数列求和教学设计

合集下载

中学数学数列求和教案

中学数学数列求和教案

中学数学数列求和教案一、教学目标1. 理解数列的基本概念,并能正确判断是否为等差数列或等比数列。

2. 掌握等差数列和等比数列的通项公式,并能正确计算相应的数值。

3. 理解数列的求和公式,并能运用求和公式计算数列的和值。

二、教学准备教师:备好黑板、粉笔,准备好习题和板书内容。

学生:纸、铅笔、计算器等。

三、教学过程1. 知识点引入教师向学生展示一些数字序列(如1, 3, 5, 7, 9...)并问学生如何判断它们是否为等差数列。

引导学生发现其中的规律,并引入等差数列的概念。

2. 等差数列的定义和性质教师将等差数列的定义和性质进行讲解,并帮助学生掌握等差数列的通项公式 an = a1 + (n-1)d。

3. 等差数列的求和公式教师引导学生思考如何求等差数列的和值,并引出等差数列的求和公式 Sn = n/2 (a1+an)。

4. 例题演练教师出示一个等差数列的例题,引导学生使用通项公式和求和公式计算数列的某一项和总和。

全班共同讨论,并解释结果的意义。

5. 等比数列的定义和性质教师将等比数列的定义和性质进行讲解,并帮助学生掌握等比数列的通项公式 an = a1 * r^(n-1)。

6. 等比数列的求和公式教师引导学生思考如何求等比数列的和值,并引出等比数列的求和公式 Sn = a1 * (1 - r^n) / (1 - r)。

7. 例题演练教师出示一个等比数列的例题,引导学生使用通项公式和求和公式计算数列的某一项和总和。

全班共同讨论,并解释结果的意义。

8. 综合练习教师布置一些综合性的练习题,让学生运用所学知识解答,并及时给予指导和纠正。

9. 课堂总结教师对本节课的重点内容进行总结,并强调数列求和在数学及现实生活中的应用价值。

四、巩固练习教师布置相关题目作为课后作业,要求学生用所学知识独立解答,并在下节课前交给教师检查。

五、教学拓展教师鼓励学生积极参与数学竞赛、参观数学实验室等拓展活动,加深对数列求和的理解和应用。

初中数列求和计算教案

初中数列求和计算教案

初中数列求和计算教案教学目标:1. 理解数列求和的概念及意义;2. 掌握等差数列和等比数列的求和公式;3. 能够运用数列求和公式解决实际问题。

教学重点:1. 数列求和的概念及意义;2. 等差数列和等比数列的求和公式。

教学难点:1. 数列求和公式的运用;2. 解决实际问题。

教学准备:1. 数列求和的相关知识;2. 教学课件或黑板。

教学过程:一、导入(5分钟)1. 引导学生回顾数列的概念,复习等差数列和等比数列的定义;2. 提问:我们已经学习了数列的概念,那么数列的和有什么意义呢?二、新课讲解(15分钟)1. 讲解数列求和的概念,即数列中所有项的和;2. 介绍等差数列求和公式:S = n/2 * (a1 + an),其中S为数列的和,n为项数,a1为首项,an为末项;3. 介绍等比数列求和公式:S = a1 * (1 - q^n) / (1 - q),其中S为数列的和,a1为首项,q为公比,n为项数;4. 通过例题讲解求和公式的运用。

三、课堂练习(15分钟)1. 布置练习题,让学生运用求和公式计算;2. 引导学生独立思考,解答问题;3. 挑选学生回答问题,并给予评价和指导。

四、拓展应用(15分钟)1. 引导学生思考实际问题,如计算一组连续自然数的和;2. 让学生运用求和公式解决实际问题,并解释结果的意义;3. 引导学生总结数列求和在实际生活中的应用。

五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结数列求和的概念和意义;2. 强调数列求和公式的运用和实际应用。

