数据结构课程设计最小生成树问题
数据结构(Java版)图2(最小生成树)
最小生成树举例
A
50 60 52 65 50
C
45 42 30 50
A
C
45
B
40
D
G
B
40 50
D
42 30
G
E
70
F
E
F
(a) 无向带权连通图G
(b) 无向带权图G 的最小生成树T
从最小生成树的定义可知,构造n个顶点的无向带权连 通图的最小生成树,必须满足如下三个条件: ① 必须包含n个顶点。 ② 有且仅有n-1条边。 ③ 没有回路。
)
将ej边加入到tree中;
}
实践项目
设计一个程序实现Prim和Kruskal算法.
表5-1 lowcost[ ]数组数据变化情况 表5-2 closest[ ]数组数据变化情况
扫描次数
closest[0]
closest[1]
closest[2]
closest[3]
closest[4]
closest[5]
求最小生成树算法
普里姆算法(Prim) (从点着手)
适合于求边稠密的最小生成树 适合于求边稀疏的最小生成树
克鲁斯卡尔算法(Kruskal)(从边着手)
普里姆算法(Prim)思想
1.
2.
3.
4.
令集合U={u0}(即从顶点u0开始构造最小生 成树),集合T={}。 从所有顶点u∈U和顶点v∈V-U的边权中选择最 小权值的边(u,v),将顶点v加入到集合U中,边 (u,v)加入到集合T中。 如此重复下去,直到U=V时则最小生成树构造完 毕。 此时集合U就是最小生成树的顶点集合,集合T 就是最小生成树的边集。
数据结构的树应用中的问题
数据结构的树应用中的问题树是一种重要的数据结构,在计算机科学中有着广泛的应用。
树的应用涉及到许多问题,本文将介绍其中一些常见的问题及其解决方法。
一、二叉搜索树的查找二叉搜索树是一种特殊的树结构,它的每个节点都包含一个值,并且左子树的值小于该节点的值,右子树的值大于该节点的值。
在二叉搜索树中,我们可以通过比较节点的值来快速地进行查找操作。
具体的查找方法可以使用递归或迭代的方式实现,通过不断比较节点的值,直到找到目标节点或者遍历到叶子节点为止。
二、二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树中的所有节点。
常用的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左右子树;中序遍历是指先遍历左子树,然后访问根节点,最后遍历右子树;后序遍历是指先遍历左右子树,最后访问根节点。
这三种遍历方式在不同的问题中有着不同的应用,具体的选择取决于问题的要求。
三、树的高度和深度树的高度和深度是指从根节点到叶子节点的最长路径上的节点数。
计算树的高度可以使用递归的方法,分别计算左子树和右子树的高度,然后取较大值再加上根节点即可。
树的深度可以通过求解根节点到目标节点的路径长度来实现,具体方法可以使用递归或迭代的方式。
四、树的平衡性检查树的平衡性是指树的左右子树的高度差不超过一个固定值。
平衡树的好处是可以提高树的查找效率。
常见的平衡树有AVL树和红黑树。
平衡树的插入和删除操作会涉及到旋转操作,通过旋转可以调整树的结构以保持平衡。
五、树的最小生成树最小生成树是指在一个加权连通图中选择一棵包含所有顶点的树,使得树的总权值最小。
常用的算法有Prim算法和Kruskal算法。
Prim算法是一种贪心算法,从一个起始点开始,每次选择与当前树相连的最小权值的边,逐步扩展生成树。
Kruskal算法则是一种基于并查集的算法,首先将图中的边按照权值从小到大排序,然后逐步选择权值最小且不会形成环的边加入生成树。
最小生成树问题的算法实现及复杂度分析—天津大学计算机科学与技术学院(算法设计与分析)
算法设计与分析课程设计报告学院计算机科学与技术专业计算机科学与技术年级2011姓名XXX学号2013年5 月19 日题目:最小生成树问题的算法实现及复杂度分析摘要:该程序操作简单,具有一定的应用性。
数据结构是计算机科学的算法理论基础和软件设计的技术基础,在计算机领域中有着举足轻重的作用,是计算机学科的核心课程。
而最小生成树算法是算法设计与分析中的重要算法,最小生成树也是最短路径算法。
最短路径的问题在现实生活中应用非常广泛,如邮递员送信、公路造价等问题。
本设计以Visual Studio 2010作为开发平台,C/C++语言作为编程语言,以邻接矩阵作为存储结构,编程实现了最小生成树算法。
构造最小生成树有很多算法,本文主要介绍了图的概念、图的遍历,并分析了PRIM 经典算法的算法思想,最后用这种经典算法实现了最小生成树的生成。
引言:假设要在n个城市之间建立通信联络网,则连接n个城市只需要n-1条线路。
这时,自然会考虑这样一个问题,如何在节省费用的前提下建立这个通信网?自然在每两个城市之间都可以设置一条线路,而这相应的就要付出较高的经济代价。
n个城市之间最多可以设置n(n-1)/2条线路,那么如何在这些可能的线路中选择n-1 条使总的代价最小呢?可以用连通网来表示n 个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋予边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一个生成树都可以是一个通信网。
现在要选择这样一棵生成树,也就是使总的代价最小。
这个问题便是构造连通网的最小代价生成树(简称最小生成树)的问题。
最小生成树是指在所有生成树中,边上权值之和最小的生成树,另外最小生成树也可能是多个,他们之间的权值之和相等。
一棵生成树的代价就是树上各边的代价之和。
而实现这个运算的经典算法就是普利姆算法。
正文普里姆(Prim)算法思想普里姆算法则从另一个角度构造连通网的最小生成树。
最小生成树(Kruskal算法)
三、方案解决:
在本题中我们将采用 Kruskal 算法来构造最小生成树。 从题目所给赋权图中我们可以得到该图的邻接矩阵为:
⎡ 0 20 0 0 0 23 1 ⎤ ⎢20 0 15 0 0 0 4 ⎥ ⎢ ⎥ ⎢ 0 15 0 3 0 0 9 ⎥ ⎢ ⎥ G = ⎢ 0 0 3 0 17 0 16 ⎥ ⎢ 0 0 0 17 0 28 25⎥ ⎢ ⎥ ⎢ 23 0 0 0 28 0 36⎥ ⎢ 1 4 9 16 25 36 0 ⎥ ⎣ ⎦
-3-
6.选择造价第五小的序号为 5 的边,即 S 23 ,由于加入后边 S 23 , S 27 , S37 将构成回路,因此 舍弃该边 如图所示:
7.选择造价第六小的序号为 6 的边,即 S 47 ,由于加入后边 S34 , S37 , S 47 将构成回路,因此 舍弃该边 如图所示:
8.选择造价第七小的序号为 7 的边,即 S 45 ,加入 T 中,此时 T={{6},{ S17 , S34 , S 27 , S37 ,
S 45 , S16 }},Cost=34+23=57
如图所示:
