六年级奥数-第七讲.行程问题(一).教师版
六年级数学行程问题四种类型专讲完整版
六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。
货车以平均每小时50千米的速度从乙地开往甲地。
要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A 、B 两城出发相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
(word完整版)六年级奥数--行程问题
六年级奥数——行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
六年级奥数-第七讲[1].行程问题(一).教师版
第七讲行程问题(一)知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题精讲:模块一 发车问题【例 1】 某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?【解析】 这个题可以简单的找规律求解时间 车辆4分钟 9辆6分钟 10辆8分钟 9辆12分钟 9辆16分钟 8辆18分钟 9辆20分钟 8辆24分钟 8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。
六年级奥数:行程问题_(1)间隔发车
行程问题之间隔发车问题由李老师收集整理而成、2、小明放学回家,他沿一路电车的路线步行,他发现每搁六分钟,有一辆一路电车迎面开来,每搁12分钟,有一辆一路电车从背后开来,已知每辆一路电车速度相同,从终点站与起点站的发车间隔时间也相同,那么一路电车每多少分钟发车一辆?同向时电车12分钟走的路程-小明12分钟走的路程=发车间隔时间*车速电车6分钟走的路程+小明6分钟走的路程=发车间隔时间*车速则:电车6分钟走的路程=小明18分钟走的路程小明12分钟走的路程=电车4分钟走的路程电车12分钟走的路程-小明12分钟走的路程电车12分钟走的路程-电车4分钟走的路=电车8分钟走的路程=发车间隔时间*车速所以,发车间隔时间为8分钟3、一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?分析:要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。
对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:间隔距离=(V汽-V人)×6(米),间隔距离=(V汽-V自)×10(米),V自=3V人。
综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。
六年级奥数之行程问题
六年级奥数之行程问题(一)知识引入行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
例题分析例1甲、乙两人练习跑步,若让乙先跑12米,则甲经过6秒追上乙;若乙比甲先跑2秒,则甲要经过5秒追上乙;如果乙先跑9秒,甲再追乙,那么10秒后,两人相距多少米?分析与解:甲、乙的速度差为12÷6=2(米/秒),则乙的速度为2×5÷2=5(米/秒),如果乙先跑9秒,甲再追乙,那么10秒后,两人相距5×9-2×10=25米。
例2小陈和小许二人分别从两地同时骑车相向而行。
小陈每小时行16千米,小许每小时行13千米,两人相遇时距中点3千米。
求全程长多少千米?分析与解:要求全程长多少千米,必须知道“速度和”与“相遇时间”。
题目中已经给出了小陈和小许的速度,因此关键是求出相遇时间。
从线段图中可以看出,当小陈到达A点时,与相遇时小许所行的路程相同,因此二人相遇时,小陈比小许多行了3×2=6(千米)。
相遇时间:6÷(16-13)=2(小时)。
全程:2×(16+13)=58(千米)。
答:全程长58千米。
例3 兄妹二人同时从家里出发去上学,哥哥骑车每分钟行400米,妹妹步行每分钟行100米。
哥哥到校门时,发现忘了带课本,立即沿原路返回,途中与妹妹相遇。
(完整版)行程问题教案
六、教学过程(说过程)
我将本节课分为三个部分。 用约3分钟时间进行导入部分,主要是复习和引入新课。 用约 10分钟时间进行正体部分。主要是通过讲练结合的方式完成前三道例题的学习。 最后,用
1
约2分钟的时间进行尾声部分,主要是小结和作业。
七、教学预测(反思)
根据以往的教学经验,学生在解答本节课的问题时,不会数形结合,所以在教学过程中要提 醒学生画线段图,帮助理解题意;例2对应的作业题目和例题有点不同,会有少部分学生按 部就班,不认真审题,看到题目就做,所以在布置作业时要提醒学生认真审题。 (一)、故事导入(课前检测) 两个男孩各骑一辆自行车,从相距2O 千米的两个地方,开始沿直线相向骑行。在他们起步 的那一瞬间,一辆自行车车把上的一只小鸟,开始向另一辆自行车径直飞去。它一到达另一 辆自行车车把,就立即转向往回飞行。这只小鸟如此往返,在两辆自行车的车把之间来回飞 行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O 千米的等速前进,小鸟以每 小时15千米的等速飞行,那么,小鸟总共飞行了多少千米呢?
