历届全国大学生数学竞赛预赛试卷

合集下载

2017-2018全国大学生数学竞赛试题及答案(最完整版).pdf

2017-2018全国大学生数学竞赛试题及答案(最完整版).pdf

=0
绕 y 轴旋转形成的椭球面的上半
部分( z ≥ 0 )取上侧,Π 是 S 在 P ( x, y, z ) 点处的切平面, ρ ( x, y, z ) 是原点到切平面Π
的距离, λ, μ,ν 表示 S 的正法向的方向余弦。计算:
(1)
∫∫
S
ρ
(
z x, y,
z
)
dS

(2) ∫∫ z (λx + 3μ y +ν z)dS 。 S 165
L
2
五、(本题满分 10 分)已知 y1 = xex + e2x , y2 = xex + e−x , y3 = xe x + e2x − e−x 是某二
阶常系数线性非齐次微分方程的三个解,试求此微分方程。
六、(本题满分 10 分)设抛物线 y = ax2 + bx + 2 ln c 过原点。当 0 ≤ x ≤ 1 时, y ≥ 0 ,又已
2
f (x)dx − 2 , 则 f (x) =
0

3.曲面 z = x2 + y2 − 2 平行平面 2x + 2 y − z = 0 的切平面方程是

2
4.设函数 y = y(x) 由方程 xe f ( y) = e y ln 29 确定,其中 f 具有二阶导数,且 f ′ ≠ 1 ,则
d2y =
an Snα
收敛;
∑ (2)当α ≤ 1且 sn

∞(n

∞)
时,级数
+∞ n=1
an Snα
发散。
五、(本题满分 15 分)设 l 是过原点、方向为 (α , β ,γ ) ,(其中α 2 + β 2 + γ 2 = 1) 的直线,

大学生高等数学竞赛试题汇总及答案

大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====, 即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历届大学生高等数学竞赛真题及答案非数学类14页

历届大学生高等数学竞赛真题及答案非数学类14页

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x y x x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,则21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历届全国大学生数学竞赛预赛试卷

历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类)2009年 第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)1.计算()ln(1)d yx y x y ++=⎰⎰____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足220()3()d 2f x x f x x =--⎰,则()f x =____________.3.曲面2222x z y =+-平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d x y________________. 二、(5分)求极限xenx x x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()()g x f xt dt =⎰,且A xx f x =→)(lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly yx ye y xe.五、(10分)已知xxe xe y 21+=,xxexe y -+=2,xx x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小.七、(15分)已知)(x u n 满足1()()1,2,n x nn u x u x x e n -'=+=L ,且neu n =)1(,求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷(非数学类)一、(25分,每小题5分)(1)设22(1)(1)(1)nn x a a a =+++L ,其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭.(3)设0s >,求0(1,2,)sx nn I e x dx n ∞-==⎰L .(4)设函数()f t有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g g x y ∂∂+∂∂.(5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离. 二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <. 证明:方程()0f x =在(,)-∞+∞恰有两个实根.三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,且22d 3d 4(1)y x t =+,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ. 四、(15分)设10,nn n kk a S a=>=∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛; (2)当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散. 五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c++≤(其中0c b a <<<,密度为1)绕l 旋转. (1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值.六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422d ()d 0L xy x x y x y ϕ+=+⎰Ñ的值为常数.(1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx y ϕ+=+⎰Ñ;(2)求函数()x ϕ;(3)设C 是围绕原点的光滑简单正向闭曲线,求422d ()d C xy x x y x y ϕ++⎰Ñ.2011年 第三届全国大学生数学竞赛预赛试卷(非数学类)一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;(2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan tt x e y t e⎧=+⎪⎨=-⎪⎩,求22d d y x .二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=的通解.三、(本题15分)设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h →++-=.四、(本题17分)设2221222:1x y z a b c ∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值.五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦. 计算:(1)()d ,,SzS x y z ρ⎰⎰;(2)()3d Sz x y z S λμν++⎰⎰ 六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2012年 第四届全国大学生数学竞赛预赛试卷(非数学类)一、(本大题共5小题,每小题6分,共30分)解答下列各题(要求写出重要步骤). (1)求极限21lim(!)n n n →∞.(2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个互相垂直的平面1π和2π,使其中一个平面过点(4,3,1)-.(3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂. 确定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂. (4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d Lx y u x x u u y +++⎰在右半平面与路径无关,求(,)u x y . (5)求极限1lim x xx t +.二、(本题10分)计算20sin d x e x x +∞-⎰.三、(本题10分)求方程21sin 2501x x x=-的近似解,精确到0.001.四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距. 五、(本题12分)求最小实数C ,使得满足10()d 1f x x =⎰的连续函数()f x 都有10f dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >. 区域Ω是由抛物面22z x y =+和球面 2222x y z t ++=(0)z >所围起来的部分. 定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰,求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛;(2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散.2013年 第五届全国大学生数学竞赛预赛试卷(非数学类)一、解答下列各题(每小题6分,共24分,要求写出重要步骤) 1.求极限(lim 1sin nn →∞+.2.证明广义积分0sin d xx x+∞⎰不是绝对收敛的. 3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值.4.过曲线0)y x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标. 二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()lim0x f x x→=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛. 四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m≤⎰. 五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分()()()333d d 2d d 3d d I x x y z y y z x z z x y ∑=-+-+-⎰⎰.试确定曲面∑,使积分I 的值最小,并求该最小值.六、(满分14分)设22d d ()()a a C y x x yI r x y -=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞.七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑L 的敛散性,若收敛,求其和. 2014年 第六届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(共有5小题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,则该方程是 .2.设有曲面22:2S z x y =+和平面022:=++z y x L . 则与L 平行的S 的切平面方程是 .3.设函数()y y x =由方程21sin d 4y x t x t π-⎛⎫= ⎪⎝⎭⎰所确定.求d d x y x == .4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim .5.已知130()lim 1x x f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim x x f x . 二、(本题12分)设n 为正整数,计算21d 1cos ln d d ne I x x x π-⎛⎫= ⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤. 证明:对任意]1,0[∈x ,有22|)('|BA x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R . 证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分d d d d d d I x y z y z x z x y ∑=++⎰⎰.五、(本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=b a nn n dx x f ab x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n n nA n n n n =++++++L ,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π.2015年 第七届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫ ⎪+++= ⎪+++ ⎪⎝⎭L . (2)设函数(),z z x y =由方程,0z z F x y y x ⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z zxy x y∂∂+=∂∂ . (3)曲面221z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是 . (4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是 . (5)设区间()0,+∞上的函数()u x 定义域为()2xt u x e dt +∞-=⎰,则()u x 的初等函数表达式是 .二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程.三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导.四、(14分)求幂级数()()30211!nn n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()110,1f x dx xf x dx ==⎰⎰. 试证:(1)[]00,1x ∃∈使()04f x >; (2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f f f M ++≤. 若()()()0,00,0,00,00x y f f f ===,证明:()221,4x y f x y dxdy +≤≤⎰⎰.2016年 第八届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,满分30分)1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪⎪⎝⎭⎪= ⎪⎪⎝⎭__________. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若zz x∂=∂,求()f x 在0x >的表达式.4、设()sin 2x f x e x =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()230d d aaf x xf x x >⎰⎰.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M x y z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =, 证明:()10111lim 2n n k k n f x dx fn n →∞=⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭∑⎰.五、(14分)设函数()f x 在闭区间[]0,1上连续,且()1d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=. 六、(14分)设()f x 在(),-∞+∞可导,且()()(2f x f x f x =+=.用Fourier 级数理论证明()f x 为常数.2017年 第九届全国大学生数学竞赛预赛试卷(非数学类)一、1. 已知可导函数f (x )满足⎰+=+xx tdt t f x xf 01sin )(2)(cos ,则()f x =_________.2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π.3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数. 则21xx yy w w c -=_________. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x →=____.5. 不定积分sin 2sin 2(1sin )x e xI dx x -=-⎰=________. 6. 记曲面222z x y =+和z =围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰=___________.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的极小值. 三、(本题满分14分) 设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x ef x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2bab a f x dx -+≤⎰. 五、(本题满分15分) 设{}n a 为一个数列,p 为固定的正整数。

