《数的整除问题》五年级奥数题

合集下载

小学五年级奥数题数的整除问题

小学五年级奥数题数的整除问题

小学五年级奥数题数的整除问题
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
奥数题数的整除问题
从左向右编号为1至_91号的_91名同学排成一行,从左向右1至_报数,报数为_的同学原地不动,其余同学出列;然后留下的同学再从左向右1至_报数,报数为_的留下,其余同学出列;留下的同学第三次从左向右1至_报数,报到_的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是()号。

分析:第一次报数留下的同学,最初编号都是_的倍数;这些留下的继续报数,那么再留下的学生最初编号就是___=_1的倍数,依次类推即可得出最后留下的学生的最初编号.
解:第一次报数后留下的同学最初编号都是_倍数;
第二次报数后留下的同学最初编号都是_1的倍数;
第三次报数后留下的同学最初编号都是_31的倍数;
所以最后留下的只有一位同学,他的最初编号是_31;
答:从左边数第一个人的最初编号是_31号.
小学五年级奥数题数的整除问题.到电脑,方便收藏和打印:。

小学五年级奥数数的整除问题知识点及练习题

小学五年级奥数数的整除问题知识点及练习题

【导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。

以下是整理的《⼩学五年级奥数数的整除问题知识点及练习题》相关资料,希望帮助到您。

1.⼩学五年级奥数数的整除问题知识点 ⼀、基本概念和符号: 1、整除:如果⼀个整数a,除以⼀个⾃然数b,得到⼀个整数商c,⽽且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常⽤符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”; ⼆、整除判断⽅法:1、能被2、5整除:末位上的数字能被2、5整除。

2、能被4、25整除:末两位的数字所组成的数能被4、25整除。

3、能被8、125整除:末三位的数字所组成的数能被8、125整除。

4、能被3、9整除:各个数位上数字的和能被3、9整除。

5、能被7整除: ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后⼀位数字并减去末位数字的2倍后能被7整除。

6、能被11整除: ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后⼀位数字并减去末位数字后能被11整除。

7、能被13整除: ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后⼀位数字并减去末位数字的9倍后能被13整除。

三、整除的性质: 1、如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2、如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3、如果a能被b整除,b⼜能被c整除,那么a也能被c整除。

4、如果a能被b、c整除,那么a也能被b和c的最⼩公倍数整除。

2.⼩学五年级奥数数的整除问题练习题 1.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从⼩到⼤排列起来,第五个数的末位数字是多少? 2.如果六位数1992□□能被105整除,那么它的最后两位数是多少? 3.从左向右编号的1991名同学排成⼀⾏,从左向右1⾄11报数,报数为11的同学原地不动,其余同学出列,然后留下的同学再报数,第三次报数后,最后留下的同学中,从左边数第⼀个⼈的最初编号是多少? 4.173□是四位数字,⽼师在这个□中先后添⼊3个数字,所得到的3个四位数,依次可被9、11、6整除,⽼师添⼊的3个数字的和是多少? 5.在1992后⾯补上三个数字,组成⼀个七位数,使他们能被2、3、5、11整除,这个七位数最⼩值是多少?3.⼩学五年级奥数数的整除问题练习题 1.能同时被2、5、7整除的五位数的多少? 2.下⾯⼀个19983位数33…3(991个3)□44…4(991个4)中间漏写了⼀个数字(⽅框),已知,这个多位数被7整除,那么,中间⽅框内的数字是多少? 3.有这样的两位数,它的两个数字之和能被4整除,⽽且⽐这个两位数⼤1的数,它的两个数字之和也能被4组成,所以这样的两位数的和是多少? 4.⼀个⼩于200的⾃然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个⾃然数是多少? 5.任取⼀个四位数乘3456,⽤A表⽰其积的个位数字之和,⽤B表⽰A的个位数字之和,C表⽰B是个位数字之和,那么C是多少?4.⼩学五年级奥数数的整除问题练习题 试问,能否将由1⾄100这100个⾃然数排列在圆周上,使得在任何5个相连的数中,都⾄少有两个数可被3整除?如果回答:“可以”,则只要举出⼀种排法;如果回答:“不能”,则需给出说明。

