第六章 实数单元 期末复习测试综合卷检测试卷
七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评学能测试试卷
七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评学能测试试卷一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( ) A .M N < B .M N > C .M N D .M N ≥2.在下面各数中无理数的个数有( )-3.14,23,227,0.1010010001...,+1.99,-3π A .1个 B .2个 C .3个 D .4个3.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 4.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a + 5.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 6.下列计算正确的是( ) A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C .42=± D .()515-=- 7.若m 、n 满足()21150m n -+-=,则m n +的平方根是( ) A .4± B .2± C .4 D .28.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 229.下列各数中,属于无理数的是( )A .227B 2C 9D .0.1010010001 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).12.若x +1是125的立方根,则x 的平方根是_________.13.如果一个有理数a 的平方等于9,那么a 的立方等于_____.14.2(2)0x -=,则y x -的平方根_________.15.已知2m =,则m 的相反数是________.16. 1.105≈ 5.130≈≈________.17.设a ,b 都是有理数,规定 *=a b ()()48964***-⎡⎤⎣⎦=__________.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 的值为______.19.已知a 、b 为两个连续的整数,且a b ,则a +b =_____.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,=2,现对72进行如下操作:72821→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)22.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.23.已知32x y --的算术平方根是3,26x y +-的立方根是的整数部分是z ,求42x y z ++的平方根.24.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.阅读下列材料: 问题:如何计算1111122334910++++⨯⨯⨯⨯呢? 小明带领的数学活动小组通过探索完成了这道题的计算.他们的解法如下:解:原式1111111(1)()()()22334910=-+-+-++- 1110=-910= 请根据阅读材料,完成下列问题: (1)计算:111112233420192020++++⨯⨯⨯⨯; (2)计算:111126129900++++; (3)利用上述方法,求式子111115599131317+++⨯⨯⨯⨯的值. 26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S =1+2+4+8+16+…+230…①等式两边同时乘以2,得2S =2+4+8+16++32+…+231…②由② ﹣ ①式,得2S ﹣S =231﹣1即(2﹣1)S =231﹣1所以 3131212121S -==-- 请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a 1,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,请用含a 1,q ,n 的代数式表示a n ;如果这个常数q ≠1,请用含a 1,q ,n 的代数式表示a 1+a 2+a 3+…+a n .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++, ∴1p q x -=,∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•; ∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴M N >;故选:B.【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.C解析:C根据无理数的三种形式求解.【详解】-3.14,,227,0.1010010001...,+1.99,-3π无理数的有:,0.1010010001...,-3π共3个 故选:C【点睛】 本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习的无理数有三类:①π类,如2π,3π等;②③虽有规律但是无限不循环的数,如0.1010010001…,等.3.B解析:B【分析】根据a ★b=a 2-ab 可得(x+2)★(x -3)=(x+2)2-(x+2)(x -3),进而可得方程:(x+2)2-(x+2)(x -3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x -3)=5,x 2+4x+4-(x 2-x -6)=5,x 2+4x+4-x 2+x+6=5,5x=-5,解得:x=-1,故选:B .【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a ★b=a 2-ab 所表示的意义.4.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的.【详解】选项A 中,当a=0,则a =0;选项B 中,当a=0,则a²=0;选项C 中,当a=100,则(a-100)²=0;选项D 中,无论a 取何值,a²+0.01始终大于0.故选:D.此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质. 5.A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】91516<<,<<34<<,3,3a b∴==,)336a b∴-=-=,故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.6.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.7.B解析:B【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B .【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.8.D解析:D【分析】设点C 的坐标是x ,根据题意列得12x =-,求解即可. 【详解】解:∵点A 是B ,C 的中点.∴设点C 的坐标是x ,则12x =-,则2x =-+∴点C 表示的数是2-+故选:D .【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.9.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A 、227是小数,不是无理数;B 是无理数;C 是整数,不是无理数;D 、0.1010010001是有限小数,不是无理数,故选:B .【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5.故选C.考点:估算无理数的大小.二、填空题11.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.12.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.14.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:,且,∴y-3=0,x-2=0,..的平方根是.故答案为:.【点睛】此题考查算术平解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可.【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1.【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.15.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:. 【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.-=,解:m的相反数是2)2故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.16.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】≈5.130≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.17.1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵,∴=()()=(2+2)(3-4)=4(-1)==2-1故答案为:1 【点睛】 本题考查平方解析:1 【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案. 【详解】∵*=a b∴()()48964***-⎡⎤⎣⎦=*) =(2+2)*(3-4) =4*(-1)==2-1 =1. 故答案为:1 【点睛】本题考查平方根与立方根,正确理解规定,熟练掌握平方根和立方根的定义是解题关键.18.3 【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2, ∴, ,故答案为:3. 【点睛】本题考查了平方根和立方根,熟解析:3 【分析】利用平方根、立方根的定义求出x 与y 的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2,∴25,8x y ==-,∴=,故答案为:3. 【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.19.9 【分析】首先根据的值确定a 、b 的值,然后可得a+b 的值. 【详解】 ∵<, ∴4<<5, ∵a<<b , ∴a=4,b =5, ∴a+b=9, 故答案为:9. 【点睛】本题主要考查了估算无理数的解析:9 【分析】a 、b 的值,然后可得a +b 的值. 【详解】<∴45,∵a b , ∴a =4,b =5, ∴a +b =9, 故答案为:9. 【点睛】本题主要考查了估算无理数的大小,关键是正确确定a 、b 的值.20.255 【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可. 【详解】解:∵,,, ∴只解析:255 【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可. 【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255, 故答案为:255. 【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2; (3)﹣1.008016×106. 【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到. (2) 根据规律写出即可. (3) 先提取符号,再用规律解题. 【详解】 解:(1)1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52 ……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+…+2019) =﹣10102 =﹣1.0201×106. 【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可. 22.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可. 【详解】.(1)1×2+2×3+3×4+…+10×11=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯. (2)1×2+2×3+3×4+……+n×(n+1)=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++. 【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.23.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题. 【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩,解得54x y =⎧⎨=⎩,36<<67∴<<,6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±. 【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12-)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)原式=20192020(2)原式=99100(3)原式=417【分析】(1)类比题目中的拆项方法,类比得出答案即可;(2)先把原式拆分成题(1)原式的样子,再根据(1)的拆项方法,类比得出答案即可;(3)分母是相差4的两个自然数的乘积,类比拆成以两个自然数为分母,分子为1的两个自然数差的14即可.【详解】解:(1)原式=(1-12)+(12-13)+(13-14)+……+(12019-12020)=1-1 2020=2019 2020;(2)原式=1111 12233499100 ++++⨯⨯⨯⨯=(1-12)+(12-13)+(13-14)+……+(199-1100)=1-1 100=99 100(3)原式=14×(4444155********+++⨯⨯⨯⨯)=14×(1-15+15-19+19-113+113-117)=14×(1-117)=14×1617=4 17【点睛】本题考查算式的规律,注意分子、分母的特点,解题的关键是根据规律灵活拆项,并进一步用规律解决问题.26.(1)12,1712,n-112;(2)24332-;(3)()11111na aa--【分析】(1)12÷1即可求出q,根据已知数的特点求出a18和a n即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12,a18=1×(12)17=1712,a n=1×(12)n﹣1=112n-,故答案为:12,1712,112n-;(2)设S=3+32+33+ (323)则3S=32+33+…+323+324,∴2S=324﹣3,∴S=2433 2-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。
