2013年河北省中考数学科考试说明

合集下载

2013河北中考

2013河北中考

2013河北中考一、考试背景河北省是中国的一个省份,位于华北地区。

每年,河北省都会组织中学生参加中考。

中考是中国教育系统中的一项重要考试,是学生从初中毕业进入高中的一道门槛。

2013年,河北省的中考就是我们接下来要谈论的焦点。

二、考试科目2013年河北中考一共包括7个科目,分别是: 1. 语文 2. 数学 3. 英语 4. 物理 5. 化学 6. 历史 7. 政治三、考试内容和要求1. 语文语文是一门重要的科目,对于学生的语言表达和理解能力有很大的影响。

2013年河北中考的语文科目主要包括阅读理解、作文和语法填空。

2. 数学数学是一门科学,也是一门实用的学科。

2013年河北中考的数学科目主要包括代数、几何和数与式的计算。

3. 英语英语是国际通用语言,在现代社会中非常重要。

2013年河北中考的英语科目主要包括听力、阅读、写作等。

4. 物理物理是一门自然科学,主要研究物质的运动规律和能量转化的问题。

2013年河北中考的物理科目主要包括物理实验和理论知识。

5. 化学化学是一门研究物质组成、性质、变化以及与能量的转化关系的学科。

2013年河北中考的化学科目主要包括化学实验和理论知识。

6. 历史历史是人类社会发展的记录和研究。

2013年河北中考的历史科目主要包括中国近现代史和世界近代史的知识。

7. 政治政治是国家和社会管理的学问。

2013年河北中考的政治科目主要包括中国共产党的基本理论、党的路线方针政策等知识。

四、考试时间和地点2013年河北中考的具体时间和地点根据当年河北省教育部门的安排而定。

通常情况下,中考一般在6月份进行,考试地点为各个考点学校。

五、考试形式和评分标准2013年河北中考的考试形式为笔试和口试相结合。

其中,语文、数学、英语和政治是笔试科目,物理、化学和历史是口试科目。

评分标准根据当年河北省教育部门的规定而定,通常包括总分和各个科目的分数。

六、考试成绩和录取2013年河北中考的成绩是考生是否能够进入高中的重要依据。

2013年河北省中考数学试卷及解析

2013年河北省中考数学试卷及解析

2013年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃答案:B解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B.2. 截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A.0.423×107B.4.23×106C.42.3×105D.423×104答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4 230 000=4.23×1063.下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形.4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A、B、C都不符合,选D.x-4=5.若x=1,则||A.3B.-3C.5D.-5答案:A解析:当x=1时,|x-4|=|1-4|=3.6.下列运算中,正确的是A.9=±3 B.3-8=2 C.(-2)0=0 D .2-1=12答案:D解析:9是9的算术平方根,9=3,故A 错;3-8=-2,B 错,(-2)0=1,C 也错,选D. 7.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x +10 C .120x -10=100x D .120x +10=100x答案:A解析:甲队每天修路x m,则乙队每天修(x -10)m,因为甲、乙两队所用的天数相同,所以,120x =100x -10,选A.8.如图1,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为A .40海里B .60海里C .70海里D .80海里 答案:D解析:依题意,知MN =40×2=80,又∠M =70°,∠N =40°, 所以,∠MPN =70°,从而NP =NM =80,选D > 9.如图2,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y = A .2 B .3 C .6 D .x +3 答案:B解析:依题可得:262x y x +=-=3,故选B. 10.反比例函数y =mx 的图象如图3所示,以下结论:① 常数m <-1;② 在每个象限内,y 随x 的增大而增大; ③ 若A (-1,h ),B (2,k )在图象上,则h <k ;④ 若P (x ,y )在图象上,则P ′(-x ,-y )也在图象上. 其中正确的是 A .①② B .②③ C .③④ D .①④ 答案:C解析:因为函数图象在一、三象限,故有m >0,①错误;在每个象限内,y 随x 的增大而减小,故②错;对于③,将A 、B 坐标代入,得:h =-m,k =2m,因为m >0,所以,h <k,正确;函数图象关于原点对称,故④正确,选C.11.如图4,菱形ABCD 中,点M ,N 在AC 上,ME ⊥AD ,NF ⊥AB . 若NF = NM = 2,ME = 3,则AN = A .3 B .4 C .5 D .6 答案:B解析:由△AFN ∽△AEM,得:AN NF AM ME =,即223AN AN =+,解得:AN =4,选B.12.如已知:线段AB ,BC ,∠ABC = 90°. 求作:矩形ABCD .以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对答案:A解析:对于甲:由两组对边分别相等的四边形是平行四边形及角B 为90度,知ABCD 是矩形,正确;对于乙:对角线互相平分的四边形是平行四边形及角B 为90度,可判断ABCD 是矩形,故都正确,选A.13.一个正方形和两个等边三角形的位置如图6所示,若∠3 = 50°,则∠1+∠2 =A .90°B .100°C .130°D .180° 答案:B解析:如下图,∠ABC =180°-50°-60°=70°, ∠BAC +∠BCA =180°-70°=110°,∠1=180°-90°-∠BAC,∠2=180°-60°-∠BCA, ∠1+∠2=210°-(∠BAC +∠BCA)=100°,选B. 14.如图7,AB 是⊙O 的直径,弦CD ⊥AB ,∠C = 30°,CD = 23.则S 阴影= A .π B .2π C .23 3D .23π答案:D解析:∠AOD =2∠C =60°,可证:△EAC ≌△EOD,因此阴影部分的面积就是扇形AOD 的面积,半径OD =2,S 扇形AOD =2602360π⨯=23π15.如图8-1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B = 30°,∠C = 100°,如图8-2. 则下列说法正确的是 A .点M 在AB 上 B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远 答案:C解析:由题知AC 为最短边,且AC +BC >AB,所以, 点C 在AM 上,点B 在MD 上,且靠近B 点,选C.16.如图9,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE = EF = FB = 5,DE = 12,动点P 从点A 出发,沿折线AD -DC -CB 以每秒1个单位长的速度运动到点B 停止.设运动时间为t 秒,y = S △EPF ,则y 与t 的函数图象大致是答案:A解析:AD =13,sinA =1213,当P 在AD 上运动时,△PEF 的高h =1213t, y = S △EPF =152⨯⨯1213t,是一次函数关系,当点P 在CD 上运动时,高不变,底不变,三角形的面积不变,当点P 在C 上运动时,同样也是一次函数关系,故选 A.2013年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.题号 二 三19 20 21 22 23 24 25 26 得分二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.如图10,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A 与桌面接触的概率是________.答案:12解析:与A 相邻的面有3个,而正方体的面共有6个,因此所求概率为:3162= 18.若x +y =1,且,则x ≠0,则(x +2xy +y 2x ) ÷x +yx 的值为_____________.答案:1解析:原式=222x xy y xx y x x y++⨯=++=1 19.如图11,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC , 则∠B = °. 答案:95解析:∠BNF =∠C =70°,∠BMF =∠A =100°,∠BMF +∠B +∠BNF +∠F =360°,所以,∠F =∠B =95°.20.如图12,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2; 将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3; ……得 分评卷人如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_________. 答案:2解析:C 1:y =-x(x -3)(0≤x ≤3) C 2:y =(x -3)(x -6)(3≤x ≤6) C 3:y =-(x -6)(x -9)(6≤x ≤9) C 4:y =(x -9)(x -12)(9≤x ≤12) ┉C 13:y =-(x -36)(x -39)(36≤x ≤39),当x =37时,y =2,所以,m =2.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、 减法及乘法运算,比如: 2⊕5=2⨯(2-5)+1 =2⨯(-3)+1 =-6+1=-5(1)求(-2)⊕3的值(2)若3⊕x 的值小于13,求x 的取值范围,并在图13所示的数轴上表示出来.解析: (1)(2)32(23)1-⊕=-⨯--+2(5)1=-⨯-+=10+1 =11 (2)∵3x ⊕<13 ∴3(3)113x -+<93113x -+< 33x -< 1x >-数轴表示如图1所示22.(本小题满分10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图14-1)和条形图(如图14-2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.解析::(1)D有错理由:10%20⨯=2≠3(2)众数为5中位数为5(3)①第二步②4458667220x⨯+⨯+⨯+⨯==5.3估计这260名学生共植树:5.3⨯260=1378(棵)23.(本小题满分10分)如图15,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.解析:(1)直线y x b =-+交y 轴于点P(0,b),由题意,得b>0,t ≥0, b=1+t当t=3时,b=4 ∴4y x =-+(2)当直线y x b =-+过M(3,2)时23b =-+解得b=5 5=1+t ∴t=4当直线y x b =-+过N(4,4)时44b =-+解得 b=8 8=1+t ∴t=7 ∴4<t<7(3)t=1时,落在y 轴上; t=2时,落在x 轴上;24.(本小题满分11分)如图16,△OAB 中,OA = OB = 10,∠AOB = 80°,以点O 为圆心,6为半径的优弧MN ⌒分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′.求证:AP = BP ′;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN ⌒上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.解析:(1)证明:如图2,∵∠AOP=∠AOB+∠BOP=80º+∠BOP.∠BOP ’=∠POP ’+∠BOP=80º+∠BOP ∴∠AOP=∠BOP ’ ·············· 2分 又∵OA=OB,OP=OP ’∴△AOP ≌△BOP ’ ············· 4分 ∴AP=BP ’ ················· 5分(2)解:连接OT,过T 作TH ⊥OA 于点H∵AT 与MN ⌒相切,∴∠ATO=90º ················ 6分∴22AT OA OT =-=22106-=8 ········································· 7分∵12OA TH ⨯⨯=12AT OT ⨯⨯,即1102TH ⨯⨯=1862⨯⨯ ∴TH=245,即为所求的距离 ························································ 9分(3)10º,170º ···························· 11分 【注:当OQ ⊥OA 时,△AOQ 的面积最大,且左右两半弧上各存在一点】25.(本小题满分12分)次数n2 1某公司在固定线路上运输,拟用运营指数Q 量化考核司机的工作业绩.Q = W + 100,而W 的大小与运输次数n 及平均速度x (km/h)有关(不考虑其他因素),W 由两部分的和组成:一部分与x 的平方成正比,另一部分与x 的n 倍成正比.试行中得到了表中的数据.(1)用含x 和n 的式子表示Q ; (2)当x = 70,Q = 450时,求n 的值; (3)若n = 3,要使Q 最大,确定x 的值;(4)设n = 2,x = 40,能否在n 增加m %(m >0)同时x 减少m %的情况下,而Q 的值仍为420,若能,求出m 的值;若不能,请说明理由.参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标是(-b2a ,4ac -b 24a )解析:(1)设212W k x k nx =+,∴212100Q k x k nx =++由表中数据,得2122124204024010010060160100k k k k ⎧=+⨯+⎪⎨=+⨯+⎪⎩,解得121106k k ⎧=-⎪⎨⎪=⎩ ∴21610010Q x nx =-++ ····························································· 4分 (2)由题意,得214507067010010n =-⨯+⨯+∴n=2 ························································································· 6分 (3)当n=3时,211810010Q x x =-++ 由1010a =-<可知,要使Q 最大,1812()10x =-⨯-=90 ·························· 9分 (4)由题意,得21420[40(1%)]62(1%)40(1%)10010m m m =--+⨯+⨯-+ ············· 10分 即22(%)%0m m -=,解得1%2m =,或%m =0(舍去)∴m=50····························· 12分26.(本小题满分14分)速度x 40 60 指数Q 420 100一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图17-1所示).探究 如图17-1,液面刚好过棱CD ,并与棱BB′ 交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图17-2所示.解决问题:(1)CQ 与BE 的位置关系是___________,BQ 的长是____________dm ;(2)求液体的体积;(参考算法:直棱柱体积V 液 = 底面积S BCQ ×高AB )(3)求α的度数.(注:sin49°=cos41°=34,tan37°=34)拓展 在图17-1的基础上,以棱AB 为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C 或CB 交于点P ,设PC = x ,BQ = y .分别就图17-3和图17-4求y 与x 的函数关系式,并写出相应的α的范围.[温馨提示:下页还有题!]延伸 在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM = 1 dm ,BM = CM ,NM ⊥BC .继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm 3.解析:探究 (1)CQ ∥BE 3 ·········································································· 2分(2)1=344=242V ⨯⨯⨯液(dm 3) ······································ 4分 (3)在Rt △BCQ 中,tan ∠BCQ=34 ∴α=∠BCQ=37º ················ 6分拓展 当容器向左旋转时,如图3,0º≤α≤37º ····· 7分∵液体体积不变,∴1x+y)44=242⨯⨯(∴-+3y x =···························································· 9分当容器向右旋转时,如图4,同理得124y x=-, ··············································· 10分 当液面恰好到达容器口沿,即点Q 与点B ’重合时,如图5.由BB ’=4,且1'4242PB BB ⨯⨯⨯=,得PB =3 ∴由tan ∠'PB B =34,得∠'PB B =37º,∴α=∠'B PB =53º 此时37º≤α≤53º ·············· 12分【注:本问的范围中,“≤”为“<”不影响得分】延伸 当α=60º时,如图6所示,设FN ∥EB,'GB ∥EB过点G 作GH ⊥'BB 于点H在Rt △'B GH 中,GH=MB=2,∠'GB B =30º,∴'HB = 23∴MG=BH= 423-<MN此时容器内液体形成两层液面,液体的形状分别是以Rt △NFM 和直角梯形'MBB G 为底面的直棱柱∵S △NFM +'MBB G S = 1311(4234)2222⨯⨯+-+⨯= 11386- ∴V 溢出= 113244(8)6--= 22383->4(dm 3) ∴溢出液体可以达到4dm 3. ····························································· 14分。