11.算法结束 此时,所有顶点已包含在树中,整棵最小生成树已经构造完成。即应该在城市{(1,7) , (2,7) , (3,7) , (3,4) , (4,5) , (1,6)}之间建造通信道路,可使得城市间相互通信又造价费 用最小,此时可以得到其最小的费用为 57 万元
-7-
edges[k].end = j; edges[k].weight = G->arc[i][j].weight; k++; } } } sort(edges, G); for (i = 1; i <= G->arcnum; i++) { parent[i] = 0; } printf("最小生成树为:\n"); for (i = 1; i <= G->arcnum; i++)//核心部分 { n = Find(parent, edges[i].begin); m = Find(parent, edges[i].end); if (n != m) { parent[n] = m; printf("< %d, %d > %d\n", edges[i].begin, edges[i].end, edges[i].weight); Mincost+=edges[i].weight; } } printf("使各城市间能够通信的最小费用为:Mincost=%d\n",Mincost); } int Find(int *parent, int f) { while ( parent[f] > 0) { f = parent[f]; } return f; }
实验5最小生成树算法的设计与实现(报告)
实验5 最小生成树算法的设计与实现一、实验目的1、根据算法设计需要, 掌握连通图的灵活表示方法;2、掌握最小生成树算法,如Prim、Kruskal算法;3、基本掌握贪心算法的一般设计方法;4、进一步掌握集合的表示与操作算法的应用。
二、实验内容1、认真阅读算法设计教材和数据结构教材内容, 熟习连通图的不同表示方法和最小生成树算法;2、设计Kruskal算法实验程序。
有n个城市可以用(n-1)条路将它们连通,求最小总路程的和。
设计测试问题,修改并调试程序, 输出最小生成树的各条边, 直至正确为止。
三、Kruskal算法的原理方法边权排序:1 3 14 6 23 6 41 4 52 3 53 4 52 5 61 2 63 5 65 6 61. 初始化时:属于最小生成树的顶点U={}不属于最小生成树的顶点V={1,2,3,4,5,6}2. 根据边权排序,选出还没有连接并且权最小的边(1 3 1),属于最小生成树的顶点U={1,3},不属于最小生成树的顶点V={2,4,5,6}3. 根据边权排序,选出还没有连接并且权最小的边(4 6 2),属于最小生成树的顶点U={{1,3},{4,6}}(还没有合在一起,有两颗子树),不属于最小生成树的顶点V={2,5}4. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,3,4,6}(合在一起),不属于最小生成树的顶点V={2,5}5. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,6},,不属于最小生成树的顶点V={5}6. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,5,6}此时,最小生成树已完成四、实验程序的功能模块功能模块:bool cmp(Edge a,Edge b); //定义比较方法x);//在并查集森林中找到x的祖先int g etfa(intint s ame(int x,int y); //判断祖先是否是同一个,即是否联通 void merge(int x,int y); //合并子树,即联通两子树sort(e+1,e+m+1,cmp); //对边按边权进行升序排序详细代码:#include <iostream>#include <cstdio>#include <cstring>#include <algorithm>#define M AXN_E 100000#define M AXN_V 100000using namespace std;struct Edge{int f m,to,dist;//边的起始顶点,边的到达顶点,边权}e[MAXN_E];int f a[MAXN_V],n,m; //顶点数组,顶点总数,边总数 //定义比较,只是边权比较bool cmp(Edge a,Edge b){return a.dist < b.dist;}//查找x的祖先是在并查集森林中找到x的祖先x){//getfaint g etfa(intreturn fa[x];if(fa[x]==x)else r eturn fa[x] = getfa(fa[x]);}//判断祖先是否是同一个,即是否联通int s ame(int x,int y){return getfa(x)==getfa(y);}//合并两棵树void merge(int x,int y){int f ax=getfa(x),fay=getfa(y);fa[fax]=fay;}int m ain(){int i;cout<<"请输入顶点数目和边数目:"<<endl;cin>>n>>m;//n为点数,m为边数//输出顶点信息cout<<"各个顶点值依次为:"<<endl;for(i=0;i<n;i++){fa[i]=i;if(i!=0)cout<<fa[i]<<" ";}cout<<endl;cout<<"请输入边的信息(例子:1 4 5 从顶点1到顶点4的边权为5)"<<endl;for(i=1;i<=m;i++)用边集数组存放边,方便排序和调用 cin>>e[i].fm>>e[i].to>>e[i].dist;//sort(e+1,e+m+1,cmp); //对边按边权进行升序排序表示目前的点共存在于多少个集合中,初始情况是每 int r st=n,ans=0;//rst个点都在不同的集合中for(i=1;i<=m && rst>1;i++){int x=e[i].fm,y=e[i].to;函数是查询两个点是否在同一集合中 if(same(x,y))continue;//sameelse{函数用来将两个点合并到同一集合中 merge(x,y);//mergerst--;//每次将两个不同集合中的点合并,都将使rst值减1这条边是最小生成树中的边,将答案加上边权 ans+=e[i].dist;//}}cout<<ans;return 0;}五、测试数据和相应的最小生成树Input:6 101 2 61 3 11 4 52 3 52 5 63 4 53 5 63 6 44 6 25 6 6Putout:18生成树为:七、思考题1、微软面试题一个大院子里住了50户人家,每家都养了一条狗,有一天他们接到通知说院子里有狗生病了,并要求所有主人在发现自己家狗生病的当天就要把狗枪杀掉。
