中的应用。它们是零动态;局部渐近镇定;渐近输出跟踪;干扰解耦;高增益反馈;具有线性误差动态特性的观测器问题等。 4.1零动态 在这一节中我们将介绍并讨论一个重要的概念—“零动态”。在很多场合中它起着与线性系统中传递函数的“零点”极其类似的作用。在前述中我们已经看到线性系统的相对阶r 能够被解释为其传递函数的极点数目与零点数目之差。即若任何一个线性系统其相对阶r 严格小于其维数n ,则其传递函数中必存在零点;反之若r=n ,则传递函数中就没有零点。所以前节中精确线性化所讨论的系统,在某种意义上类似于线性系统中无零点的情况。在这一节中这种类比将进一步推广。 考虑一个相对阶r 严格小于n 的非线性系统 则可通过坐标变换,变成正则形: 其中()()φφr n x x +???????? ??1M ,若能使()L x g i φ=0, n i r ≤≤+1 则可将系统变成下列形式: 或写成: 若x 0是使()()f x h x 0000==,的点,则在x 0一定有ξ=0,虽然此时η可以任意选择,但是不失一般性,可以选η=0,如果x 0是系统的一个平衡点,则在新坐标下也应是一个平衡点。 因而有: ()b ξη,=0 当()()ξη,,=00时 ()q ξη,=0 当()()ξη,,=00时 这也就是说,在x 00=,系统处于平衡状态下,若此时及以后又没有输入作用(即0=u ),则该系统就一直处于平衡状态。 1.输出零化问题和零动态 现在提出一个这样的问题: 能否找到这样成对的关系:即某个初始状态x 0,及对应的()u t 0,()u t 0定义在t =0的一个邻域上,使得系统在t =0的邻域上输出() y t

步进电机控制方法

第四节 步进电机的控制与驱动 步进电机的控制与驱动流程如图4-11所示。主要包括脉冲信号发生器、环形脉冲分配器和功率驱动电路三大部分。 步进脉冲 方向电平 图4-11 步进电机的控制驱动流程 二、步进电机的脉冲分配 环形分配器是步进电机驱动系统中的一个重要组成部分,环形分配器通常分为硬环分和软环分两种。硬环分由数字逻辑电路构成,一般放在驱动器的内部,硬环分的优点是分配脉冲速度快,不占用CPU的时间,缺点是不易实现变拍驱动,增加的硬件电路降低了驱动器的可靠性;软环分由控制系统用软件编程来实现,易于实现变拍驱动,节省了硬件电路,提高了系统的可靠性。 1.采用硬环分时的脉冲分配 采用硬环分时,步进电机的通电节拍由硬件电路来决定,编制软件时可以不考虑。控制器与硬环分电路的连接只需两根信号线:一根方向线,一根脉冲线(或者一根正转脉冲线,一根反转脉冲线)。假定控制器为AT89S52单片机,晶振频率为12MHz,如图4-18:P1.0输出方向信号,P1.1输出脉冲信号。 则控制电机走步的程序如下: (1)电机正转100步 MOV 0FH,#100D ;准备走100步 CONT1: SETB P1.0 ;正转时P1.0=1 CLR P1.1 ;发步进脉冲的下降沿(设驱动器对于脉冲的下降沿有效) NOP ;延时(延时的目的是让驱动电路的光耦充分导通) NOP ;延时(根据驱动器的需要,调整延时) SETB P1.1 ;发步进脉冲的上升沿 MOV 0EH,#4EH ;两脉冲之间延时20000μs(决定电机的转速) MOV 0DH,#20H ;20000的HEX码为4E20 CALL DELAY ;调用延时子程序 DJNZ 0FH,CONT1 ;循环次数减1后,若不为0则继续,循环100次 RET (2)电机反转100步 MOV 0FH,#100D ;准备走100步 CONT2: CLR P1.0 ;反转时P1.0=0 CLR P1.1 ;发步进脉冲的下降沿(设驱动器对于脉冲的下降沿有效) NOP ;延时(延时的目的是让驱动电路的光耦充分导通) NOP ;延时(根据驱动器的需要,调整延时) SETB P1.1 ;发步进脉冲的上升沿