2009-2014全国大学生数学竞赛试题及答案(最完整版)

2009-2014全国大学生数学竞赛试题及答案(最完整版)


dx 2
二、(本题满分 5 分)求极限 lim( e x + e2x +
+
e nx
)
e x
,其中
n
是给定的正整数。
x→0
n
∫ 三、(本题满分 15 分)设函数 f (x) 连续, g(x) = 1 f (xt)dt ,且 lim f (x) = A , A 为常
0
x→0 x
数,求 g′(x) 并讨论 g′(x) 在 x = 0 处的连续性。
L
2
五、(本题满分 10 分)已知 y1 = xex + e2x , y2 = xex + e−x , y3 = xe x + e2x − e−x 是某二
阶常系数线性非齐次微分方程的三个解,试求此微分方程。
六、(本题满分 10 分)设抛物线 y = ax2 + bx + 2 ln c 过原点。当 0 ≤ x ≤ 1 时, y ≥ 0 ,又已
六、(本题满分 12 分)设 f (x) 是在 (−∞, +∞) 内的可微函数,且 f ′(x) < mf (x) ,其中
+∞
∑ 0 < m < 1 。任取实数 a0 ,定义 an = ln f (an−1), n = 1, 2, ,证明: (an − an−1) 绝对收敛。 n =1
七、(本题满分 15 分)是否存在区间[0, 2]上的连续可微函数 f (x) ,满足 f (0) = f (2) = 1,
第一届(2009)全国大学生数学竞赛预赛试卷
一、填空题(每小题 5 分,共 20 分)
(x + y) ln(1 + y )
1.计算 ∫∫D

大学生高等数学竞赛试题汇总与答案

大学生高等数学竞赛试题汇总与答案
令x=1/t,则
原式=
(ln(1t)t)1/(1t)111
2
2(1t)
t2t2
limelimelimee
t0t0t0
(3)
11
sxnnsxnsxsxn
Iexdx()xde()[xe|edx]
n0
000
ss
nnn(n1)n!n!
sxn1
exdxIII
n12n2n0n1
sssss
0
二、(15分)设函数f(x)在(,)上具有二阶导数,并且
''()(2'
t2t)2(t)''()(2'
3
dxdx/dt(22t)
=。。。
上式可以得到一个微分方程,求解即可。
四、(15分)设
n
a0,Sa,证明:
nnk
k1
(1)当1时,级数
a
n
S
nn
1
收敛;
(2)当1且()
sn时,级数
n
a
n
S
nn
1
发散。
解:
(1)
a>0,
n
s单调递增
n

n1
a收敛时,
n
aa
nn
一、(25分,每小题5分)
(1)设
n
22
x(1a)(1a)(1a),其中|a|1,求limxn.
n
n
(2)求
x
lim e1
x
1
x
2
x

(3)设s0,求
sxn
Iexdxn。
(1,2,)
0
(4)设函数f(t)有二阶连续导数,

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(__ ,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy_____.二、(5分)求极限xenx x x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 25d d π⎰≥--L y y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1Λ=+='-n e x x u x u xn n n, 且n eu n =)1(, 求函数项级数∑∞=1)(n n x u 之和. 八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.一、(25分,每小题5分)(1)设22(1)(1)(1),n n x a a a =+++L 其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。