小学六年级奥数行程问题1-相遇问题演示教学
(八)行程问题一、相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
求甲、乙二人的速度各是多少?习题:一辆快车和一辆慢车分别从广州和深圳两地同时相向而行,经过53小时在离中点3千米处相遇。
已知快车平均每小时行75千米,慢车平均每小时行多少千米?例4.A 、B 两城间有一条公路长240千米,甲、乙两车同时从A 、B 两城出发,甲以每小时45千米的速度从A 城到B 城,乙以每小时35千米的速度从B 城到A 城,各自到达对方城市后以原速沿路返回,几小时后,两车在途中第二次相遇?相遇地点离A 城多少千米?例5.体育场的环形跑道长400米,小刚和小华在跑道的统一起跑线上,同时向相反的方向起跑,小刚每分钟跑152米,小华每分钟跑148米。
六年级数学行程问题四种类型专讲完整版讲解
六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。
货车以平均每小时50千米的速度从乙地开往甲地。
要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A 、B 两城出发相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
六年级奥数第7讲巧解行程问题
第七讲 巧解行程问题例一、A 、B 两地相距960米。
甲乙两人分别从AB 两地同时出发,如相向而行,经过6分钟相遇;如同向而行,经过80分钟甲可以追上乙。
甲从A 地走到B 地要用多少分钟? 分析:“960米”是甲乙两人同时出发相向而行6分钟一共行的路程。
那么两人的速度和是960÷6=160(米/分)。
甲乙两人同时出发通向而行到甲追上乙要用80分钟,甲追乙的路程是960米,甲乙速度差是960÷8=12(米/分)。
根据甲乙的速度和与速度差可以求出甲的速度(160+12)÷2=86(米/分)。
甲从A 地到B 地要用的时间是960÷86=43711960÷【(960÷6+960÷80)÷2】=43711(分) 答:甲从A 地走到B 地要用43711分。
巩固练习11、AB 两地相距1800米。
甲乙两人同时从AB 两地出发,若相向而行经过12分钟相遇;若同向而行经过90分钟甲追上乙。
甲从A 地出发走到B 地要用几分钟?2、甲乙两人在一条长400米的环形跑道上散步。
他俩同时从同一地点出发。
若相背而行,经过762分钟相遇;若同向而行,经过3226分钟甲可以追上乙。
在跑道上走一圈,甲乙各要几分钟?3、两条公路成十字交叉。
甲从十字路口南1350米向北直行,乙从十字路口处向东直行。
甲乙两人同时出发10分钟后,二人距十字路口距离相等;二人仍保持原速直行,又经过80分钟二人离十字路口的距离又相等。
求甲乙两人的速度。
例二、客车从甲地、货车从乙地同时相对开出5小时后,客车距乙地还有全程的61,货车距甲地还有142千米。
客车每小时比货车多行驶12千克。
甲乙两地相距多少千米? 分析:客车每小时比货车多行驶12千米,所以客车剩下的路程就比货车少12×5=60(千米),客车距乙地的路程实际上是142-60=82(千米)。
(142-12×5)÷61=492(千米)答:甲乙两地相距492千米。
小学六年级行程问题完整版
小学六年级行程问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】小学六年级行程问题知识概要 基本公式:路程=速度×时间解题方法:解行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路.比例解行程:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题,我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用v 甲、t 甲、s 甲;v 乙、t 乙、s 乙来表示,大体可分为以下两种情况:(1)当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比.(速度一定,路程与时间成正比例关系)s 甲:s 乙=v 甲:v 乙(2)当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比.(路程一定,速度与时间成反比例关系)v 甲:v 乙=t 乙:t 甲例题分析例1 甲、乙两车从相距180千米A 地去B 地,甲车比乙车晚小时出发,结果两车同时到达,甲、乙两车速度的比是4:3,甲车每小时行多少千米?分析 由条件“甲、乙两车从相距180千米A 地去B 地”可知,甲乙两车所行驶的路程是相同的,继而得出:路程一定时,速度与时间成反比例关系.解:甲、乙两车速度的比是4:3,所以甲乙两车的时间比为3:4所以甲乙两车所行驶的时间差为4-3=1(份)甲的时间为÷1×3=(小时)甲的速度为180÷=40(km/h )答:甲车每小时行40千米.例2 甲乙两车同时分别从AB 两地出发相向而行,当甲车行了全程的41时,乙车行了全程的31,当乙车行完全程时,甲车距终点还有20千米,AB 两地相距多少千米?分析 由条件” 当甲车行了全程的41时,乙车行了全程的31”可求出两车在相同时间里所行的路程比.解:甲乙两车在相同时间里所行的路程比是 41:31=3:4就是说当乙车行完全程时,甲车距终点还有4-3=1(份)路程,这一份的路程就是20千米.因此,AB两地相距:20÷(4-3)×4=80(千米)答:AB两地相距80千米.。