第六章 实数 单元检测卷(解析版)
第六章《实数》单元检测卷一、单选题1.下列各式中错误的是( )=±0.6B=0.6A.±C.―【答案】D=±0.6,A中式子不符合题意;【解析】【解答】A.±B.=0.6,B中式子不符合题意;C.―D.=1.2,D中式子符合题意.故答案为:D.【分析】利用二次根式的性质求解即可。
2等于( )【答案】A【解析】故答案为:A.【分析】根据算术平方根的定义,即正数正的平方根。
据此求值即可.3.(七下·博白期末)16的平方根是( )A.4B.±4C.-4D.±8【答案】B【解析】【解答】解:16的平方根为±4.故答案为:B【分析】根据正数的平方根有两个,它们互为相反数,就可求出16的平方根。
4.(七下·福建期中)下列式子中,正确的是( )A=―B.――0.6C―3D=±6【答案】A―=−2,A符合题意.【解析】【解答】A.B. 原式=−,B不符合题意.C. 原式=|−3|=3,C不符合题意.D. 原式=6,D不符合题意.故答案为:A.【分析】任何数都有立方根,且都只有一个立方根.正数的立方根是正数,负数的立方根是负数,0的立方根是0.5.(八上·南召期中)下列各式正确的是( )=1B2C―6D=―3A.±【答案】D=±1,故不符合题意;【解析】【解答】A、±B、C、=6,故不符合题意;=-3,故符合题意.D、故答案为:D.【分析】一个正数的平方根有两个,它们互为相反数,一个正数的算数平方根只有一个是一个正数;一个负数的平方的算数平方根等于它的相反数;任何一个数都只有一个立方根,一个负数的立方根是一个负数,根据性质即可一一判断。
6.下列说法正确的是( )A.负数没有立方根B.如果一个数有立方根,那么它一定有平方根C.一个数有两个立方根D.一个数的立方根与被开方数同号【答案】D【解析】【解答】解:A、错误.负数的立方根的负数.B、错误.负数没有平方根.C、错误.一个数只有一个立方根.D、正确.一个数的立方根与被开方数同号.故选D.【分析】根据立方根、平方根的意义以及性质一一判断即可.7.(七下·合肥期中)下列实数中,无理数是( )A .3.1415926BC .―D .―237【答案】B 【解析】【解答】A 、3.1415926是有理数,不符合题意;B 、是无理数,符合题意;C 、 ―=-0.8,是有理数,不符合题意;D 、 ―237是有理数,不符合题意.无理数是:.故答案为:B .【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.由此即可判定选择项.8.(2022七上·萧山期中)在227,3.14,π2,0.43,0.3030030003……(每两个3之间依次多一个零)中,无理数的个数有( )A .2个B .3个C .4个D .5个【答案】A【解析】【解答】解:227是分数,是有理数,不是无理数;3.14是有限小数,是有理数,不是无理数;=―3是整数,是有理数,不是无理数;π2是无限不循环小数,是无理数;0.43是循环小数,是有理数;0.3030030003……(每两个3之间依次多一个零)是无限不循环小数,是无理数;∴无理数一共有2个,故答案为:A.【分析】无理数就是无限不循环的小数,常见的无理数有四类:①开方开不尽的数,②与π有关的数,③规律性的数,如0.101001000100001000001…(每两个1之间依次多一个0)这类有规律的数,④锐角三角函数,如sin60°等,根据定义即可一一判断.9.(八上·遂宁期末)在实数―,3,0,0.5中,最小的数是( )A.―【答案】A<0<0.5<3,【解析】【解答】根据题意可得:―所以最小的数是―故答案为:A.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.10.(九下·云南月考)一个正方形的面积是15,估计它的边长在( ).A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C【解析】【解答】∵一个正方形的面积是15,.∴其边长=<<,∴3<故答案为:C.【分析】先求出正方形的边长,再估算出其大小即可.二、填空题11.若|x-3|+ =0,则x2y的平方根是 【答案】±6【解析】【解答】解:由题意得:x-3 =0,x+2y-11=0,解得x=3,y=4,∴x2y=36,∴x2y的平方根是±6.故答案为:±6.【分析】根据非负数之和等于0的条件分别列方程,联立求解,代入原式求值,再根据平方根的定义即可解答.12.(2022七上·滨城期中)若单项式2xy m+1与单项式1x n―2y3是同类项,则m―n= .3【答案】―1【解析】【解答】∵单项式2xy m+1与单项式13x n―2y3是同类项∴n―2=1m+1=3,解得n=3m=2∴m―n=2―3=―1.故答案为:―1.【分析】根据同类项的定义可得n―2=1m+1=3,求出m、n的值,再将m、n的值代入m-n计算即可。
人教版七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评检测
人教版七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评检测一、选择题1.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B 2C 3D 62.计算:122019(1)(1)(1)-+-++-的值是( )A .1-B .1C .2019D .2019-3.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则7×6!的值为( ) A .42!B .7!C .6!D .6×7!4.下列计算正确的是( ) A 42=±B .1193= C .2(5)5= D 382=±5.有下列说法:①在1和22,3一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②6.381的值( ) A .在6和7之间B .在5和6之间C .在4和5之间D .在7和8之间7.下列各式中,正确的是( ) A 91634B 91634; C 91638D 916348.2a+b b-4=0,则a +b 的值为( ) A .﹣2 B .﹣1 C .0D .2 9.估计20的算术平方根的大小在( ) A .2与3之间B .3与4之间C .4与5之间D .5与6之间10.2243522443355+=22444333555+=,仔细222020420203444333+个个 )A .20174555个B .20185555个C .20195555个D .20205555个二、填空题11.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____. 12.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 13.如果一个数的平方根和它的立方根相等,则这个数是______. 14.若23(2)0y x -+-=,则y x -的平方根_________.15.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.16.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.将2π,93,3-272这三个数按从小到大的顺序用“<”连接________. 19.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: [10]3[3]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________. 20.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________三、解答题21.观察下来等式: 12×231=132×21,13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______. 22.阅读下列解题过程: (1)221(54)54545254(54)(54)(5)(4)⨯--===-=-++--; (2)1(65)6565(65)(65)⨯-==-++-; 请回答下列问题:(1)观察上面解题过程,请直接写出1n n +-的结果为__________________.(2)利用上面所提供的解法,请化简: (12)2334989999100++++++++++23.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:… (1)请按这个顺序仿照前面的等式写出第④个等式:_____;(2)根据你上面所发现的规律,用含字母n 的式子表示第n 个等式:_____; (3)请利用上述规律计算:20+21+22+23+ (2100)24.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<(7)2<32 ,即2<<3, 7的整数部分为27-2). 请解答:(110的整数部分是__________,小数部分是__________(2)5a 37的整数部分为b ,求a +b 5的值; 25.计算:2(1)|2|(3)4-+--(2)|32||32||21|-+---3313(3)312548--+- 22233172(4)46453273⎛⎫+--+-+- ⎪⎝⎭26.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先从排列图中可知:第1排有1个数,第2排有2个数,第3排有3个数,然后抽象出第5排第4个数,第15排第8个数,然后可以得到答案. 【详解】解:(5,4)表示第5排从左往右第42,(15,8) 表示第15排第8个数,从上面排列图中可以看出奇数行1排在最中间,所以第15行最中间是1,且为第8个,所以1和22.故本题选B . 【点睛】本题是规律题的呈现,考查学生的从具体情境中抽象出一般规律,考查学生观察与归纳能力.2.A解析:A 【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案. 【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1, ∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+-=2019(1)- =1-; 故选:A. 【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.3.B解析:B 【分析】直接根据题目所给新定义化简计算即可. 【详解】根据题中的新定义得:原式=7×6×5×4×3×2×1=7!. 故选:B . 【点睛】本题考查的知识点是有理数的混合运算,读懂题意,理解题目所给定义的运算方法是解此题的关键.4.C解析:C 【分析】A 、根据算术平方根的定义即可判定;B 、根据平方根的定义即可判定;C 、根据平方根的性质计算即可判定;D 、根据立方根的定义即可判定. 【详解】A 2=,故选项错误;B 、13=±,故选项错误;C 、2(=5,故选项正确;D 2,故选项错误. 故选:C . 【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.5.D解析:D 【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得. 【详解】①在1和2之间的无理数有无限个,此说法错误; ②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误;④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②, 故选:D . 【点睛】本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.6.B解析:B 【分析】利用36<38<49得到671进行估算. 【详解】解:∵36<38<49,∴67,∴51<6. 故选:B . 【点睛】本题考查了估算无理数的大小,熟练掌握运算法则是解本题的关键.7.A解析:A 【解析】=±34 ,所以可知A 选项正确;故选A.8.D解析:D 【分析】根据绝对值与算术平方根的非负性,列出关于a 、b 的方程组,解之即可. 【详解】b-4=0, ∴2a+b =0,b ﹣4=0, ∴a =﹣2,b =4, ∴a+b =2, 故选D . 【点睛】本题考查了绝对值与算术平方根的非负性,正确列出方程是解题的关键.9.C解析:C 【解析】试题分析:∵16<20<25, ∴∴4<5.故选C .考点:估算无理数的大小.10.D解析:D 【分析】当根号内的两个平方的底数为1位数时,结果为5,当根号内的两个平方的底数为2位数时,结果为55,当根号内的两个平方的底数为3位数时,结果为555,据此即可找出规律,根据此规律作答即可. 【详解】5,55=,555=,……20205555个.故选:D . 【点睛】本题主要考查了与算术平方根有关的数的规律探求问题,解题的关键是由前三个式子找到规律,再根据所找到的规律解答.二、填空题11.﹣2或﹣1或0或1或2. 【分析】 有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0, ∴[x]+(x )+[x )=-2或-1; ②当时,[x]=0,(x )=0,[x )=0, ∴[x]解析:﹣2或﹣1或0或1或2. 【分析】 有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0, ∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0, ∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1, ∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2. 故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键. 【详解】 请在此输入详解!12.131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5.解析:131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26,5n+1=26, 解得n=5.13.0 【解析】试题解析:平方根和它的立方根相等的数是0.解析:0 【解析】试题解析:平方根和它的立方根相等的数是0.14.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】 解:,且, ∴y-3=0,x-2=0, . .的平方根是. 故答案为:. 【点睛】 此题考查算术平 解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1. 【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.15.﹣8 【分析】原式利用题中的新定义计算即可得到结果. 【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8. 【点睛】此题考查了有理数的混合运算,解析:﹣8 【分析】原式利用题中的新定义计算即可得到结果. 【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8, 故答案为−8. 