历届全国大学生数学竞赛预赛试卷

历届全国大学生数学竞赛预赛试卷

全国大学生数学比赛初赛试卷(非数学类)2009 年第一届全国大学生数学比赛初赛试卷(非数学类) 一、填空题(每题5 分,共 20 分)( x y)ln(1y)1.计算xdxdy ____________,此中地区D 由直线 x y 1 与两坐标轴D1 x y所围成三角形地区 .2.设 f ( x) 是连续函数,且知足f ( x) 3 x22f ( x)dx 2 ,则 f ( x) ____________.3.曲面 zx 2 y 22 平行平面 2x2 y z0 的切平面方程是 __________.24.设函数 yy( x) 由方程 xe f ( y )e yln 29 确立,此中 f 拥有二阶导数,且 f1 ,则d 2 y ________________.dx2二、( 5 分)求极限 lim (e xe 2 xe nxen) x,此中 n 是给定的正整数 .x 01 三、( 15 分)设函数 f ( x) 连续, g ( x)f ( xt)dt ,且 limf (x)A , A 为常数,求 g (x) 并x 0x议论 g (x) 在 x 0处的连续性 .四、(15 分)已知平面地区 D {( x, y) | 0x, 0 y} , L 为 D 的正向界限,试证:(1) xe sin y dyye sin x dx xe sin y dyye sin x dx ;LL(2) xe sin y dyye sin y dx 5 2 .L2五、( 10 分)已知 y 1 xe x e 2 x , y 2 xe x e x , y 3 xe x e 2 x e x 是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、( 10 分)设抛物线 y ax 2 bx 2 ln c 过原点 . 当 0 x 1时, y 0 ,又已知该抛物线与 x 轴及直线 x 1所围图形的面积为1. 试确立 a, b, c ,使此图形绕 x 轴旋转一周而成的旋转体的体积 V 最小 .3七、( 15 分) 已知 u n ( x) 知足 u n ( x)u n (x)x n 1e x n 1,2,L,且 u n (1)e,求函数项级数nu n ( x) 之和 .n 1八、( 10 分)求 x1 时,与x n 2 等价的无量大批 .n 02010 年第二届全国大学生数学比赛初赛试卷(非数学类)一、( 25 分,每题5 分)( 1)设 x n (1 a)(1 a 2 )L (1 a 2 n ) ,此中 | a | 1, 求 lim x n .n1 x 2( 2)求 lim e x 1 .xx( 3)设 s 0 ,求 I ne sx x n dx(n1,2,L ) .( 4)设函数 f (t) 有二阶连续导数, rx2y 2, g(x, y)f 1,求2g2g .rx 2y 2( 5)求直线 l 1 : xy 0与直线 l 2 : x 2y 1z3的距离 .z 0421二、( 15 分)设函数 f (x) 在 ( ,) 上拥有二阶导数,而且f (x) 0 , lim f (x)0 ,xlim f ( x)0 ,且存在一点 x 0 ,使得 f ( x 0 )0 . 证明:方程 f ( x)0 在 (,) 恰有两个实x根 .x 2t t 223三、( 15 分)设函数 yf ( x) 由参数方程d yy(t ) (t1) 所确立,且 dx 24(1 t ),此中 (t) 拥有二阶导数,曲线y(t ) 与 yt 2eu 2du3在 t 1出相切,求函数(t) .12e四、( 15 分)设 a nn0, S na k ,证明:k1(1)当1时,级数a n 收敛;n 1 S n(2)当1且 s n( n) 时,级数a n 发散 .n 1 S n五、( 15 分)设 l 是过原点、方向为 ( , , ) ,(此中2221) 的直线,平均椭球x 2y 2 z 2 1(此中 0c b a ,密度为1)绕 l 旋转 .a2b2c2( 1)求其转动惯量;( 2)求其转动惯量对于方向 ( , , ) 的最大值和最小值 .六、 (15 分) 设函数 ( x) 拥有连续的导数,在环绕原点的随意圆滑的简单闭曲线C2 xydx ( x)dy 0 的值为常数 .上,曲线积分?Lx 4y 2(1)设 L 为正向闭曲线 (x 2) 2y 21 ,证明 ?L2xydx(x)dy ;x 4y 2( 2)求函数 ( x) ;( 3)设 C 是环绕原点的圆滑简单正向闭曲线,求?C 2xydx ( x)dy .x 4y 22011 年第三届全国大学生数学比赛初赛试卷(非数学类)一、计算以下各题(此题共3 小题,每题各5 分,共 15 分)1( 1)求 limsin x 1 cosx ;x 0x( 2). 求 lim1 1 (1);nn 1n 2n n2t,求 d 2y 2.( 3)已知xln 1eytdxt arctane二、(此题 10 分)求方程2x y 4 dx x y 1 dy 0的通解 .三、(此题 15 分)设函数 f (x) 在 x 0 的某邻域内拥有二阶连续导数,且 f 0 , f 0 , f 0均不为 0,证明:存在独一一组实数k 1,k 2 , k 3 ,使得lim k 1 fh k 2 f 2h 2 k 3 f 3hf 00 .h 0h222 四、(此题 17 分)设1 :xyz1 ,此中 a b c0 , 2 : z 2x22, 为 1 与2的222yabc交线,求椭球面 1 在 上各点的切平面到原点距离的最大值和最小值.五、(此题 16 分)已知 S 是空间曲线x 2 3y21绕 y 轴旋转形成的椭球面的上半部分z 0( z 0 )(取上侧), 是 S 在 P( x, y, z) 点处的切平面,(x, y, z) 是原点到切平面 的距离,,, 表示 S 的正法向的方向余弦 . 计算:( 1)z dS ;( 2) z x3 ydz SSx, y, zS六、(此题 12 分)设 f ( x) 是在 ( ,) 内的可微函数,且f (x)mf (x) ,此中 0 m 1 ,任取实数 a 0 ,定义 a nln f (a n 1), n 1,2,... ,证明:(a na n 1 ) 绝对收敛 .n 1七、(此题 15 分)能否存在区间0,2上的连续可微函数f ( x) ,知足 f (0) f (2)1,f ( x) 1 ,2f (x)d x 1?请说明原因 .2012 年第四届全国大学生数学比赛初赛试卷(非数学类)一、(本大题共 5 小题,每题6 分,共 30 分)解答以下各题 (要求写出重要步骤) .1( 1)求极限 lim( n!) n 2 .n( 2)求经过直线 l :2 x y 3z 2 0 的两个相互垂直的平面 1和 2 ,使此中一个平面5x 5 y 4z 3 0过点 (4, 3,1).( 3)已知函数 zu( x , y)eaxby,且2u0 . 确立常数 a 和 b ,使函数 z z(x , y) 知足方程 xy2z zz. x yxzy( 4)设函数 uu( x) 连续可微, u(2) 1 ,且 ( x 2 y)udx ( xu 3 )udy 在右半平面与路径无L关,求 u (x , y) .( 5)求极限 lim 3xx 1sin tdt .xxt cost二、(此题 10 分)计算e 2x sin x dx .三、(此题 10 分)求方程 x 2sin12x 501的近似解,精准到 0.001.x四、(此题 12 分)设函数 yf (x) 二阶可导,且 f ( x)0 , f (0)0 , f(0) 0 ,求3limx f (u )3 ,此中 u 是曲线 y f (x) 上点 P( x , f ( x)) 处的切线在 x 轴上的截距 .x 0f ( x)sin u五、(此题 12 分)求最小实数 C ,使得知足1f (x) dx 1 的连续函数 f ( x) 都有1f ( x )dxC .六、(此题 12 分)设 f ( x) 为连续函数, t 0 . 地区 是由抛物面 zx 2 y 2 和球面x 2y 2 z 2t 2 ( z 0) 所围起来的部分 . 定义三重积分 F (t ) f ( x 2 y 2 z 2 )d v ,求 F (t) 的导数 F (t) .七、(此题 14 分)设a n 与b n 为正项级数,证明:n 1n 1( 1)若( 2)若lima n1 ,则级数a n 收敛;na n 1b n b n 1n 1lima n1 ,且级数b n 发散,则级数a n 发散 .na n 1b nb n 1n 1n 12013 年第五届全国大学生数学比赛初赛试卷(非数学类)一、解答以下各题(每题 6 分,共 24 分,要求写出重要步骤)1. 