五年级奥数题:数的整除性

五年级奥数题:数的整除性

五年级奥数题:数的整除性数的整除性一、填空题1. 四位数“ 3AA1”是9的倍数,那么A= _____ .2. 在“ 25口79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____ .3. 能同时被2、3、5 整除的最大三位数是_____.4. 能同时被2、5、7 整除的最大五位数是_____.5. 1 至1 00以内所有不能被3整除的数的和是____ .6. 所有能被3 整除的两位数的和是 _____ .7. 已知一个五位数口691 □能被55整除,所有符合题意的五位数是______ .8. 如果六位数1992口□能被105整除,那么它的最后两位数是_______ .9. 42 □ 28□是99的倍数,这个数除以99所得的商是 ______ .10. 从左向右编号为1 至1991 号的1991 名同学排成一行, 从左向右1 至11报数,报数为11 的同学原地不动,其余同学出列;然后留下的同学再从左向右 1 至11报数,报数为 1 1的留下,其余同学出列;留下的同学第三次从左向右1至11 报数,报到1 1的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_______________ 号.二、解答题11. 173 □是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12 .在1992 后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11 整除,这个七位数最小值是多少?13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将1 00张黄油票换成1 00张香肠票,并且在整个交换过程中刚好出手了1 991张票券?14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.1. 7已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1 —定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,3771 9=419.2. 1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+口+9应等于12, □内应填12-2-9=1.3. 990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4. 99960解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999 □ 0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5. 3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+ ...+100)- (3+6+9+12+ (99)=(1+100) 2 100-(3+99) 2 33=5050-1683=33676. 1665能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:12,15,18,21, …,96, 99这一列数共30个数,其和为12+15+18+…+96+99=(12+99) 30 2=16657. 96910 或46915五位数A691B能被55整除,即此五位数既能被5整除,又能被11整除.所以B=0或5.当B=0时,A6910能被11整除,所以(A+9+0)-(6+1)= A+2能被11整除, 因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.8. 90因为105=3 5 7,根据数的整除性质,可知这个六位数能同时被3、5和7整除。

五年级奥数题:数的整除性

五年级奥数题:数的整除性

数的整除性一、填空题1. 四位数“3AA1”是9的倍数,那么A=_____.2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3. 能同时被2、3、5整除的最大三位数是_____.4. 能同时被2、5、7整除的最大五位数是_____.5. 1至100以内所有不能被3整除的数的和是_____.6. 所有能被3整除的两位数的和是______.7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8. 如果六位数1992□□能被105整除,那么它的最后两位数是_____.9. 42□28□是99的倍数,这个数除以99所得的商是_____.10. 从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题11. 173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字, 所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.———————————————答案——————————————————————1. 7已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,3771÷9=419.2. 1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1.3. 990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4. 99960解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5. 3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+...+100)-(3+6+9+12+ (99)=(1+100)÷2⨯100-(3+99)÷2⨯33=5050-1683=33676. 1665能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:12,15,18,21,…,96,99这一列数共30个数,其和为12+15+18+…+96+99=(12+99)⨯30÷2=16657. 96910或46915A691能被55整除,即此五位数既能被5整除,又能被11整除.所以五位数BA能被11整除,所以(A+9+0)-(6+1)=A+2能被11整除, B=0或5.当B=0时,6910因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.8. 90因为105=3⨯5⨯7,根据数的整除性质,可知这个六位数能同时被3、5和7整除。

五年级奥数题数的整除性

五年级奥数题数的整除性

数的整除性一、填空题1. 四位数“3AA1”是9的倍数,那么A=_____.2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3. 能同时被2、3、5整除的最大三位数是_____.4. 能同时被2、5、7整除的最大五位数是_____.5. 1至100以内所有不能被3整除的数的和是_____.6. 所有能被3整除的两位数的和是______.7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8. 如果六位数1992□□能被105整除,那么它的最后两位数是_____.9. 42□28□是99的倍数,这个数除以99所得的商是_____.10. 从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题11. 173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字, 所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13. ———————————————答案——————————————————————1. 7已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,3771 9=419.2. 1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1.3. 990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4. 99960解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5. 3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+...+100)-(3+6+9+12+ (99)=(1+100)÷2⨯100-(3+99)÷2⨯33=5050-1683=33676. 1665能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:12,15,18,21,…,96,99这一列数共30个数,其和为12+15+18+…+96+99=(12+99)⨯30÷2=16657. 96910或46915A691能被55整除,即此五位数既能被5整除,又能被11整除.所以五位数BA能被11整除,所以(A+9+0)-(6+1)=A+2能被11整除, B=0或5.当B=0时,6910因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.8. 90因为105=3⨯5⨯7,根据数的整除性质,可知这个六位数能同时被3、5和7整除。