西门子S7-200在步进电机定位控制中的应用

西门子S7-200在步进电机定位控制中的应用 1 引言 PLC输出的集成脉冲可通过步进电机进行定位控制。关于定位控制,调节和控制操作之间存在一些区别。步进电机不需要连续的位置控制,而在控制操作中得到应用。在以下的程序例子中,借助于CPU214所产生的集成脉冲输出,通过步进电机来实现相对的位置控制。虽然这种类型的定位控制不需要参考点,本例还是粗略地描述了确定参考点的简单步骤。因为实际上它总是相对一根轴确定一个固定的参考点,因此,用户借助于一个输入字节的对偶码(Dual coding)给CPU 指定定位角度。用户程序根据该码计算出所需的定位步数,再由CPU输出相关个数的控制脉冲。 2 系统结构 如图1所示。 图1 系统结构 3 硬件配置 如表1所示。

4 软件结构 4.1 PLC的输入信号与输出信号 PLC的部分输入信号与输出信号,以及标志位如表2所示。 4.2 系统软件设计 PLC的程序框图如图2所示。 4.3 初始化 在程序的第一个扫描周期(SM0.1=1),初始化重要参数。选择旋转方向和解除联锁。 4.4 设置和取消参考点 如果还没有确定参考点,那么参考点曲线应从按“START”按扭(I1.0)开始。CPU有可能输出最大数量的控制脉冲。在所需的参考点,按“设置/取消参考点”开关(I1.4)后,首先调用停

止电机的子程序。然后,将参考点标志位M0.3置成1,再把新的操作模式“定位控制激活”显示在输出端Q1.0。 如果I1.4的开关已激活,而且“定位控制”也被激活(M0.3=1),则切换到“参考点曲线”参考点曲线。在子程序1中,将M0.3置成0,并取消“定位控制激活”的显示(Q1.0=0)。此外,控制还为输出最大数量的控制脉冲做准备。当再次激活I1.4开关,便在两个模式之间切换。如果此信号产生,同时电机在运转,那么电机就自动停止。 实际上,一个与驱动器连接的参考点开关将代替手动操作切换开关的使用,所以,参考点标志能解决模式切换。 4.5 定位控制 如果确定了一个参考点(M0.3=1)而且没有联锁,那么就执行相对的定位控制。在子程序2中,控制器从输入字节IBO读出对偶码方式的定位角度后,再存入字节MB11。与此角度有关的脉冲数,根据下面的公式计算: N=φ/360°×S 式中:N-控制脉冲数 φ-旋转角度 S-每转所需的步数 该程序所使用的步进电机采用半步操作方式(S=1000)。在子程序3中循环计算步数,如果现在按“START”按钮(I1.0),CPU将从输出端Q0.0输出所计算的控制脉冲个数,而且电机将根据相应的步数来转动,并在内部将“电机转动”的标志位M0.1置成1。 在完整的脉冲输出之后,执行中断程序0,此程序将M0.1置成0,以便能够再次起动电机。 4.6 停止电机 按“STOP”(停止)按扭(I1.1),可在任何时候停止电机。执行子程序0中与此有关的指令。 5 程序和注释 //标题:用脉冲输出进行定位控制 //主程序 LD SM0.1 //仅首次扫描周期SM0.1才为1。 R M0.0,128 //MD0至MD12复位 ATCH 0,19 //把中断程序0分配给中断事件19(脉冲串终止) ENI