求极限 lim 12nsin1 .4nn2. 证明广义积分sin x dx 不是绝对收敛的 .x3. 设函数 y y(x) 由 x 33x 2 y 2 y 32 确立,求 y( x) 的极值 .4. 过曲线 y3x (x0) 上的点 A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为3,求点 A4的坐标 .x二、(满分 12 分)计算定积分Ixsin x arctane2dx .1 cos x三、(满分 12 分)设 fx 在 x 0 处存在二阶导数 f (0) ,且 limf x0 . 证明:级数1 收敛 .fx 0xn 1n四、(满分 12 分)设 f ( x), f (x)m 0(a xb) ,证明b2 .a sin f ( x)dxm五、(满分 14 分 ) 设是一个圆滑关闭曲面,方向朝外.给定第二型的曲面积分Ix 3x dydz2 y3 y dzdx3 z 3 z dxdy . 试确立曲面 ,使积分 I 的值最小,并求该最小值 .六、(满分 14 分)设 I a (r )ydx xdy ,此中 a 为常数,曲线 C 为椭圆x 2 xy y 2r 2 ,取正向 . 求极C( x2y 2 )a限 lim I a (r ) .r11L1七、(满分14 分)判断级数2 n的敛散性,若收敛,求其和 .n 1 n 1 n22014 年第六届全国大学生数学比赛初赛试卷(非数学类)一、填空题(共有 5 小题,每题 6 分,共 30 分)1. 已知 y 1e x 和 y 1 xe x 是齐次二阶常系数线性微分方程的解,则该方程是.2. 设有曲面 S : z x 2 2y 2 和平面 L : 2x 2 y z 0 . 则与 L 平行的 S 的切平面方程是 .3. 设函数 yy x t dt 所确立 . 求 dy.y(x) 由方程 xsin 214 dx x 04. nk ,则 lim x n设 x n.1)!k 1(kn1f (x)5. 已知 lim1 xf ( x)x3.e ,则 limx 2x 0xx 01二、(此题 12 分)设 n 为正整数,计算Ie 2 nd 1 cos lndx.dxx三、(此题 14 分)设函数 f (x) 在 [0,1] 上有二阶导数,且有正常数A, B 使得 f (x)A ,| f "( x) |B . 证明:对随意 x[ 0,1] B,有 | f '(x) | 2 A.2四、(此题 14 分)( 1)设一球缺高为h ,所在球半径为 R . 证明该球缺体积为(3R h)h 2 ,球冠面积3为 2 Rh ;( 2)设球体 ( x 1) 2 ( y 1) 2 ( z 1) 2 12被平面 P : xy z 6 所截的小球缺为,记球缺上的球冠为 ,方向指向球外,求第二型曲面积分I xdydz ydzdx zdxdy .五、(此题 15 分)设 f 在 [ a,b] 上非负连续,严格单增,且存在 x n [a,b] ,使得[ f ( x n )]n1b[ f (x)]n dx . 求 lim x n . b a a n六、(此题 15 分)设 A nnnLn,求 lim nA n . 22222n 1 n2n nn42015 年第七届全国大学生数学比赛初赛试卷(非数学类)一、填空题(每题6 分,共 5 小题,满分 30 分)sinsin 2sin( 1)极限 lim n nn.Lnnn 2 1 n 2 2 n 2( 2)设函数 zz x, y 由方程 Fxz, y z0 所决定,此中 F u,v 拥有连续偏导y x数,且 xF uyF v0 则 x z y z .xy( 3)曲面 z x 2y 2 1在点 M 1, 1,3 的切平面与曲面所围地区的体积是 .( 4)函数 fx3,x 5,0 在5,5 的傅立叶级数在 x0 收敛的是 .0, x 0,5( 5)设区间 0,上的函数 u x 定义域为 u xe xt 2 dt ,则 u x 的初等函数表达式是 .二、( 12 分)设 M 是以三个正半轴为母线的半圆锥面,求其方程.三、( 12 分)设 fx在 a,b 内二次可导,且存在常数, ,使得对于x a,b ,有f xf xfx,则 f x 在 a, b 内无量次可导 .四、( 14 分)求幂级数n 3 2 x 1 n的收敛域及其和函数 .n 0n 1 !五、( 16 分)设函数 f x 在 0,1 上连续,且1f x dx11 . 试证:0 0, xf x dx( 1) x 0 0,1 使 f x 0 4 ;( 2) x 10,1 使 f x 14 .五、( 16 分)设f x, y 在x2y21上有连续的二阶偏导数,且f xx2 2 f xy2 f yy2M .若f 0,0 0, f x 0,0 f y 0,0 0 ,证明: f x, y dxdy M .x2 y 2 142016 年第八届全国大学生数学比赛初赛试卷(非数学类)一、填空题(每题 5 分,满分 30 分)1nf a1、若f x在点 x a 可导,且f a0,则lim n__________.f an2、若f10, f1存在,求极限 I lim f sin 2 x cosx tan3 x2.x 0x1 sin xe3、设f x有连续导数,且 f 1 2 ,记 z f e x y2,若zz ,求f x 在x 0的表达式. x4、设f x e x sin2 x ,求 0a n, f40.25、求曲面z x2y2平行于平面 2 x 2 y z0 的切平面方程.2二、( 14 分)设f x在0,1上可导, f00 ,且当 x0,1,0f x1,试证当 a0,1 ,a 2a3x dx .0 fx dx0f三、( 14 分)某物体所在的空间地区为: x2y22z2x y2z,密度函数为 x2y2z2,求质量 M x2y2z2dxdydz .四、( 14 分)设函数f x在闭区间0,1上拥有连续导数,f00 , f 1 1 ,证明: lim n1f x dx1n k 1.n0n k 1n2五、( 14 分)设函数f x在闭区间0,1 上连续,且 I 10 ,证明:在0,1内存0f x dx在不一样的两点 x1, x2,使得11 2 .f x1 f x2I六、( 14 分)设f x 在,可导,且 f x f x 2 f x3. 用 Fourier 级数理论证明 f x 为常数.2017 年第九届全国大学生数学比赛初赛试卷(非数学类)一、1.已知可导函数() 知足cos xf (x)2x f (t) sin tdt x1,则 f ( x) =_________.????0.求lim sin2n2n .2n3. 设w f (u, v) 拥有二阶连续偏导数,且u=x cy,v=x+cy ,此中c为非零常数.则wxx1=_________.c2wyy4.设f (x)有二阶导数连续,且 f (0) f '(0)0, f "(0) 6 ,则 lim f (sin2 x)=____.x4x 05. 不定积分I e sin x sin 22x dx=________.(1 sin x)6.记曲面 z2 x2 y2和z4 x2 y2围成空间地区为 V ,则三重积分zdxdydz=___________.V二、(此题满分14 分 ) 设二元函数 f ( x, y)在平面上有连续的二阶偏导数. 对任何角度,定义一元函数g (t ) f (t cos , t sin ) .若对任何都有dg (0)0且 d 2 g(0) 0 .证明f (0,0)是 f ( x, y) 的极小值. dt dt 2三、 ( 此题满分 14 分 ) 设曲线为在x2y2z21,x z1, x 0, y 0, z 0上从 A(1,0,0) 到 B(0,0,1) 的一段.求曲线积分I ydx zdy xdz .四、 ( 此题满分 15 分 ) 设函数f ( x)0 且在实轴上连续,若对随意实数t ,有e |t x|f ( x) dx 1 ,则 a, b( a b) ,b b a 2 .f (x)dxa2五、 ( 此题满分 15 分 ) 设{ a n}为一个数列,p 为固定的正整数。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)第一届全国大学生数学竞赛预赛试题一、填空题(每小题5分,共20分)1.计算 $\iint_D \frac{y}{x+y-1} \mathrm{d}x\mathrm{d}y$,其中区域$D$ 由直线$x+y=1$ 与两坐标轴所围成三角形区域。