小学奥数数的整除问题题目及答案

小学奥数数的整除问题题目及答案

【导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。

以下是整理的《⼩学奥数数的整除问题题⽬及答案》相关资料,希望帮助到您。

1.⼩学奥数数的整除问题题⽬及答案 (1)2673135 (2)8990615496 【解题】(1)2673135=2,673,135,2+673+135=810。

因为810能被27整除,不能被37整除,所以2673135能被27整除,不能被37整除。

(2)8990615496=8,990,615,496,8+990+615+496=2,109。

 2.⼩学奥数数的整除问题题⽬及答案 从左向右编号为1⾄1991号的1991名同学排成⼀⾏,从左向右1⾄11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1⾄11报数,报数为11的'留下,其余同学出列;留下的同学第三次从左向右1⾄11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第⼀个⼈的最初编号是()号。

考点:整除问题。

分析:第⼀次报数留下的同学,最初编号都是11的倍数;这些留下的继续报数,那么再留下的学⽣最初编号就是11×11=121的倍数,依次类推即可得出最后留下的学⽣的最初编号. 解:第⼀次报数后留下的同学最初编号都是11倍数; 第⼆次报数后留下的同学最初编号都是121的倍数; 第三次报数后留下的同学最初编号都是1331的倍数; 所以最后留下的只有⼀位同学,他的最初编号是1331; 答:从左边数第⼀个⼈的最初编号是1331号。

3.⼩学奥数数的整除问题题⽬及答案 试问,能否将由1⾄100这100个⾃然数排列在圆周上,使得在任何5个相连的数中,都⾄少有两个数可被3整除?如果回答:“可以”,则只要举出⼀种排法;如果回答:“不能”,则需给出说明。