无刷直流电动机PWM 控制方案

第三章、用EL-DSPMCKIV实现无刷直流电动机PWM 控制方案 实验概述: 本实验是一个无刷直流电动机的PWM控制系统。结构简单,用到的模块也较少。下面给出每个模块的输入与输出量名称及其量值格式 (一)、无刷直流电动机PWM 控制原理简介 无刷直流电动机从结构上讲更接近永磁同步电动机(我们在下一章节中做详细介绍),控制方法也很简单,主要是通过检测转子的位置传感器给出的转子磁极位置信号来确定励磁的方向,从而保证转矩角在90 度附近变化,保证电机工作的高效率。定子换相是通过转子位置信号来控制,转矩的大小则通过PWM的方法控制有效占空比来调控。 我公司提供过两种直流无刷电机,一种以前提供过的57BL-02直流无刷电机的额定电压为24V,额定转速为1600rpm,转子极数为4,也就是2 极对,还有一种是现在提供的57BL-0730N1直流无刷电机,该电机额定转速为3000rpm,转子极数为10,也就是5极对,这两种电机的转子位置都由霍尔传感器提供,同时由此计算出电机的转速,控制程序样例没有电流环。 (二)、系统组成方案及功能模块划分 本实验为开环和闭环实验,通过几个模块信号处理最终用BLDCPWM模块产生IPM 驱动信号来控制直流无刷电机转动。

下图为一个开环控制的系统功能框图,参考占空比信号经由RMP2CNTL 模块处理,变成缓变信号送到PWM产生模块。霍尔传感器的输出脉冲信号,经由DSP的CAP1、CAP2、CAP3端口被DSP获取。通过霍尔提供的转子位置信息HALL3_DRV模块判断转子位置,并将该转子位置信息通过计数器传递给BLDC_3PWM_DRV 模块,该模块通过占空比输入、设定开关频率以及转子的位置信息产生相应的PWM 信号作用于逆变器中的开关管,从而驱动电动机旋转。

步进电动机控制方法

技能大赛自动线的安装与调试》项目二等奖 心得二 心得二:步进电机的控制方法 我带队参加《2008年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2008年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。以下是我这个作为教练参加大赛的心得二:步进电机的控制方法 《2008年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。 一、 S7-200 PLC 的脉冲输出功能 1、概述 S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。 当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电 机的速度和位置的开环控制。置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。但应用程序必须通过PLC内置I/O 提供方向和限位控制。 为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。 2、开环位控用于步进电机或伺服电机的基本信息 借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下: ⑴最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED) 图1是这2 个概念的示意图。 MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。

几种常见步进电机控制方法庶谈

几种常见步进电机控制方法庶谈 摘要:本文对步进电机工作原理、运行性能进行了详细阐述,分析了步进电机细分驱动系统的作用和适用性,研究了步进电机常见的控制方法。 关键词:步进电动机;控制方法 1 简介 步进电机把电脉冲信号变换成角位移以控制转子转动的电机,是机电一体化的重要执行机构。步进电机整机结构简单,可以在宽广的频率范围内实现调速,其转速不受负载大小的影响,过载性好,动作相应快,控制方便,可实现快速起停、正反转控制。并且由其组成的开环系统物美价廉,实用可靠。伴随着自动化技术的突飞猛进,步进电机的运用的广度和深度与日俱增。 步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。反应式步进电机结构简单、成本低,动态性能弱、效率不高、发热量大,可靠性低;永磁式步进电机动态性能好、输出力矩大,但运转精度差;混合式步进电机集以上两种步进电机的优势于一身,输出力矩大、动态性能好,但结构复杂、成本高昂。市场是最为常见的主要是两相混合式步进电机,其突出的性价比使得其在步进电机市场中占据90%以上的市场份额。 2 PLC控制步进电机应用及举例 步进电机是数字控制电机,其驱动电路根据控制信号工作,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合单片机控制。通过单片机控制可以实现由脉冲分配进行控制换相顺序,由给定工作方式正序换相通电控制步进电机的(即实现步进电机正转或反转),通过改变两个脉冲的间隔控制步进电机的速度等调节。 如图1所示的35BY型永磁步进电机是该电机的接线图。要使用步进电机转动,只要轮流给各引出端通电即可。将COM端标识为C,只要AC、C、BC、C,轮流加电就能驱动步进电机运转。通过查阅电机的相关参数,得出控制电路的基本设计思路:工作电压为12V,最大电流为0.26A,选用ULN2003来作为驱动。通过P1.4-P1.7来控制线圈的通断(开机时,P1.4-P1.7均为高电平),将P1.4-P1.7顺序切换至低电平即可实现电机驱动运行。单片机控制35BY48S03型步进电机的电路原理图如图2所示。 ■ 图1 35BY型步进电机的接线图 ■