教学反思:本节课通过讲解数列求和的概念和公式,让学生掌握等差数列和等比数列的求和方法,并在实际问题中运用。

在教学过程中,要注意引导学生独立思考,培养学生的解题能力。

同时,通过拓展应用环节,让学生感受数列求和在实际生活中的意义,提高学生的学习兴趣。

数列求和公式教案

数列求和公式教案

数列求和公式教案教案标题:数列求和公式教案教案目标:1. 了解数列的概念和特点。

2. 掌握数列求和公式的推导和应用。

3. 培养学生的逻辑思维和数学推理能力。

教学重点:1. 数列求和公式的推导过程。

2. 数列求和公式的应用。

教学难点:1. 数列求和公式的推导过程。

2. 复杂数列求和公式的应用。

教学准备:1. 教师准备:白板、黑板笔、教材、多媒体课件。

2. 学生准备:课本、笔记工具。

教学过程:Step 1: 引入(5分钟)教师通过提问和示例引入数列的概念,引发学生对数列的兴趣,并与学生一起总结数列的特点。

Step 2: 数列求和公式的推导(15分钟)2.1 教师给出一些简单的数列,引导学生观察规律,并引导学生尝试推导数列求和公式。

2.2 教师给出数列求和公式的推导过程,逐步解释每个步骤的原因和意义。

2.3 学生进行小组合作,尝试推导其他数列的求和公式,并与全班分享他们的思路和答案。

Step 3: 数列求和公式的应用(20分钟)3.1 教师通过多个实际问题引导学生将数列求和公式应用于实际情境中。

3.2 学生进行个人或小组练习,解决与数列求和相关的问题。

3.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。

Step 4: 拓展与延伸(10分钟)4.1 教师提供一些复杂的数列求和问题,引导学生运用已学知识进行解决。

4.2 学生进行个人或小组探究,解决更具挑战性的数列求和问题。

4.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。

Step 5: 总结与评价(5分钟)教师与学生一起总结数列求和公式的推导过程和应用方法,并对学生的学习成果进行评价和反馈。

教学延伸:1. 学生可以尝试推导其他类型的数列求和公式,如等差数列、等比数列等。

2. 学生可以通过阅读相关数学文献或书籍,了解更多数列求和公式的应用领域。

教学资源:1. 教材:数学教材相关章节。

2. 多媒体课件:用于展示示例和推导过程等。

教学评价:1. 学生的课堂参与情况。

数列求和免费教案

数列求和免费教案

数列求和免费教案教案标题:数列求和免费教案教学目标:1. 学生能够理解数列的概念和性质。

2. 学生能够应用递推公式求解数列的前n项和。

3. 学生能够解决实际问题中与数列求和相关的计算。

教学准备:1. 教师准备白板、黑板笔、教学投影仪等教学工具。

2. 学生准备纸和笔。

教学过程:步骤一:导入(5分钟)教师通过提问引导学生回顾数列的概念,并与学生一起讨论数列的应用领域,如金融、物理等。

步骤二:概念讲解(10分钟)教师通过示例和图示解释数列的递推公式和通项公式,并与学生一起探讨数列的性质,如等差数列和等比数列的特点。

步骤三:数列求和方法介绍(10分钟)教师向学生介绍数列求和的常用方法,包括等差数列求和公式和等比数列求和公式,并通过实例演示求解数列的前n项和。

步骤四:练习与讨论(15分钟)教师提供一些练习题,要求学生独立解答,并在解答完成后进行讨论和答疑。

教师可以选择一些实际问题,让学生应用数列求和的方法解决问题。

步骤五:拓展应用(10分钟)教师引导学生思考更复杂的数列求和问题,如求解部分项和、求解无穷级数等,并与学生一起探讨解决方法。

步骤六:总结与归纳(5分钟)教师与学生一起总结数列求和的方法和应用,并提醒学生在实际问题中灵活运用数列求和的知识。

步骤七:作业布置(5分钟)教师布置相关的作业,要求学生练习数列求和的应用,并在下节课前完成。

教学延伸:1. 学生可以通过编写程序来计算数列的前n项和,进一步巩固数列求和的概念和方法。

2. 学生可以研究更复杂的数列求和问题,如级数求和、递归数列求和等,拓展数列求和的应用领域。

教学评估:1. 教师通过课堂练习和讨论,观察学生对数列求和的理解和应用能力。

2. 教师可以布置作业来评估学生的数列求和能力,并及时给予反馈。

教学反思:教师可以根据学生的学习情况和反馈,调整教学方法和内容,以提高学生对数列求和的理解和应用能力。

《数列求和》教学设计

《数列求和》教学设计

《数列求和》教学设计一、教学目标1.知识目标学生能够理解数列求和的基本概念,掌握常用的数列求和公式,能够熟练应用求和公式解决实际问题。

2.能力目标学生能够运用数学思维和方法,分析问题,提出合理的求和方法,并能灵活运用求和公式解决实际问题。

3.情感目标学生能够树立积极的学习态度,发现数列求和的有趣之处,提高数学思维能力和解决问题的能力。

二、教学重点和难点1.教学重点(1)数列求和的基本概念和常用的求和公式;(2)运用求和公式解决实际问题。

2.教学难点(1)问题分析和求解的过程;(2)运用数列求和解决实际问题。

三、教学过程设计1.导入新课(10分钟)(1)向学生提问:“在做加法运算的时候,我们经常会遇到从1开始的连续整数相加的问题,你们知道如何快速求和吗?”(2)引导学生思考,并提示“等差数列”的概念。

(3)分享一个有趣的问题:“小明和小红相约去打篮球,每天他们都会增加一个篮球的练习量,小明从第一天开始每天练习一个篮球,小红从第一天开始每天练习两个篮球,问他们练习30天后总共练习了多少个篮球?”(4)引导学生思考解决问题的方法。

2.板书设计(5分钟)根据导入新课的内容,板书“等差数列”和“数列求和”的概念。

3.概念讲解(20分钟)(1)对等差数列的概念进行详细讲解和举例。

(2)引入数列求和的概念,并通过具体的例子让学生理解求和的含义。

(3)介绍数学家高斯的求和故事,引出等差数列求和公式。

4.基本求和公式(20分钟)(1)教师讲解等差数列求和的基本公式S_n=(a_1+a_n)*n/2,并通过例题进行演练。

(2)介绍等差数列求和公式的推导过程,并通过几个简单例子进行说明。

5.应用题训练(25分钟)(1)学生分组进行应用题训练,训练内容包括常见的等差数列求和问题和实际生活中的应用问题。

(2)学生在小组内共同讨论,解决问题,并由小组代表上台分享解题思路和解题过程。

6.拓展练习(15分钟)(1)给出一些拓展练习,要求学生在规定时间内完成,并进行答案的交流和讨论。

数列求和的七种方法|数列求和教案

数列求和的七种方法|数列求和教案

数列求和是知识掌握的重点,下面是为大家带来的数列求和教案,希望能帮助到大家!数列求和教案篇一汉滨高中李安锋教学目标:知识目标①复习等差和等比数列的前n项和公式、回忆公式推导过程所用倒序想加和错位相减的思想方法,及用数列求和公式求和时,应弄清基本量中各基本量的值,特别是用等比数列求和公式求和时,应关注公比q是否为1;②记住一些常见结论便于用公式法对数列求和;③学会分析通项的结构并且对通项进行分拆;能运用拆并项求和思想方法解决非特殊数列求和问题。

能力目标培养学生用联系和变化的观点,结合转化的思想来分析问题和解决问题的能力。

情感目标培养学生用数学的观点看问题,从而帮助他们用科学的态度认识世界. 教学重点与难点教学重点等差等比数列求和及特殊数列求和的常用方法教学难点分析具体数列的求和方法及实际求解过程.教学方法、手段通过设问、启发、当堂训练的教学程序,采用启发式讲解、互动式讨论、反馈式评价的授课方式,培养学生的自学能力和分析与解决问题的能力,借助幻灯片辅助教学,达到增加课堂容量、提高课堂效率的目的,营造生动活泼的课堂教学氛围. 学法指导为了发挥学生的主观能动性,提高学生的综合能力,确定了三种学法(1)自主性学习法,(2)探究性学习法,(3)巩固反馈法,教学过程(一)情景导入复习回顾:等差数列和等比数列的前n项和公式?n(a1?an)n(n?1)?na1?d 等差数列求和公式Sn?22(q?1)?na1? 等比数列求和公式Sna1(1?qn)a1?anq ?(q?1)?1?q?1?q 教师引导学生回忆数列几种常见的求和方法?①公式法②分组求和法③裂项相消法④错位相减法(充分发挥学生学习的能动性,以学生为主体,展开课堂教学)(二)自学指导若已知一个数列的通项,如何对其前n项求和?①an?3n ②an?3n?2n?1 ③an?n(n?1)④an?1 ⑤an?n?3n n(n?1)(通过学生对几种常见的求和方法的归纳、总结,结合具体的实例、简单回忆各方法的应用背景.把遗忘的知识点形成了一个完整的知识体系)巩固检测题(1) a?a2?a3?an?________(2) 1+3+5+?+(2n+1)=(3)12?22?32n2?(复习等差与等比数列的求和公式:(1)中易忘讨论公比是否为1(2)中易错项数(3)与(4)是为用公式法求和作铺垫.)(三)例题展示例设Sn=1-3+5-7+9++101 求Sn分析: 拆并项求和思路? Sn=(1-3)+(5-7)+(9-11)+(97-99)+101=?Sn=1+(-3+5)+(-7+9)+(-11+13)+(-99+101)=? Sn=(1+5++101)-(3+7++99)=意图通过一题多解,开阔学生的思维.,分析①②③培养学生的拆项求和与并项求和的意识, 比较分析①②思考应留下。

高中数学数列的求和教案

高中数学数列的求和教案

高中数学数列的求和教案
一、教学目标
1. 知识与技能:了解数列的基本概念与性质,掌握等差数列、等比数列的求和公式,能够熟练计算数列的和。

2. 过程与方法:通过理论学习和实际练习,培养学生的数学思维能力和解决问题的方法。

3. 情感态度:培养学生对数学的兴趣,激发学生学习数学的积极性。

二、教学重点和难点
1. 等差数列、等比数列的求和公式的掌握和应用。

2. 解题方法的灵活应用和实际问题的转化。

三、教学内容
1. 数列的基本概念与性质
2. 等差数列的求和公式
3. 等比数列的求和公式
四、教学过程
1. 导入:通过提出一个生活中的实际问题,引出数列的概念和重要性。