(2021年整理)小学六年级奥数行程问题
小学六年级奥数行程问题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学六年级奥数行程问题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学六年级奥数行程问题的全部内容。
行程问题(一)【知识点讲解】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量.相遇问题:例1、甲乙两车同时从AB两地相对开出,第一次相遇后两车继续行驶,各自到达对1。
已知甲车在第一方出发点后立即返回,第二次相遇时离B地的距离是AB全程的5次相遇时行了120千米。
AB两地相距多少千米?例2、甲、乙两车分别从A、B两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点35千米,已知甲车比乙车每小时多行10千米。
问A、B两城相距多少千米?例3、甲、乙和丙同时由东、西两城出发,甲、乙两人由东城到西城,甲步行每小时走5千米,乙骑自行车每小时行15千米,丙也骑自行车每小时20千米,已知丙在途中遇到乙后,又经过1小时才遇到甲,求东、西城相距多少千米?例4、甲乙两站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车下午2时30分从乙站开出,下午6时两车相遇,求乙站开出的那辆火车的速度是多少?例5、小李从A城到B城,速度是50千米/小时,小兰从B城到A城,速度是40千米/小时.两人同时出发,结果在距A、B两城中点10千米处相遇。
六年级奥数行程问题
行程问题(一)【知识点讲解】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间; 路程÷时间=速度; 路程÷速度=时间关键:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
相遇问题:例1、甲乙两车同时从AB两地相对开出,第一次相遇后两车继续行驶,各自到达对方出发1。
已知甲车在第一次相遇时行了点后立即返回,第二次相遇时离B地的距离是AB全程的5120千米。
AB两地相距多少千米?例2、甲、乙两车分别从A、B两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点35千米,已知甲车比乙车每小时多行10千米。
问A、B两城相距多少千米?例3、甲、乙和丙同时由东、西两城出发,甲、乙两人由东城到西城,甲步行每小时走5千米,乙骑自行车每小时行15千米,丙也骑自行车每小时20千米,已知丙在途中遇到乙后,又经过1小时才遇到甲,求东、西城相距多少千米?例4、甲乙两站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车下午2时30分从乙站开出,下午6时两车相遇,求乙站开出的那辆火车的速度是多少?例5、小李从A城到B城,速度是50千米/小时,小兰从B城到A城,速度是40千米/小时。
两人同时出发,结果在距A、B两城中点10千米处相遇。
求A、B两城间的距离。
例6、绕湖的一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以每小时4千米的速度每走1小时休息5分钟,小张以每小时6千米的速度每走5分休息10分钟.两人出发后多长时间第一次相遇?习题1.一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知两地相距1488千米,货车每小时比客车少行8千米,货车每行驶3小时要停驶1小时,客车每小时行多少千米?2、一个600米长的环形跑道上,兄弟两人如果同时从同一起点按顺时针反方向跑步,每隔12分钟相遇一次;如果两人同从同一起点反方向跑步,每隔4分中相遇一次。
学而思-六年级奥数-第七讲.行程问题(一).刘--用-教师版
第一讲行程问题学习目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“ 1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用 3 个公式迅速作答;汽车间距=(汽车速度+行人速度)X相遇事件时间间隔汽车间距=(汽车速度-行人速度)X追及事件时间间隔汽车间距=汽车速度X汽车发车时间间隔( 2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图一一尽可能多的列3个好使公式一一结合s全程=vXt-结合植树问题数数。
( 3 ) 当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵ 火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶ 火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同) 、班级速度(不同班不同速) 、班数是否变化分类为四种常见题型:( 1)车速不变-班速不变- 班数2 个(最常见)(2)车速不变-班速不变-班数多个( 3)车速不变-班速变-班数 2 个( 4)车速变-班速不变- 班数2 个标准解法:画图+列 3 个式子1、总时间=一个队伍坐车的时间+ 这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间= 班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上 2 人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是 2 个指针“每分钟走多少角度”或者“每分钟走多少小格”。