【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.16.-2 【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定. 【详解】 解:= ……所以数列以,,三个数循环, 所以== 故答案为:. 【解析:-2 【分析】根据1与它前面的那个数的差的倒数,即111n na a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a . 【详解】 解:1a =132131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.17.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020=故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 18.<<【分析】先根据数的开方法则计算出和的值,再比较各数大小即可.【详解】==,==,∵>3>2,∴<<,即<<,故答案为:<<【点睛】本题考查实数的大小比较,正确化简得出和的值是解解析:3<2π 【分析】的值,再比较各数大小即可. 【详解】3=33=22=32-=32, ∵π>3>2,∴22<32<2π,即3<2π,故答案为:3<2π 【点睛】本题考查实数的大小比较,正确化简得出3的值是解题关键. 19.255【分析】 根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数, 从数轴可以看出,A 点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数12-. 【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;11->-,故不是答案;2是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;右边的两位数是10a+b,三位数是100b+10(a+b)+a;“数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.22.(1-2)9【分析】(1)利用已知数据变化规律直接得出答案;(2)利用分母有理化的规律将原式化简进而求出即可.【详解】==解:(1(2......==-1+10=9【点睛】此题主要考查了分母有理化,正确化简二次根式是解题关键.23.24-23=16-8=23 24﹣23=16﹣8=23 2n﹣2(n﹣1)═2(n﹣1)【解析】试题分析:(1)根据已知规律写出④即可.(2)根据已知规律写出n个等式,利用提公因式法即可证明规律的正确性.(3)写出前101个等式,将这些等式相加,整理即可得出答案.试题解析:(1)根据已知等式:①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;得出以下:④24-23=16-8=23,(2)①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;④24-23=16-8=23;得出第n个等式:2n-2(n-1)=2(n-1);证明:2n-2(n-1),=2(n-1)×(2-1),=2(n-1);(3)根据规律:21-20=2-1=20;22-21=4-2=21;23-22=8-4=22;24-23=16-8=23;…2101-2100=2100;将这些等式相加得:20+21+22+23+ (2100)=2101-20,=2101-1.∴20+21+22+23+…+2100=2101-1.24.(1)33;(2)4【解析】分析:求根据题目中所提供的方法求无理数的整数部分和小数部分.详解:(1的整数部分是3,3;(2)∵∴a 2, ∵∴6b =, ∴a b +264+=.点睛:求无理数的整数部分和小数部分,需要先给这个无理数平方,观察这个数在哪两个整数平方数之间.需要记忆1-20平方数,1²= 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² = 36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100,11² = 121, 12² = 144 ,13² = 169 ,14² = 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400.25.(1)9;(2)3-;(3)-3;(4)1【分析】(1)分别根据绝对值的代数意义、有理数的乘方以及算术平方根运算法则进行计算即可; (2)先去绝对值,再合并即可;(3)先分别根据算术平方根以及立方根的意义进行化简,再进行回头运算即可得解; (4)先分别根据算术平方根以及立方根的意义进行化简,再进行回头运算即可得解.【详解】(1)2|2|(3)-+-=2+9-2=9;(2)|2||1|+-=21=3-(3 =13+522- =-3;(4= =524433--+ =1.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解此题的关键.26.(1;(2)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,cm ,(2)∵22r ππ=,∴r =∴2=2C r π=圆,设正方形的边长为a∵22a π=,∴a∴=4C a =正∴1C C ===<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,x ,∴320∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.。
第六章 实数单元 期末复习综合模拟测评检测试卷
第六章 实数单元 期末复习综合模拟测评检测试卷一、选择题1.圆的面积增加为原来的m 倍,则它的半径是原来的( ) A .m 倍B .2m 倍C .m 倍D .2m 倍2.若()2320m n -++=,则m n +的值为( ) A .5-B .1-C .1D .53.下列说法中正确的是( ) A .若a a =,则0a > B .若22a b =,则a b = C .若a b >,则11a b> D .若01a <<,则32a a a <<4.计算:122019(1)(1)(1)-+-++-的值是( )A .1-B .1C .2019D .2019-5.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边6.若2(1)|2|0x y -++=,则x y +的值等于( ) A .-3B .3C .-1D .17.关于2的判断:①2是无理数;②2是实数;③2是2的算术平方根;④122<<.正确的是( ) A .①④B .②④C .①③④D .①②③④8.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .1+3B .2+3C .23﹣1D .23+19.4的平方根是( ) A .2B .2±C .±2D .210.下列说法:①有理数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③某数的绝对值是它本身,则这个数是非负数;④16的平方根是±4,用式子表示是164=±.⑤若a ≥0,则2()a a =,其中错误的有( )A .1个B .2个C .3个D .4个二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 12.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示). 13.若已知()21230a b c -+++-=,则a b c -+=_____.14.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.15.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.16.313312+333123++33331234+++333312326++++=__________.17.23(2)0y x --=,则y x -的平方根_________.18.一个数的立方等于它本身,这个数是__.19.已知a 、b 为两个连续的整数,且a 19b ,则a +b =_____.20.0.050.55507.071≈≈≈≈,按此规500_____________三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 1 2 3 4 5 6 7 8 9 10 11 12 13 F G H J K L Z X C V B N M 14151617181920212223242526给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 22.(1)观察下列式子: ①100222112-=-==; ②211224222-=-==; ③322228442-=-==; ……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立; (2)求01220192222++++的个位数字.23.是无理数,而无理是无限不循环小数,因1的小数部分,事的整数部分是1,将这个数减去其整数部的小数部分,又例如:∵23223<<,即23<<的整数部分为2,小数部分为)2。
人教版七年级数学下册 第6章 实数 单元综合测试卷(试卷)
第6章实数单元综合测试卷班级:姓名:一、选择题(每小题3分,共30分)1.144的算术平方根是()A.12B.-12C.±12D.122.下列各数是无理数的是()A.0B.-1C.2D.373.83=()A.±2B.-2C.2D.224.一个实数a的相反数是10,则a等于()A.110B.10C.-110D.-105.下列各式正确的是()A.16=±4B.(-3)2=-3C.±81=±9D.-4=-26.估计23的值()A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间7.下列说法正确的是()A.-1的倒数是1B.-1的相反数是-1C.1的算术平方根是1D.1的立方根是±18.下列说法错误的是()A.16的平方根是±2B.2是无理数C.-273是有理数9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定不是无理数;③负数没有立方根;④-19是19的平方根,其中正确的说法有()A.0个B.1个C.2个D.3个10.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0B.ab>0C.|a|+b<0D.a-b>0二、填空题(每小题3分,共30分)11.49的平方根是,216的立方根是.12.若一个数的算术平方根等于它本身,则这个数的立方根是.13.显示的结果是.14.写出一个大于3小于5的无理数:.15.实数a在数轴上的位置如图,则|a-3|=.16.13是m的一个平方根,则m的另一个平方根是,m=.17.273的平方根是,-64的立方根是.18.关于12的叙述,有下列说法,其中正确的说法有个.(1)12是有理数;(2)面积为12的正方形边长是12;(3)在数轴上可以找到表示12的点.19.一个数值转换器,原理如下:当输入的x=16时,输出的y等于.20.若实数x,y满足(2x+3)2+|9-4y|=0,则xy的立方根为.三、解答题(共60分)21.(6分)计算:(1)求252-242的平方根;(2)求338的立方根.22.(6分)计算:(1)(-2)2-(3-5)-4+2×(-3).(2)-643-9+23.(6分)已知一个正数的平方根是3x-2和5x+6,求这个数.24.(6分)求下列各式中的x 的值:(1)25x 2=36;(2)(x+1)3=8.25.(6分)已知2a-3的平方根是±5,2a+b+4的立方根是3,求a+b 的平方根.26.(8分)一个圆形铁板的面积是424cm 2,求圆形铁板的半径.(精确到0.1)27.(12分)根据下表回答问题:xx 2x x 216.0256.0016.6275.5616.1259.2116.7278.8916.2262.4416.8282.2416.3265.6916.9285.6116.4268.9617.0289.0016.5272.25(1)268.96的平方根是多少?(2)285.6≈;(3)270在哪两个数之间?为什么?(4)表中与260最接近的是哪个数?28.(10分)(1)在实数范围内定义运算“ ”,其法则为:ab=a 2-b 2,求方程(4 3) x=24的解;(2)已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值.第6章实数单元综合测试卷答案与点拨1.A(点拨:144的算术平方根是144=12.)2.C(点拨:0,-1是整数,是有理数;37是分数,是有理数;2是开方开不尽的数,是无限不循环小数,是无理数.)3.C(点拨:83表示求8的立方根,故83=2.)4.D(点拨:因为-10的相反数是10,所以a 等于-10.)5.C(点拨:16表示16的算术平方根,16=4;(-3)2表示(-3)2(即9)的算术平方根,(-3)2=3;负数没有算术平方根.)6.C(点拨:因为16<23<25,所以16<23<25,即4<23<5,所以23的值在4到5之间.)7.C(点拨:-1的倒数是-1,相反数是1;1的算术平方根是1,立方根是1.)8.D(点拨:16=4,4的平方根是±2;2是无理数;-273=-3是有理数,不是分数.)9.B(点拨:④正确.)10.A(点拨:由数轴知a<0,b>0,|b|>|a|,所以a+b>0,ab<0,|a|+b>0,a-b<0.故选A.)11.±23612.0,1(点拨:算术平方根等于本身的数是0和1,所以它们的立方根分别为0和1.)13.-2(点拨:本题就是求36-8的值,即-2.)14.13或π(答案不唯一)15.3-a(点拨:由数轴上点的位置关系,得a<3,所以|a-3|=3-a.)16.-13169(点拨:由平方根的性质,一个正数的两个平方根互为相反数,得另一个平方根是-13,m=132=169.)17.±3-2(点拨:273=3,所以它的平方根是±3;-64是-8,所以它的立方根是-2.)18.2(点拨:12是无理数,不是有理数,故(1)不正确.)19.2(点拨:根据图中的步骤,把16输入,可得其算术平方根为4,把4再输入得其算术平方根是2,再将2输入得算术平方根是2,是无理数则输出.)20.-32(点拨:根据非负数的性质结合(2x+3)2+|9-4y|=0,得2x+3=0且9-4y=0,解得x=-32,y=94,所以xy=-32×94=-278,所以xy 的立方根为-32.)21.(1)因为252-242=49,而(±7)2=49,所以252-242的平方根是±7.(2)因为338=278,而()323=278,所以338的立方根是32.22.(1)原式=4-(-2)-2-6=-2.(2)原式=-4-3+35=-625.23.由正数平方根的性质得3x-2=-(5x+6),解得x=-12,∴这个数是(3x-2)2=éëêùûú3×()-12-22=494.24.(1)方程两边同时除以25得x2=3625.∴x=±65.(2)开立方,得x+1=83,∴x+1=2.解得x=1.25.由题意有{2a-3=25,2a+b+4=27,解得{a=14,b=-5.∴±a+b=±14-5=±3.故a+b的平方根为±3.26.设圆形铁板的半径为r cm,则πr2=424.解得r≈11.6.答:圆形铁板的半径约为11.6cm.27.(1)±16.4;(2)16.9;(3)由表知268.96<270<272.25,所以16.4<270<16.5,即270在16.4和16.5之间;(4)16.1.28.(1)∵a b=a2-b2,∴(4 3) x=(42-32) x=7 x=72-x2.∴72-x2=24.∴x2=25.∴x=±5.(2)由题意得2a=(±2)2,∴a=2.当a=2时,3a+b=6+b,由于33=6+b,∴b=21,∴a-2b=2-2×21=-40.。