2. 讲解:介绍数列的基本概念和性质,重点讲解等差数列、等比数列的求和公式。

3. 实例讲解:通过几个具体的例题,讲解如何应用求和公式计算数列的和。

4. 练习:学生独立或分组完成一些练习题,巩固所学知识。

5. 拓展:带领学生思考更复杂的数列求和问题,引导学生拓展思维。

6. 讲评:对学生的练习情况进行总结和讲评,指导学生做好巩固练习。

五、板书设计
1. 数列的概念与性质
2. 等差数列的求和公式
3. 等比数列的求和公式
六、教学反思
通过本节课的教学,学生能够较好地掌握数列求和的基本方法和技巧,但是在应用中还存在一定的困难,需要通过更多的实践和练习加以巩固。

下节课可以通过更复杂的案例实践来提高学生的解题能力。

数列求和教案

数列求和教案

数列求和教案一、教学目标1.了解数列的概念和性质;2.掌握等差数列和等比数列的通项公式;3.掌握数列求和公式;4.能够应用数列求和公式解决实际问题。

二、教学重点1.等差数列和等比数列的通项公式;2.数列求和公式。

三、教学难点1.数列求和公式的应用。

四、教学过程1. 引入教师通过举例子引入数列的概念,让学生了解数列的定义和性质。

2. 等差数列和等比数列的通项公式2.1 等差数列的通项公式教师通过举例子引入等差数列的概念,让学生了解等差数列的定义和性质。

然后,教师介绍等差数列的通项公式:a n=a1+(n−1)d其中,a n表示等差数列的第n项,a1表示等差数列的第一项,d表示等差数列的公差。

2.2 等比数列的通项公式教师通过举例子引入等比数列的概念,让学生了解等比数列的定义和性质。

然后,教师介绍等比数列的通项公式:a n=a1q n−1其中,a n表示等比数列的第n项,a1表示等比数列的第一项,q表示等比数列的公比。

3. 数列求和公式3.1 等差数列的求和公式教师介绍等差数列的求和公式:S n=n2(a1+a n)其中,S n表示等差数列的前n项和。

3.2 等比数列的求和公式教师介绍等比数列的求和公式:S n=a1(q n−1) q−1其中,S n表示等比数列的前n项和。

4. 应用教师通过例题让学生掌握数列求和公式的应用。

五、教学总结教师对本节课的内容进行总结,强调数列求和公式的重要性和应用。

六、作业1.完成课堂练习;2.完成课后作业。

七、教学反思本节课的教学重点是数列求和公式的应用,但是由于时间有限,只能介绍一些基本的应用,没有涉及到更复杂的应用。

下次教学中,应该加强对数列求和公式的应用讲解,让学生更好地掌握数列求和公式的应用。

第四节 数列求和 示范课教案

第四节  数列求和   示范课教案

数列求和教案【教学目标】1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列,非等比数列求和的几种常见方法.【教学重点】数列求和的几种常见方法【教学难点】非等差数列,非等比数列求和的转化【教学过程】一、知识梳理1.特殊数列的求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项求和常用的三种变形(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、诊断自测1.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n3572.,9,25,.41.48.49 D.56n n s s s s A B C ===已知等差数列的前项和为若则3.设数列{a n }的前n 项和为S n ,若a n =1n +1+n ,则S 99=() A.7 B.8 C.9 D.104.数列112,314,518,7116,……的前n 项和S n 的值等于( )A.n 2+1-12n B.2n 2-n +1-12n C.n 2+1-12n -1 D.n 2-n +1-12n三、典型例题分析例1.已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n 4(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =4n a n 2n +1,求数列{b n b n +1}的前n 项和T n .例2【2021年新高考1卷】已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n nb a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.四、课堂小结通过这节课的学习,你有什么收获?。

数列求和的七种方法|数列求和教案

数列求和的七种方法|数列求和教案

数列求和是知识掌握的重点,下面是为大家带来的数列求和教案,希望能帮助到大家!数列求和教案篇一汉滨高中李安锋教学目标:知识目标①复习等差和等比数列的前n项和公式、回忆公式推导过程所用倒序想加和错位相减的思想方法,及用数列求和公式求和时,应弄清基本量中各基本量的值,特别是用等比数列求和公式求和时,应关注公比q是否为1;②记住一些常见结论便于用公式法对数列求和;③学会分析通项的结构并且对通项进行分拆;能运用拆并项求和思想方法解决非特殊数列求和问题。

能力目标培养学生用联系和变化的观点,结合转化的思想来分析问题和解决问题的能力。

情感目标培养学生用数学的观点看问题,从而帮助他们用科学的态度认识世界. 教学重点与难点教学重点等差等比数列求和及特殊数列求和的常用方法教学难点分析具体数列的求和方法及实际求解过程.教学方法、手段通过设问、启发、当堂训练的教学程序,采用启发式讲解、互动式讨论、反馈式评价的授课方式,培养学生的自学能力和分析与解决问题的能力,借助幻灯片辅助教学,达到增加课堂容量、提高课堂效率的目的,营造生动活泼的课堂教学氛围. 学法指导为了发挥学生的主观能动性,提高学生的综合能力,确定了三种学法(1)自主性学习法,(2)探究性学习法,(3)巩固反馈法,教学过程(一)情景导入复习回顾:等差数列和等比数列的前n项和公式?n(a1?an)n(n?1)?na1?d 等差数列求和公式Sn?22(q?1)?na1? 等比数列求和公式Sna1(1?qn)a1?anq ?(q?1)?1?q?1?q 教师引导学生回忆数列几种常见的求和方法?①公式法②分组求和法③裂项相消法④错位相减法(充分发挥学生学习的能动性,以学生为主体,展开课堂教学)(二)自学指导若已知一个数列的通项,如何对其前n项求和?①an?3n ②an?3n?2n?1 ③an?n(n?1)④an?1 ⑤an?n?3n n(n?1)(通过学生对几种常见的求和方法的归纳、总结,结合具体的实例、简单回忆各方法的应用背景.把遗忘的知识点形成了一个完整的知识体系)巩固检测题(1) a?a2?a3?an?________(2) 1+3+5+?+(2n+1)=(3)12?22?32n2?(复习等差与等比数列的求和公式:(1)中易忘讨论公比是否为1(2)中易错项数(3)与(4)是为用公式法求和作铺垫.)(三)例题展示例设Sn=1-3+5-7+9++101 求Sn分析: 拆并项求和思路? Sn=(1-3)+(5-7)+(9-11)+(97-99)+101=?Sn=1+(-3+5)+(-7+9)+(-11+13)+(-99+101)=? Sn=(1+5++101)-(3+7++99)=意图通过一题多解,开阔学生的思维.,分析①②③培养学生的拆项求和与并项求和的意识, 比较分析①②思考应留下。