最小生成树算法及应用
最小生成树算法及应用
二、求图的最小生成树算法小结 Prim算法和Kruskal算法 三、应用举例
例2、最优布线问题(wire.???) 学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来。两台计算机被连接是指它们时 间有数据线连接。由于计算机所处的位置不同,因此不同的两台计算机的连接费用往往是不同的。
算法分析
2、套用最小生成树的经典算法求解
以机器蛇为顶点,以不受屏蔽的通信线路为边构建图,就可以直 接套用最小生成树的经典算法求解。由于几乎每两条机器蛇间都 会有一条边,因此应选用Prim算法。
设
const maxn=200 ; oo=2000000000;{ 机器蛇数的上限和无穷大} type TPoint=record {坐标} x,y:longint; end; var s,w1,w2:array[1..maxn] of TPoint; { 机器蛇的坐标和屏蔽线的坐标 } n,m,i,j,k:integer; ba:array[1..maxn] of boolean; { 机器蛇的访问标志} d:array[1..maxn] of longint; {d[i]以机器蛇i为头的最短边长} min:longint; ans:double;
题目中要求信息可以在任意两条机器蛇间传递、通讯网 络的总长度要尽可能的短,显然这是一个求图的最小生 成树问题。这道题在构造图的过程中还涉及到一点计算 几何的知识。 1、判断线段相交 两条线段AB、CD,相交的充要条件是:A、B在直线CD 的异侧且C、D在直线AB的异侧。也就是说从AC到AD的 方向与从BC到BD的方向不同,从CA到CB的方向也与从 DA到DB的方向不同。
机器蛇
最小生成树问题课程设计
最小生成树问题课程设计一、课程目标知识目标:1. 理解最小生成树的概念,掌握其定义及性质;2. 学会运用普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法求解最小生成树问题;3. 了解最小生成树在实际问题中的应用,如网络设计、电路设计等。
技能目标:1. 能够运用普里姆和克鲁斯卡尔算法解决最小生成树问题,并进行算法分析;2. 能够运用所学知识解决实际问题,具备一定的算法设计能力;3. 能够通过合作与交流,提高问题分析和解决问题的能力。
情感态度价值观目标:1. 培养学生对数据结构与算法的兴趣,激发学习热情;2. 培养学生的团队合作意识,学会倾听、尊重他人意见;3. 培养学生面对问题勇于挑战、积极进取的精神。
课程性质:本课程为计算机科学与技术专业的高年级课程,旨在帮助学生掌握图论中的最小生成树问题及其求解方法。
学生特点:学生具备一定的编程基础和图论知识,对算法有一定的了解,但可能对最小生成树问题尚不熟悉。
教学要求:结合学生特点,采用案例教学、任务驱动等方法,注重理论与实践相结合,培养学生的实际操作能力和创新思维。
通过本课程的学习,使学生能够将所学知识应用于实际问题中,提高解决复杂问题的能力。
二、教学内容1. 最小生成树概念与性质- 定义、性质及定理- 最小生成树的构建方法2. 普里姆算法- 算法原理与步骤- 算法实现与复杂度分析- 举例应用3. 克鲁斯卡尔算法- 算法原理与步骤- 算法实现与复杂度分析- 举例应用4. 最小生成树在实际问题中的应用- 网络设计- 电路设计- 其他领域应用案例5. 算法比较与优化- 普里姆与克鲁斯卡尔算法的比较- 算法优化方法及其适用场景6. 实践环节- 编程实现普里姆和克鲁斯卡尔算法- 分析并解决实际问题- 小组讨论与成果展示教学内容依据课程目标进行选择和组织,注重科学性和系统性。
参考教材相关章节,制定以下教学安排:第1周:最小生成树概念与性质第2周:普里姆算法第3周:克鲁斯卡尔算法第4周:最小生成树在实际问题中的应用第5周:算法比较与优化第6周:实践环节与总结三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言和形象的比喻,对最小生成树的概念、性质、算法原理等基础知识进行讲解,使学生快速掌握课程内容。
数据结构 耿国华 西北大学 7-5最小生成树-动画演示
5
6
小 D 6 6 18 14
生 成 树
E F
1291
11
18 14
33
33
Step1. 初始化。选取种子 顶点,种子顶点构成最优 路段网,其余顶点构成外 围网。初始化Closedge。
A
16 B
21
1
2
3
4
5
6
A A A A A A U 19
F
C
A B C D E FV
0 16 ∞ ∞ 19 21 w
Closedge数组
F
21 Step3. 更新Closedge, 11 确保每组边是最优路段网
到外围网路径中最小的。
14
33
A
16
B
5
6
11
AB U 19
F
C
FV
6
2111 w
E
D
最小生成树——Prim算法
AB C DE
A 16 19
B 16 5 6
最M
C
5
6
Hale Waihona Puke 小 D 6 6 18E
D
Closedge数组
最小生成树——Prim算法
AB C DE
A 16 19
B 16 5 6
最M
C
5
6
小 D 6 6 18
生 成 树
E F
1291
11
18 14
33
1
2
3
4
5
A A AB AB A
ABCDE
0 0 ∞5 ∞6 19
Closedge数组
F
21 Step3. 更新Closedge, 11 确保每组边是最优路段网
最小生成树问题
2.1 最小生成树
树T(V,E)的性质:
E 树的边数等于其顶点数减“1”,即 V 1 ; 树的任意两个顶点之间恰有一条初级链相连接; 在树中任意去掉一条边后,便得到一个不连通的 图; 在树中任意两个顶点之间添加一条新边,所得新 图恰有一个初级圈。
例如,图 6.4.1 给出的 G1 和 G2 是树,但 G3 和 G4 则不是树。
44
44 69
结果显示于图
求最小生成树的 Prim 算法
Prim 算法的直观描述 假设 T0 是赋权图 G 的最小生成树。任选一 个顶点将其涂红,其余顶点为白点;在一个端 点为红色,另一个端点为白色的边中,找一条 权最小的边涂红,把该边的白端点也涂成红色; 如此,每次将一条边和一个顶点涂成红色,直 到所有顶点都成红色为止。最终的红色边便构 成最小生成树 T0 的边集合。
在求最小生成树的有效算法中,最著名的两个是 Kruskal(克罗斯克尔)算法和 Prim(普瑞姆)算法, 其迭代过程都是基于贪婪法来设计的。 1.求最小生成树的 Kruskal 算法
Kruskal 算法的直观描述 假设 T0 是赋权图 G 的最小生成树,T0 中的边和 顶点均涂成红色,初始时 G 中的边均为白色。 ① 将所有顶点涂成红色; ② 在白色边中挑选一条权值最小的边,使其与红 色边不形成圈,将该白色边涂红; ③ 重复②直到有 n1 条红色边,这 n1 条红色边 便构成最小生成树 T0 的边集合。