2013年河北省中考数学试卷分析

2013年河北省中考数学试卷分析

2013年河北省中考数学试卷分析一、试题特点2013年河北省中考数学试卷从考查形式和考查内容上与之前的中考试卷都有很大不同,可以说是很大的变革。

1-16题为选择题,选择题从12道题变成16道题,分值从30分增加到42分。

1~6小题每小题2分,注重基础的考查;7~16小题每小题3分,注重基础知识的灵活运用。

第9题、第13题、第15题比较新颖。

第6题为传统解答题的计算题实数运算的考查。

第9题为2012年台湾省中考题改编,在2013年河北省中考说明题型示例选择题中也有出现。

第13题利用组合图形考查三角形内角和与特殊图形内角,考查形式基础而灵活。

第15题主要考查学生的审题能力和空间想象能力,根据角度关系预估M点所在位置,需要学生有一定做题能力和做题技巧。

17-20题为填空题,填空题从6道题变成4道题,分值从18分降到12分。

第18题为传统的解答题中的计算题改编,为分式化简求值问题。

第19题考查平行线的性质、角平分线的性质和三角形内角和,出题角度独特。

第20题将规律归纳与高一数学函数周期性结合起来,很好地做到了初高中知识的衔接,能够得出坐标轴上每一线段的距离结合函数性质即可求解。

21-26题为解答题,解答题从8道题变成4道题,分值从72分降到66分。

2008年以来持续五年的解答题八大板块被分解。

第21题为新定义运算题,共2问占分9分,新定义运算题从传统的填空题变成解答题,主要考查学生函数知识的灵活运用能力,是函数与一元一次方程、一元一次不等式的结合。

第22题为统计概率题,共4问占分10分。

统计概率题变化也比较大,“条形图中存在的错误”和“ 小宇的分析是从哪一步开始出现错误”的问法新颖,用学生平时容易犯的错误和容易忽视的问题考查知识点。

第23题为函数动点题,共3问占分10分。

和传统的动点题目不同,此题动点P不是常规地从图形中线段端点开始运动,而是从线段中一点开始运动,需要学生转化为常规动点问题,即利用一次函数性质找出b=1+t的等量关系从而将函数的参数变为t。

2013河北省中考数学试卷及答案

2013河北省中考数学试卷及答案

2013年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷U两部分;卷I为选择题,卷U为非选择题.本试卷满分为120分,考试时间为120分钟.卷I (选择题,共42分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2 .每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.•、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分•在每小题给出的四个选项中,只有一项是符合题目要求的)1 .气温由-1 C上升2C后是A . - 1 CB . 1CC. 2C D . 3C2.截至2013年3月底,某市人口总数已达到 4 230 000人•将4 230 000用科学记数法表示为A. 0.423 K07 B . 4.23 106C. 42.3 氷05 D . 423 XI043 .下列图形中,既是轴对称图形又是中心对称图形的是4 •下列等式从左到右的变形,属于因式分解的是A . a(x—y) = ax—ayB . x2+2x+1 = x(x+2)+1C. (x+1)(x+3) = x2+4x+3 D . x3—x= x(x+1)(x —1)AC . 6D . x+3 假设嘉嘉抽到牌的点数为 x ,淇淇猜中的结果应为y ,则y =B. 3A . 3B . —3C . 5D . —5 6.下列运算中,正确的是A . -9 = ±3B . 口 = 2C . (— 2)0= 0D . —! 1 2 = 27•甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m , 设甲队每天修路 x m.依题意,下面所列方程正确的是120= 100x = x —10 C .120 =100x — 10 x 120 100 B ------- = ----- .x x+10 120 = 100 D .x+10= &如图1, 一艘海轮位于灯塔 P 的南偏东70。