五年级奥数题:数的整除性

五年级奥数题:数的整除性

五年级奥数题:数的整除性⼆数的整除性(B)年级班姓名得分⼀、填空题1. ⼀个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2. 123456789□□,这个⼗⼀位数能被36整除,那么这个数的个位上的数最⼩是_____.3. 下⾯⼀个1983位数33…3□44…4中间漏写了⼀个数字(⽅框),已知这991个 991个个多位数被7整除,那么中间⽅框内的数字是_____.4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5. 有这样的两位数,它的两个数字之和能被4整除,⽽且⽐这个两位数⼤1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6. ⼀个⼩于200的⾃然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个⾃然数是_____.7. 任取⼀个四位数乘3456,⽤A表⽰其积的各位数字之和,⽤B表⽰A的各位数字之和,C表⽰B的各位数字之和,那么C是_____.8. 有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从⼩到⼤排列起来,第五个数的末位数字是_____.9. 从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最⼤的是_____.10. 所有数字都是2且能被66……6整除的最⼩⾃然数是_____位数.100个⼆、解答题11. 找出四个互不相同的⾃然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最⼤的数与最⼩的数的和尽可能的⼩,那么这四个数⾥中间两个数的和是多少?12.只修改21475的某⼀位数字,就可知使修改后的数能被225整除,怎样修改?13.500名⼠兵排成⼀列横队.第⼀次从左到右1、2、3、4、5(1⾄5)名报数;第⼆次反过来从右到左1、2、3、4、5、6(1⾄6)报数,既报1⼜报6的⼠兵有多少名?14.试问,能否将由1⾄100这100个⾃然数排列在圆周上,使得在任何5个相连的数中,都⾄少有两个数可被3整除?如果回答:“可以”,则只要举出⼀种排法;如果回答:“不能”,则需给出说明.———————————————答案——————————————————————1. 2620或2711⼀个数如果是88的倍数,这个数必然既是8的倍数,⼜是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从⽽可知这个六位数个位上的数是0或8.⽽11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个⽅框内填⼊的数字是相同的,因此这个六位数有两种可能或⼜238568÷88=2711所以,本题的答案是2620或2711.2. 0因为36=9?4,所以这个⼗⼀位数既能被9整除,⼜能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个⼗⼀位数个位上有0,2,6三种可能性.所以,这个数的个位上的数最⼩是0.3. 633...3□44 (4)个个=33...3?10993+3□4?10990+44 (4)990个个因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要个个3□4能被7整除,原数即可被7整除.故得中间⽅框内的数字是6.4. 10,11,12或21,22,23或32,33,34.三个连续的两位数其和必是3的倍数,已知其和是11的倍数,⽽3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有当和为33时,三个数是10,11,12;当和为66时,三个数是21,22,23;当和为99时,三个数是32,33,34.[注]“三个连续⾃然数的和必能被3整除”可证明如下:设三个连续⾃然数为n,n+1,n+2,则n+(n+1)+(n+2)=3n+3=3(n+1)所以,)2+nn+n能被3整除.)1((++5. 118符合条件的两位数的两个数字之和能被4整除,⽽且⽐这个两位数⼤1的数,如果⼗位数不变,则个位增加1,其和便不能整除4,因此个位数⼀定是9,这种两位数有:39、79.所以,所求的和是39+79=118.6. 195因为这个数可以分解为两个两位数的积,⽽且15?15=225>200,所以其中⾄少有1个因数⼩于15,⽽且这些因数均需是奇数,但11不可能符合条件,因为对于⼩于200的⾃然数凡11的倍数,具有隔位数字之和相等的特点,个位百位若是奇数,⼗位必是偶数.所以只需检查13的倍数中⼩于200的三位数13?13=169不合要求,13?15=195适合要求.所以,答案应是195.7. 9根据题意,两个四位数相乘其积的位数是七位数或⼋位数两种可能.因为3456=384?9,所以任何⼀个四位数乘3456,其积⼀定能被9整除,根据能被9整除的数的特征,可知其积的各位数字之和A也能被9整除,所以A有以下⼋种可能取值:9,18,27,36,45,54,63,72.从⽽A的各位数字之和B总是9,B 的各位数字之和C也总是9.8. 9∵0+1+4+7+9=21能被3整除,∴从中去掉0或9选出的两组四个数字组成的四位数能被3整除.即有0,1,4,7或1,4,7,9两种选择组成四位数,由⼩到⼤排列为:1047,1074,1407,1470,1479,1497….所以第五个数的末位数字是9.9. 7410根据能被2、3、5、整除的数的特征,这个四位数的个位必须是0,⽽⼗位、百位、千位上数字的和是3的倍数。

数的整除问题奥数题及答案

数的整除问题奥数题及答案

数的整除问题奥数题及答案数的整除问题奥数题及答案数的整除问题奥数题及答案1试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.考点:数的整除特征.分析:根据题意,可采用假设的方法进行分析,100个自然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都至少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1至100的自然数中只有33个是3倍数,所以不能.解答:假设能够按照题目要求在圆周上排列所述的100个数,按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3的倍数.小学五年级数的整除问题奥数题及答案:从而一共会有不少于40个数是3的倍数.但事实上在1至100的这100个自然数中只有33个数是3的倍数,导致矛盾,所以不能.答:不能.数的整除问题奥数题及答案2数的整除性规律【能被2或5整除的数的特征】一个数的末位能被2或5整除,这个数就能被2或5整除【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。

例如,1248621各位上的数字之和是1+2+4+8+6+2+1=243|24,则3|1248621。

又如,372681各位上的数字之和是3+7+2+6+8+1=279|27,则9|372681。

【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。

例如,173824的末两位数为24,4|24,则4|173824。

43586775的末两位数为75,25|75,则25|43586775。

【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。

五年级奥数数的整除问题及答案

五年级奥数数的整除问题及答案

五年级奥数数的整除问题及答案
奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学习惯的过程。

让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。

数学网为大家准备了奥数题,希望的五年级奥数题及参考答案:数的整除问题,可以帮助到你们,助您快速通往高分之路!!
李老师为学校一共买了28支价格相同的钢笔,共付人民币
9□.2□元.□处数字相同,请问每支钢笔多少元?
解:∵9□.2□元=9□2□分
28=4×7,
∴根据整除"性质2"可知
4和7均能整除9□2□。