最小生成树算法
一个简单连通图只要不是树,其生成树就不唯 一,而且非常多。一般地,n 个顶点地完全图,其 不同地生成树个数为 nn2。因而,寻求一个给定赋 权图的最小生成树,一般是不能用穷举法的。例如, 30 个顶点的完全图有 3028个生成树,3028 有 42 位, 即使用最现代的计算机,在我们的有生之年也是无 法穷举的。所以,穷举法求最小生成树是无效的算 法,必须寻求有效的算法。
最小生成树问题
榆林学院12届课程设计《最小生成树问题》课程设计说明书学生姓名:赵佳学号:1412210112院系:信息工程学院专业:计算机科学与技术班级:计14本1指导教师:答辩时间:年月日最小生成树问题一、问题陈述最小生成树问题设计要求:在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。
存储结构采用多种。
求解算法多种。
二、需求分析1.在n个城市之间建设网络,只需保证连通即可。
2.求城市之间最经济的架设方法。
3.采用多种存储结构,求解算法也采用多种。
三、概要设计1、功能模块图2、功能描述(1)CreateUDG()创建一个图:通过给用户信息提示,让用户将城市信息及城市之间的联系关系和连接权值写入程序,并根据写入的数据创建成一个图。
(2)Switch()功能选择:给用户提示信息,让用户选择相应功能。
(3)Adjacency_Matrix()建立邻接矩阵:将用户输入的数据整理成邻接矩阵并显现在屏幕上。
(4)Adjacency_List()建立邻接表:将用户输入的数据整理成临接表并显现在屏幕上。
(5)MiniSpanTree_KRSL()kruskal算法:利用kruskal算法求出图的最小生成树,即:城市之间最经济的连接方案。
(6)MiniSpanTree_PRIM()PRIM算法:利用PRIM算法求出图的最小生成树,即:城市之间最经济的连接方案。
四、详细设计本次课程设计采用两种存储结构以及两种求解算法。
1、两种存储结构的存储定义如下:typedef struct Arcell{double adj;}Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{char vexs[MAX_VERTEX_NUM]; //节点数组AdjMatrix arcs; //邻接矩阵int vexnum,arcnum; //图的当前节点数和弧数}MGraph;typedef struct Pnode //用于普利姆算法{ char adjvex; //节点double lowcost; //权值}Pnode,Closedge[MAX_VERTEX_NUM];//记录顶点集U到V-U的代价最小的边的辅助数组定义typedef struct Knode//用于克鲁斯卡尔算法中存储一条边及其对应的2个节点{char ch1; //节点1char ch2; //节点2double value;//权值}Knode,Dgevalue[MAX_VERTEX_NUM];2、求解算法采用Prim算法和Kruskal算法。
《数据结构》课程设计 普里姆算法 最小生成树
[i].stop_vex,lge[i].weight); /*输出N-1条最小边的信息*/
for(i=0;i<12;i++)
{
line(vex[lge[i].start_vex][0],vex[lge[i].start_vex][1],vex[lge
lge[min]=lge[i];
lge[i]=edge;
vx=lge[i].stop_vex;
for(j=i+1; j<pgraph->n-1; j++)
{
vy=lge[j].stop_vex;
weight=pgraph->arcs[vx][vy];
if(weight<lge[j].weight)
{
{550,250},{520,330},{430,400},{350,450},{270,400},{200,330}};
/*初始化个顶点的坐标*/
int info[12][12];
char *text;
void initalGraph(int vec[][2]) /*画出顶点函数*/
{
int gd=DETECT,gm;
[i].stop_vex][0],vex[lge[i].stop_vex][1]);
}
/*根据生成的最小边数组连线*/
printf("---It is done!---");
getch();
exit(1);
}
此程序再TURBOC2.0环境中编译通过运行.TURBOC2.0下载的地址
数据结构:第7章 图3-最小生成树
• 按照生成树的定义,n 个顶点的连通网络的生成树有 n
个顶点、n-1 条边。
即有权图
目标:
在网络的多个生成树中,寻找一个各边权值之和最小的
生成树。
构造最小生成树的准则 ❖ 必须只使用该网络中的边来构造最小生成树;
❖ 必须使用且仅使用n-1条边来联结网络中的n个顶点;
❖ 不能使用产生回路的边。
典型用途:
(b) u={1} w={2,3,4,5,6}
0 6 1 5
6
0
5
3
1 5 0 7 5 4
5
7
0
2
3 5 0 6
4 2 6 0
i
1234
closest[i] 1 1 1 1
lowcost[i] 0 6 1 5
56 11 ∞∞
closest用于存放顶点序号 lowest存放权值
15 4 6
1 25
3
54
5
6
(c ) u={1,3} w={2,4,5,6}
1
1
4
25
6
32
54
5
6
(d) u={1,3,6} w={2,4,5}
i
1234 5 6
closest[i] 1 3 1 1 3 3
lowcost[i] 0 5 0 5 5 4
i
1234 5 6
closest[i] 1 3 1 6 3 3
生
v3 v1
成
树 v4 v2
v1
0^ 1^ 0^ 1^
2.生成森林
若一个图是非连通图或非强连通图,但有若 干个连通分量或若干个强连通分量,则通过 深度优先搜索遍历或广度优先搜索遍历,不 可以得到生成树,但可以得到生成森林,且 若非连通图有 n 个顶点,m 个连通分量或强 连通分量,则可以遍历得到m棵生成树,合 起来为生成森林,森林中包含n-m条树边。
最小生成树的教学过程设计
最小生成树的教学过程设计最小生成树是图论中的一个经典问题,它的解法有多种方法,其中Kruskal和Prim算法是最常用的两种方法。
如何让学生理解这些算法,并掌握它们的运用,是教学过程设计的重要问题。
以下是一个最小生成树教学过程的设计:1. 引言和概述在开始教授算法之前,首先需要给学生一个概念性的介绍,让他们了解最小生成树的定义、作用和主要应用场景。
2. Kruskal算法的介绍首先,通过一个简单的例子来介绍Kruskal算法的基本思想和步骤。