2014河北省中考数学考试说明

2014河北省中考数学考试说明

(0,b a≥b a≥(0,一、选择题1.下列计算正确的是()C .()3362a a -=- D .()x x -=--22(容易题) 2.(2011•肇庆)如图是一个几何体的实物图,则其主视图是( )A .B .C .D .) A .2-B .2C .1D .2(容易题) 4.若不等式组⎩⎨⎧≤->+0421x ax 有解,则a 的取值范围是( )A .a ≤3B .a <3C .a <2D .a ≤2 (容易题) A .2到3之间B .3到4之间C .4到5之间D .5到6之间(容易题) 6.(2012•长春)如图,在Rt △ABC 中,∠C=90°.,E ∥AB ,∠AE=42°,则∠B 大小( )A .42°B .45°C .48°D .58°(容易题)7.(2009•德州)若关于x 、y 的二元一次方程组 ⎩⎨⎧=-=+ky x ky x 95的解也是二元一次方程2x+3y=6的解,则k 的值为 A .43-B .43C .34-D .34(容易题)8.已知()82=-n m ,()22=+n m ,则=+22n mA .10B .6C .5D .3(容易题)A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5(容易题)A .20或16B .20C .16D .以上答案均不对(容易题)11.()()()()=++-+--225415415412541A .100B .200C .350D .0A .4πB .2πC .πD .3(容易题)13.点P (a+1,a+3)关于y 轴对称的对称点在第一象限,则a 的取值范围是( )A .a >-1B .-3<a <-1C .a >-3D .a <-1(容易题)14.(2008•佛山)如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( ) A .BM >DN B .BM <DNC .BM=DND .无法确定(容易题)15.(2008•吉林)某班数学活动小组7位同学的家庭人口数分别为:3,2,3,3,4,3,3.设这组数据的平均数为a ,中位数为b ,众数为c ,则下列各式正确的是( ) A .a=b <cB .a <b <cC .a <b=cD .a=b=c(容易题)16.某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是( )某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是( ) A .众数是9 B .中位数是9C .平均数是9D .锻炼时间不低于9小时的有14人(容易题)17.已知一组数据3,a ,4,5的众数为4,则这组数据的平均数为A .3B .4C .5D .6(容易题)18.(2013•台州)甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为2甲s =0.63,2乙s =0.51,2丙s =0.48,2丁s =0.42,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁(容易题)19.(2012•武汉)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( )A .2.25B .2.5C .2.95D .3(容易题)20.(2012•广元)“若a 是实数,则|a|≥0”这一事件是( ) A .必然事件B .不可能事件C .不确定事件D .随机事件21.(2012•山西)在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是( ) A .41B .31 C .21D .32(容易题)22.(2012•山西)小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E 、F 分别是矩形ABCD 的两边AD 、BC 上的点,EF ∥AB ,点M 、N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( ) A .31B .32 C .21D .43(容易题)23.(2007•河北)在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .12B .9C .4D .3(容易题)24.如图,是△ABC 和⊙O 的重叠情形,⊙O 与直线BC 相切于点C ,且与AC 交于另一点D .若∠A=70°,∠B=60°,则∠COD 的度数为( ) A .50 B .60 C .100 D .120(容易题)25.(2004•河北)把一个小球以20m/s 的速度竖直向上弹出,它在空中的高度h (m )与时间t (s )满足关系:h=20t-5t 2.当h=20时,小球的运动时间为( ) A .20sB .2sC .()s 222+ D . ()s 222-(容易题)26.(2008•丽水)如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,∠AOB=45°,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点,设OP=x ,则x 的取值范围是( ) A .O <x ≤2 B .2-≤x ≤2C .-1≤x ≤1D .x >2(中等题)27.(2009•芜湖)在平面直角坐标系中有两点A (6,2)、B (6,0),以原点为位似中心,相似比为1:3,把线段AB 缩小,则过A 点对应点的反比例函数的解析式为( )A .y 4= B .y 4= C .y 4== D . y 18=A .B .C .D .30.如图,AB=OA=OB=OC ,则∠ACB 的大小是( )A .40°B .30°C .20°D .35°(中等题)31.(2012•连云港)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°角的正切值是( )A .13+B .12+C .2.5D .5(中等题)32.(2013四川宜宾)对于实数a 、b ,定义一种运算“⊗”为:a ⊗b=a2+ab ﹣2,有下列命题:①1⊗3=2;②方程x ⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x <4;④点(,)在函数y=x ⊗(﹣1)的图象上.其中正确的是( )A .①②③④B .①③C .①②③D .③④(中等题)33. (2012•杭州)已知关于x ,y 的方程组⎩⎨⎧=--=+ay x a y x 343,其中-3≤a ≤1,给出下列结论: ①⎩⎨⎧-==15y x 是方程组的解;②当a=-2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4-a的解;④若x≤1,则1≤y≤4.其中正确的是()A.①②B.②③C.②③④D.①③④A.m+2n=1 B.m-2n=1 C.2n-m=1 D.n-2m=1(中等题)35.(2010•潼南县)如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A.B.C.D.(中等题)36.(2012•北京)小嘉在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q(中等题)37.(2012•乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是ABA.1个B.2个C.3个D.4个(中等题)38.(2012•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论错误的是()A.abc>0 B.3a>2bC.m(am+b)≤a-b(m为任意实数)D.4a-2b+c<0A.只有①B.只有②C.①②都正确D.①②都不正确40.对于实数c、d,我们可用min{ c,d }表示c、d两数中较小的数,如min{3,-1}=-1.若关于x的函数y=min{2x2,a(x-t)2}的图象关于直线x=3对称,则a、t的值可能是()A.3,6 B.2,-6 C.2,6 D.-2,6(较难题)二、填空题(容易题)(容易题)(容易题)6.(2012•大庆)按照如图所示的程序计算,若输入x=8.6,则m= .(容易题)7.(2012•龙岩)为落实房地产调控政策,某县加快了经济适用房的建设力度.2011年该县政府在这项建设中已投资3亿元,预计2013年投资5.88亿元,则该项投资的年平均增长率为 . (容易题)8.(2008•乌兰察布)对于x、y定义一种新运算“*”:x*y=a x+b y,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3= .(中等题)9.在“a2□4a□4”的□中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是 .(容易题)10.(2012•荆州)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为cm2.(结果可保留根号)(容易题)11.(2012•上海)在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么AB的长为 .(容易题)12.如图,连接在一起的两个正方形的边长都为1cm,现有一个微型机器人由点A开始按从A→B→C→D→E→F→C→G→A…的顺序沿正方形的边循环移动.(1)第一次到达G点时,微型机器人移动了cm;(2)当微型机器人移动了2013cm时,它停在点.(中等题)13.(2012•台州)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为厘米(中等题)14.如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63°,那么∠B的度数为(中等题)15.如图,在一圆形跑道上,甲从A点、乙从B点同时出发,反向而行,8分后两人相遇,再过6分甲到B点,又过10分两人再次相遇.甲环行一周需分16.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2014的坐标为(中等题)17.(2012•常州)在平面直角坐标系xOy中,已知点P(3,0),⊙P是以点P为圆心,2为半径的圆,若一次函数y=kx+b的图象过点A(-1,0)且与⊙P相切,则k+b的值为2.如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,E为BC中点,请按要求完成下列各题:(1)画AD∥BC(D为格点),连接CD;(2)通过计算说明△ABC是直角三角形;(3)在△ACB中,tan∠CAE= ,在△ACD中,sin∠CAD=(中等题)3.一条环形公路长42千米,甲,乙两人在公路上骑自行车,速度分别为21千米/时,14千米/时。

2013年中考数学试卷说明

2013年中考数学试卷说明

2013年中考数学试卷说明总体原则上与去年保持一致。

即选择题8个,每个3分,填空题6个,每个3分,作图题一个,4分,解答题9个,共74分;具体说明如下:出题原则,参考三个方面:1、6本教科书,2、升学复习指导,3、九年级的同步与探究;原则上不拔高。

难度:低:中:高=4:4:21、关注基础,面向全体,只要付出努力,都会得到一个基础分。

2、适当增加中高档题目的思维含量。

各题分析1-14题,为选择题、填空题,要考察如下内容:1、一个数的相反数、倒数、绝对值、平方根、立方根等2、三视图3、近似数及有效数字4、中心对称轴对称5、圆中:(1)圆周角圆心角(2)垂径定理(3)圆锥弧长侧面积(4)直线与圆、圆与圆的位置关系(5)圆心角弦弧之间关系(6)切线(垂直)(7)直径与圆周角(考2-3个题)6、估算(摸球)7、坐标变换8、一次函数与反比例函数9、列方程解应用题(只列方程,要用原始数据,不用化简)10、图形的旋转平移折叠等11、方差(不计算)极差平均数众数中位数12、实数的计算13、找规律15题作图题,主要考察四种基本作图:1.做一条线段等于已知线段,2.做一个角等于已知角,3.做线段的垂直平分线,4.做一个角的平分线。

本题无计算,仅为以上四种基本作图的组合。

除本题的作图用铅笔画图外,其他题目包括本题结论必须用你答其他题的钢笔或签字笔答题。

做圆时,必须做出圆心和半径,内切圆的半径可以用三角板直接做垂直,标上一个垂直符号就行。

其他如中垂线必须用尺规,不能用三角板直接做垂直。

16题主要考察1.方程(组)(一元一次、一元二次、二元一次、分式),其中一元二次方程要求用配方法解,分式方程需要检验。

2.一元一次不等式组。

3分式的简单加减乘除化简运算(不超过2个分式)。

(8分)17题考察扇形、折线、条形统计图,理解同样数据不同的抽样有不同的结果,知道样本、总体、个体的意义,会计算平均数、极差,会有方差的值考虑数据的稳定性(不需要记住方差计算公式);会读信息,会处理信息。