《连续自然数数列求和》 教学设计

《连续自然数数列求和》 教学设计

《连续自然数数列求和》教学设计一、教学目标1、让学生理解连续自然数数列求和的概念和方法。

2、引导学生通过观察、分析和推理,掌握不同的求和方法,如首尾相加法、等差数列求和公式等。

3、培养学生的数学思维能力,提高学生解决问题的能力和创造力。

4、激发学生对数学的兴趣,感受数学的魅力和实用性。

二、教学重难点1、教学重点(1)掌握连续自然数数列求和的基本方法,如首尾相加法。

(2)理解等差数列求和公式的推导过程和应用。

2、教学难点(1)如何引导学生发现求和规律,并能灵活运用不同的方法解决问题。

(2)让学生理解等差数列求和公式的本质。

三、教学方法1、讲授法:讲解连续自然数数列求和的概念和方法。

2、启发式教学法:通过提问和引导,激发学生的思考和探索。

3、小组合作学习法:组织学生进行小组讨论和合作,共同解决问题。

四、教学过程1、导入通过一个简单的问题引入:小明从 1 开始连续数数,一直数到 10,那么 1 到 10 这 10 个自然数的和是多少?2、探究活动(1)让学生自己尝试计算 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9+ 10 的和。

(2)提问学生采用的方法,引导学生发现首尾相加的规律,即 1+ 10 = 11,2 + 9 = 11,3 + 8 = 11,4 + 7 = 11,5 + 6 = 11,一共有 5 组 11,所以总和为 55。

3、方法总结(1)总结首尾相加法:对于连续自然数数列,如果个数是奇数个,那么可以将首尾两两相加,所得的和都相等,再乘以组数即可得到总和。

(2)如果个数是偶数个,可以先两两相加,再将得到的和相加。

4、等差数列求和公式推导(1)提出问题:如果要计算 1 到 100 这 100 个自然数的和,用首尾相加法会比较繁琐,有没有更简便的方法?(2)引导学生观察数列的特点,发现相邻两个数的差值都为 1,这是一个等差数列。

(3)推导等差数列求和公式:假设首项为\(a_1\),末项为\(a_n\),项数为\(n\),则总和\(S_n =\frac{n(a_1 + a_n)}{2}\)。

数列求和优质课教案

数列求和优质课教案

数列求和教学目标: 让学生回顾数列基本知识点;让学生能够掌握数列的求和的几种基本方法;锻炼学生的自我思考能力。

教学重难点:对题意的分析以及方法的选择。

学法指导:示范,探究教学过程:※课标展示,强调本节内容及重点一、 回顾数列求和的方法:学生活动:请学生做总结,不全的由其他同学做补充。

通过课件总结方法:1、 公式法2、 分组求和法3、 裂项法4、 错位相加法5、 倒叙相加法二、 互动探究1、(2010重庆)、已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和.(Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T . 学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。

教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。

2、(2010山东) 已知等差数列{}n a 满足:3577,26a a a =+=.{}n a 的前n 项和为n S 。

(Ⅰ)求n a 及n S ; (Ⅱ)令21()1n n b n N a +=∈-,求数列{}n a 的前n 项和T n . 学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。

教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。

3 学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。

教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。

4学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。

教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。

《数列求和》教学设计

《数列求和》教学设计

第四章数列《数列求和》教学设计1.理解一些常见数列的求和方法.2.会求一些常见数列的前n项和.教学重点:常见数列的求和方法.教学难点:错位相减法求一类数列的和.PPT课件.【新课导入】问题1:等差数列的前n项和公式是什么?设计意图:通过回顾等差数列的前n项和公式,温故知新.问题2:等比数列的前n项和公式是什么?师生活动:学生回顾公式并回答.预设的答案:设计意图:通过回顾公式,引入新课.问题3:如果一个数列既不是等差数列也不是等比数列,如何求它的前n项和呢?常见数列的求和方法有哪些?设计意图:通过该问题,引起学生思考既不是等差数列也不是等比数列的特殊数列求和.【探究新知】知识点一 错位相减法一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解. 数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.知识点二 裂项相消法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.知识点三 分组求和法对于求数列的和,其中为等差或等比数列,可考虑用拆项分组法求和.知识点四 倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个.知识点五 并项求和法奇偶并项求和的基本思路:有些数列单独看求和困难,但相邻项结合后会变成熟悉的等差数列、等比数列求和.但当求前n 项和而n 是奇数还是偶数不确定时,往往需要讨论. 并项求和一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类型,可采用两项合并求解.【巩固练习】例1 已知数列{a n }的通项公式为a n =(3n +2)·2n ,求该数列前n 项和S n . 师生活动:学生分组讨论,教师讲解. 预设的答案:S n =5×2+8×22+11×23+14×24+…+(3n -1)·2n -1+(3n +2)·2n ……① 2S n =5×22+8×23+11×24+14×25+…+(3n -1)·2n +(3n +2)·2n +1……② ①-②得:-S n =5×2+3×22+3×23+3×24+…+3·2n -1+3·2n -(3n +2)·2n +1 =10+3(22+23+24+…+2n -1+2n )-(3n +2)·2n +1=10+3(2n +1-4)-(3n +2)·2n +1q {}n n a b ±{}{},n n a b 1()n a a +(1)()nn a f n =-=3·2n +1-(3n +2)·2n +1-2 =(1-3n )·2n +1-2故S n =(3n -1)·2n +1+2. 设计意图:通过该题让学生理解乘公比错位相减法的应用及步骤.发展学生数学抽象、数学运算、数学建模的核心素养.易错点剖析:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n −qS n ”的表达式;(3)两式相减时最后一项因为没有对应项不要忘记变号;(4)对相减后的和式的结构要认识清楚,中间是n -1项的和;(5)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.例2 已知等差数列为递增数列,且满足,.(1)求数列的通项公式; (2)令,为数列的前n 项和,求.师生活动:学生分析题意,完成(1);师生一起完成(2).预设的答案:(1)由题意知,或为递增数列,,故数列的通项公式为(2). 设计意图:通过该题让学生理解裂项相消法的应用及相消规则.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:等差数列中相邻两项积的倒数构成的数列求和用裂项相消法;常见的通项分解(裂项)有: (1) [一般] {}n a 12a =222435a a a +={}n a *1()(1)(1)n n n b n N a a =∈+-n S {}n b n S 222(22)(23)(24)d d d +++=+23440d d ∴--=2d ∴=23d =-{}n a 2d ∴={}n a 2.n a n =1111()(21)(21)22121n b n n n n ==-+--+11111111[(1)()()...()]2335572121n S n n ∴=-+-+-++--+11(1)221n =-+21nn =+111(1)1n a n n n n ==-++1111()()n a n n k k n n k==-++(2)(3) (4)(5)例3 求和:.师生活动:学生分组讨论,派代表发言;教师完善.预设的答案:原式. 设计意图:通过该问题让学生理解分组求和法,让学生会求一类可转化为等差数列和等比数列的求和的数列求和问题.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:分组分解求和的基本思路:通过分解每一项重新组合,化归为等差数列和等比数列求和.例4求和 师生活动:学生独立完成,教师完善.预设的答案:设 ①②①+②得,所以.设计意图:通过该题让学生理解倒序相加法.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:如果一个数列距离首末两项的和相等,就可以采用倒序相加法. 例5求和12-22+32-42+…+992-1002.师生活动:学生分组讨论,派代表板演,教师完善.预设的答案:12-22+32-42+…+992-1002=(12-22)+(32-42)+…+(992-1002)1111()(21)(21)22121n n n n =--+-+2(2)1111()(21)(21)22121n n a n n n n ==+--+-+1111[](1)(2)2(1)(1)(2)n a n n n n n n n ==--++++n a ==()()()12235435235n n ----⨯+-⨯+⋅⋅⋅+-⨯()()122462353535n n ---=+++⋅⋅⋅+-⨯+⨯+⋅⋅⋅+⨯()()()1215152233152154nn n n nn -----+=-⨯=+---︒++︒+︒+︒89sin 3sin 2sin 1sin 2222 ︒++︒+︒+︒=89sin 3sin 2sin 1sin 2222T ︒++︒+︒+︒=1sin 87sin 88sin 89sin 2222 T ︒++︒+︒+︒=89cos 3cos 2cos 1cos 2222 T 289T =44.5T ==(1-2)(1+2)+(3-4)(3+4)+…+(99-100)(99+100)=-(1+2+3+4+…+99+100)=-5 050.设计意图:通过该题让学生理解并项求和法.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:通常数列中的项是正负交替或奇偶项各有规律的,往往采用并项求和法.【课堂总结】1.板书设计:2.总结概括:师生活动:学生总结,老师适当补充.设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力.3.课堂作业:目标检测题【目标检测设计】 1.已知若等比数列满足则( )A .B .1010C .2019D .2020 设计意图:进一步巩固错位相减法.本题综合考查函数与数列相关性质,需要发现题中所给条件蕴含的倒数关系,寻找规律进而求出答案. 2.求数列的前n 项和. 设计意图:进一步巩固错位相减法.该数列为两个数列的积,其中为等差数列,为等比数列,故可考虑用错位相减法求和. 3.求数列前n 项的和.设计意图:让学生进一步巩固裂项相消法. 参考答案: 1.D等比数列满足即2020故选D. 2.①, ②, 22()(),1f x x x=∈+R {}n a 120201,a a =122020()()()f a f a f a +++=201922n n ⎧⎫⎨⎬⎩⎭n S {}n 12n ⎧⎫⎨⎬⎩⎭()()32121n n ⎧⎫⎪⎪⎨⎬-+⎪⎪⎩⎭22()(),1f x x x =∈+R 22222122()11122211f x f x x x x x x⎛⎫∴+=+ ⎪+⎝⎭⎛⎫+ ⎪⎝⎭=+=++{}n a 120201,a a =120202019220201...1,a a a a a a ∴====()()()()()()120202019202012...2f a f a f a f a f a f a ∴+=+==+=122020()()()f a f a f a +++=231123122222n n n n n S --=+++⋅⋅⋅++234111*********n n n n nS +-=+++⋅⋅⋅++①-②得, . 3.∵, .23411111112222222n n n n S +=++++⋅⋅⋅+-1111221212n n n +⎛⎫- ⎪⎝⎭=--111,22n n n +=--11222n n nnS -∴=--()()3311212122121n a n n n n ⎛⎫==-⎪-+-+⎝⎭3111111131311233557212122121n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦。