然后,逐步深入,讲解算法的具体实现过程,包括如何选择边、如何判断是否构成环等。
最后,通过多个例子的练习,让学生掌握算法的应用技巧。
3. Prim算法的介绍与Kruskal算法类似,通过一个简单的例子来介绍Prim算法的基本思想和步骤。
然后,逐步深入,讲解算法的具体实现过程,包括如何选择顶点、如何更新距离等。
最后,通过多个例子的练习,让学生掌握算法的应用技巧。
4. 算法的比较和分析在讲解完Kruskal和Prim算法之后,需要对它们进行比较和分析,让学生了解它们之间的异同点、优缺点和适用场景。
可以通过实例分析、复杂度分析等方式进行讲解。
5. 实践应用最后,通过一个实际问题的案例,让学生运用所学算法,解决实际问题。
例如,给定一张地图和路线长度,如何找到连接所有城市的最短路径。
这样的实践应用,能够让学生更好地理解和掌握算法的实际应用。
总之,最小生成树教学过程的设计需要重视基本概念和实际应用的结合,注重实践操作和应用技巧的培养,以及比较和分析不同算法的优缺点。
通过这些措施,可以让学生更好地理解和掌握最小生成树的算法和应用。
最小生成树实验报告
最小生成树实验报告最小生成树(Minimum Spanning Tree,MST)是图论中的一个重要概念,用于在一个连通带权无向图中找到一个子图,使得这个子图是一个树(即无环连通图),并且所有边的权值之和最小。
最小生成树在诸多领域有着广泛的应用,如网络设计、电力传输等。
在本次实验中,我们实现了最小生成树算法,并将其运用到多个实际问题上。
下面将依次介绍算法原理、实现过程、实验结果以及对实验的进一步改进。
1.算法原理Kruskal算法的基本思想是,首先将所有边按照权值从小到大排序,然后从最小的边开始,逐一加入生成树,直到生成树包含了所有的顶点。
在加入一条边时,需要判断这条边将两个顶点连通起来是否会形成环,如果不会则加入生成树。
Prim算法的基本思想是,从一个顶点开始,逐步加入生成树的顶点,每次加入一个顶点时,选择一个离生成树最近的点,并将这个点加入生成树。
通过不断的选择顶点和加入边,最终得到最小生成树。
2.实现过程首先,我们实现了图的数据结构和边的数据结构。
在图的数据结构中,我们定义了图的顶点数和边数,并用邻接矩阵来表示图的连接情况。
边的数据结构包含了两个顶点和边的权值。
其次,我们实现了两种算法。
对于Kruskal算法,我们首先将所有边按照权值从小到大进行排序。
然后,逐个加入边,判断是否形成环。
如果不会形成环,则将该边加入生成树。
最后,我们使用并查集数据结构来判断两个顶点是否连通。
对于Prim算法,我们首先选择一个起点作为生成树的初始顶点,并将其加入生成树。
然后,每次选择一个离生成树最近的顶点,并将其加入生成树,同时更新其他顶点到生成树的距离。
最后,所有顶点都被加入生成树后,得到最小生成树。
3.实验结果我们在实验中选择了不同大小的图进行测试。
经过对比,我们发现Kruskal算法和Prim算法得到的最小生成树结果是一致的,但是Kruskal 算法的时间复杂度要稍高于Prim算法。
具体的结果如下:对于一个边数为10的图,我们得到了如下最小生成树:1-2-4-5-3总权重为12对于一个边数为20的图,我们得到了如下最小生成树:2-1-4-5-3总权重为16对于一个边数为30的图2-1-4-5-6-7-3总权重为22从实验结果来看,无论是规模较小的图还是规模较大的图,我们都能够得到最小生成树,并且所得到的结果是正确的。
数据结构最小生成树头歌c语言
数据结构最小生成树头歌c语言一、前言数据结构中的最小生成树是一种非常重要的算法,它在网络设计、图像处理和社交网络分析等领域有着广泛的应用。
在C语言中,我们可以通过不同的数据结构来实现最小生成树算法,本文将重点介绍如何使用头歌C语言来实现最小生成树算法。
二、数据结构介绍1. 什么是最小生成树在一个连通的无向图中,如果我们要找到一个生成树,并且这个生成树的所有边的权值之和最小,那么这个生成树就是最小生成树。
最小生成树算法有Prim算法和Kruskal算法两种经典的实现方式。
2. 最小生成树的应用最小生成树广泛应用于各种场景中。
比如在计算机网络中,我们可以通过最小生成树算法来构建网络拓扑结构;在社交网络分析中,我们可以基于用户间的关系构建最小生成树,从而发现社区结构;在传感器网络中,最小生成树算法可以用于构建相互连接的传感器网络。
三、 Kruskal算法实现Kruskal算法是一种贪心算法,它的基本思想是:首先将图中的边按照权值的大小进行排序,然后依次加入权值最小的边,并且保证加入的边不会构成回路,直到生成树的边数等于节点数减一为止。
在C语言中,我们可以通过以下步骤来实现Kruskal算法:1. 定义一个结构体来表示边的信息,包括起点、终点和边的权值。
2. 根据边的权值对边进行排序。
3. 使用并查集来判断是否构成回路,如果不构成回路则加入最小生成树中。
4. 重复步骤3直到生成树的边数等于节点数减一。
实际的C语言代码如下所示:```c#include <stdio.h>#include <stdbool.h>#define MAX_EDGE 100#define MAX_VERT 100typedef struct{int from, to;int weight;} Edge;Edge edges[MAX_EDGE];int parent[MAX_VERT];void make_set(int v){parent[v] = v;}int find_set(int v){if (v == parent[v])return v;return parent[v] = find_set(parent[v]); }void union_sets(int a, int b){a = find_set(a);b = find_set(b);if (a != b)parent[b] = a;}int m本人n(){int n, m; // n为节点数,m为边数scanf("dd", n, m);for (int i = 0; i < m; i++)scanf("ddd", edges[i].from, edges[i].to, edges[i].weight);for (int i = 1; i <= n; i++)make_set(i);// 对边按照权值进行排序for (int i = 0; i < m; i++){for (int j = 0; j < m - 1 - i; j++){if (edges[j].weight > edges[j + 1].weight){Edge tmp = edges[j];edges[j] = edges[j + 1];edges[j + 1] = tmp;}}}int cost = 0;for (int i = 0; i < m; i++){if (find_set(edges[i].from) != find_set(edges[i].to)) {printf("d d d\n", edges[i].from, edges[i].to, edges[i].weight);cost += edges[i].weight;union_sets(edges[i].from, edges[i].to);}}printf("Minimum cost = d\n", cost);return 0;}```四、 Prim算法实现Prim算法是另一种最小生成树算法,在C语言中同样可以通过数据结构来实现。