对直流无刷电机的pid控制

PID闭环速度调节器采用比例积分微分控制 闭环速度调节器采用比例积分微分控制(简称PID控制),其输出是输入的比例、积分和微分的函数。PID调节器控制结构简单,参数容易整定,不必求出被控对象的数学模型,因此PID 调节器得到了广泛的应用。 PID调节器虽然易于使用,但在设计、调试无刷直流电机控制器的过程中应注意:PID调节器易受干扰、采样精度的影响,且受数字量上下限的影响易产生上下限积分饱和而失去调节作用。所以,在不影响控制精度的前提下对PID控制算法加以改进,关系到整个无刷直流电机控制器设计的成败。 2速度设定值和电机转速的获取 为在单片机中实现PID调节,需要得到电机速度设定值(通过A/D变换器)和电机的实际转速,这需要通过精心的设计才能完成。 无刷直流电机的实际转速可通过测量转子位置传感器(通常是霍尔传感器)信号得到,在电机转动过程中,通过霍尔传感器可以得到如图2所示的周期信号。 由图2可知,电机每转一圈,每一相霍尔传感器产生2个周期的方波,且其周期与电机转速成反比,因此可以利用霍尔传感器信号得到电机的实际转速。为尽可能缩短一次速度采样的时间,可测得任意一相霍尔传感器的一个正脉冲的宽度,则电机的实际转速为:但由于利用霍尔传感器信号测速,所以测量电机转速时的采样周期是变化的,低速时采样周期要长些,这影响了PID 调节器的输出,导致电机低速时的动态特性变差。解决的办法是将三相霍尔传感器信号相“与”,产生3倍于一相霍尔传感器信号频率的倍频信号,这样可缩短一次速度采样的时间,但得增加额外的硬件开销。直接利用霍尔传感器信号测速虽然方便易行,但这种测速方法对霍尔传感器在电机定子圆周上的定位有较严格的要求,当霍尔传感器在电机定子圆周上定位有误差时,相邻2个正脉冲的宽度不一致,会导致较大的测速误差,影响PID调节器的调节性能。若对测速精度要求较高时,可采用增量式光电码盘,但同样会增加了电路的复杂性和硬件的开销。 电机速度设定值可以通过一定范围内的电压来表示。系统中采用了串行A/D(如ADS7818)来实现速度设定值的采样。但在电机调速的过程中,电机控制器的功率输出部分会对A/D模拟输入电压产生干扰,进行抗干扰处理。 3非线性变速积分的PID算法 (1)PID算法的数字实现 离散形式的PID表达式为: 其中:KP,KI,KD分别为调节器的比例、积分和微分系数;E(k),E(k-1)分别为第k 次和k-1次时的期望偏差值;P(k)为第k次时调节器的输出。 比例环节的作用是对信号的偏差瞬间做出反应,KP越大,控制作用越强,但过大的KP会导致系统振荡,破坏系统的稳定性。积分环节的作用虽然可以消除静态误差,但也会降低系统的响应速度,增加系统的超调量,甚至使系统出现等幅振荡,减小KI可以降低系统的超调量,但会减慢系统的响应过程。微分环节的作用是阻止偏差的变化,有助于减小超调量,克服振荡,使系统趋于稳定,但其对干扰敏感,不利于系统的鲁棒性。 (2)经典PID算法的积分饱和现象 当电机转速的设定值突然改变,或电机的转速发生突变时,会引起偏差的阶跃,使|E(k)|增大,PID的输出P(k)将急剧增加或减小,以至于超过控制量的上下限Pmax,此时的实际控制量只能限制在Pmax,电机的转速M(k)虽然不断上升,但由于控制量受到限制,其增长的速度减慢,偏差E(k)将比正常情况下持续更长的时间保持在较大的偏差值,从而使得PID 算式中的积分项不断地得到累积。当电机转速超过设定值后,开始出现负的偏差,但由于积分项已有相当大的累积值,还要经过相当一段时间后控制量才能脱离饱和区,这就是正向积分饱和,反向积分饱和与此类似。解决的办法:一是缩短PID的采样周期(这一点单片机往往达不到),