2013河北中考《数学考试说明》四边形部分解析

2013河北中考《数学考试说明》四边形部分解析

四边形一,考试要求1.了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.掌握平行四边形的有关性质和四边形是平行四边形的条件.4.掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件,并会用平行四边形、矩形、菱形、正方形的知识解决有关问题.5.了解等腰梯形的有关性质和四边形是等腰梯形的条件,并能解决简单问题.6.了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心).7.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可镶嵌平面,并能运用任意一个三角形、四边形或正六边形进行简单的镶嵌设计.二,考点内容平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形(定义);(2)两组对边分别相等的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.面积公式:S=ah(a是平行四边形的一条边长,h是这条边上的高).矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质:矩形具有平行四边形的所有性质;(1)矩形的对边平行且相等;(2)矩形的四个角都相等,且都是直角;(3)矩形的对角线互相平分且相等. 3.矩形的判定方法:(1)有一个角是直角的平行四边形是矩形(定义);(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.4.面积公式:S=ab(a、b是矩形的边长).菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质:菱形具有平行四边形的所有性质;(1)菱形的对边平行,四条边都相等;(2)菱形的对角相等;(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.3.菱形的判定方法:(1)有一组邻边相等的平行四边形是菱形(定义);(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.4.面积公式:S=ah(a是平行四边形的边长,h是这条边上的高)或s=mn(m、n是菱形的两条对角线长).正方形(1)正方形的对边平行,四条边都相等;(2)正方形的四个角都是直角;(3)正方形的两条对角线相等,并且互相垂直平分;每条对角线平分一组对角;3.正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形.4.面积公式:S=a2(a是边长)或s=b2(b正方形的对角线长).平行四边形和特殊的平行四边形之间的联系:三,近几年河北已考过的内容及形式24.(本小题满分10分)09年24题在图14-1至图14-3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图14-1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM = MH,FM⊥MH;(2)将图14-1中的CE绕点C顺时针旋转一个锐角,得到图14-2,求证:△FMH是等腰直角三角形;(3)将图14-2中的CE缩短到图14-3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)图14-1AHC(M) D E BF G(N)G图14-2AHCDEBF NMAHCDE图14-3BF GMN2011年23.(本小题满分9分)(11河北)如图12,四边形ABCD 是正方形,点E ,K 分别在BC ,AB 上,点G 在BA 的延长线上,且CE=BK=AG . ⑴求证:①DE=DG ; ②DE ⊥DG ;⑵尺规作图:以线段DE ,DG 为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明); ⑶连接⑵中的KF ,猜想并写出四边形CEFK 是怎样的特殊四边形,并证明你的猜想;⑷当1CE CB n 时,衣直接写出ABCDDEFG S S 正方形正方形的值.四,明年中考预测四边形明年将仍然在中考中占主要地位,老师们要加强这部分的复习指导 五复习策略 题组练习法2014中考数学复习 四边形试题 一、选择题 1.,在矩形ABCD 中,对角线AC 、BD 相交于点C ),∠AOB =60°,AB =5,则AD 的长是 ( ) A .52 B .53 C .5 D .102.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则下列结论一定正确的是 ( )A .∠HGF =∠GHEB .∠GHE =∠HEFC .∠HEF =∠EFGD .∠HGF =∠HEF3.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 ( )A .7B .9C .10D .11 4.如图,将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为 ( ) A .15° B .30° C .45° D .60°5.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14 cm2.四边形ABCD 面积是11 cm2,则①②③④四个平行四边形周长的总和为 ( ) A .48 cm B .36 cm C .24 cm D .18 cm A BCDEKG 图116.如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD =2,点P在四边形ABCD上,若P到BD的距离为32,则点P的个数为( )A.1 B.2 C.3 D.47.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A. ①②B. ②③C. ②④D.③④8.(2011年杭州)在矩形ABCD中,有一个菱形BFDE(点E、F分别在线段AB、CD上),记它们的面积分别为S矩形ABCD和S菱形BFDE.现给出下列命题:①若232S ABCDS+=矩形菱形BFDE,则tan∠EDF =33;②若DE2=BD·EF,则DF=2AD.则( )A.①是真命题,②是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①是假命题,②是假命题9.下列说法正确的是()A.等腰梯形的对角线互相平分.B.一组对边平行,另一组对边相等的四边形是平行四边形.C.线段的垂直平分线上的点到线段两个端点的距离相等.D.两边对应成比例且有一个角对应相等的两个三角形相似二、填空题1.如图,在梯形ABCD中,A D∥BC,对角线AC⊥BD.若AD=3,BC=7,则梯形ABCD面积的最大值为______.2.(2011年黄冈)如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为______.3.已知线段AB的长为a,以AB为边在AB的下方作正方形ACDB.取AB边上一点E.以AE为边在AB的上方作正方形AENM.过E作EF⊥CD,垂足为F点.若正方形AENM与四边形EFDB的面积相等,则AE的长为_______.4.长为1,宽为a的矩形纸片(121<<a),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);(第7题图)(第1题图)(第2题图)(第3题图)(第4题图)5.如图,在梯形ABCD 中,AD ∥BC ,C E 是∠BCD 的平分线,且CE ⊥AB ,E 为垂足,BE =2AE ,若四边形AECD 的面积为1,则梯形ABCD 的面积为______.6.如图,六边形ABCDEF 的六个内角都相等,若AB =1,BC =CD =3,DE =2,则这个六边形的周长等于______. 7.(2011年河南省)如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为______.8.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 . 。

2013年河北中考数学试卷评析

2013年河北中考数学试卷评析

2013年河北中考数学试卷评析数学:打破固化模式突显能力考查今年中考数学试题落实了“狠抓基础,渗透思想,突出能力,着重创新”课改的理念,试题覆盖面广,展现风格耳目一新,原创感强烈,“活题”较多,立意鲜活,不落俗套。

纵观全卷,“起点低,易上手,坡度缓,尾巴翘”。

试题通过简洁直观的图形语言,准确的陈述表达,合理有序难度分布,给学生创造了轻松和谐的答题环境,有利于学生稳定发挥其真实的数学水平,不同水平的考生能力都能得到充分的发挥,有利于高一级学校选拔新生。

一、优化试卷题型结构,补充教学的正能量试卷题型结构的设计充分体现了系统化的思想,既有利于对具体知识点呈现考查具体要求,又能更好地考查数学思考、数学活动及综合运用数学知识分析解决问题的能力,充分发挥数学学科的考试价值。

1.调整试卷结构及部分题型所占分值纵观全卷,在总分120分和26个试题不变的情况下,选择题个数由过去的12个,调整为16个,且后10个选择题的分值每题调整为3分;填空题个数由过去的6个减少到4个,解答题由过去的8个减少到6个,且最后一个综合题(26题)的分值调整为14分。

如此大的结构调整更有利于分值向是基础知识部分倾斜,以保证对学生的全面考查,也有利于优秀生的选拔,给学生留足充足的时间答题和检查答题过程出现的失误。

2.考查内容的变化试题围绕着初中数学的核心内容,在规定的考查范围内对题型进行了大胆改革。

如解答题的21题,考查新定义运算与解不等式的解;22题是统计中的扇形图与条形图分析;23题是一次函数图像的平移与轴对称问题。

24题是三角形与圆相结合的全等形证明和面积最大问题;24题是利用二次函数模型解决汽车运输指数问题;26题是三视图与容器内液体的变化问题。

3.体现人文关怀,减少无效的阅读量整卷的文字量与往年相比,得到进一步瘦身。

卷面设计美观、爽目、简洁,减少用过长的语句来表述问题,更多的使用了图形语言,增加了考试的亲和性,降低了紧张的考试氛围对学生审题的影响,体现了数学考试的特征与测量要求的一致性,使学生避免了阅读量过大而带来的解题障碍或无关信息的干扰,有利于考生发挥出正常水平。