高中数学数列求和教案模板

高中数学数列求和教案模板

高中数学数列求和教案模板
一、教学目标:
1. 知识与技能:掌握数列求和的基本方法,能够运用公式求解数列求和问题。

2. 过程与方法:培养学生分析问题、归纳规律和运用公式求解问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生坚持不懈、勇于探索的学习态度。

二、教学重点和难点:
1. 掌握等差数列求和公式和等比数列求和公式。

2. 解决实际问题中的数列求和问题。

三、教学过程:
1. 导入:通过一个生活中的实际问题引入数列求和的概念,引起学生兴趣。

2. 提出问题:给学生几道数列求和的练习题,让学生自己尝试解答。

3. 教学讲解:介绍等差数列求和公式和等比数列求和公式,讲解求解数列求和的基本方法。

4. 拓展练习:让学生做一些更复杂的数列求和题,巩固所学知识。

5. 实际应用:引导学生应用所学知识解决实际问题,提高学生的综合应用能力。

6. 总结:对本堂课所学内容进行总结,巩固学生的学习成果。

四、课堂作业:
1. 完成课堂练习题。

2. 设计一个与生活相关的数列求和问题,并用公式解决。

五、教学反思:
1. 教学过程中是否引入了生活实例,激发了学生的学习兴趣?
2. 是否根据学生的实际情况,调整了教学内容和难度?
3. 学生能否掌握数列求和的基本方法和公式,是否能够独立解决数列求和问题?
六、板书设计:
1. 等差数列求和公式:Sn = n(a1 + an)/2
2. 等比数列求和公式:Sn = a1(1-q^n)/(1-q)
七、教学反馈:
通过课堂练习和作业的批改,及时了解学生对数列求和知识的掌握情况,做好巩固和拓展工作。