数学建模最小生成树例题
数学建模最小生成树例题例题1:某城市计划建设一条高速公路,需要在若干个村庄之间选择一条最优路径。
已知各个村庄之间的距离,请使用最小生成树算法为高速公路选择最优路径。
参考答案:最小生成树算法可以用于解决此类问题。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的权重从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
2. Prim算法:首先选择权重最小的边加入生成树,然后从剩余的边中选择一条与已选择的边相连且权重最小的边加入生成树,直到所有边都加入生成树。
例题2:一个通信网络由若干个节点和边组成,节点代表城市,边代表通信线路。
已知各个城市之间的距离和通信需求,请使用最小生成树算法为该通信网络设计一个最优的通信线路网。
参考答案:最小生成树算法可以用于解决此类问题。
通过最小生成树算法,我们可以找到一个包含所有节点且边的总权重最小的树形结构,以满足各个城市之间的通信需求。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的权重从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
2. Prim算法:首先选择权重最小的边加入生成树,然后从剩余的边中选择一条与已选择的边相连且权重最小的边加入生成树,直到所有边都加入生成树。
例题3:一个城市的电力网由多个节点和边组成,节点代表发电厂或变电站,边代表输电线路。
已知各个节点之间的电抗和传输功率,请使用最小生成树算法为该城市电力网设计一个最优的输电线路。
参考答案:最小生成树算法可以用于解决此类问题。
通过最小生成树算法,我们可以找到一个包含所有节点且边的总电抗最小的树形结构,以满足各个节点之间的电力传输需求。
常用的最小生成树算法有Kruskal算法和Prim算法。
1. Kruskal算法:按照边的电抗从小到大排序,依次将边加入生成树,如果加入的边与已选择的边不构成环,则加入,否则不加入。
最小生成树课程设计
最小生成树课程设计一、课程目标知识目标:1. 学生能够理解最小生成树的概念,掌握其定义和性质;2. 学生能够掌握两种常见的最小生成树算法:普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法;3. 学生能够运用最小生成树解决实际问题,如网络设计、电路设计等。
技能目标:1. 学生能够运用图论知识,分析并解决最小生成树问题;2. 学生能够编写和调试实现最小生成树的算法程序;3. 学生能够通过小组合作,共同探讨并解决最小生成树相关问题。
情感态度价值观目标:1. 学生通过学习最小生成树,培养对图论的兴趣,激发探索数学问题的热情;2. 学生在合作解决问题的过程中,学会沟通、协作,培养团队精神;3. 学生能够认识到数学知识在实际生活中的广泛应用,增强学习的积极性和主动性。
课程性质:本课程为计算机科学、信息技术等相关专业的高年级学生设计,旨在帮助学生掌握最小生成树的基本原理和算法,提高解决实际问题的能力。
学生特点:学生已经具备一定的图论基础,熟悉基本的算法和数据结构,具有一定的编程能力。
教学要求:通过讲解、示例、练习和小组讨论等形式,使学生掌握最小生成树的相关知识,提高编程实践能力和解决问题的能力。
同时,注重培养学生的团队合作精神和数学思维。
二、教学内容1. 最小生成树概念与性质- 定义、性质和判定条件- 最小生成树的应用场景2. 普里姆(Prim)算法- 算法原理与步骤- 代码实现与调试- 算法性能分析3. 克鲁斯卡尔(Kruskal)算法- 算法原理与步骤- 代码实现与调试- 算法性能分析4. 最小生成树算法比较与应用- 普里姆与克鲁斯卡尔算法的优缺点对比- 实际问题中的应用案例分析5. 小组讨论与练习- 分组讨论最小生成树相关算法及应用- 编写和调试最小生成树算法程序- 解决实际问题,如网络设计、电路设计等教学内容安排与进度:第一周:最小生成树概念与性质,普里姆算法原理与实现第二周:普里姆算法性能分析,克鲁斯卡尔算法原理与实现第三周:克鲁斯卡尔算法性能分析,最小生成树算法比较与应用第四周:小组讨论与练习,解决实际问题教材章节:《离散数学及其应用》第6章:图论《数据结构与算法分析》第9章:图论算法《计算机算法设计与分析》第4章:最小生成树与最短路径三、教学方法本课程将采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:教师通过生动的语言、形象的比喻和具体的案例,讲解最小生成树的概念、性质和算法原理,使学生系统掌握理论知识。
最小生成树问题
最小生成树问题
最小生成树问题是指在连接有n个点的图的所有n-1条边中,找到一棵边权和最小的树,这棵树包含了图中所有的点,并且所有点之间都是通过这些边相互连接的。
最小生成树问题可以用来解决一些实际问题,比如网络规划、电力传输、通信网络等。
在计算机领域中,最小生成树问题通常可以用来解决分布式系统中的数据同步问题、数据中心间的通信问题等。
常用的解决最小生成树问题的算法有Prim算法和Kruskal算法。
Prim算法是一种贪心算法,它从一个初始点开始,每次选择与当前生成树相连的边中权值最小的边,并且将该边连接的点加入到生成树中。
重复这个过程,直到生成树包含了所有的点为止。
Kruskal算法是一种基于并查集的贪心算法。
它将所有边按照权值从小到大排序,然后依次遍历每条边,如果这条边连接的两个点不在同一个连通分量中,则将这条边添加到最小生成树中,并合并这两个连通分量。
重复这个过程,直到生成树包含了所有的点为止。
最小生成树问题是一个经典的优化问题,可以使用上述的两种算法来解决。
其中Prim算法的时间复杂度为O(n^2),Kruskal
算法的时间复杂度为O(m log n),其中n表示点的个数,m表示边的个数。
普里姆算法求最小生成树
沈阳航空航天大学课程设计报告课程设计名称:数据结构课程设计课程设计题目:Prim算法求最小生成树院(系):计算机学院专业:计算机科学与技术(物联网方向)班级:学号:姓名:指导教师:学术诚信声明本人声明:所呈交的报告(含电子版及数据文件)是我个人在导师指导下独立进行设计工作及取得的研究结果。
尽我所知,除了文中特别加以标注或致谢中所罗列的内容以外,报告中不包含其他人己经发表或撰写过的研究结果,也不包含其它教育机构使用过的材料。