2013河北中考

2013河北中考

2013河北中考引言2013年河北中考是河北省举办的一次重要考试,是河北省初中毕业生升入高中的关键考试之一。

本文旨在回顾和总结2013年河北中考的相关信息,包括考试内容、考试形式、考生表现以及成绩统计等方面的内容。

考试内容2013河北中考的考试内容覆盖了初中阶段的各个学科,包括语文、数学、英语、物理、化学、生物、历史、地理等科目。

考试内容以国家教育部颁发的《普通中学课程标准实施细则(试行)》为依据,旨在检验考生对基础知识的掌握程度和综合应用能力。

考试形式2013河北中考采用了多种不同的考试形式,包括选择题、填空题、解答题等。

选择题多采用单选题的形式,其中涉及到的知识点较广泛,需要考生对各学科内容有较好的掌握。

填空题主要考察考生对知识的应用能力,需要对知识点进行灵活运用。

解答题则要求考生具备一定的思考和写作能力,需要对问题进行合理的分析和回答。

考生表现根据考试成绩统计数据显示,2013年河北中考的考生整体表现较为出色。

许多考生在各个学科中获得了较高的分数,体现了他们在初中阶段的努力和备考的成果。

其中,有相当一部分考生在语文和数学科目上表现特别突出,取得了较高的分数。

成绩统计根据2013河北中考的成绩统计数据,全省共有X名考生参加此次考试。

其中,有Y名考生获得了优秀成绩,占总考生人数的Z%。

考试的平均分为N分,最高分为M分。

这些数据表明了2013年河北中考的整体水平较高。

总结与展望通过对2013河北中考的回顾和总结,我们可以看出该次考试的难度适中,考生的整体表现较好。

同时也可以从这个角度看出河北省在中考教育上取得了一定的成绩,充分展示了河北省教育事业的发展和进步。

对于今后的河北中考,我们应继续努力,不断优化考试内容和形式,提高考生的综合素质和能力。

以上就是对2013河北中考的回顾和总结,希望对您有所帮助。

注意:本文档为机器生成,某些数据仅作示例使用。

2013年中考数学学科命题说明

2013年中考数学学科命题说明

2013年中考数学学科命题说明2013年初中学业数学学科考试,在考前复习时,以本说明所规定的考试内容及要求为依据.一、命题指导思想1.数学学业考试要体现《课程标准》的评价理念,有利于引导和促进数学教学全面落实《课程标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于高中学段学校综合、有效的评价学生的数学学习状况.2.数学学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力特别是在具体情境中综合运用所学知识分析和解决问题的能力等方面发展状况的评价,还应重视对学生数学认识水平的评价.3.数学学业考试命题面向全体学生,使具有不同的数学认知特点、不同的数学发展程度的学生都能表现自己的数学学习状况,力求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况.二、命题原则1.考查内容依据《课程标准》,体现基础性.2.试题素材、求解方式等体现公平性.3.试题背景具有现实性.4.试卷应具备科学性、有效性.三、考试内容及范围(一)考试范围命题将依据现行《义务教育课程标准实验教科书·数学》七年级~九年级(共六册)教材中“数与代数”、“图形与几何”、“统计与概率”、“课题学习”四个领域的内容,体现《课程标准(2011版)》的理念与精神.数学学科中考注重考查初中数学的基础知识、基本技能和基本思想和基本活动经验;考查数感、符号感、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、发现问题和分析解决问题的能力,以及应用意识和创新意识等等.考试要求的知识技能目标分成四个不同的层次:了解;理解;掌握;灵活运用.具体涵义如下:了解:能从具体实例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象.理解:能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系.掌握:能在理解的基础上,把知识和技能运用到新的情境中,解决有关的数学问题和简单的实际问题。

2013年河北省中考数学试卷(含解析及答案)

2013年河北省中考数学试卷(含解析及答案)