采用绝对位置控制指令控制步进电机

·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作! ·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。

步进电机的PLC控制调速方法之探索

步进电机的PLC控制调速方法之探索 步进电机又叫做脉冲电机,是控制系统中的一种执行元件。它的作用是将脉冲信号变换为相应的位移,即给一个脉冲电信号,步进电机就转动一个角度或前进一步。由于步进电机的位移与脉冲个数成正比,其转向与脉冲分配到步进电机的各相绕组的相序有关。所以只要控制指令脉冲的数量、频率及电机绕组通电的相序,便可控制步进电机的输出位移量、速度和方向。步进电机具有较好的控制性能,其启动、停止、正反转及其它任何运行方式的改变都可在少数脉冲内完成,且可获得较高的控制精度,从而实现精确定位。同时可以通过控制脉冲频率来控制步进电机转动的速度和加速度,从而达到调速的目的。在负载能力范围内,这些关系不因电源电压、负载大小、环境条件的波动而变化,因而可适用于开环系统中作执行元件,使控制系统大为简化。目前,我国已较多地将步进电机用于机械加工的数控机床中,在绘图机、轧钢机的自动控制、自动记录仪表和数模变换等方面也得到较多的应用。 可编程序控制器简称PLC,是一种数字运算操作的控制系统,专门用于工业环境设计。它的主要特点是可靠性高、使用方便、体积小、重量轻、编程简单易学,在工业控制领域得到广泛的应用。目前,利用PLC技术可以方便地实现对电机速度和位置的控制,方便地进行各种步进电机的操作,完成各种复杂的工作。它代表了先进的工业自动化革命,加速了机电一体化的实现。 本论文以项目教学法的方式探索步进电机的PLC控制转速方法。本设计控制要求如下:按下启动按钮,步进电机以100Hz的基准频率正转。按一次加速按钮,频率以50Hz递增,最多加速5次;按一次减速按钮,频率以25Hz递减,最多减速4次。加速时为正转,减速时为反转。按下停止按钮,步进电机立即停止运行。步进电机驱动器的细分设置为1,电流设置为1.5A。 1 控制系统的硬件设计 1.1 控制系统的结构。本设计中,系统硬件部分由上位机、PLC、步进电机驱动器、步进电机、负载等组成。上位机是计算机,作为控制面板、人机交互界面和控制软件编制环境,通过与PLC的通信,实现操作监控功能;PLC发出脉冲信号、方向信号,通过步进电机驱动器控制步进电机的运行状态。 1.2 控制系统的硬件。 1.2.1 PLC。使用PLC控制步进电机时,应该保证PLC具有高速脉冲输出功能。通过选择具有高速脉冲输出功能或专用运动控制功能的模块来实现。在本设计中,采用的是三菱系列FX2N-32MT型的晶体管输出型PLC。在PLC的选型上,必须采用晶体管输出型PLC,若使用继电器型的PLC,则高速脉冲的输出很难达到控制要求。 1.2.2 步进电机。步进电机有步距角(涉及到相数)、静力矩、电流三大要素

相关文档
最新文档