七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评检测试题
七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评检测试题一、选择题1.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)2.下列说法中正确的个数有( )①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④相反数等于本身的数是0;⑤绝对值等于本身的数是正数;A .2个B .3个C .4个D .5个3.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( )A .26B .65C .122D .1234.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .45.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒6.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B7.设42-的整数部分为a ,小整数部分为b ,则1a b -的值为( ) A .2- B .2 C .212+ D .212- 8.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间9.若有330x y +=,则x 和y 的关系是( )A .0x y ==B .0x y -=C .1xy =D .0x y +=10.若33=0x y +,则x 和y 的关系是( ).A .x =y =0B .x 和y 互为相反数C .x 和y 相等D .不能确定二、填空题11.如果一个有理数a 的平方等于9,那么a 的立方等于_____.12.观察下列各式:(1)123415⨯⨯⨯+=;(2)2345111⨯⨯⨯+=;(3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____.13.一个正数的平方根是21x -和2x -,则x 的值为_______.14.2(2)-的平方根是 _______ ;38a 的立方根是 __________.15.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.16.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.17.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________18.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.19.如图,数轴上的点A能与实数1 5,3,,22---对应的是_____________ 20.若实数x,y(2230x y++=,则22x y--的值______.三、解答题21.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①3310001000000100==,又1000593191000000<<,31059319100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,333275964<<33594<<,可得3305931940<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:313824=________.3175616=________.22.下面是按规律排列的一列数:第1个数:11(1)2--+.第2个数:()()231112(1)11234⎡⎤⎡⎤----+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.第3个数:()()()()2345111113(1)111123456⎡⎤⎡⎤⎡⎤⎡⎤------+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.…(1)分别计算这三个数的结果(直接写答案).(2)写出第2019个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.23.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳24.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.计算:2(1)|2|(3)4-+--(2)|32|32||21|+-3313(3)312548-- 22233172(4)46453273⎛⎫+--- ⎪⎝⎭26.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-,()()23-++=-,a a a a111()()324a a a a a-+++=-,111(1)由上面的规律我们可以大胆猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)=利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是.(3)求52014+52013+52012+…+52+5+1的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:用定义的规则分别计算出P1,P2,P3,P4,P5,P6,观察所得的结果,总结出规律求解.详解:因为P1(1,-1)=(0,2);P2(1,-1)=P1(P1(1,-1))=P1(0,2)=(2,-2);P3(1,-1)=P1(P2(2,-2))=(0,4);P4(1,-1)=P1(P3(0,4))=(4,-4);P5(1,-1)=P1(P4(4,-4))=(0,8);P6(1,-1)=P1(P5(0,8))=(8,-8);……P2n-1(1,-1)=……=(0,2n);P2n(1,-1)=……=(2n,-2n).因为2017=2×1009-1,所以P2017=P2×1009-1=(0,21009).故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.2.A解析:A【分析】分别利用绝对值的定义、无理数、有理数的定义、相反数的定义分别进行判断即可得出答案.【详解】①0是绝对值最小的有理数;根据绝对值的性质得出,故此选项正确;②无限小数是无理数;根据无限循环小数是有理数判断,故此选项错误;③数轴上原点两侧的数互为相反数;根据到原点距离相等的点是互为相反数,故此选项错误;④相反数等于本身的数是0;根据相反数的定义判断,故此选项正确;⑤绝对值等于本身的数是正数;还有0的绝对值也等于本身,故此选项错误.∴正确的个数有2个故选:A.【点睛】本题主要考查了绝对值的定义、无理数、有理数的定义、相反数的定义等知识,熟练掌握其性质是解题关键.3.B解析:B【分析】依照题意分别求出a l =26,n 2=8,a 2=65,n 3=11,a 3=122,n 4=5,a 4=26…然后依次循环,从而求出结果.【详解】解:∵n 1=5,a l =52+1=26,n 2=8,a 2=82+1=65,n 3=11,a 3=112+1=122,n 4=5,…,a 4=52+1=26…∵20183=6722÷∴20182=65=a a .故选:B .【点睛】此题考查数字的变化规律,找出数字之间的联系,得出数字之间的运算规律,利用规律解决问题. 4.C解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C .【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.5.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB ∥CD ,∴∠1+∠BEF=180°,∠2=∠BEG ,∴∠BEF=180°-50°=130°,又∵EG 平分∠BEF ,∴∠BEG=12∠BEF=65°, ∴∠2=65°.故选:B .【点睛】 此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.6.B解析:B【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.7.D解析:D【详解】解:∵1<2<4,∴1<2,∴﹣2<<﹣1,∴2<43,∴a=2,b=422=-2∴1222122a b -==-=-. 故选D .【点睛】本题考查估算无理数的大小.8.C解析:C【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案. 【详解】解:∵3464=,35125=∴6465125<<∴45<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.9.D解析:D【分析】根据立方根的性质得出x+y=0即可解答.【详解】0+=,∴x+y=0故答案为D .【点睛】本题主要考查了立方根的性质,通过立方根的性质得到x+y=0是解答本题的关键.10.B解析:B【解析】分析:先移项,再两边立方,即可得出x=-y ,得出选项即可.详解:,=∴x=-y ,即x 、y 互为相反数,故选B .点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y .二、填空题11.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则. 12.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】n=求解即可.观察各式得出其中的规律,再代入12【详解】由题意得()31=⨯++n nn=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.13.-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-解析:-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-1.【点睛】本题主要考查的是平方根的性质以及解一元一次方程,熟练掌握平方根的性质是解题的关键.14.2a【分析】根据平方根的定义及立方根的定义解答.【详解】的平方根是,的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立解析:【分析】根据平方根的定义及立方根的定义解答.【详解】38a 的立方根是2a ,故答案为:,2a .【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立方根.15.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.16.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.17.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误;②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数. 18.9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: ,解得:,则这个正数是.故答案为:9.【解析:9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 19.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数12-. 【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.20.【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】解:∵∴∴∴故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进解析:1-【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】(20y +=∴x 20y 0+=⎧⎪⎨+=⎪⎩∴x -2=⎧⎪⎨⎪⎩∴(2222-=-=2-3=-1y故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进行化简求值.三、解答题21.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论; ②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①31000100==,10001951121000000<< ,∴10100<<,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵38512=,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,<<∴56<<,可得5060<<,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.22.(1)12,32,52;(2)2019-(1+12-)(1+2(1)3-)(1+3(1)4-)…(1+()4036-14037)(1+4037(1)4038-)=40372. 【分析】根据有理数的运算法则,即可求解;按照规律,写出第2019个数:2019-(1+12-)(1+2(1)3-)(1+3(1)4-) (1)()4036-14037)(1+()4037-14038),化简后,算出结果,即可.【详解】解:(1)12,32,52(2)第2019个数:2019-(1+12-)(1+2(1)3-)(1+3(1)4-) (1)()4036-14037)(1+()4037-14038)=2019-1436523456⨯⨯⨯⨯×…×4038403740374038⨯=2019-12=40372【点睛】本题主要考查有理数的乘方和四则混合运算,关键是观察分析出前几个数之间的变化规律,写出第2019个数的形式,并进行计算.23.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12-)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)9;(2)3-;(3)-3;(4)1【分析】(1)分别根据绝对值的代数意义、有理数的乘方以及算术平方根运算法则进行计算即可; (2)先去绝对值,再合并即可;(3)先分别根据算术平方根以及立方根的意义进行化简,再进行回头运算即可得解; (4)先分别根据算术平方根以及立方根的意义进行化简,再进行回头运算即可得解.【详解】(1)2|2|(3)-+-=2+9-2=9;(2)|2||1|+-=21=3-(3 =13+522- =-3;(4= =524433--+ =1.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解此题的关键.26.(1)a2015﹣1;(2)22015﹣1;(3)2015514-. 【分析】(1)根据已知算式得出规律,即可得出答案.(2)先变形,再根据规律得出答案即可.(3)先变形,再根据规律得出答案即可.【详解】(1)由上面的规律我们可以大胆猜想,(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)=a 2015﹣1,故答案为:a 2015﹣1;(2)22014+22013+22012+…+22+2+1=(2﹣1)×(22014+22013+22012+…+22+2+1)=22015﹣1,故答案为:22015﹣1;(3)52014+52013+52012+…+52+5+1=14×(5﹣1)×(52014+52013+52012+…+52+5+1)=2015514.【点睛】本题考查了实数运算的规律题,掌握算式的规律是解题的关键.。