2.设 $f(x)$ 是连续函数,且满足 $f(x)=3x^2-\intf(x)\mathrm{d}x-2$,则 $f(x)=\underline{\hspace{2em}}$。

3.曲面 $z=\frac{x^2+y^2-2}{2}$ 平行于平面 $2x+2y-z=$ 的切平面方程是 $\underline{\hspace{2em}}$。

4.设函数 $y=y(x)$ 由方程 $xe^{f(y)}=\ln 29$ 确定,其中$f$ 具有二阶导数,且 $f'\neq 1$,则$y''=\underline{\hspace{2em}}$。

二、(5分)求极限 $\lim\limits_{x\to n}\frac{e^{ex+e^{2x}+\cdots+e^{nx}}}{x}$。

三、(15分)设函数 $f(x)$ 连续,$g(x)=\intf(xt)\mathrm{d}t$,且 $\lim\limits_{x\to 1} f(x)=A$,$A$ 为常数,求 $g'(x)$ 并讨论 $g'(x)$ 在 $x=1$ 处的连续性。

四、(15分)已知平面区域 $D=\{(x,y)|0\leq x\leq\pi,0\leq y\leq\pi\}$,$L$ 为 $D$ 的正向边界,试证:1)$\int_L xe^{\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x=\int_L xe^{-\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x$;2)$\int_L xe^{\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x\geq \frac{\pi^2}{2}$。

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

1
1 2 4 2 3 1 5 16
2 (12t t )dt 2 t t t
令t 1u ,则u 1t2 ,du 2tdt ,u2 12t2 t4 ,u(1u) t2 (1t)(1t) ,
0
(*) 2 (12t2 t4 )dt
1
2
d y
则 2 ________________.
dx
f (y ) y
x
解方程xe e ln 29 的两边对 求导,得
y
(x y ) ln(1 ) u ln u u ln v
1x y
坐标轴所围成三角形区域.
0 1
解令 ,则 , ,
x y u,x v x v,y u v dxdy det dudv dudv
1 1
2 .设f (x) 是连续函数,且满足f (x) 3x 2 f (x)dx 2 , 则f (x) ____________.
0
处的切平面方程是2(x 2) 2(y 1) (z 5) 0 ,即曲面z y 2 平行平面
2
2x 2y z 0 的切平面方程是2x 2y z 1 0 。
4 .设函数y y (x) 由方程 f (y ) y 确定,其中 具有二阶导数,且 ,
xe e ln 29 f f 1
处的法向量为(z (x , y ), z (x , y ),1) ,故(z (x , y ), z (x , y ),1) 与(2,2,1) 平行,
x 0 0 y 0 0 x 0 0 y 0 0
D x dxdy D dudv
1x y 1u
1 u ln u u u u
4 2 10
解得A 。因此f (x) 3x 。