2013年河北省初中毕业升学考试试卷数学本试卷含参考答案与试题解析一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2013•河北)气温由﹣1℃上升2℃后是()A.﹣1℃B.1℃C.2℃D.3℃考点:有理数的加法.分析:根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.解答:解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选B.点评:此题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.2.(2分)(2013•河北)截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为()A.0.423×107B.4.23×106C.42.3×105D.423×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将4 230 000用科学记数法表示为:4.23×106.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)(2013•河北)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形和轴对称图形定义求解即可.解答:解:A、是中心对称图形,不是轴对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2分)(2013•河北)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1 C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)考点:因式分解的意义.分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.解答:解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选D.点评:本题考查了因式分解的意义,解答本题的关键是掌握因式分解后右边是整式积的形式.5.(2分)(2013•河北)若x=1,则|x﹣4|=()A.3B.﹣3 C.5D.﹣5考点:绝对值.分析:把x的值代入,然后根据绝对值的性质解答.解答:解:∵x=1,∴|x﹣4|=|1﹣4|=|﹣3|=3.故选A.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.(2分)(2013•河北)下列运算中,正确的是()A.=±3 B.=2 C.(﹣2)0=0 D.2﹣1=考点:负整数指数幂;算术平方根;立方根;零指数幂.分析:根据算术平方根的定义,立方根的定义,任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数对各选项分析判断后利用排除法求解.解答:解:A、=3,故本选项错误;B、=﹣2,故本选项错误;C、(﹣2)0=1,故本选项错误;D、2﹣1=,故本选项正确.故选D.点评:本题考查了任何不等于零的数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,算术平方根、立方根的定义,是基础题,熟记概念与性质是解题的关键.7.(3分)(2013•河北)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=考点:由实际问题抽象出分式方程.分析:设甲队每天修路xm,则乙队每天修(x﹣10)米,再根据关键语句“甲队修路120m与乙队修路100m所用天数相同”可得方程=.解答:解:设甲队每天修路xm,依题意得:=,故选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.(3分)(2013•河北)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里考点:等腰三角形的判定与性质;方向角;平行线的性质.专题:应用题.分析:根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.解答:解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选D.点评:本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.9.(3分)(2013•河北)如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2B.3C.6D.x+3考点:整式的加减.专题:图表型.分析:先用抽到牌的点数x乘以2再加上6,然后再除以2,最后减去x,列出式子,再根据整式的加减运算法则进行计算即可.解答:解:根据题意得:(x×2+6)÷2﹣x=x+3﹣x=3;故选B.点评:此题考查了整式的加减,解题的关键是根据题意列出式子,再根据整式加减的运算法则进行计算.10.(3分)(2013•河北)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④考点:反比例函数的性质.分析:根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.解答:解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选C点评:本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.11.(3分)(2013•河北)如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3B.4C.5D.6考点:菱形的性质;相似三角形的判定与性质.分析:根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.解答:解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故选B.点评:本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM 相似.12.(3分)(2013•河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:作图—复杂作图;矩形的判定.分析:先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.解答:解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.点评:本题考查了作图﹣复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.13.(3分)(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°考点:三角形内角和定理.分析:设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.解答:解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=50°,∴∠1+∠2=150°﹣50°=100°.故选B.点评:本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.14.(3分)(2013•河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC.D.π考点:扇形面积的计算;垂径定理;圆周角定理.分析:根据垂径定理求得CE=ED=;然后由圆周角定理知∠AOD=60°,然后通过解直角三角形求得线段AE、OE的长度;最后将相关线段的长度代入S阴影=S扇形OAD﹣S△OED+S△ACE.解答:解:∵CD⊥AB,CD=2∴CE=DE=CD=,在Rt△ACE中,∠C=30°,则AE=CEtan30°=1,在Rt△OED中,∠DOE=2∠C=60°,则OD==2,∴OE=OA﹣AE=OD﹣AE=1,S阴影=S扇形OAD﹣S△OED+S△ACE=﹣×1×﹣×1×=.故选D.点评:本题考查了垂径定理、扇形面积的计算.求得阴影部分的面积时,采用了“分割法”,关键是求出相关线段的长度.15.(3分)(2013•河北)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远考点:三角形三边关系.专题:压轴题.分析:根据钝角三角形中钝角所对的边最长可得AB>AC,取BC的中点E,求出AB+BE>AC+CE,再根据三角形的任意两边之和大于第三边得到AB<AD,从而判定AD的中点M在BE上.解答:解:∵∠C=100°,∴AB>AC,如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE,由三角形三边关系,AC+BC >AB,∴AB<AD,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选C.点评:本题考查了三角形的三边关系,作辅助线把△ABC的周长分成两个部分是解题的关键,本题需要注意判断AB的长度小于AD的一半,这也是容易忽视而导致求解不完整的地方.16.(3分)(2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB ,且AE=EF=FB=5,DE=12动点P 从点A出发,沿折线AD﹣DC ﹣CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象.解答:解:在Rt△ADE中,AD==13,在Rt △CFB中,BC==13,①点P在AD上运动:过点P作PM⊥AB于点M,则PM=APsin∠A=t,此时y=EF×PM=t,为一次函数;②点P在DC上运动,y=EF×DE=30;③点P在BC上运动,过点P作PN⊥AB于点N,则PN=BPsin∠B=(AD+CD+BC﹣t)=,则y=EF×PN=,为一次函数.综上可得选项A的图象符合.故选A.点评:本题考查了动点问题的函数图象,解答本题的关键是分段讨论y与t的函数关系式,当然在考试过程中,建议同学们直接判断是一次函数还是二次函数,不需要按部就班的解出解析式.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.(3分)(2013•河北)如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.考点:概率公式.分析:由共有6个面,A与桌面接触的有3个面,直接利用概率公式求解即可求得答案.解答:解:∵共有6个面,A与桌面接触的有3个面,∴A与桌面接触的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.18.(3分)(2013•河北)若x+y=1,且x≠0,则(x+)÷的值为1.考点:分式的化简求值.分析:先把括号里面的式子进行因式分解,再把除法转化成乘法,再进行约分,然后把x+y的值代入即可.解答:解:(x+)÷=×==x+y,把x+y=1代入上式得:原式=1;故答案为:1.点评:此题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.19.(3分)(2013•河北)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.考点:平行线的性质;三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.解答:解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.点评:本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.20.(3分)(2013•河北)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=2.考点:二次函数图象与几何变换.专题:压轴题.分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.解答:解:∵一段抛物线:y=﹣x(x﹣3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的与x轴的交点横坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为:y13=﹣(x﹣36)(x﹣39),当x=37时,y=﹣(37﹣36)×(37﹣39)=2.故答案为:2.点评:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(9分)(2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.考点:解一元一次不等式;有理数的混合运算;在数轴上表示不等式的解集.专题:新定义.分析:(1)按照定义新运算a⊕b=a(a﹣b)+1,求解即可;(2)先按照定义新运算a⊕b=a(a﹣b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,即可在数轴上表示.解答:解:(1)∵a⊕b=a(a﹣b)+1,∴(﹣2)⊕3=﹣2(﹣2﹣3)+1=10+1=11;(2)∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,﹣3x<3,x>﹣1.在数轴上表示如下:点评:本题考查了有理数的混合运算及一元一次不等式的解法,属于基础题,理解新定义法则是解题的关键.22.(10分)(2013•河北)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数.专题:计算题.分析:(1)条形统计图中D的人数错误,应为20×10%;(2)根据条形统计图及扇形统计图得出众数与中位数即可;(3)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.解答:解:(1)D错误,理由为:20×10%=2≠3;(2)众数为5,中位数为5;(3)①第二步;②==5.3,估计260名学生共植树5.3×260=1378(颗).点评:此题考查了条形统计图,扇形统计图,加权平均数,以及用样本估计总体,弄清题意是解本题的关键.23.(10分)(2013•河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.考点:一次函数综合题.专题:探究型.分析:(1)利用一次函数图象上点的坐标特征,求出一次函数的解析式;(2)分别求出直线l经过点M、点N时的t值,即可得到t的取值范围;(3)找出点M关于直线l在坐标轴上的对称点E、F,如解答图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值.解答:解:(1)直线y=﹣x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=﹣x+4.(2)当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),∴线段MF中点坐标为(,).直线y=﹣x+b过点(,),则=﹣+b,解得:b=2,2=1+t,解得t=1.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=﹣x+b过点(2,1),则1=﹣2+b,解得:b=3,3=1+t,解得t=2.故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.点评:本题是动线型问题,考查了坐标平面内一次函数的图象与性质.难点在于第(3)问,首先注意在x轴、y 轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.24.(11分)(2013•河北)如图,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.考点:圆的综合题.分析:(1)首先根据已知得出∠AOP=∠BOP′,进而得出△AOP≌△BOP′,即可得出答案;(2)利用切线的性质得出∠ATO=90°,再利用勾股定理求出AT的长,进而得出TH的长即可得出答案;(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.解答:(1)证明:如图1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′,∵在△AOP和△BOP′中∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)解:如图1,连接OT,过点T作TH⊥OA于点H,∵AT与相切,∴∠A TO=90°,∴A T===8,∵×OA×TH=×AT×OT,即×10×TH=×8×6,解得:TH=,即点T到OA的距离为;(3)解:如图2,当OQ⊥OA时,△AOQ的面积最大;理由:∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,当Q点在优弧右侧上,∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ﹣∠AOB=90°﹣80°=10°,综上所述:当∠BOQ的度数为10°或170°时,△AOQ的面积最大.点评:此题主要考查了圆的综合应用以及切线的判定与性质以及全等三角形的判定与性质等知识,根据数形结合进行分类讨论得出是解题关键.25.(12分)(2013•河北)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W 的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.次数n 2 1速度x 40 60指数Q 420 100(1)用含x和n的式子表示Q;(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)考点:二次函数的应用.专题:压轴题.分析:(1)根据题目所给的信息,设W=k1x2+k2nx,然后根据Q=W+100,列出用Q的解析式;(2)将x=70,Q=450,代入求n的值即可;(3)把n=3代入,确定函数关系式,然后求Q最大值时x的值即可;(4)根据题意列出关系式,求出当Q=420时m的值即可.解答:解:(1)设W=k1x2+k2nx,则Q=k1x2+k2nx+100,由表中数据,得,解得:,∴Q=﹣x2+6nx+100;(2)将x=70,Q=450代入Q得,450=﹣702+6×70n+100,解得:n=2;(3)当n=3时,Q=﹣x2+18x+100=﹣(x﹣90)2+910,∵﹣<0,∴函数图象开口向下,有最大值,则当x=90时,Q有最大值,即要使Q最大,x=90;(4)由题意得,420=﹣[40(1﹣m%)]2+6×2(1+m%)×40(1﹣m%)+100,即2(m%)2﹣m%=0,解得:m%=或m%=0(舍去),∴m=50.点评:本题考查了二次函数的应用,难度较大,解答本题的关键是根据题目中所给的信息,读懂题意列出函数关系式,要求同学们掌握求二次函数最值的方法,此题较麻烦,考查学生利用数学知识解决实际问题的能力.26.(14分)(2013•河北)一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是CQ∥BE,BQ的长是3dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=,tan37°=)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.考点:四边形综合题;解直角三角形的应用.专题:压轴题.分析:(1)根据水面与水平面平行可以得到CQ与BE平行,利用勾股定理即可求得BQ的长;(2)液体正好是一个以△BCQ是底面的直棱柱,据此即可求得液体的体积;(3)根据液体体积不变,据此即可列方程求解;延伸:当α=60°时,如图6所示,设FN∥EB,GB′∥EB,过点G作GH⊥BB′于点H,此时容器内液体形成两层液面,液体的形状分别是以Rt△NFM和直角梯形MBB′G为底面的直棱柱,求得棱柱的体积,即可求得溢出的水的体积,据此即可作出判断.解答:解:(1)CQ∥BE,BQ==3;(2)V液=×3×4×4=24(dm3);(3)在Rt△BCQ中,tan∠BCQ=,∴α=∠BCQ=37°.当容器向左旋转时,如图3,0°≤α≤37°,∵液体体积不变,∴(x+y)×4×4=24,∴y=﹣x+3.当容器向右旋转时,如图4.同理可得:y=;当液面恰好到达容器口沿,即点Q与点B′重合时,如图5,由BB′=4,且PB•BB′×4=24,得PB=3,∴由tan∠PB′B=,得∠PB′B=37°.∴α=∠B′PB=53°.此时37°≤α≤53°;延伸:当α=60°时,如图6所示,设FN∥EB,GB′∥EB,过点G作GH⊥BB′于点H.在Rt△B′GH中,GH=MB=2,∠GB′B=30°,∴HB′=2.∴MG=BH=4﹣2<MN.此时容器内液体形成两层液面,液体的形状分别是以Rt△NFM和直角梯形MBB′G为底面的直棱柱.∵S△NFM+S MBB′G=××1+(4﹣2+4)×2=8﹣.∴V溢出=24﹣4(8﹣)=﹣8>4(dm3).∴溢出液体可以达到4dm3.点评:本题考查了四边形的体积计算以及三视图的认识,正确理解棱柱的体积的计算是关键.参与本试卷答题和审题的老师有:sd2011;zhjh;caicl;lantin;星期八;HJJ;sks;gbl210;HLing;未来;sjzx;zcx(排名不分先后)菁优网2014年1月9日。

2013年河北省初中毕业生升学文化课考试数学试卷

2013年河北省初中毕业生升学文化课考试数学试卷
一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 等于()
A.-1B.1 C.-3D.3
2.在实数范围内, 有意义,则x的取值范围是()
A.x≥0B.x≤0C.x>0D.x<0
3.如图1,在菱形ABCD中,AB= 5,∠BCD= 120°,则对
裁法一
裁法二
裁法三
A型板材块数
1
2
0
B型板材块数
2
m
n
设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y
张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.
(1)上表中,m=,n=;
(2)分别求出y与x和z与x的函数关系式;
(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,
并指出当x取何值时Q最小,此时按三种裁法各裁标准板材
2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.
题号


19
20
21
22
23
24
25
26
得分
得分
评卷人
二、填空题(本大题共6个小题,每小题3分,共18分.把答案
写在题中横线上)
13.比较大小:-6-8.(填“<”、“=”或“>”)
14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约
∴ED= =12.
在Rt△DOE中,
∵sin∠DOE = = ,
∴OD=13(m).
(2)OE=
= .
∴将水排干需:
5÷0.5=10(小时).
21.解:(1)30%;
(2)如图1;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【第一部分】:说明中相对2012年变化的地方为“着重号...”标识.【第二部分】:2013年变化分析.【第三部分】:说明题型示例新增题例有“(*增*)”标识.河北省2013年初中生毕业生升学文化课考试说明数学一、指导思想河北省初中生毕业升学考试命题的指导思想是:坚持有利于推进全省初中教育的整体改革和发展,体现九年义务教育的性质,面向全体学生,全面提高教育质量;坚持有利于改革课堂教学,减轻学生过重的课业负担,全面实施素质教育;坚持有利于培养学生的创新精神和实践能力,促进学生生动、活泼、积极主动地发展;坚持有利于高中阶段教育事业的发展,促进高中阶段学校的均衡发展和教育质量整体提高.因此,要求数学学科命题,首先要关注《数学课程标准》中必须掌握的核心观念和能力;要注重考查学生进一步学习所必须的数与代数、空间与图形和统计与概率的基础知识和基本技能;不仅要)注重对学习结果的考查,还要注重对学习过程的考查,既有对学生思维能力的考查,也有对学生思维方式的考查;要着重考查学生运用所学知识解决简单实际问题的能力,以及注意对学生数学创新意识的考查.核心观念和能力是指:数感、符号感、空间观念、统计观念、推理能力和应用意识等.基础知识是指:初中数学中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法.基本技能是指:能够按照一定的程序与步骤,应用一定的方法和策略进行运算、作图或画图、进行简单的应用和推理.思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;会运用数学概念、原理、思想和方法辨明数学关系.运用所学知识解决简单实际问题的能力是指:一方面是指利用数学的概念、原理、方法解释现实世界中的现象,解决现实世界中的问题;一方面是指吧现实生活中蕴涵着的大量与数量和图形有关的的问题抽象成数学问题,并用数学的方法予以解决.数学创新意识主要是指:对自然界和社会中的现象,会从数学角度发现和提出问题,并用数学方法加以探索、研究和解决,并加以验证.二、命题范围数学学科命题范围是以《全日制义务教育数学课程标准》第三学段所规定的内容为考试范围,考查七至九年级所学数学基础知识与技能、数学活动过程与思考以及用数学解决问题的意识。