人教版七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评检测试卷
人教版七年级初一数学下学期第六章 实数单元 期末复习综合模拟测评检测试卷一、选择题1.下列说法中正确的是( )A .若a a =,则0a >B .若22a b =,则a b =C .若a b >,则11a b> D .若01a <<,则32a a a <<2.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0ab> 3.若2(1)|2|0x y -++=,则x y +的值等于( ) A .-3B .3C .-1D .14.下列说法中正确的个数有( ) ①0是绝对值最小的有理数; ②无限小数是无理数;③数轴上原点两侧的数互为相反数; ④相反数等于本身的数是0; ⑤绝对值等于本身的数是正数; A .2个 B .3个 C .4个 D .5个 5.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a +6.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( ) ①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=a A .① ③B .① ② ③C .① ② ③ ④D .① ② ④7.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n8.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个B .2个C .3个D .4个9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( ) A .0个B .1个C .2个D .3个10.下列说法正确的是( )A .a 2的正平方根是aB .819=±C .﹣1的n 次方根是1D .321a --一定是负数二、填空题11.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___12.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.13.规定运算:()a b a b *=-,其中b a 、为实数,则(154)15*+=____ 14.如果某数的一个平方根是﹣5,那么这个数是_____. 15.一个数的立方等于它本身,这个数是__. 16.比较大小:51-__________0.5.(填“>”“<”或“=”) 17.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________. 1846________.19.34330035.12=30.3512x =-,则x =_____________.20.202044.9444≈⋯20214.21267≈⋯20.2(精确到0.01)≈__________.三、解答题21.先阅读内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (1)111111122334910+-+-+- =1﹣191010=问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 22.观察下列各式﹣1×12=﹣1+12﹣1123⨯=﹣11+23﹣1134⨯=﹣11+34(1)根据以上规律可得:﹣1145⨯= ;11-1n n += (n ≥1的正整数). (2)用以上规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣1120152016⨯).23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = .(2)直接写出下列各式的计算结果:①1111...12233420152016++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究: 操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与 表示的点重合; 操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:表示的点与数 表示的点重合;②若数轴上A 、B 两点之间距离为8(A 在B 的左侧),且A 、B 两点经折叠后重合,则A 、B 两点表示的数分别是__________________; 操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.25.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ① 则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).26.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定: 0与 0相加得 0; 0与1相加得1;1与1相加得 0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由; ②与23“模二相加不变”的两位数有______个【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据绝对值的性质、平方根的性质、倒数的性质、平方和立方的性质对各项进行判断即可. 【详解】若a a =则0a ≥,故A 错误; 若22a b =则a b =或=-a b ,故B 错误; 当0a b >>时11b a<,故C 错误; 若01a <<,则32a a a <<,正确, 故答案为:D . 【点睛】本题考查了有理数的运算,掌握有理数性质的运算是解题的关键.2.B解析:B 【解析】根据数轴的意义,由图示可知b <0<a ,且|a|<|b|,因此根据有理数的加减乘除的法则,可知a+b <0,a-b >0,ab <0,ab<0. 故选B.3.C解析:C 【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【详解】根据题意得,x-1=0,y+2=0, 解得x=1,y=-2, 所以x+y=1-2=-1. 故选:C . 【点睛】此题考查绝对值和算术平方根的非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.4.A解析:A【分析】分别利用绝对值的定义、无理数、有理数的定义、相反数的定义分别进行判断即可得出答案.【详解】①0是绝对值最小的有理数;根据绝对值的性质得出,故此选项正确;②无限小数是无理数;根据无限循环小数是有理数判断,故此选项错误;③数轴上原点两侧的数互为相反数;根据到原点距离相等的点是互为相反数,故此选项错误;④相反数等于本身的数是0;根据相反数的定义判断,故此选项正确;⑤绝对值等于本身的数是正数;还有0的绝对值也等于本身,故此选项错误.∴正确的个数有2个故选:A.【点睛】本题主要考查了绝对值的定义、无理数、有理数的定义、相反数的定义等知识,熟练掌握其性质是解题关键.5.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的.【详解】选项A中,当a=0,则a=0;选项B中,当a=0,则a²=0;选项C中,当a=100,则(a-100)²=0;选项D中,无论a取何值,a²+0.01始终大于0.故选:D.【点睛】此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质.6.C解析:C【分析】原式各项利用题中的新定义计算得到结果,即可作出判断.【详解】解:根据题意得:①a*2=a+2-2a,2*a=2+a-2a,成立;②(-2)*a=-2+a+2a,a*(-2)=a-2+2a,成立;③(2*a )*3=(2-a )*3=2-a+3-3(2-a )=2-a+3-6+3a=2a-1,2*(a*3)=2*(a+3-3a )=2+a+3-3a-2(a+3-3a )=2a-1,成立; ④0*a=0+a-0=a ,成立. 故选:C . 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.B解析:B 【分析】根据n+p=0可以得到n 和p 互为相反数,原点在线段PN 的中点处,从而可以得到绝对值最大的数. 【详解】 解:∵n+p=0, ∴n 和p 互为相反数, ∴原点在线段PN 的中点处, ∴绝对值最大的一个是Q 点对应的q . 故选B . 【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.8.C解析:C 【分析】直接利用有理数的定义进而判断得出答案. 【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个. 故选C . 【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键.9.B解析:B 【详解】解:①实数和数轴上点一一对应,本小题错误; ②π不带根号,但π是无理数,故本小题错误; ③负数有立方根,故本小题错误;④17的平方根,本小题正确, 正确的只有④一个,故选B .10.D解析:D 【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可. 【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B 9=,错误;C :当n 是偶数时,()1=1n- ;当n 时奇数时,()1=-1n-,错误;D :∵210a --< ,∴【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键.二、填空题11.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算. 【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为. 【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.12.1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.14.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.15.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.16.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.17.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.18.6【分析】求出在哪两个整数之间,从而判断的整数部分. 【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解 解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.19.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.20.50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,4.5,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.三、解答题21.(1)1120152016-,1140284032-;(2)20192020. 【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∴1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+- (1)12020 =20192020. 【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.22.(1)1145-+,111n n -++;(2)20152016-. 【分析】(1)根据题目中的式子,容易得到式子的规律;(2)根据题目中的规律,将乘法变形为加法即可计算出所求式子的结果.【详解】解:(1)11114545-⨯=-+,1111-=-11n n n n +++,故答案为:1145-+,111n n -++; (2)1111111(1)()()()2233420152016-⨯+-⨯+-⨯+⋯+-⨯ 11111111()()()2233420152016=-++-++-++⋯+-+ 112016=-+ 20152016=-. 【点睛】本题考查规律性:数字的变化类,解题的关键是明确题意,找出所求式子中数的变化的特点.23.(1)111n n -+;(2)①20152016;②1n n +;(3)10074032. 【分析】(1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】 (1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-),=14×10071008=10074032. 【点睛】 本题考查了有理数的运算,根据题意找出规律是解决问题的关键.24.(1)2 (2)①2--5,3(3)71937,,288 【分析】(1)根据对称性找到折痕的点为原点O ,可以得出-2与2重合;(2)根据对称性找到折痕的点为-1,a 表示的点重合,根据对称性列式求出a 的值;②因为AB=8,所以A 到折痕的点距离为4,因为折痕对应的点为-1,由此得出A 、B 两点表示的数;(3)分三种情况进行讨论:设折痕处对应的点所表示的数是x ,如图1,当AB :BC :CD=1:1:2时,所以设AB=a ,BC=a ,CD=2a ,得a+a+2a=9,a=94,得出AB 、BC 、CD 的值,计算也x 的值,同理可得出如图2、3对应的x 的值.