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

2023年历届全国大学生数学竞赛预赛试卷

2023年历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类)2023年 第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)1.计算()ln(1)d yx y x y ++=⎰⎰____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足220()3()d 2f x x f x x =--⎰,则()f x =____________.3.曲面2222x z y =+-平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =拟定,其中f 具有二阶导数,且1≠'f ,则=22d d x y________________. 二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()()g x f xt dt =⎰,且A xx f x =→)(lim,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly yx ye y xe.五、(10分)已知xxe xe y 21+=,xxexe y -+=2,xx x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试拟定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小.七、(15分)已知)(x u n 满足1()()1,2,n x nn u x u x x e n -'=+=,且neu n =)1(,求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.2023年 第二届全国大学生数学竞赛预赛试卷(非数学类)一、(25分,每小题5分) (1)设22(1)(1)(1)nn x a a a =+++,其中||1,a <求lim .n n x →∞(2)求21lim 1x xx ex -→∞⎛⎫+ ⎪⎝⎭. (3)设0s >,求0(1,2,)sx n n I e x dx n ∞-==⎰.(4)设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g g x y ∂∂+∂∂.(5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离. 二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <. 证明:方程()0f x =在(,)-∞+∞恰有两个实根.三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所拟定,且22d 3d 4(1)y x t =+,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ. 四、(15分)设10,nn n kk a S a=>=∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛; (2)当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散. 五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤(其中0c b a <<<,密度为1)绕l 旋转. (1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值.六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简朴闭曲线C 上,曲线积分422d ()d 0L xy x x yx y ϕ+=+⎰的值为常数.(1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx y ϕ+=+⎰;(2)求函数()x ϕ;(3)设C 是围绕原点的光滑简朴正向闭曲线,求422d ()d C xy x x y x y ϕ++⎰.2023年 第三届全国大学生数学竞赛预赛试卷(非数学类)一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;(2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan tt x e y t e⎧=+⎪⎨=-⎪⎩,求22d d y x .二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=的通解.三、(本题15分)设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h→++-=. 四、(本题17分)设2221222:1x y z a b c ∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值.五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表达S 的正法向的方向余弦. 计算:(1)()d ,,SzS x y z ρ⎰⎰;(2)()3d Sz x y z S λμν++⎰⎰ 六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2023年 第四届全国大学生数学竞赛预赛试卷(非数学类)一、(本大题共5小题,每小题6分,共30分)解答下列各题(规定写出重要环节). (1)求极限21lim(!)n n n →∞.(2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个互相垂直的平面1π和2π,使其中一个平面过点(4,3,1)-.(3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂. 拟定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂. (4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d Lx y u x x u u y +++⎰在右半平面与途径无关,求(,)u x y . (5)求极限1lim x xx t +.二、(本题10分)计算20sin d x e x x +∞-⎰.三、(本题10分)求方程21sin 2501x x x=-的近似解,精确到0.001.四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距. 五、(本题12分)求最小实数C ,使得满足10()d 1f x x =⎰的连续函数()f x 都有10f dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >. 区域Ω是由抛物面22z x y =+和球面 2222x y z t ++=(0)z >所围起来的部分. 定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰,求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛;(2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散.2023年 第五届全国大学生数学竞赛预赛试卷(非数学类)一、解答下列各题(每小题6分,共24分,规定写出重要环节) 1.求极限(lim 1sin nn →∞+.2.证明广义积分0sin d xx x+∞⎰不是绝对收敛的. 3.设函数()y y x =由323322x x y y +-=拟定,求()y x 的极值.4.过曲线0)y x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标. 二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()lim0x f x x→=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m≤⎰. 五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分()()()333d d 2d d 3d d I x x y z y y z x z z x y ∑=-+-+-⎰⎰.试拟定曲面∑,使积分I 的值最小,并求该最小值.六、(满分14分)设22d d ()()a a C y x x yI r x y -=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞.七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑的敛散性,若收敛,求其和.2023年 第六届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(共有5小题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,则该方程是 .2.设有曲面22:2S z x y =+和平面022:=++z y x L . 则与L 平行的S 的切平面方程是 .3.设函数()y y x =由方程21sin d 4y xt x t π-⎛⎫= ⎪⎝⎭⎰所拟定.求d d x y x == .4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim .5.已知130()lim 1xx f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim x x f x .二、(本题12分)设n 为正整数,计算21d 1cos ln d d n eI x x x π-⎛⎫= ⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤. 证明:对任意]1,0[∈x ,有22|)('|BA x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R . 证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分d d d d d d I x y z y z x z x y ∑=++⎰⎰.五、(本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=b a nn n dx x f ab x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n nnA n n n n =++++++,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π.2023年 第七届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫⎪+++= ⎪+++ ⎪⎝⎭. (2)设函数(),z z x y =由方程,0z z F x y y x ⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z zxy x y∂∂+=∂∂ .(3)曲面221z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是 .(4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是 . (5)设区间()0,+∞上的函数()u x 定义域为()2xt u x e dt +∞-=⎰,则()u x 的初等函数表达式是 .二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程.三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导.四、(14分)求幂级数()()30211!nn n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()110,1f x dx xf x dx ==⎰⎰. 试证:(1)[]00,1x ∃∈使()04f x >; (2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f f f M ++≤. 若()()()0,00,0,00,00x y f f f ===,证明:()221,4x y f x y dxdy +≤≤⎰⎰.2023年 第八届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,满分30分) 1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪⎪⎝⎭⎪= ⎪⎪⎝⎭__________. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若zz x∂=∂,求()f x 在0x >的表达式.4、设()sin 2x f x e x =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()230d d aaf x xf x x >⎰⎰.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M x y z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =, 证明:()10111lim 2n n k k n f x dx fn n →∞=⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭∑⎰.五、(14分)设函数()f x 在闭区间[]0,1上连续,且()1d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=. 六、(14分)设()f x 在(),-∞+∞可导,且()()()23f x f x f x =+=+.用Fourier 级数理论证明()f x 为常数.2023年 第九届全国大学生数学竞赛预赛试卷(非数学类)一、1. 已知可导函数满足⎰+=+xx tdt t f x xf 01sin )(2)(cos ,则()f x =_________.2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π.3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数. 则21xx yy w w c-=_________. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x→=____. 5. 不定积分sin 2sin 2(1sin )x e x I dx x -=-⎰=________. 6. 记曲面222z x y =+和z =围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰=___________.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的极小值. 三、(本题满分14分) 设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x e f x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2b a b a f x dx -+≤⎰. 五、(本题满分15分) 设{}n a 为一个数列,p 为固定的正整数。

全国大学生数学竞赛预赛试题(1-9届)

全国大学生数学竞赛预赛试题(1-9届)

全国大学生数学竞赛预赛试题(1-9届)第三届全国大学生数学竞赛预赛试题一. 计算下列各题(共3小题,每小题各5分,共15分)(1).求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭; (2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e ⎧=+⎪⎨=-⎪⎩,求22d ydx。