六年级奥数.行程.比例解行程问题(ABC级).教师版
比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s st t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比(1) 理解行程问题中的各种比例关系. (2) 掌握寻找比例关系的方法来解行程问题.重难点知识框架比例解行程问题【例 1】甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车才从B城出发,并且甲车的速度是乙车速度的56。
当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出千米,乙车才出发。
【考点】行程问题之比例解行程【难度】2星【题型】解答【关键词】2010年,第8届,希望杯,5年级,1试【解析】两车相遇时共行驶330千米,但是甲多行30千米,可以求出两车分别行驶的路程,可得甲车行驶180千米,乙车行驶150千米,由甲车速度是乙车速度的56可以知道,当乙车行驶150千米的时候,甲车实际只行驶了51501256⨯=千米,那么可以知道在乙车出发之前,甲车已经行驶了180-125=55千米。
六年级下册春季奥数培优讲义——6-07-真题汇编-行程问题-教师
第7讲行程问题【学习目标】1、复习行程问题;2、熟悉小升初的常见题型。
【知识梳理】行程问题是历年小升初的考试重点,各学校都把行程当压轴题处理,可见学校对行程的重视程度,由于行程题本身题干就很长,模型多样,变化众多,所以对学生来说处理起来很头疼,而这也是学校考察的重点,这可以充分体现学生对题目的分析能力。
【典例精析】1、一辆汽车从甲地到乙地,若每小时行36千米,8小时能到达。
这辆车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。
为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。
加油站离乙地多少千米?15分钟=0.25小时36×0.25=9(千米)9÷7.2=1.25(时)(36+7.2)×1.25=54(千米)2、甲、乙两车同时从A、B两地相向而行,在距B地54千米处相遇。
他们各自到达对方车站后立即返回原地,途中又在距A地40千米处相遇。
两次相遇地点的距离是多少千米?54×3-40-40-54=28(km)3、A、B两港相距48千米,甲船在静水中的船速是每小时10千米,乙船在静水中的船速是每小时20千米,两船同时从A 港出发逆流而上,水流速度是每小时4千米,乙船到B 港后立即返回,那么从出发到两船相遇用了多少小时?48÷(20-4)=3(小时)48-(10-4)×3=30(千米)30÷(10-4+20+4)+3=4(小时)4、一次远足活动中,一部分人步行,另一部分人乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
问:步行者在出发后经过多少时间与回头接他们的汽车相遇?(汽车掉头的时间忽略不计)解:设路人的路x 公里,16060605+-+=x x x=13180 1336513180=÷(h)5、在一条公路上,汽车从东城出发向西城开去,这时在西城有甲、乙、丙三人骑自行车同时出发,甲、乙两人速度相同,丙的速度是甲的2倍,甲向东,乙、丙向西行进,甲行了5千米时与汽车相遇,相遇后汽车经过15分钟追上乙,再经过15分钟追上丙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔ﻫ汽车间距=(汽车速度-行人速度)×追及事件时间间隔ﻫ汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:ﻫ(1)车速不变-班速不变-班数2个(最常见)ﻫ(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个ﻫ标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题精讲:模块一发车问题【例 1】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?【解析】这个题可以简单的找规律求解ﻫ时间车辆ﻫ4分钟9辆ﻫ6分钟10辆ﻫ8分钟9辆12分钟9辆16分钟 8辆ﻫ18分钟 9辆ﻫ20分钟 8辆ﻫ24分钟 8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。
【例 2】 某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【解析】 设电车的速度为每分钟x 米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:()()757.27512x x +⨯=-⨯,解得300x =,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=(米),所以电车之间的时间间隔为:27003009÷=(分钟).【巩固】 某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?【解析】 这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。