【详解】操作一,(1)∵表示的点1与-1表示的点重合,∴折痕为原点O ,则-2表示的点与2表示的点重合,操作二:(2)∵折叠纸面,若使1表示的点与-3表示的点重合,则折痕表示的点为-1,表示的点与数a 表示的点重合,(-1)=-1-a ,②∵数轴上A 、B 两点之间距离为8,∴数轴上A 、B 两点到折痕-1的距离为4,∵A 在B 的左侧,则A 、B 两点表示的数分别是-5和3;操作三:(3)设折痕处对应的点所表示的数是x ,如图1,当AB :BC :CD=1:1:2时,设AB=a,BC=a,CD=2a,a+a+2a=9,a=94,∴AB=94,BC=94,CD=92,x=-1+94+98=198,如图2,当AB:BC:CD=1:2:1时,设AB=a,BC=2a,CD=a,a+a+2a=9,a=94,∴AB=94,BC=92,CD=94,x=-1+94+94=72,如图3,当AB:BC:CD=2:1:1时,设AB=2a,BC=a,CD=a,a+a+2a=9,a=94,∴AB=92,BC=CD=94,x=-1+92+98=378,综上所述:则折痕处对应的点所表示的数可能是198或72或378.25.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】 (1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②, ②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②,②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.26.(1)1011,1101;(2)①12,65,97,见解析,②38【分析】(1) 根据“模二数”的定义计算即可;(2) ①根据“模二数”和模二相加不变”的定义,分别计算126597,,和12+23,65+23,97+23的值,即可得出答案②设两位数的十位数字为a ,个位数字为b ,根据a 、b 的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与23“模二相加不变”的两位数的个数【详解】解: (1) ()296531011M =,()()221010111108531596M M =+=+故答案为:1011,1101()2①()()222301,1210M M ==,()()()222122311,122311M M M +=+=()()()22212231223M M M ∴+=+,12∴与23满足“模二相加不变”.()()222301,6501M M ==,,()()()222652310,652300M M M +=+=()()()22265236523M M M +≠+,65∴与23不满足“模二相加不变”.()()222301,9711M M ==,()()()2229723100,9723100M M M +=+=,()()()22297239723M M M +=+,97∴与23满足“模二相加不变”②当此两位数小于77时,设两位数的十位数字为a ,个位数字为b ,1a 70b 7≤≤<<,; 当a 为偶数,b 为偶数时()()2210002013,a b M M +==,∴()()()()22222301,102310(2)(3)1001M M M a b M a a b b +=++++++== ∴与23满足“模二相加不变”有12个(28、48、68不符合)当a 为偶数,b 为奇数时()()2210012013,a b M M +==,∴()()()()22222310,102310(2)(3)1000M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但27、47、67、29、49、69符合共6个当a 为奇数,b 为奇数时()()2210112013,a b M M +==,∴()()()()222223100,102310(2)(3)1010M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但17、37、57、19、39、59也不符合当a 为奇数,b 为偶数时()()2210102013,a b M M +==,∴()()()()22222311,102310(2)(3)1011M M M a b M a a b b +=++++++== ∴与23满足“模二相加不变”有16个,(18、38、58不符合)当此两位数大于等于77时,符合共有4个综上所述共有12+6+16+4=38故答案为:38【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键.。
人教版七年级初一数学下学期第六章 实数单元 期末复习测试综合卷检测
人教版七年级初一数学下学期第六章 实数单元 期末复习测试综合卷检测一、选择题1.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 52.下列说法错误的是( )A .a 2与(﹣a )2相等B 互为相反数CD .|a|与|﹣a|互为相反数3.2,估计它的值( ) A .小于1B .大于1C .等于1D .小于04.若2(1)|2|0x y -++=,则x y +的值等于( ) A .-3B .3C .-1D .1 5.若a 2=(-5)2 ,b 3=(-5)3 ,则a+b 的值是( ) A .0或-10或10B .0或-10C .-10D .06.在下列结论中,正确的是( ).A 54=±B .x 2的算术平方根是xC .平方根是它本身的数为0,±1D 的立方根是27.a ,小数部分为b ,则a-b 的值为()A .6-B 6C .8D 88.1的值( ) A .在6和7之间 B .在5和6之间 C .在4和5之间 D .在7和8之间 9.下列各数中,介于6和7之间的数是( )A B C D10.2的平方根是a ,﹣125的立方根是b ,则a ﹣b 的值是( ) A .0或10B .0或﹣10C .±10D .0二、填空题11.观察下面两行数: 2,4,8,16,32,64…① 5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 . 13.64的立方根是___________. 14.若实数a 、b 满足240a b ++-=,则ab=_____. 15.观察下列算式:①246816⨯⨯⨯+=2(28)⨯+16=16+4=20; ②4681016⨯⨯⨯+=2(410)⨯+16=40+4=44;… 根据以上规律计算:3032343616⨯⨯⨯+=__________ 16.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.17.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.18.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.19.如果某数的一个平方根是﹣5,那么这个数是_____. 20.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.三、解答题21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________.(2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3+=-a b a 的值.解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,是无理数,所以a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-ab .问题:设x 、y 都是有理数,且满足2210x y -+=+x+y 的值. 23.(1)观察下列式子: ①100222112-=-==; ②211224222-=-==; ③322228442-=-==; ……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立;(2)求01220192222++++的个位数字.24.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; . 请选择其中一个立方根写出猜想、验证过程。
人教版七年级初一数学第二学期第六章 实数单元 期末复习综合模拟测评学能测试试题
人教版七年级初一数学第二学期第六章 实数单元 期末复习综合模拟测评学能测试试题一、选择题1.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132B .146C .161D .6662.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >03.在0, 3.14159, 3π, 2,227, 39, 0.7, 3中, 无理数有几个( ) A .2B .3C .4D .54.关于2的判断:①2是无理数;②2是实数;③2是2的算术平方根;④122<<.正确的是( ) A .①④B .②④C .①③④D .①②③④5.下面说法错误的个数是( )①a -一定是负数;②若||||a b =,则a b =;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数. A .1个B .2个C .3个D .4个6.下列实数中的无理数是( ) A . 1.21B .38-C .33-D .2277.在如图所示的数轴上,,AB AC A B =,两点对应的实数分别是3和1,-则点C 所对应的实数是( )A .13B .23C .231-D .2318.若一个数的平方根与它的立方根完全相同.则这个数是()A .1B .1-C .0D .10±,9.下列说法不正确的是( ) A 813 B .12-是14的平方根 C .带根号的数不一定是无理数 D .a 2的算术平方根是a10.下列说法:①±3都是27的立方根;②116的算术平方根是±14;③﹣38-=2;④16的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个二、填空题11.[x)表示小于x的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x)–x有最大值是0;③[x)–x有最小值是-1;④x1-≤[x)<x,其中正确的是__________ (填编号).12.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为2kn(其中k是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n=,则第201次“F”运算的结果是.13.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.15.规定运算:()a b a b*=-,其中ba、为实数,则(154)15*+=____16.对任意两个实数a,b定义新运算:a⊕b=()()a a bb a b≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.17.已知72m=-,则m的相反数是________.18.若x<0,则323x x+等于____________.19.如图,数轴上的点A能与实数15,3,,22---对应的是_____________20.已知正实数x 的平方根是m 和m b +. (1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b是有理数,并且满足等式52b a =+,求a ,b 的值.解:因为52b a -=+所以()52b a =-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y是有理数,并且满足等式2x 2y 17--=-x y +的值.22.阅读下面文字: 对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭ 23.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数) (2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 24.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; . 请选择其中一个立方根写出猜想、验证过程。
第六章 实数单元 期末复习测试综合卷学能测试试卷
第六章 实数单元 期末复习测试综合卷学能测试试卷一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个C .3个D .4个 2.关于2的判断:①2是无理数;②2是实数;③2是2的算术平方根;④122<<.正确的是( )A .①④B .②④C .①③④D .①②③④ 3.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7 4.实数33,10,25的大小关系是( )A .310325<<B .331025<<C .310253<<D .325310<< 5.若a 是16的平方根,b 是64的立方根,则a+b 的值是( ) A .4 B .4或0 C .6或2 D .66.下列各数中3.14,5,0.1010010001…,﹣17,2π,﹣38有理数的个数有( ) A .1个 B .2个 C .3个 D .4个7.在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是2和﹣1,则点C 所对应的实数是( )A .12B .22+C .221D .2218.若4a =2=3b ,且a +b <0,则a -b 的值是( )A .1或7B .﹣1或7C .1或﹣7D .﹣1或﹣79.下列运算正确的是( ) A 42=± B 222()-=- C 382-=-D .|2|2--= 10.比较552、443、334的大小( )A .554433234<<B .334455432<<C .553344243<<D .443355342<<二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2k n 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.一个正数的平方根是21x -和2x -,则x 的值为_______.13.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 15.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).16.已知72m =-,则m 的相反数是________. 17.116的算术平方根为_______. 18.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.19.若34330035.12=,30.3512x =-,则x =_____________.20.若x 、y 分别是811-的整数部分与小数部分,则2x -y 的值为________.三、解答题21.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.22.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯.(1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ . (2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ; ( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值. 23.