二.(10分)求方程()()2410x y dx x y dy +-++-=的通解。

三.(15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=。

四.(17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值。

五.(16分)已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)取上侧,∏是S 在(),,Px y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S的正法向的方向余弦。

计算:(1)(),,S zdS x y z ρ⎰⎰;(2)()3S z x y z dS λμν++⎰⎰六.(12分)设f(x)是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11n n n a a ∞-=-∑绝对收敛。

七.(15分)是否存在区间[]0,2上的连续可微函数f(x),满足()()021f f ==,()()201,1fx f x dx ≤≤⎰、?请说明理由。

历届全国大学生数学竞赛真题及答案非数学类

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解: 令,则,,(*)令,则,,,2.设是连续函数,且满足, 则____________.解: 令,则,,解得。

因此。

3.曲面平行平面的切平面方程是__________.解: 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面的切平面方程是。

4.设函数由方程确定,其中具有二阶导数,且,则________________.解: 方程的两边对求导,得因,故,即,因此二、(5分)求极限,其中是给定的正整数.解 :因故因此三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.解 : 由和函数连续知,因,故,因此,当时,,故当时,,这表明在处连续.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).证 :因被积函数的偏导数连续在上连续,故由格林公式知(1)而关于和是对称的,即知因此(2)因故由知即五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设,,是二阶常系数线性非齐次微分方程的三个解,则和都是二阶常系数线性齐次微分方程的解,因此的特征多项式是,而的特征多项式是因此二阶常系数线性齐次微分方程为,由和,知,二阶常系数线性非齐次微分方程为六、(10分)设抛物线过原点.当时,,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.解因抛物线过原点,故,于是即而此图形绕轴旋转一周而成的旋转体的体积即令,得即因此,,.七、(15分)已知满足, 且, 求函数项级数之和.解,即由一阶线性非齐次微分方程公式知即因此由知,,于是下面求级数的和:令则即由一阶线性非齐次微分方程公式知令,得,因此级数的和八、(10分)求时, 与等价的无穷大量.解令,则因当,时,,故在上严格单调减。

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类)

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类)

第一届全国大学生数学竞赛预赛试卷(非数学类)2009一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=,dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(22-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(19届)一、试题概述全国大学生数学竞赛是由中国数学会主办的一项面向全国高校本科生的数学竞赛。

自2009年首届竞赛举办以来,已成功举办九届。

竞赛旨在激发大学生对数学的兴趣,提高他们的数学素养和综合能力,同时选拔优秀数学人才。

每届竞赛均设有预赛和决赛两个阶段,预赛为全国范围内的统一考试,决赛则在全国范围内选拔出的优秀选手中进行。

二、竞赛内容全国大学生数学竞赛的试题内容主要包括高等数学、线性代数、概率论与数理统计等基础数学知识。

试题难度适中,既考查参赛选手的基础知识掌握程度,又注重考查他们的综合应用能力和创新思维能力。

三、竞赛特点1. 公平公正:竞赛试题由全国数学教育专家命题,确保试题质量,保证竞赛的公平公正。

2. 注重基础:竞赛试题主要考查参赛选手对基础数学知识的掌握程度,有利于引导大学生重视基础数学学习。

3. 综合应用:试题设计注重考查参赛选手的综合应用能力,培养他们的创新思维和实践能力。

4. 激发兴趣:竞赛通过丰富多样的试题形式,激发大学生对数学的兴趣,培养他们的数学素养。

四、竞赛组织全国大学生数学竞赛由各省、市、自治区数学会负责组织本地区的预赛,中国数学会负责全国范围内的决赛。

竞赛组织工作包括试题命制、竞赛宣传、选手选拔、竞赛监督等环节,确保竞赛的顺利进行。

五、竞赛影响全国大学生数学竞赛自举办以来,受到了广大高校和数学爱好者的广泛关注和热情参与。

竞赛不仅为优秀数学人才提供了展示才华的舞台,也为全国高校数学教育提供了有益的借鉴和启示。

通过竞赛,大学生们不仅提高了自己的数学水平,还结识了许多志同道合的朋友,拓宽了视野,激发了学习热情。

六、竞赛历程自2009年首届全国大学生数学竞赛举办以来,竞赛规模逐年扩大,影响力不断提升。

参赛选手涵盖了全国各大高校的本科生,包括综合性大学、理工科院校、师范院校等。

随着竞赛的普及,越来越多的学生开始关注并参与其中,竞赛逐渐成为衡量高校数学教育水平和学生数学素养的重要标志。

历届全国大学生数学竞赛 预赛 参考解析 (数学类)

历届全国大学生数学竞赛 预赛 参考解析 (数学类)

的平面π 的方程为: x + y + z = 0 .
π 与三已知直线的交点分别为 O(0, 0, 0), P(1, 0, −1),Q(0, −1,1)
圆柱面的轴 L0 是到这三点等距离的点的轨迹, 即
⎧⎪⎨ x 2 ⎪⎩ x 2
+ +
y2 y2
+ +
z2 z2
= =
(x x2
−1)2 +(y
+ y2 + 1)2
二、设 Cn×n 是 n × n 复矩阵全体在通常的运算下所构成的复数域 C 上的线性空间,
⎛0
⎜ ⎜
1
0 0
# #
0 0
−an −an−1
⎞ ⎟ ⎟
F
=
⎜ ⎜ ⎜
0 #
1 #
# #
0 #
−an #
−2
⎟ ⎟ ⎟
.
⎜⎝ 0 0 # 1 −a1 ⎟⎠
(1)假设
A
=
⎛ ⎜ ⎜ ⎜
a11 a21 "
a12 a22 "
= x0 Ee1 + x1Fe1 + x2 F 2e1 +" + xn−1F n−1e1 = x0e1 + x1e2 + x2e3 +" + xn−1en
因 e1, e2 , e3,", en 线性无关,故, x0 = x1 = x2 = " = xn−1 = 0
所以, E, F , F 2 ,", F n−1 线性无关.因此, E, F , F 2 ,", F n−1 是 C(F ) 的基,
Fe1