我省各地各校的初中毕业生,无论在教学时所使用的是哪种版本的义务教育课程标准实验教科书,在中考前复习时均应以本说明所规定的考试内容及要求为依据.三、考试要求依照《全日制义务教育数学课程标准》第三学段所规定的内容,本说明对考试内容作出了明确要求:考试要求分三个层次提出:基本要求---了解、理解;中等要求---掌握、会用;较高要求---灵活..运用、解决问题.三个层次的要求,依次逐级提高,并通过对题目的探索与解答,间接检验学生经历特定数学活动过程,以及体验在具体情况中认识对象的特征所获经验的水平.Ⅱ考试形式及试卷结构考试采用闭卷笔试形式,全卷满分为120分.考试时间为120分钟.全试卷包括Ⅰ卷和Ⅱ卷.Ⅰ卷为选择题,Ⅱ卷为非选择题.数与代数、空间与图形和统计与概率所占分数的百分比与它们在教学中所占课时的百分比大致相同.数与代数∶空间与图形∶统计与概率约为5∶4∶1.试题分选择题、填空题和解答题三种题型.选择题是四选一型单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算求解题、操作探究题、实验作图题、猜想证明题、实践决策题和综合应用题等,解答应写出文字说明、演算步骤或推证过程(要求直接写出的除外.........).试题按其难度分为容易题、中等题和较难题.难度为0.7以上的题为容易题,难度为0.4~0.7之间的题为中等题,难度为0.2~0.4之间的题为较难题.三种试题分值之比约为3∶5∶2,整套试卷的难度系数为0.65左右.Ⅲ考试内容与要求数与代数部分一、数与式(一)有理数【考试内容】有理数、数轴、相反数、有理数的绝对值、倒数.有理数的大小比较.有理数的加法与减法、有理数的乘法与除法、加法运算律、乘法运算律.有理数的乘方、混合运算.数感(对大数的估计)【考试要求】1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.2.借助数轴理解相反数和绝对值的意义,掌握求理数的相反数与绝对值和倒数的方法,知道|a|的含义(a表示有理数)并解决简单的化简和解决非负数的问题........(新增)..(.删掉:会用有理数表示具有相反意义的量,掌握相反数的性质).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).4.理解有理数的运算律,并能运用运算律简化运算.5.能运用有理数的运算解决简单的问题.6.能对含有较大数的信息作出合理的解释和推断.(二) 实数【考试内容】平方根、算数平方根.立方根无理数、实数.近似数、有效数字.()0a a =≥.()0,0ab a b =≥≥)0,0a b=≥≥. 最简二次根式、加减、乘除.实数的四则运算.【考试要求】 1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根.2.了解开方与乘方互为逆运算,会用平方运算及计算器求某些非负数的平方根,会用立方运算及计算器求某些数的立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,会求无理数的相反数和绝对值.4.能用有理数估计一个无理数的大致范围.5.了解近似数与有效数字的概念;在解决实际问题中,能按问题的要求对结果取近似值.6.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化),会确定二次根式有意义的条件.(三) 代数式【考试内容】代数式、代数式的值.【考试要求】1.理解用字母表示数的意义.2.能分析简单问题中的数量关系,并用代数式表示.3.能解释一些简单代数式的实际背景或几何意义.4.会求代数式的值;能根据特定的问题进行分析....(新增),找到所需要的公式,并会代入具体的数值进行计算.能通过代数式的适当变形求代数式的值,能根据代数式的值或特征推断代数式反应的规律.(四) 整式与分式【考试内容】整式、单项式、多项式、合并同类项.整式的加减法、乘除法.整数指数幂、科学记数法.同底数幂的乘法、除法、单项式的乘法、幂的乘方、积的乘方.单项式与多项式相乘、多项式的乘法.平方差公式:()()22a b a b a b +-=-. 完全平方公式:()2222a b a ab b ±=±+. 因式分解.提公因式法、公式法(平方差、完全平方公式)进行因式分解.多项式因式分解的一般步骤.分式、分式的基本性质、约分、通分.分式的乘除法、乘方.同分母分式加减法、通分、异分母加减、分式混合运算.【考试要求】1.了解整数指数幂的意义和基本性质,并能合理运用幂的性质解决简单问题................(新增),会用科学记数法表示数.2.了解整式的概念,理解单项式的系数和次数,多项式的次数、项和项数的概念,明确他们之间的关系,会进行简单的整式加、减运算和乘法运算(四个以内单项式相乘或一个............单项式与一个多项式相乘或两个一次多项式相乘.....................)(新增).能合理运用整式加、减运算构造多项式,进一步解决问题.3.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何背景,并能进行简单的计算,能根据需要进行相应的变形.4.了解因式分解的意义及其与整式乘法的关系...................(新增),会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数).能运用因式分解的知识进行代数式的变形,从而解决有关问题.5.了解分式的概念,会确定分式有意义的条件,掌握分式的基本性质,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算,能灵活运用恰当的方法解决与分式有关的问题.二、方程与不等式(一)方程与方程组【考试内容】等式、等式的基本性质.方程(组)、方程(组)的解、解方程(组)、方程(组)的近似值.一元二次方程、一元二次方程的解法与应用.用代入、加减消元法解二元一次方程组.分式方程、增跟、可化为一元一次方程的解法与应用.一元二次方程、一元二次方程的解法与应用.配方法.一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法.【考试要求】1.能根据具体问题中的数量关系列出方程,理解方程是刻画现实世界的一个有效的数学模型.2.会用观察、画图或计算器等手段估计方程的解.会运用方程的解的概念解决有关问题.3.会解一元一次方程(包括无需讨论的含字母系数一次方程)、二元一次方程组(并能根据解的特征选择适当的方法,简化解题过程)、可化为一元一次方程的分式方程(方程中的分式不超过两个,且会对解进行检验).4.了解一元二次方程的一般形式及其限制条件(能由方程的概念确定:二次项系数所含字母的取值范围,由已知方程的跟求待定系数的值),理解配方法并能对代数式进行简单变形,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程并理解其解法依据.5.能根据具体问题的实际意义和数量关系,列一元一次方程、二元一次方程组、分式方程、一元二次方程解决实际问题,并能检验方程的解的合理性.(二)不等式与不等式组【考试内容】不等式、不等式的基本性质、不等式的解集、一元一次不等式及其解法应用.一元一次不等式组及其解法应用.一元一次不等式(组)解集的数轴表示.【考试要求】1.能根据具体问题中的大小关系了解不等式的意义,掌握不等式的基本性质,会比较两个实数的大小.2.会解简单的一元一次不等式,并能在数轴上表示出解集.会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集,还能根据条件求整数解.3.能根据具体问题中的数量关系,列出一元一次不等式或一元一次不等式组,解决简单的问题.三、函数(一)函数【考试内容】常量、变量、函数.自变量的取值范围、函数值.函数的表示方法.【考试要求】1.会从具体问题中寻找数量关系和变化规律,并能用适当的函数来表示.2.了解常量、变量的意义.了解函数的概念和三种表示方法,能举出函数的实例.3.会用描点法画出函数图象;能结合图象对简单实际问题中的函数关系进行分析.4.能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值.5.能用适当的函数表示法刻画某些实际问题中变量之间的关系.6.结合对函数关系的分析,能对变量的变化规律进行初步推测.(二) 一次函数【考试内容】正比例函数及其图象.一次函数.一次函数的图象和性质.一次函数与二元一次方程组的关系.一次函数的应用.二元一次方程组的近似解.【考试要求】1.理解正比例函数、一次函数的意义,会根据已知条件利用待定系数法确定一次函数表达式.2.会画一次函数的图象,根据一次函数的图象和解析表达式(0)y kx b k =+≠理解其性质(k >0或k <0时,图象的变化情况).3.能根据一次函数的图象求二元一次方程组的近似解,会根据一次函数的表达式求其图象与两坐标轴的交点坐标.4.能用一次函数解决实际问题.(三) 反比例函数【考试内容】反比例函数.反比例函数的图象和性质.反比例函数的应用.【考试要求】1.能结合具体情境了解反比例函数的意义,能根据已知条件确定反比例函数表达式.2.会画反比例函数的图象,根据图象和解析表达式(0)k y k x=≠理解其性质(k >0或k <0时,图象的变化情况).3.能用反比例函数的知识解决与其他知识相结合的有关问题.(四) 二次函数【考试内容】二次函数二次函数的图象和性质.抛物线的顶点、对称轴和开口方向.二次函数与一元二次方程的关系.一元二次方程的近似解.二次函数的应用.【考试要求】1.能结合具体情境理解二次函数和抛物线的有关概念.2.能通过对实际问题情境的分析确定二次函数的表达式,了解二次函数模型的意义(改.............动)... 3.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质.4.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题,能解决二次函数与其他知识结合的(改动)..........