数列求和教案

数列求和教案

数列求和教案教案标题:数列求和教案教案目标:1. 理解数列的概念和性质。

2. 掌握数列求和的方法和技巧。

3. 运用数列求和的知识解决问题。

教案步骤:1. 引入数列的概念和性质a. 使用具体生活例子引起学生对数列的兴趣,如斐波那契数列、等差数列等。

b. 解释数列的定义:数列是按照一定规律排列的数字的集合。

c. 解释数列的基本性质,如公差、首项、通项公式等。

2. 解决等差数列求和的问题a. 解释等差数列的概念和性质,包括公差和通项公式。

b. 引导学生理解等差数列求和公式的推导过程。

c. 给予学生一些具体的等差数列求和问题,并引导他们运用所学的知识解决问题。

3. 解决等比数列求和的问题a. 解释等比数列的概念和性质,包括公比和通项公式。

b. 引导学生理解等比数列求和公式的推导过程。

c. 给予学生一些具体的等比数列求和问题,并引导他们运用所学的知识解决问题。

4. 解决其他类型数列求和的问题a. 引导学生思考其他类型数列的求和方法,如斐波那契数列、等差数列的和等。

b. 给予学生一些具体的其他类型数列求和问题,并引导他们找到解决问题的方法和技巧。

5. 总结和拓展a. 总结数列求和的基本方法和技巧。

b. 提供更多的数列求和问题,让学生加深对所学知识的理解和运用。

c. 鼓励学生在课后拓展数列求和的应用,如数学竞赛等。

扩展练习:1. 对于等差数列 {3, 7, 11, 15, ...},求前10项的和。

2. 对于等比数列 {2, 4, 8, 16, ...},求前5项的和。

3. 对于斐波那契数列 {1, 1, 2, 3, 5, ...},求前8项的和。

评估方式:1. 在课堂上布置练习题,检查学生对数列求和的理解和运用能力。

2. 考察学生解决数列求和问题的思路和方法。

3. 鼓励学生在课后通过编写文章或讲解视频来展示对数列求和知识的理解深度。

教案提供的专业指导将帮助教师详细规划教学内容和步骤,确保学生能够深入理解数列求和的概念和运用方法。

高中数学数列求和的教案

高中数学数列求和的教案

高中数学数列求和的教案
教学目标:学生能够理解数列的概念,能够通过已知数列的通项公式求和,并能够通过数列的性质推导出求和公式。

教学重点和难点:数列的求和公式的推导及应用。

教学准备:
1. 知识点讲解:数列、等差数列、等比数列、通项公式、求和公式。

2. 教学工具:黑板、彩色粉笔、课件、习题。

教学步骤:
Step 1:引入
通过引入一个简单的数列例子开始本节课的教学,让学生理解数列的概念和特点。

Step 2:等差数列求和公式的推导及应用
1. 讲解等差数列的性质和通项公式,引导学生通过对数列进行分组求和,推导等差数列求和的公式。

2. 给出练习题让学生尝试应用等差数列求和公式进行计算。

Step 3:等比数列求和公式的推导及应用
1. 讲解等比数列的性质和通项公式,引导学生通过求和两个等比数列的公式,推导等比数列求和的公式。

2. 给出练习题让学生尝试应用等比数列求和公式进行计算。

Step 4:总结与拓展
1. 总结本节课所学内容,强化数列的概念和求和公式的应用。

2. 给出拓展练习题,加深学生对数列求和公式的理解和应用能力。

Step 5:作业布置
布置作业,要求学生完成相关练习题并检查答案。

教学反馈:通过课堂练习和作业检查,检查学生对数列求和公式的掌握情况并及时进行反馈。

教学延伸:引导学生进一步理解数列的性质和应用,拓展更多数列求和的相关知识。

教学评价:通过课堂教学和作业完成情况评估学生对数列求和公式的掌握情况,及时调整教学方法和内容,帮助学生提高数学能力。

高中数学数列求和方法教案

高中数学数列求和方法教案

高中数学数列求和方法教案
目标:学生能够熟练掌握数列求和的基本方法并应用于实际问题中。

教学内容:
1. 数列的概念及常见数列的表示方法
2. 等差数列求和公式的推导及应用
3. 等比数列求和公式的推导及应用
4. 各种数列求和的实际应用问题解题
教学步骤:
1. 引入问题:通过展示一段数列并让学生猜测下一个数的规律,引出数列求和的概念。