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(__ ,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy_____.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 25d d π⎰≥--L y y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u xn n n, 且n eu n =)1(, 求函数项级数∑∞=1)(n n x u 之和. 八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分
L
2xydx (x)dy x4 y2
0
的值为常数.
(1)设 L 为正向闭曲线 (x 2)2 y2 1 ,证明
2xydx (x)dy 0 ;
L
x4 y2
(2)求函数(x) ;
(3)设 C 是围绕原点的光滑简单正向闭曲线,求
2xydx (x)dy
C
x4 y2
.
2011 年 第三届全国大学生数学竞赛预赛试卷(非数学类)
一、计算下列各题(本题共 3 小题,每小题各 5 分,共 15 分)
1
(1)求
lim
x0
sin x
x
1cos
x

(2).求
lim
n
n
1 1
n
1
2
...
n
1
n

(3)已知
x
ln
1 e2t
y t arctan et
,求
d2 y dx2
.
二、(本题 10 分)求方程 2x y 4dx x y 1dy 0 的通解.
d2 y dx 2
________________.
二、(5
分)求极限 lim ( ex
e2x
e nx
e
)x
,其中 n
是给定的正整数.
x0
n
三、(15 分)设函数
f (x) 连续,g(x) 1 f (xt)dt ,且 lim
0
x0
f (x) x
A , A 为常数,求 g(x) 并
讨论 g(x) 在 x 0处的连续性.
z2 c2
1(其中 0 c b a ,密度为
1)绕 l 旋转.
(1)求其转动惯量;
(2)求其转动惯量关于方向 ( , , ) 的最大值和最小值.
2/9
………………………………………………最新资料推荐………………………………………
六、(15 分)设函数(x) 具有连续的导数,在围绕原点的任意光滑的简单闭曲线 C 上,曲线
四、(15 分)已知平面区域 D {(x, y) | 0 x , 0 y },L 为 D 的正向边界,试证:
(1) xesin ydy yesin xdx xesin ydy yesin xdx ;
L
L
(2) xesin ydy yesin ydx 5 2 .
L
2
五、(10 分)已知 y1 xex e2x , y2 xex ex , y3 xe x e2x ex 是某二阶常系数
1
2e
n
四、(15 分)设 an 0, Sn ak ,证明: k 1
(1)当
1 时,级数
n1
an Sn
收敛;
(2)当
1且
sn
(n
)
时,级数
n1
an Sn
发散.
五、(15 分)设 l 是过原点、方向为 ( , , ) ,(其中 2 2 2 1) 的直线,均匀椭球
x2 a2
y2 b2
0 ,且存在一点
x0
,使得
f
(x0 )
0 .证明:方程
f
(x)
0 在 (,)
恰有两个
实根.
三、(15 分)设函数
y
f
(x)
由参数方程
x
y
2t t (t)
2
(t
1) 所确定,且 d2 y dx2
3, 4(1 t)
其中 (t) 具有二阶导数,曲线 y (t) 与 y t2 eu2du 3 在 t 1出相切,求函数 (t) .
x2
y2 , g(x, y)
f
1 r
,求
2g x2
2g y2
.
(5)求直线
l1
:
x z
y 0
0
与直线
l2
:
x2 4
y 1 2
z3 1
的距离.
二、(15 分)设函数 f (x) 在 (, ) 上具有二阶导数,并且 f (x) 0 , lim f (x) 0 , x
lim
x
f
(x)
2010 年 第二届全国大学生数学竞赛预赛试卷(非数学类)
一、(25 分,每小题 5 分)
(1)设 xn (1 a)(1 a2)
(1
a
2n
)
,其中
|
a
|
1,

lim
n
xn
.
(2)求
lim
x
e
x
1
1 x
x2
.
(3)设 s 0 ,求 In
esx xndx(n 1, 2,
0
).
(4)设函数 f (t) 有二阶连续导数, r
七、(15 分)已知 un (x) 满足 un (x) un (x) xn1ex n 1,2,
,且 un
(1)
e n
,求函数项级数
un (x) 之和.
n1
八、(10 分)求 x 1 时,与 xn2 等价的无穷大量.
n0
1/9
………………………………………………最新资料推荐………………………………………
………………………………………………最新资料推荐………………………………………
全国大学生数学竞赛预赛试卷(非数学类)
2009 年 第一届全国大学生数学竞赛预赛试卷(非数学类)
一、填空题(每小题 5 分,共 20 分)
(x y)ln(1 y )
1.计算 D
x dxdy ____________,其中区域 D 由直线 x y 1与两坐标轴所
0 , 2
:
z2
x2
y2

为 1 与 2
的交线,求椭球面 1 在 上各点的切平面到原点距离的最大值和最小值.
五、 (本题
16
分)已知
S
是空间曲线
x2
3y2
1

y
轴旋转形成的椭球面的上半部分(
z
0

z 0
(取上侧), 是 S 在 P(x, y, z) 点处的切平面,(x, y, z) 是原点到切平面 的距离,, , 表 示 S 的正法向的方向余弦.计算:
1 x y
围成三角形区域.
2.设
f
(x)
是连续函数,且满足
f
(x)
3x2
2
0
f
(x)dx
2 ,则
f
(x)
____________.
3.曲面 z x2 y2 2 平行平面 2x 2 y z 0 的切平面方程是__________.
2
4.设函数 y y(x) 由方程 xe f ( y) e y ln 29 确定,其中 f 具有二阶导数,且 f 1 ,则
三、(本题 15 分)设函数 f (x) 在 x 0 的某邻域内具有二阶连续导数,且 f 0, f 0, f 0
均不为 0,证明:存在唯一一组实数 k1,k2,k3 ,使得
Hale Waihona Puke limh0k1
f
h
k2
f
2h
h2
k3
f
3h
f
0
0
.
四、(本题
17
分)设 1 :
x2 a2
y2 b2
z2 c2
1 ,其中 a b c
线性非齐次微分方程的三个解,试求此微分方程.
六、(10 分)设抛物线 y ax2 bx 2 ln c 过原点.当 0 x 1时, y 0 ,又已知该抛物
线与 x 轴及直线 x 1所围图形的面积为 1 .试确定 a, b, c ,使此图形绕 x 轴旋转一周而成的 3
旋转体的体积V 最小.
相关文档
最新文档