4|2□可知□处能填0或4或8。

因为79020,79424,所以□处不能填0和4;
因为7|9828,所叫□处应该填8。

又∵9828分=98.28元
98.28÷28=3.51(元)
答:每支钢笔3.51元。

五年级奥数题数的整除问题【三篇】

五年级奥数题数的整除问题【三篇】

五年级奥数题数的整除问题【三篇】
导读:本文五年级奥数题数的整除问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】判断123456789这九位数能否被11整除? 解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为115,所以11123456789。

【第二篇】判断13574是否是11的倍数? 解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

【第三篇】判断3546725能否被13整除? 解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.。

五年级奥数题数的整除问题例题分析

五年级奥数题数的整除问题例题分析

五年级奥数题数的整除问题例题分析五年级奥数题数的整除问题例题分析【第一篇:正确的答案是多少】马小哈做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?答案与解析:解析:马小虎错把减数个位上1看成7,使差减少7—1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:111-(70—10)+(7—1)=57 答:正确的答案是57.【第二篇:葫芦里面有多少酒】有一个人非常喜欢喝酒,他每经过一个酒店都要买酒喝。

这个人出门带了一个酒葫芦,看到一个酒店就把酒葫芦中的酒加一倍,然后喝下去8两酒。

这天他一共遇到3家酒店,在最后一家酒店喝完酒后,葫芦里的酒刚好喝完。

问:原来酒葫芦里有多少两酒?答案与解析:7两。

最后喝了8两,酒喝完了,所以最后剩余8两酒。

8÷2=4(两) (4+8)÷2=6(两) (6+8)÷2=7(两)【第三篇:小强的骑车速度是多少】小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的.速度。

答案与解析:小强追上小明时间:(1000-12×50)÷50=8(分钟)小强速度为1000÷8=125(米/分)【第四篇:这个班有多少人】学校提高班的同学去划船,他们算了一下,如果增加一条船。

正好每条船坐6人;如果减少一条船,正好每条船坐9人。

问这个班共有多少同学?先增加一条船,正好每条船坐6人,然后去掉两条船,就会余下12名同学,改为每船正好坐9人,即每条船增加3人正好把余下的12名同学全部安排上去,所以现在还有:12÷3=4(条)船,而全班同学的人数为9×4=36(人)。

五年级(奥数) 数的整除

五年级(奥数)  数的整除

五年级数的整除
1、有三根铁丝,分别长12厘米、18厘米、54厘米。

要把它们都截成同样长的小段不许剩余,每段最长是多少厘米?一共能截多少段?
2、五年级三个班分别有24人、36人、42人参加体育锻炼,要把它们分成人数相等的小组,但各班同学不能打乱。

最多每组多少人?每班各分多少组?
3、一张长方形纸长112厘米,宽80厘米,把它剪成若干个同样大小的正方形,使边长是
整厘米且不能有剩余,最少能剪多少个?
4、用长16厘米,宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板多
少块?
5、张妮有若干张画片,7张一数还余4张,5张一数又少3张,3张一数正好。

问:张妮
至少有多少张画片?
6、五年级两个班的学生一起排队去做操,如果9人排一队,多出一人;如果10人排一队,同样多出一个人。

这两个班最少共有多少人?
7、有一篮鸡蛋,每按4个一堆分多一个;按5个一堆分多1个;按每6个一堆分也多1个。

这篮鸡蛋至少有多少个?
8、一个四位数9□2□既有约数2,又是3的倍数,同时又能被5整除。

这个四位数最大是什么?
9、六位数“568□□□”能同时被2、3、5整除。

求这样的六位数中最小的一个是多少?。

小学五年级奥数第1课数的整除问题试题附答案-精品

小学五年级奥数第1课数的整除问题试题附答案-精品

小学五年级上册数学奥数知识点讲解第1课《数的整除问题》试题附答案例1己知45|函函方.求所有满足条件的六位数酒药。

例2李老师为学校一共买了28支价格相同的钢笔,共付人民币9口.2口元.已知口处数字相同,请问每支钢笔多少元?己知整数应为有就被11整除.求所有满足这〈/PGN0004.TXT/PGN>个条件的整数。

例4把三位数遍接连重复地写下去,共写1993个冰,所得的数%b3ab・・・3a?恰是91的倍数,试求正二?‘7 '1993个3ab例5在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除, 且使这个数值尽可能的小。