与我一同工作的同学对本研究所做的任何贡献均己在报告中做了明确的说明并表示了谢意。
报告资料及实验数据若有不实之处,本人愿意接受本教学环节“不及格”和“重修或重做”的评分结论并承担相关一切后果。
本人签名: 日期: 2015 年 1 月 15 日沈阳航空航天大学课程设计任务书目录学术诚信声明............................................... - 0 -一课程设计目的和要求..................................... - 5 -1.1课程设计目的 (5)1.2课程设计的要求 (5)二实验原理分析............................................ - 6 -2.1最小生成树的定义.. (6)2.2P RIM算法的基本思想 (7)三概要分析和设计......................................... - 10 -3.1概要分析 (10)3.2概要设计 (11)四测试结果.............................................. - 18 -4.1实验一.. (18)4.2实验二 (18)4.3实验三 (18)参考文献.................................................. - 19 -附录(关键部分程序清单)............................... - 20 -一课程设计目的和要求1.1 课程设计目的(一)根据算法设计需要,掌握连通网的数据表示方法;(二)掌握最小生成树的Prim算法;(三)学习独立撰写报告文档。
最小生成树题目
最小生成树文档========1. 图的表示和基本操作-----------在图论中,图是由顶点(vertices)和边(edges)组成的一种结构。
顶点通常用V表示,边用E表示。
一个边连接两个顶点,可以用一个有序对(u, v)表示一条从顶点u到顶点v的边。
无向图中的边没有方向,而有向图中的边有方向。
在图的操作中,常见的有添加/删除顶点,添加/删除边,查找顶点等。
在最小生成树算法中,主要涉及到的操作有添加/删除边,查找顶点等。
2. 最小生成树的定义和性质----------------最小生成树(Minimum Spanning Tree, MST)是指一个连通无向图中,一个连接所有顶点的子图,使得所有边的权值和最小。
最小生成树具有如下性质:* 最小生成树是连通的,即任意两个顶点之间都有路径相连。
* 最小生成树的边数等于V-1,其中V是顶点的数量。
* 最小生成树的权值和等于所有边的权值和。
4. Kruskal算法---------Kruskal算法是一种基于贪心策略的最小生成树算法。
算法步骤如下:1. 将所有的边按照权值从小到大排序。
2. 初始化一个空的森林F。
3. 从第一条边开始,遍历所有的边,如果这条边的两个顶点在森林F中不连通,则将这条边加入森林F中,否则忽略这条边。
4. 如果森林F中的顶点数不等于V,则返回步骤3。
否则,森林F就是最小生成树。
Kruskal算法的时间复杂度为O(ElogE),其中E是边的数量。
该算法具有稳定性和可并行性。
但是由于需要维护森林的数据结构,实际实现起来比较复杂。
5. Prim算法-------Prim算法是一种基于贪婪策略的最小生成树算法。
算法步骤如下:1. 初始化一个空的集合C,用于存储已经访问过的顶点。
2. 从任意一个顶点开始,将其加入集合C中。
3. 对于每一个顶点v,计算它到集合C中所有已经访问过的顶点的最小距离。
将距离最小的边对应的顶点加入集合C中。
4. 如果集合C中的顶点数不等于V,则返回步骤3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
"数据结构与算法课程设计报告课程设计题目:最小生成树问题)专业班级:信息与计算科学1001班姓名:谢炜学号:4 设计室号:理学院机房设计时间: 2011-12-26 批阅时间:指导教师:杜洪波成绩:一、摘要:随着社会经济的发展,人们的生活已经越来越离不开网络,网络成为人们社会生活的重要组成部分。
我们希望拥有一个宽松的上网环境,以便更好的进行信息的交流,在此我们有必要提升我们的网络传播速度。
从某种程度上来说网络传播速度代表着一个国家网络化程度的高低。
为了解决网络传输速度的问题我们希望在各个城市之间多架设一些通信网络线路,以缓解网络不够流畅不够便捷的问题。
而在城市之间架设网络线路受到资金因素等的限制,我们希望找到一条捷径这样我们即达到了连接了各个城市网络的目的又节省了建设成本。
、通过以上的分析我们得出解决此问题的关键在于找到一个短的路径完成网络的假设。
在此我们想将各个城市抽象成为一个个节点,连接各个城市之间的网络作为连接各个节点的边。
于是我们就将城市的空间分布抽象成为一个网络图,再将各条边的距离抽象成为各节点之间的权值。
在原来的基础上建立一个带有权值的网络图。
于是原有的问题就转化为找图的最小生成树问题。
我们利用普利姆算法和卡鲁斯卡尔算法找到我们所需要的最小的生成树。
二、问题分析在n个城市间建立通信网络,需架设n-1条路线。
求解如何以最低的经济代价建设此通信网,这是一个最小生成树问题。
我们可以利用普利姆算法或者克鲁斯卡尔算法求出网的最小生成树,输入各城市的数目以及各个城市之间的距离。
将城市之间的距离当做网中各点之间的权值。
三、实现本程序需要解决的问题(1)如何选择存储结构去建立一个带权的网络;(2)如何在所选存储结构下输出这个带权网络;\(3)如何实现普利姆算法的功能;(4)如何从每个顶点开始找到所有的最小生成树的顶点;(5)如何输出最小生成树的边及其权值此问题的关键就是利用普利姆算法,找到一个最小上的生成树,在一个就是输出我们所需要的信息,在此我们将各个城市看做是网中的各个顶点城市之间的距离看做是个顶点之间的权值。
现在我们问题做如下的分析:这个问题主要在于普利姆算法的实现。
我们将各个城市的空间分布抽象成一个带有权值的网络,这个权值就是任意两个城市之间,各个城市就看做是网络的各个顶点。
我们建立的输入的数据格式为:首先提示输入带权的顶点数目,我定义为整形的数据型,然后输入每条边的信息,即边的两个顶点之间的权值,以十进制整数类型数据,这样我们就建立了一个带权的网络。
问题的输出我是将我们所得到的最小生成树的路线输出出来。
题目的要求就是我们在n个城市之间架设网络得到的最为经济的架设方法,我们进行以上的工作就是在找我们所需要的最小生成树,已解决我们的问题。
,四、算法思想普利姆算法求最小生成树的主要思想假设N=(V,{E})是连通网,TE是N上最小生成树中边的集合。
算法从U={u0}( u∈V),TE={}开始,重复执行下述操作:在所有u∈U,v∈V-U的边(u,v)∈E中找一条代价最小的边(u0,v)并入集合TE,同时v并入U,直至U=V为止。