有关问题. 5.会利用二次函数的图象求一元二次方程的近似解,了解二次函数与二次方程之间的内在联系.空间与图形部分一、 图形的认识(一)点、线、面和角【考试内容】几何图形、点、直线、线段、射线、平面.两点确定一条直线.线段大小的比较、线段的和与差、线段的中点.角、角的度量.角度的运算.角平分线及其性质.【考试要求】1.在实际背景中认识、理解点、线、面,会用两点间距离的知识解决有关问题.2.会比较线段的长短,并能进行与线段有关的计算.3.会比较角的大小、能估计一个角的大小,会度量角的大小及进行有关角的简单计算..................(改动)....,认识度、分、秒并会进行简单的换算.4.了解角平分线及其性质,能运用角平分线的性质、线段的中点的性质解决简单的问题.5.能结合图形识别线段间、角与角之间的数量关系.......................(新增)(二)相交线与平行线【考试内容】对顶角、余角、补角.等角的余角或补角的性质.垂线、垂线段、垂线段的性质点到直线的距离.线段垂直平分线及性质.同位角、内错角、同旁内角.平行线、平行线的性质.平行线之间的距离.【考试要求】1.了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等.2.了解垂线、垂线段等概念,了解垂线段最短的性质,理解点到直线距离的意义.3.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线.4.了解线段垂直平分线及其性质.5.了解平行线的概念,掌握两直线平行的性质并会判定两直线是否平行..........(新增)..6.知道过直线外一点有且仅有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线.7.体会两条平行线之间距离的意义,会度量两条平行线之间的距离,了解平行于通一条直线的两条直线平行.(三)三角形【考试内容】三角形的角平分线、中线、高三角形三边间的不等关系、三角形的内角和三角形的分类三角形中位线及其性质全等形、全等三角形及其性质、三角形全等的判定等腰三角形的性质和判定、等边三角形的性质和判定直角三角形的性质和判定直角三角形全等的判定勾股定理、逆定理【考试要求】1.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性.会正确对三角形进行分类,掌...................握三角形的内角和、外角和及三边关系.............(新增)2.掌握三角形中位线的性质,会证明并应用三角形的中位线性质解决简单的问题.3.了解全等三角形的概念,掌握两个三角形全等的条件和性质,会应用三角形全等的条件和性质解决有关问题.4.了解等腰三角形的有关概念,掌握等腰三角形的性质和一个三角形是等腰三角形的条件;了解等边三角形的概念并掌握其性质.能用这些知识解决简单问题............. (新增)5.了解直角三角形的概念,掌握直角三角形的性质和一个三角形是直角三角形的条件.6.了解勾股定理的探索过程,会运用勾股定理解决简单问题(已知两边会求第三边.........)(新增);会用勾股定理的逆定理判定直角三角形.(四)四边形【考试内容】多边形、正多边形、多边形的内角和与外角和平行四边形、平行四边形的性质和判定矩形、菱形、正方形的性质和判定梯形、等腰梯形、直角梯形、等腰梯形的性质和判定四边形的分类、图形的重心平面图形的镶嵌【考试要求】1.了解多边形的内角和与外角和公式,并能解决有关计算问题..........(新增),了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.掌握平行四边形的有关性质和四边形是平行四边形的条件.4.掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件,并会用平行四边形、矩形、菱形、正方形的知识解决有关问题.5.会识别梯形,并会计算其周长和面积................(新增);了解等腰梯形的有关性质和四边形是等腰梯形的条件,并能解决简单问题.6.了解线段、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心).7.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可镶嵌平面,并能依据图形条件分解与拼接简单图形.................(新增)..(五)圆【考试内容】圆的对称性、垂径定理点和圆的位置关系不在同一直线上的三点确定一个圆、外接圆、外心弧、弦、圆心角之间的关系圆周角和圆心角之间的关系,直径所对圆周角的特征直线和圆的位置关系切线的性质、判定三角形的内切圆、内心圆和圆的位置关系圆的周长、弧长圆的面积、扇形面积圆柱、圆锥的侧面积、全面积【考试要求】1.理解圆及其有关概念,理解弧、弦、直径之间的关系,理解弧、弦、圆心角的关系,并能解决有关问题;理解点与圆、直线与圆以及圆与圆的位置关系.并能解决生活中的简单..........问题....(新增)2.了解圆的性质,理解圆周角与圆心角的关系、直径所对圆周角的特征,会求圆周角.....的度数,并能综合运用几何知识解决与圆周角有关的问题.........................(新增)..3.了解三角形的内心和外心.能根据实际问题合理使用这一知识解决问题...................(新增)4.理解切线的概念,切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线,并能解决与切线有关的问题.5.会计算弧长及扇形的面积,并能解决有关问题........;会计算圆锥的侧面积和全面积.并.能解决与圆锥有关的简单实际问题...............(新增)(六)尺规作图【考试内容】基本作图利用基本作图作三角形过一点、两点、不在同一直线上三点作圆尺规作图的步骤【考试要求】1.能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.2.能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.3.能过一点、两点和不在同一直线上的三点作圆.4.了解尺规作图的道理,在尺规作图题中,保留作图痕迹,不要求写出做法和证明.(七)视图与投影【考试内容】三视图直棱柱、圆锥的侧面展开图三视图与展开图之间的关系及应用阴影、视点、视角及盲区中心投影、平行投影【考试要求】1.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.2.了解直棱柱、圆锥的侧面展开图,能根据展开图判断立体图形的形状.3.了解基本几何体与其三视图、展开图(球除外)之间的关系;知道这种关系在现实生活中的应用(如物体的包装).4.知道物体的阴影是怎么形成的,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或人的身影).5.了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示.6.通过实例了解中心投影和平行投影.二、图形与变换(一)图形的轴对称【考试内容】轴对称、轴对称图形、对称轴轴对称的基本性质镜面对称图形的轴对称性及其相关性质轴对称的应用【考试要求】1.通过具体实例认识轴对称,了解它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质.2.能够按要求作出简单平面图形经过一次或两次轴对称后的图形;掌握索简单图形之间的轴对称关系,并能指出对称轴.3.掌握基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质.4.了解并识别现实生活中的轴对称图形及物体的镜面对称,能利用轴对称进行图案设计.(二)图形的平移【考试内容】平移、基本性质、应用【考试要求】1.通过具体实例认识平移,探索它的基本性质,理解对应点连线平行(或在同一条直线上)且相等的性质.2.能按要求作出简单平面图形平移后的图形,并指出平移前后的距离和方向.3.利用平移进行图案设计,并能解决简单的计算问题(认识和欣赏平移在现实生活中的应用).(三)图形的旋转【考试内容】旋转、基本性质中心对称、中心对称图形、性质旋转的应用图形之间的变换关系及其应用【考试要求】1.通过具体实例认识旋转,了解它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2.了解平行四边形、圆是中心对称图形.会识别中心对称图形.......... (新增)3.能够按要求作出简单平面图形旋转后的图形,能依据旋转前后的图形,指出旋转中心和旋转角.4.了解旋转在现实生活中的应用.5.能用全等三角形的知识解释或证明图形之间的变换关系(轴对称、平移、旋转....................................及其组合)后得到的图形与原图形元素间的关系(改动)........................6.灵活运用轴对称、平移和旋转的组合进行图案设计.7.能综合运用轴对称、平移和旋转解决有关问题.(四)图形的相似【考试内容】比和比例、比例的基本性质、两条线段的比、比例线段黄金分割图形的相似、相似图形的性质相似三角形、相似三角形的判定和性质图形的位似相似图形的应用锐角三角函数、锐角三角函数值.(特殊角)直角三角形、解直角三角形的应用【考试要求】1.了解比例的基本性质,了解线段的比、知道.............成比例线段,并会判断是否成比例及计算未知...线段..(新增);.通过实例了解黄金分割.会用比例的基本性质解决有关问题.2.认识图形的相似,掌握相似图形的性质,知道相似多边形的对应角相等,对应边成....................................比例,面积的比等于对应边比的平方..................3.了解两个三角形相似的概念,掌握两个三角形相似的条件与性质,并能够进行简单推理计算和应用.4.了解图形的位似,能够利用位似将一个图形放大或缩小.。

相关文档
最新文档