答案例1己知45|好呵求所有满足条件的六位数酒季解::45=5X9,・•・根据整除“性质2”可知5|xl993y,9区1993%二.y可取。

或5。

当y=0时,根据9|近痢及数的整除特征③可知x=5,当y=5时,根据9|酒药及数的整除特征③可知x=9.・.・满足条件的六位数是519930或919935。

例2李老师为学校一共买了28支价格相同的钢笔,共付人民币9口.2□元.已知口处数字相同,请问每支钢笔多少元?解,・・・9口.2□元二9口2口分28=4X7,・•・根据整除“性质2”可知4和7均能整除9口2口。

4I2口可知口处能填。

或4或8。

因为7卜9020,7*9424,所以口处不能填0和4;因为7I9828,所叫口处应该填8。

又・・・9828分=98.28元98.28-28=3.51(元)答:每支钢笔3.51元。

例3已知整数1a2a3a4a5翕E被11整除.求所有满足这</PGN0004.TXT/PGN> 个条件的整数。

解:・.T1la2a3a4a5a,・・・根据能被11整除的数的特征可知:1+2+3+4+5的和与5眈差应是11的倍数,即11I(15—5a),或11I(5a-15)。

但是15—5a=5(3—a),5a—15=5(a—3),又(5,11)=1,因此111 (3—a)或11I(a—3)。

五年级奥数-数的整除问题

五年级奥数-数的整除问题

五年级奥数-数的整除问题介绍本文档将涵盖五年级奥数中与数的整除问题相关的内容。

数的整除是数学中的一项基本概念,它在解决实际问题和数学推理中起着重要的作用。

数的整除定义两个整数a和b,若存在整数c,使得c * b = a,则称a能被b 整除,记作b|a。

其中a称为被除数,b称为除数,c称为商。

整除的特性1. 如果a能被b整除,那么a的所有倍数也能被b整除。

2. 如果a能被b整除,b能被c整除,那么a也能被c整除。

3. 如果a能被b整除,b能被a整除,那么a和b相等。

判断一个数能否被另一个数整除的方法1. 试除法:从除数的最小可能取值开始逐步增加,直到找到一个能整除被除数的除数或者超过了被除数的一半。

如果找到了能整除的除数,则其为被除数的因数;否则,被除数为质数。

试除法:从除数的最小可能取值开始逐步增加,直到找到一个能整除被除数的除数或者超过了被除数的一半。

如果找到了能整除的除数,则其为被除数的因数;否则,被除数为质数。

2. 质因数分解法:将被除数和除数都进行质因数分解,然后比较它们的质因数是否相同。

如果除法相同,则说明除数能够整除被除数;否则,不可整除。

质因数分解法:将被除数和除数都进行质因数分解,然后比较它们的质因数是否相同。

如果除法相同,则说明除数能够整除被除数;否则,不可整除。

数的整除问题的应用数的整除问题在实际生活和数学中都有广泛的应用,例如:1. 分配问题:将一定数量的物品平均分给每个人,需要确定每个人能够得到多少个物品,就需要解决数的整除问题。

2. 判断质数:质数是只能被1和自身整除的数,通过判断能否被其他数整除,可以检验一个数是否为质数。

3. 数论问题:在数论研究中,数的整除问题是一个重要的主题,涉及到数的性质和结构等方面。

总结数的整除是五年级奥数中的基本概念之一,通过研究整除的定义、特性和判断方法,可以解决实际问题和进行数学推理。

在实际生活和数学领域中,数的整除问题有着广泛的应用,我们应该加强对该概念的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数的整除问题》五年级奥数题
《数的整除问题》五年级奥数题
分析:
第一次报数留下的同学,最初编号都是11的倍数;这些留下的继续报数,那么再留下的.学生最初编号就是11×11=121的倍数,依次类推即可得出最后留下的学生的最初编号.
解:
第一次报数后留下的同学最初编号都是11倍数;
第二次报数后留下的同学最初编号都是121的倍数;
第三次报数后留下的同学最初编号都是1331的倍数;
所以最后留下的只有一位同学,他的最初编号是1331;
答:从左边数第一个人的最初编号是1331号.。

相关文档
最新文档