观察下列各式:111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; …(1)你发现的规律是_________________.(用含n 的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭ 24.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫ ⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”). (2,1)- ,(13,2) . (2)若 5,2a ⎛⎫- ⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).25.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24= _____ ,所以24个位上的数字是_____;因为25= _____ ,所以25个位上的数字是_____;因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____.26.是无理数,而无理数是无限不循环小数,﹣1的小数部的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为2<3的整数部分为2﹣2)请解答:(1的整数部分是,小数部分是;(2a b,求a+b【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F(2)=12,故①正确;∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小∴F(24)= 42=63,故②是错误的;∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=93,故③错误;∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.2.D解析:D【分析】根据实数、无理数,算术平方根的意义和实数的大小比较方法逐一进行判断即可得到答案.【详解】是无理数,正确;是实数,正确;是2的算术平方根,正确;④12,正确.故选:D【点睛】本题考查了实数、无理数,算术平方根的意义和实数的大小比较方法等知识点,是常考题型.3.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.4.D解析:D【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.解:∵3==∴3=<3=>3<<,故D 为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.5.C解析:C【分析】由a a=±2,由b b=4,由此即可求得a+b 的值.【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C .【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.6.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 7.D解析:D设点C所对应的实数是x,根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【详解】设点C所对应的实数是x.则有x﹣(﹣1),解得+1.故选D.【点睛】本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.8.D解析:D【分析】根据题意,利用绝对值的代数意义及二次根式性质化简,确定出a与b的值,即可求出-a b的值.【详解】a==,且a+b<0,解:∵3∴a=−4,a=−3;a=−4,b=3,则a−b=−1或−7.故选D.【点睛】本题考查实数的运算,掌握绝对值即二次根式的运算是解题的关键.9.C解析:C【分析】分别计算四个选项,找到正确选项即可.【详解】=,故选项A错误;2==,故选项B错误;2=-,故选项C正确;2--=-,故选项D错误;D. |2|2故选C.【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.10.C解析:C根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题11..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.12.-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-解析:-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-1.【点睛】本题主要考查的是平方根的性质以及解一元一次方程,熟练掌握平方根的性质是解题的关键.13.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=8 18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.15.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a (b×c+c) +(b×c+c)=abc+ac+bc+c 2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.16.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】解:m 的相反数是2)2-=,故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.17.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为;故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可..【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.18.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令则∴∴故答案为:.【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解 解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令23202013333S =+++++ 则23202133333S =++++∴2021331S S -=- ∴2021312S -= 故答案为:2021312-. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.19.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.20.【分析】估算出的取值范围,进而可得x,y的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x=4,小数部分y=,∴2x-y=8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x,y的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x=4,小数部分y=448=∴2x-y=8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x ,y 的值.三、解答题21.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC 为3xcm ,宽AD 为2xcm ,结合长方形ABCD 的面积为300cm 2,即可得出关于x 的一元二次方程,解方程即可求出x 的值,从而得出AB 的长,再根据圆的面积公式以及圆的面积147cm 2 ,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB 的长进行比较即可得出结论.【详解】解:设长方形的长DC 为3xcm ,宽AD 为2xcm .由题意,得 3x•2x=300,∵x >0,∴x =∴AB=,BC=cm .∵圆的面积为147cm 2,设圆的半径为rcm ,∴πr 2=147,解得:r=7cm .∴两个圆的直径总长为28cm .∵382428<=⨯=<,∴不能并排裁出两个面积均为147cm 2的圆.22.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14. 【分析】(1)利用材料中的“拆项法”解答即可; (2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解; (3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可. 【详解】 解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+ =11111111223341n n -+-+-+⋯+-+=111n -+ =1n n +; 故答案是:111n n -+;1n n +. (2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+. ( 3 )由定义可知:193⊗=11111111112203042567290110132++++++++ =455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】 考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.23.(1)111111n n n n -⨯=-+++;(2)20172018- 【分析】 (1)由已知的等式得出第n 个式子为111111n n n n -⨯=-+++; (2)根据规律将原式中的积拆成和的形式,运算即可.【详解】 (1)∵第1个式子为111122-⨯=-+ 第2个式子为11112323-⨯=-+第3个式子为1111 3434 -⨯=-+……∴第n个式子为111111 n n n n-⨯=-+++故答案为:111111 n n n n-⨯=-+++(2)由(1)知:原式1111111 (1)()()()2233420172018 =-++-++-++⋅⋅⋅+-+112018=-+20172018=-【点睛】本题考查有理数的混合运算以及数字规律,分析题目,找出规律是解题关键.24.(1)不是;是;(2)a=37-;(3)见解析;(4)(4,35)或(6,57)【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题;【详解】解:(1)-2-1=-3,-2×1+1=1,∴-2-1≠-2×1+1,∴(-2,1)不是“共生有理数对”,∵3-12=52,3×12+1=52,∴3-12=3×12+1,∴(3,12)是“共生有理数对”;故答案为:不是;是;(2)由题意得:a-5()2- =512a-+,解得a=37 -.(3)是.理由:-n-(-m)=-n+m,-n•(-m)+1=mn+1∵(m,n)是“共生有理数对”∴m-n=mn+1∴-n+m=mn+1∴(-n,-m)是“共生有理数对”,(4)3344155-=⨯+;5566177-=⨯+∴(4,35)或(6,57)等.故答案为:是,(4,35)或(6,57)【点睛】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决;(3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.26.(1)3,﹣3;(2)1.【分析】(1)根据34<解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可.【详解】<<,(1)∵343﹣3,故答案为:3﹣3;(2)∵23,a2,∵34,∴b=3,a+b2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.。
人教版第六章 实数单元 期末复习测试综合卷检测试卷
人教版第六章 实数单元 期末复习测试综合卷检测试卷一、选择题1.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -, 3a =211a -,……, n a =111n a --,则1a ×2a ×3a ×…×2017a =( ) A .1 B .-1 C .2017 D .-2017 2.如果-1<x<0,比较x 、x 2、x -1的大小A .x -1<x<x 2B .x<x -1<x 2C .x 2<x<x -1D .x 2<x -1<x3.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( ) ①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=a A .① ③B .① ② ③C .① ② ③ ④D .① ② ④4.下列说法正确的是( )A .14是0.5的平方根 B .正数有两个平方根,且这两个平方根之和等于0C .27的平方根是7D .负数有一个平方根5.有下列四种说法:①数轴上有无数多个表示无理数的点; ②带根号的数不一定是无理数; ③平方根等于它本身的数为0和1; ④没有最大的正整数,但有最小的正整数; 其中正确的个数是( ) A .1B .2C .3D .46.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .107.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒ 8.2的平方根为( )A .4B .±4C 2D .29.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S10.2243522443355+=22444333555+=,仔细222020420203444333+个个 )A .20174555个B .20185555个C .20195555个D .20205555个二、填空题11.如果一个有理数a 的平方等于9,那么a 的立方等于_____. 12.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.13.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.14.a※b 是新规定的这样一种运算法则:a※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x 的值是_____.15.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.16.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____.17.将2π,933-272这三个数按从小到大的顺序用“<”连接________. 18.若x <0323x x ____________. 19.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________. 20.若实数x ,y (2230x y ++=,则22xy --的值______.三、解答题21.化简求值:()1已知a 133b =54ab +()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.22.