2. 探究数列求和方法:介绍等差数列和等比数列的定义,推导相应的求和公式并演示应用。

3. 练习:让学生通过练习题巩固所学知识,强化数列求和的运算技巧。

4. 实际应用:设计几个实际问题,让学生运用所学方法解决数列求和问题。

5. 总结:总结本节课学习的内容,强调数列求和方法的重要性和实际应用。

教学资源:教材、练习题、黑板、彩色粉笔
评估方式:开展小测验或出一些综合性问题让学生自主解答,检测他们对数列求和方法的
掌握程度。

拓展延伸:让学生自行搜索一些其他类型的数列求和方法,并进行分享,拓展学生的数学
思维。

教学反思:及时寻找学生在数列求和方法中的困难点并进行讲解,促进学生的学习效果。

注:本教案仅作参考,教师可根据实际情况灵活调整教学内容和步骤。

数列求和问题教案

数列求和问题教案

数列求和问题·教案教学目标1.初步掌握一些特殊数列求其前n项和的常用方法.2.通过把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和问题,培养学生观察、分析问题的能力,以及转化的数学思想.教学重点与难点重点:把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和.难点:寻找适当的变换方法,达到化归的目的.教学过程设计(一)复习引入师:等差数列和等比数列既是最基本的数列又是最重要的数列.我们已经推出了求其前n项和的公式,公式分别是什么?师:我们学习新知识不仅要记住其结论,正确地运用它解决问题,而且要善于在学习新知识的过程中体会研究问题的方法,逐渐地学会思考、学会学习.(不失时机地对学生进行学法指导非常必要)回忆一下推导这两个公式的方法,你有什么收获?(留给学生回忆及思考的时间)生甲:推导等差数列前n项和公式所用的方法是:先把S n中各项“正着”写出来,再把S n中各项次序反过来写出,两式相加.由于对应项和都为(a1+a n),所以2S n=n(a1+a n),进而求出S n.师:推导方法是将要解决的问题通过“逆序相加”的方法转化为我们熟悉的常数列求和问题.(渗透转化的思想)生乙:推导等比数列前n项和所用的方法是:将S n的各项依次写出,再把这个式子的两边同时乘以q,然后两式“错项相减”,相减后等号右边只剩下两项,进而求得S n.师:解决此问题需要同学们有敏锐的观察能力.把S n=a1+a1q+…+a1q n-2+a1q n-2的两边分别乘以公比q,就得到各项后面相邻的一项,因而用“错项相减”的方法就可以消去相同的项.以上两种求和的思路在解决某些特殊数列求和问题时经常用到.这节课我们就来研究既非等差数列又非等比数列的一些特殊数列的求和问题.(板书课题)(二)新课例1 求分母为3,包含在正整数m与n(m<n)之间的所有不可约的分数之和.师:分母为3,包含在正整数m与n之间的所有不可约分数有哪些?师:本题实质上让我们解决什么问题?生:求由这些分数构成的数列的各项和.此数列是我们熟悉的等差数列或等比数列吗?(稍微停顿)都不是.请同学们观察此数列有什么特点,可用什么方法求和?生甲:此数列的第一项与最后一项的和是m+n,第二项与倒数第二项的和也是m+n,依此类推.根据此数列的特点,可以用刚才复习过的“逆序相加法”求和.(学生叙述解法一,教师板书)解法1:将上式各项次序反过来写出:两式相加得所以S=(m+n)(n-m)=n2-m2生乙:我观察此数列的所有奇数项组成公差为1的等差数列,所有偶数项也组成公差为1的等差数列,它们分别都有(n-m)项.可以转化成等差数列求和问题.(学生叙述解法2,教师板书)解法2:师:解法2是将原数列的各项重新组合,使它转化为等差数列求和(学生进一步体会)师:无论是“逆序相加法”还是“分组求和法”都是通过适当的变换把某些既非等差数列又非等比数列的特殊数列转化为等差或等比数列的求和问题.看下面数列又怎样转化呢?例2 求数列1,3a,5a2,7a3,…(2n-1)a n-1,…(a≠1)的前n项和.师:我们还是从观察数列特点入手.此数列各项有何特点?生:此数列每一项中的字母部分a0,a1,a2,…,a n-1构成以a为公比的等比数列,每一项中的系数部分1,3,5,…,(2n-1)构成以2为公差的等差数列.师:我们不妨把这种数列称为“差比数列”{c n},c n=a n·b n,其中{a n}为等差数列,{b n}为等比数列.联想我们曾遇到过的数列,有没有“差比数列”呢?生:任何一个等比数列都是特殊的差比数列.师:等比数列求和公式是怎样推导的?生:用错项相减法.师:假如我们也使用错项相减法,把S n=1+3a+5a2+7a3+…+(2n-1)a n-1的两边也同时乘以公比a,却不得各项后面相邻的一项,两式错项相减,并未达到消去绝大部分项的目的.用此法还行吗?生:虽然没消去绝大部分项,却把问题转化成为一个等比数列求和问题.(学生叙述,教师板书)解:因S n=1+3a+2a2+7a3+…+(2n-1)a n-1,(1)(1)×a得aS n=a+3a2+5a3+…(2n-3)a n-1+(2n-1)a n.两式相减得(1-a)S n=1+2a+2a2+2a3+…+2a n-1-(2n-1)a n=2(1+a+a2+a3+…+a n-1)-(2n-1)a n-1师:让我们来回顾一下,错项相减后的式子中只留下第一项和最后一项,其它各项构成等比数列,把未知问题转化成已知的等比数列求和问题.由解题过程可见,此方法可解决哪类数列的求和问题?生:错项相减法可解决差比数列求和问题.师:也就是说,可解决这类数列{c n}的求和问题,c n=a n·b n,其中{a n}为等差数列,{b n}为等比数列.例如求数列{2n-1}×0.1n}的前n项和,你能解决此问题吗?(学生进一步体会)师:这是一个通项是分数形式的数列,分母是相邻两个自然数的积,且相邻两项的分母中有相同因数.(稍微停顿)既然有相同的成分,那么我们能否消去它们,促成求和呢?(留给学生思考的时间)师:正像前面我们推导等差数列通项公式使用叠加法.(板书)a2-a1=da3-a2=da4-a3=d……a n-1-a n-2=da n-a n-1=d.将上面n-1个式子的等号两边分别相加得到a n-a1=(n-1)d,消去了绝大部分的项,只留下了第一项a1和最后一项a n.对于这个题目,同学们能否类似地实现求和呢?(让学生学会类比的思维方法)(学生讨论)生:要达到消去的目的,必须出现差的形式.观察数列的第一项可(学生叙述,教师板书)师:这位同学的解法非常漂亮.他把通项是分数形式的数列的每一项,分裂成两个分数之差,这些分数的和,除首末两项(有时也可能是首末若干项)外,其余各项前后抵消,实现了求和.我们把这种方法叫做裂项求和法.这种方法,在解决通项是分数形式的数列求和问题时经常用到.下面请看第(2)小题.(学生先练习,然后师生共同讨论)师:这个数列有何特点?考虑用什么方法求和?生:这个数列中的每一项都有规律的分数形式,不妨试试裂项求和法解题.师:怎样裂项?师:先从通项入手进行分析,具有一般性,很好.分析裂项时,需师:由(*)式的变形过程可知4是由(4k-3)-(4k+1)得来的.观察数列1,5,9,13,…,4n-3,…是什么数列?生:公差为4的等差数列.生:凑的系数恰为数列1,5,9,…,4n-3,…的公差的倒数.师:能不能推广成更具一般性的结论?(学生讨论)生:如果{a n}为等差数列,d为公差,则师:这样就全面了.同学们得出具有共性的结论.我们要善于解题后回顾与反思,多题归一.当然,有的不具有此规律的分数数列裂项并师:怎样求得A,B,C?生:可用待定系数法.师:课后同学们可继续探讨.例4 求和S n=13+23+33+…+n3(n∈N+).(学生议论)师:同学们还记得S n=1+3+5+…+(2n-1)=n2可用哪个图形表示出来吗?(学生甲在黑板上画出图形,如图6-2)师:对于S n=13+23+33+…+n3(n∈N+)同学们能否类似地用一图形表示并猜想其结果?(学生讨论,教师用实物投影展示学生乙的图形,图6-3)生乙:我也用一个正方形表示,左下角的第一格表示13,左下角除表示13的方格外的8个格表示23,左下角除表示13和23以外的27个格表示33,以此类推.前n个自然数的立方和S n为正方形中所有方格个数之和(1+2+3+…+n)2师:同学们借助几何图形及其性质,使问题变得直观、简单,猜想除了猜想一证明的方法外,还有没有其它方法?(稍微停顿)想想前n个自然数的平方和是怎样求出来的?生:用构造法.利用构造的恒等式(k+1)3-k3=3k2+3k+1(k∈N+)实现求和.师:对.当k取1,2,…,n时,得到n个恒等式,把这个n个恒等式两边分别相加,由于左边是两个连续自然数的立方差,叠加后式子左边消去了除(n+1)3与13以外的所有项,右边留下了我们需要的S n与可解决的自然数和以及n个常数1之和.构造恒等式的目的是为了把前n个自然数的平方和问题转化为前n个自然数和的问题.那么,对于前n个自然数的立方和问题又怎样转化呢?生:构造恒等式(k+1)4-k4=4k3+6k2+4k+1(k∈N+),当k取1,2,…,n 时,把n个式子叠加,使问题转化为前n个自然数的平方和与前n个自然数和的问题.师:很好.请同学们课后完成.我们把公式叫做自然数的方幂和公式.利用公式,我们又可以解决一类数列求和问题.例5 求和S n=1×2×3+2×3×4+…n(n+1)(n+2).师:利用公式(1),(2),(3)可解决自然数的方幂和问题,对于各项为n个数的积的形式的数列怎样能实现求和?生:先分析数列的通项,最好是化为n个数的和或差的形式.(学生叙述,教师板书)例因为n(n+1)(n+2)=n3+3n2+2n,则S n=13+3×12+2×1+23+3×22+2×2+…n3+3n2+2n=(13+23…+n3)+3(12+22+…+n2)+2(1+2+…+n)师:请同学们归纳一下,利用公式(1),(2),(3)可解决哪类数列求和问题?生:如果数列{a n}的通项是关于n的多项式或通项可以转化为关于n的多项式就可以利用公式求数列的前n项的和.(三)小结师:数列求和是一个很有趣的问题.最基本的方法是:对于等差数列或等比数列求其前n项和,直接用前n项和公式求得,我们把这种方法叫做直接法.除直接法外,我们还应总结求一些特殊数列前n项和的间接方法.能举例吗?生:如这节课使用的逆序相加法,分组求和法,错项相减法,构造法等.师:使用这些具体方法的指导思想是什么?生:利用转化的思想,把一些既非等差数列又非等比数列的数列求和转化为等差数列或等比数列求和.师:我们可以把这些具体方法归纳为第一种间接求和法——转化求和法.也就是通过适当的变换,化归成等差数列或等比数列求和.还有什么方法?生:裂项求和法.师:如果一个数列的每一项都能排成两项之差,在求和中,一般除首末两项(也可能是首末若干项)外,其余各项先后抵消,那么这个数列前n项和就容易求出来了.在解决分数数列的求和问题时经常用到.师:我们把它归纳为第二种间接求和法——裂项求和法.还有其他方法吗?生:利用自然数的方幂和公式求和.师:对于通项是关于n的多项式或可化为关于n的多项式的数列可利用此公式求和.我们把它归纳为第三种间接求和法——利用自然数的方幂和公式求和.当然,对于某些数列的求和还可以用归纳-猜想-证明的方法,今后同学们可继续讨论.(四)布置作业A组(A组题检查教学目标是否达到,要求学生独立完成)B组(B组题供学有余力的学生使用)课堂教学设计说明在教学过程中,教师对学生进行必要的学法指导,使学生由“学会”到“会学”是课堂教学中实施素质教育的重要手段.这节课一开始的复习,不仅仅是复习旧知识,而且复习研究问题的方法,由此引入新课,让学生体会怎样学习.在学习裂项求和法时,用推导等差数列通项公式使用的叠加法与要解决的问题进行类比,引导学生发现解决新问题的办法,让学生体会类比的思维方法.在解完例3之后,教师引导学生把结论推广到一般情况,进行例题后的回顾与反思,让学生体验如何加强知识之间的联系,使认识不断升华.利用课堂小结将学生零散的知识系统化,并纳入到自己的认知结构中,与此同时,也培养了学生养成善于总结的良好学习习惯.总之,课堂教学中不失时机地对学生进行必要的学习方法指导,让学生学习“怎样思考”、“怎样学习”其意义远比学会知识本身深远得多.。