此时TE中必有n-1条边,则T=(V,{E})为N的最小生成树。
对于最小生成树问题:最小生成树是指在所有生成树中,边上权值之和最小的生成树,另外最小生成树也可能是多个但是他们权值之和是相等的。
五、程序设计流程图:<<^六、模块划分.(1)预处理#include<>#define maxvertexnum 20#define maxedgenum 40typedef int adjmatrix[maxvertexnum][maxvertexnum];(2)定义一个储存节点信息的结构体struct edgenode{,int frontvex;int rearvex;int weight;};typedef edgenode adgeset[maxedgenum];(3)初始化的无向图,将每条边的权值赋值为无穷void insitadj(adjmatrix &GA){(for(int i=1;i<maxvertexnum;i++){for(int j=1;j<maxvertexnum;j++){GA[i][j]=20000; rontvex=1;GT[i].rearvex=i+1;GT[i].weight=GA[1][i+1];}:}(6)输出我们所找到的最小生成树void fun(adjmatrix GA,adgeset>,int n){ int i;for(i=1;i<n;i++){int min=10000,m=i;for(int j=i;j<n;j++)}{if(GT[j].weight<min){min=GT[j].weight;m=j;}}edgenode temp=GT[i];>[i]=GT[m];GT[m]=temp;int k=GT[m].rearvex;for(j=i;j<n;j++){int t=GT[j].rearvex;int w=GA[k][t];if(w<GT[j].weight)"{GT[j].weight=w;GT[j].frontvex=k;}}}}void display(adgeset GT,int n)${for(int i=1;i<n;i++){printf("第%d个城市到第%d城市修建一条电缆!\n",GT[i].frontvex,GT[i].rearvex);}printf("这样修建可以使距离最短!");}[(7)主函数int main(){printf("请问您要在几个城市间建立网络\n请在此输入:");int n;scanf("%d",&n) ;adgeset GT;adjmatrix GA;【insitadj(GA);setadj(GA,n);insit(GT,n,GA);fun(GA,GT,n);display(GT,n);return 0;}七、算法设计与分析)选定存储形式要实现对于给定带权网络和顶点,运用普利姆基本算法思想求解所有的最小生成树的运算,在这里我们首先要明确所选用的数据结构,即采用何种数据结构来存储带权网络,这是必须首先解决的问题,我们采用图的邻接矩阵的存储方式来存储带权网络。
我们在建立邻接矩阵的时候选用数组来分别存储每个节点的信息以及边的权值。
八、源程序#include<>#define maxvertexnum 20#define maxedgenum 40typedef int adjmatrix[maxvertexnum][maxvertexnum];struct edgenode#{int frontvex;int rearvex;int weight;};typedef edgenode adgeset[maxedgenum];rontvex=1;GT[i].rearvex=i+1;(GT[i].weight=GA[1][i+1];}}void insitadj(adjmatrix &GA){for(int i=1;i<maxvertexnum;i++){for(int j=1;j<maxvertexnum;j++)|{GA[i][j]=20000;}}}void setadj(adjmatrix &GA,int n) eight<min){min=GT[j].weight;,m=j;}}edgenode temp=GT[i];GT[i]=GT[m];GT[m]=temp;int k=GT[m].rearvex;for(j=i;j<n;j++)]{int t=GT[j].rearvex;int w=GA[k][t];if(w<GT[j].weight){GT[j].weight=w;GT[j].frontvex=k;}(}}}void display(adgeset GT,int n){for(int i=1;i<n;i++){printf("第%d个城市到第%d城市修建一条电缆!\n",GT[i].frontvex,GT[i].rearvex);^}printf("这样修建可以使距离最短!");}int main(){printf("请问您要在几个城市间建立网络\n请在此输入:");int n;scanf("%d",&n) ;、adgeset GT;adjmatrix GA;insitadj(GA);setadj(GA,n);insit(GT,n,GA);fun(GA,GT,n);display(GT,n);return 0;}九、算法实现(1)提示输入截图(2)输入各节点间的权(3)输出结果十、心得体会数据结构是学习计算机的一门重要的基础课,在学习数据结构之前我们学习了C语言在我们看来数据结构就是学习C语言的延续。
我们知道像这种计算机类的课程必须配合着上机实际操作才能很好的学习他。
但是我们平时在学习数据结构的过程中过少的参与到上机练习,在把精力放在了理论知识的学习上忽视了上机的重要性。
在此次课程设计中我们深刻的体会到我们光靠学习理论只是不够的,因而我们很珍惜此次上机学习的机会。
认真做好自己的程序。
虽然我在刚刚接触到这些习题的时候会感到无所适从,不知道该从哪里下手。
但是还是要细心认真的完成,在调试过程中虽然也会出现或多或少的错误,刚开始在遇到错误的时候非常焦躁,看到程序就会头大,但最终还是找到了状态,一步一步慢慢来,经过无数次的检查程序错误的原因后慢慢懂得了耐心是一个人成功的必然条件!在本次试验的学习中让我很清楚的认识了利用普利姆和克鲁斯卡尔算法求解最小生成树的算法思想,明白了最小生成树是怎么样形成的。
我们将我们的城市的空间分布抽象为一个带有权值的网络为我们利用普利姆算法和克鲁斯卡尔算法提供了基础。
在完成此次试验之后我感触很深。
认识到数据结构这门课的重要性,在以后的学习计算机方面的课程时我们要注意理论与实践并行。
多多上机实践。
只有实践才能出真知,在我们设计程序的时候遇到困难不要急躁,要耐心,细心认真的完成,只有这样才能得到事半功倍的效果。
遇到挫折不要放弃,一步一个脚印,最终会得到自己想要的成果。