是人与电车的相遇与追及问题,他们的路程和(差)即为相邻两车间距离,设两车之间相距S ,根据公式得()10min S V V =+⨯人车,50712.55x x -+=,那么6(6)3(3)x t y x t y --=+-,解得2(3)3x t y =-,所以发车间隔T =2.5 2.53(3)x y x t y +=+-【巩固】 某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.【解析】 设电车的速度为a ,行人的速度为b ,因为每辆电车之间的距离为定值,设为l .由电车能在12分钟追上行人l 的距离知,(21)x t y =-; 由电车能在4分钟能与行人共同走过l的距离知,112,所以有l =12(a -b)=4(a +b ),有a=2b ,即电车的速度是行人步行速度的2倍。
那么l =4(a +b )=6a ,则发车间隔上:1650(1)541211÷-=.即发车间隔为6分钟.【例 3】 一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?【解析】 要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。
对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V 汽,骑车人的速度为V 自,步行人的速度为V 人(单位都是米/分钟),则:间隔距离=(V汽-V 人)×6(米),间隔距离=(V 汽-V自)×10(米),V自=3V 人。
综合上面的三个式子,可得:V 汽=6V 人,即V 人=1/6V 汽,则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。
【巩固】从电车总站每隔一定时间开出一辆电车。
甲与乙两人在一条街上沿着同一方向步行。
甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。
那么电车总站每隔多少分钟开出一辆电车?【解析】这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。
甲与电车属于相遇问题,他们的路程和即为相邻两车间距离,根据公式得65411,类似可得65(1210)6054651111-⨯-=,那么56511,即112,解得54米/分,因此发车间隔为9020÷820=11分钟。
【例 4】甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有上坡和下坡,车辆(包括自行车)上坡和下坡的速度分别是平路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位学生骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车?【解析】先看平路上的情况,汽车每分钟行驶汽车平路上汽车间隔的1/20,那么每分钟自行车在平路上行驶汽车平路上间隔的1/80,所以在平路上自行车与汽车每分钟合走汽车平路上间隔的1/20+1/80=1/16,所以该学生每隔16分钟遇到一辆汽车,对于上坡、下坡的情况同样用这种方法考虑,三种情况中该学生都是每隔16分钟遇到一辆汽车.【例 5】甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了分钟.【解析】由题意可知,两辆电车之间的距离10电车行8分钟的路程(每辆电车都隔4分钟遇到迎面开来的一辆电车)10电车行5分钟的路程1小张行5分钟的路程24电车行6分钟的路程72小王行6分钟的路程由此可得,小张速度是电车速度的10,小王速度是电车速度的12,小张与小王的速度和是电车速度的10,所以他们合走完全程所用的时间为电车行驶全程所用时间的12,即53分钟,所以小张与小王在途中相遇时他们已行走了60分钟.【例 6】小峰骑自行车去小宝家聚会,一路上小峰注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到半路,车坏了,小峰只好打的去小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,那么如果公交车的发车时间间隔和行驶速度固定的话,公交车的发车时间间隔为多少分钟?【解析】间隔距离=(公交速度-骑车速度)×9分钟;间隔距离=(出租车速度-公交速度)×9分钟所以,公交速度-骑车速度=出租车速度-公交速度;公交速度=(骑车速度+出租车速度)/2=3×骑车速度.由此可知,间隔距离=(公交速度-骑车速度)×9分钟=2×骑车速度×9分钟=3×骑车速度×6分钟=公交速度×6分钟. 所以公交车站每隔6分钟发一辆公交车.【例 7】某人乘坐观光游船沿顺流方向从A港到B港。
发现每隔40分钟就有一艘货船从后面追上游船,每隔20分钟就会有一艘货船迎面开过,已知A、B两港间货船的发船间隔时间相同,且船在净水中的速度相同,均是水速的7倍,那么货船发出的时间间隔是__________分钟。
【解析】由于间隔时间相同,设顺水两货船之间的距离为“1”,逆水两货船之间的距离为(7-1)÷(7+1)=3/4。