高中数学 数列的求和(分组求和、错位相减)教学设计

高中数学 数列的求和(分组求和、错位相减)教学设计

错位相减法求和 适用于:通项公式可以写成 “等差等比”的数列

cn anbn ,其中 {an}是公差为d的等差数列

{bn}是公比为q ( q≠1)的等比数列
三:导学过程
第一行,写出数列的每一项:
Sn a1b1 a2b2 a3b3 an1bn1 anbn

第二行,等比数列公比乘以 Sn:
目录
1 学生X因子分析(教练扮演) 2 第二部分:教学目标 3 第三部分:高级导学过程
1 学生X因子分析(教练扮演) 2 第二部分:教学目标 3 第三部分:高级导学过程
一:学生X因子分析(教练扮演)
学生概括:性格开朗,成绩中等偏上
学习能力
学习习惯
学习心理
注意力:听课专注
思维:接受能力良好, 逻辑思维不错;
1 1
(2n
1) (1)n1 3
3
4 ( 2n 4)(1)n
Sn
2
(n
2)(1)n 3
3
33
三:导学过程
分组求和 适用于:通项公式可以分解成
规 “等比等比”、“等差 等比”的数列 cn an bn ,其中 {an} 、{bn}
分别是等差或等比数列,则分别求和再相加减

三:导学过程
记忆力:一般
课下没有温故知新 不主动完成作业
容易满足 不喜欢受到批评
1 学生X因子分析(教练扮演) 2 第二部分:教学目标 3 第三部分:高级导学过程
二:教学目标
123
掌握方法
分组求和 错位相减
123
学会观察
123
快速定位,准确解决
1 学生X因子分析(教练扮演) 2 第二部分:教学目标 3 第三部分:高级导学过程
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时磊5说-
数列求和教学设计
鹿城中学田光海高三数学
一、教材分析
数列的求和是北师大版高中必修5第一章第内容。

它是等差数列和等比数列的延续,与前面学习的函数也有着密切的联系。

它是从实际问题中抽离出来的数学模型,实际问题中有
广泛地应用。

同时,在公式推导过程中蕴含着分类讨论等丰富的数学思想。

二、教法分析
基于本节课是专题方法推导总结课,应着重采用探究式教学方法。

在教学中以学生的讨论和自主探究为主,辅之以启发性的问题诱导点拨,充分体现学生是主体,教师服务于学生的思路。

三、学法分析
在此之前,已经学习了等差数列与等比数列的概念及通项公式,已经具备了一定的知识
基础。

在教师创设的情景中,结合教师点拨提问,经过交流讨论,形成认识过程。

在这个过程中,学生主动参与学习,提高自身的数学修养。

让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

四、三维目标
1知识与技能
理解掌握各种数列求和的方法,学会解析数列解答题,提高解决中难题的能力•
2过程与方法
通过对例题的研究使学生感受数列求和方法的多样性
3情感态度与价值观
感受数学问题的差异,但又能以不同的方法加以解决,进而体会到数学知识的灵活性
五、教学重点与难点
本着课程标准,在吃透教材的基础上,我确立如下教学重点与难点:重点:数列求和公式的推导及其简单应用。

此推导过程中蕴含了分类讨论,递推、转化等重
要思想,是解决一般数列求和问题的关键,所以非常重要。

为此,我给出了四种方法进行数
列求和,加深学生理解,突出重点。

难点:数列求和公式的推导及应用。

在此之前,已经学习了等差数列与等比数列的前n项和,可由此引发进行数列求和的专题学习,为此,我引导学生先进性等差与等比数列的复习。

由此引入专题学习。

cn=an • bn
({an}为等差数列,{bn}为等比数列) 巩固练习
111/1
1. 求Sn 2 —3—2 4p (n
1) —
2 222^ 2n
的和
4.裂项相消法(又称裂项法) :
111 1
例4:求和1 1 1
……'
1 2 2 3 3 4 n(n 1)
1 1 1
注示:a n
n(n 1) n n 1
答案:Sn=
n
n 1
注意裂项相消法的关键:
将数列的每一项拆成二项或多项使数列中的项出现有规律的抵消项,进而达到求和的目的。

1 1 1 a n -------
n(n 1) n n 1
常见的拆项公式有:
, 1 1 1
1・
n(n 1) n n 1
2.
1 1
(1
1
)
n(n k) k n n k
3. -------- 1 --------- 丄(^^ —^)
(2n 1)(2n 1) 2 2n 1 2n 1
“ 1 1「 1 1 T 4. [ ]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
5. 厂1厂1
(需局
V a v b a b
巩固练习
1 1 1 求禾口 S n 一...... ++ +
1 X 3 3X 5 (2n-1) x (2n+1)
1 1 1 1
解:由通项a n=( )
(2n 1) (2n 1)2 2n 1 2n 1使学生明白
知识之间的

系,要善
于将我们
不能直接
求解的数
列转化为
我们所熟
悉并能求
解的数列
教师引导,
让学生在分
析题目的过
程中找到解
题的方法
这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的
前n项和的基础上,对一些非等差、等比数列的求和进行探讨。

这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。

本节课教学过程分为导入新课、知识回顾、例题讲解、练习训练、课堂小结、布置作业。

本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。

没有精心的预设,就没有精彩的生成。

我一直都是深刻记得这句话,也在教学中实践它。

但是我仍然感
觉自己做不到“精彩”而更多的是“平淡无奇”。

是这节课我有了深刻的体会,让我开始审
视我前面几个月所走过了路,才发现教学真的是需要智慧,做到用心去体会,用心去设计,用心去聆听学生的声音……。

相关文档
最新文档