观察下列等式:①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= .(3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 23.请回答下列问题:(117介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ; (2)x 172的小数部分,y 171的整数部分,求x = ,y = ; (3)求)17yx -的平方根.24.让我们规定一种运算a b ad cb c d=-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x=- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程).25.1x +2y -z 是64的方根,求x y z -+的平方根 26.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=. (1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围,②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 因为1a =﹣1,所以2a =11111112a ==---(),3 a =21121112a ==--,4a =3111112a ==---,通过观察可得:1 a ,2a ,3a ,4 a ……的值按照﹣1,12, 2三个数值为一周期循环,将2017除以3可得372余1,所以2017a 的值是第273个周期中第一个数值﹣1,因为每个周期三个数值的乘积为:11212-⨯⨯=-,所以1a ×2a ×3a ×…×2017a =()()372111,-⨯-=-故选B.2.A解析:A 【分析】直接利用负整数指数幂的性质结合x 的取值范围得出答案. 【详解】 ∵-1<x <0, ∴x -1<x <x 2, 故选A. 【点睛】此题主要考查了负整数指数幂的性质以及实数的大小比较,正确利用x 的取值范围分析是解题的关键.3.C解析:C 【分析】原式各项利用题中的新定义计算得到结果,即可作出判断. 【详解】解:根据题意得:①a*2=a+2-2a ,2*a=2+a-2a ,成立;②(-2)*a=-2+a+2a,a*(-2)=a-2+2a,成立;③(2*a)*3=(2-a)*3=2-a+3-3(2-a)=2-a+3-6+3a=2a-1,2*(a*3)=2*(a+3-3a)=2+a+3-3a-2(a+3-3a)=2a-1,成立;④0*a=0+a-0=a,成立.故选:C.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.B解析:B【分析】根据0.5是0.25的一个平方根可对A进行判断;根据一个正数的平方根互为相反数可对B 进行判断;根据平方根的定义对C、D进行判断.【详解】A、0.5是0.25的一个平方根,所以A选项错误;B、正数有两个平方根,且这两个平方根之和等于0,所以B选项正确;C、72的平方根为±7,所以C选项错误;D、负数没有平方根.故选B.【点睛】本题考查了平方根:若一个数的平方定义a,则这个数叫a的平方根,记作a≥0);0的平方根为0.5.C解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;;2③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C.【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.6.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D.【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.7.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB∥CD,∴∠1+∠BEF=180°,∠2=∠BEG,∴∠BEF=180°-50°=130°,又∵EG平分∠BEF,∴∠BEG=12∠BEF=65°,∴∠2=65°.故选:B.【点睛】此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.8.D解析:D【分析】利用平方根的定义求解即可.【详解】解:∵2的平方根是.故选D.【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.9.A解析:A【分析】的点可能是哪个.【详解】∵12,的点可能是点P . 故选A . 【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.10.D解析:D 【分析】当根号内的两个平方的底数为1位数时,结果为5,当根号内的两个平方的底数为2位数时,结果为55,当根号内的两个平方的底数为3位数时,结果为555,据此即可找出规律,根据此规律作答即可. 【详解】5,55=,555=,……20205555个.故选:D . 【点睛】本题主要考查了与算术平方根有关的数的规律探求问题,解题的关键是由前三个式子找到规律,再根据所找到的规律解答.二、填空题 11.±27 【分析】根据a 的平方等于9,先求出a ,再计算a3即可. 【详解】 ∵(±3)2=9,∴平方等于9的数为±3, 又∵33=27,(-3)3=-27. 故答案为±27. 【点睛】 本题考查了解析:±27 【分析】根据a 的平方等于9,先求出a ,再计算a 3即可. 【详解】 ∵(±3)2=9,∴平方等于9的数为±3, 又∵33=27,(-3)3=-27. 故答案为±27. 【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.12.1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果. 【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2, 则x ﹣y =1或5. 故答案为1解析:1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果. 【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2, 则x ﹣y =1或5. 故答案为1或5. 【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.403 【解析】当k=6时,x6=T (1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403 【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3. 【点睛】17.<< 【分析】先根据数的开方法则计算出和的值,再比较各数大小即可. 【详解】 ==,==, ∵>3>2, ∴<<,即<<, 故答案为:<< 【点睛】本题考查实数的大小比较,正确化简得出和的值是解解析:3<2π【分析】的值,再比较各数大小即可. 【详解】3=33=22=32-=32, ∵π>3>2,∴22<32<2π,即3<2π,故答案为:3<2π【点睛】本题考查实数的大小比较,正确化简得出3的值是解题关键. 18.0 【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,=-+=,x x故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.19.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找=+≥n n(1)【分析】=+=(2=+n(n≥1)的等式表示出来是(3=+≥(1)n n【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】 本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.20.【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】解:∵∴∴∴故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进解析:1-【分析】利用非负数的性质求出x ,y 的值,代入原式计算即可得到结果【详解】(20y +=∴x 20y 0+=⎧⎪⎨+=⎪⎩∴x -2=⎧⎪⎨⎪⎩∴(2222-=-=2-3=-1y故答案为:-1【点睛】本题考查了平方和二次根式的非负性,解题的关键是掌握计算的方法,准确地进行化简求值.三、解答题21.(1)±3;(2)2a +b ﹣1.【解析】分析:(1)由于34a =3,根据算术平方根的定义可求b(2)利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.详解:(1)∵34,∴a =3.=3,∴b =993; (2)由数轴可得:﹣1<a <0<1<b ,则a +1>0,b ﹣1>0,a ﹣b <0,则+|a ﹣b | =a +1+2(b ﹣1)+(a ﹣b )=a +1+2b ﹣2+a ﹣b=2a +b ﹣1.点睛:本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.22.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯) =12×5051=2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.23.(1)4;b =(2−4;3(3)±8【分析】((1)由16<17<25a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴4<5,∴a =4,b =5,故答案为:4;5;(2)∵4<5,∴6+2<7,由此整数部分为6,∴x −4,∵4<5,∴3-1<4,∴y =3;;3(3)当x ,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.24.(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935x x x x x x x=⨯---⨯=---=--()()().故答案为:1;-7;-x.(2)原式=(-3x2+2x+1)×(-2)-(-2x2+x-2)×(-3),=(6x2-4x-2)-(6x2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x-++-+---的值为-7.【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x、y的值,然后求出z的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z是64的方根,∴z=8所以,x y z-+=-1-2+8=5,所以,x y z-+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.(1)2,3 (2)①5722x≤<②330,,42(3)00.5a≤<【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x的取值范围;②根据新定义的运算规则和43x为整数,即可求出所有非负实数x的值;(3)先解方程求得22xa=-<>,再根据方程的解是正整数解,即可求出非负实数a的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤ 解得5722x ≤<; ②∵43x x <>=∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去 ②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.。
七年级下-《第六章 实数》章末测试 (解析版)
七年级下册数学《第六章实数》章末测试时间:90分钟试卷满分:120分一、选择题(每小题3分,共10个小题,共30分)1.(2022•玉屏县一模)在实数0,−3,−23,|﹣2|中,最小的是()A.−23B.−3C.0D.|﹣2|【分析】首先把式子化简,根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【解答】解:|﹣2|=2,∵四个数中只有−3,−23为负数,∴应从−3,−23中选;∵|−3|>|−23|,∴−3<−23.故选:B.【点评】此题主要考查了实数的概念和实数大小的比较,得分率不高,其失分的根本原因是很多学生对数没有一个整体的概念,对实数的范围模糊不清,以至出现0是最小实数这样的错误答案.2.(2022春•鼓楼区校级期中)下列各式中,正确的是()A.(−2)2=−2B.32=−2C.−92=−3D.±9=±3【分析】根据算术平方根、平方根的概念判断即可.【解答】解:A、原式=2,不合题意;B 、原式=3,不合题意;C 、被开方数是负数,不合题意;D 、原式=±3,符合题意.故选:D .【点评】此题考查的算术平方根与平方根,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.3(2022秋•莱州市期末)π,239,−13,364,3.1416,0.3⋅,0.101101110…(每两个0之间1的个数依次加1)中,无理数的个数是()A .1个B .2个C .3个D .4个【分析】根据无理数的概念解答即可.【解答】解:364=4,故无理数有π,−13,0.101101110…(每两个0之间1的个数依次加1),共3个.故选:C .【点评】本题考查的是无理数,熟知无限不循环小数叫做无理数是解题的关键.4.(2022秋•朝阳区校级期末)下列各数中,比3大比4小的无理数是()A .3.14B .12C .310D .227【分析】根据无理数的意义,再估算出12和310的值的范围,逐一判断即可解答.【解答】解:A 、3.1是有理数,不是无理数,故A 不符合题意;B 、∵9<12<16,∴3<12<4,故B 符合题意;C 、∵8<10<27,∴2<310<3,故C 不符合题意;D 、227是有理数,不是无理数,故D 不符合题意;故选:B .【点评】本题考查了估算无理数的大小,无理数,熟练掌握估算无理数的大小是解题的关键.5.(2022春•宜秀区校级月考)下列说法正确的是()A .实数包括有理数、无理数和零B .有理数包括正有理数和负有理数C .无限不循环小数和无限循环小数都是无理数D .无论是有理数还是无理数都是实数【分析】灵活掌握实数分类以及有理数和无理数概念,注意容易混淆的知识点.【解答】解:有理数和无理数统称为实数,0属于有理数,故A 错误,有理数包括正有理数、负无理数和0,0既不是正数也不是负数,故B 错误,无限不循环的小数是无理数,故C 错误,实数分为有理数和无理数,故D 正确.故选:D .【点评】考查了实数的概念,以及有理数和无理数概念及分类.6.(2022秋•城阳区期末)已知一个正数a 的两个平方根分别是x +5和4x ﹣15,则a =()A.49B.7C.7D.﹣7【分析】根据平方根的性质:正数有两个平方根,它们互为相反数,负数没有平方根,0的平方根是0即可求解.【解答】解:∵一个正数a的两个平方根分别是x+5和4x﹣15,∴x+5+4x﹣15=0,∴x=2,∴a=(x+5)2=(2+7)2=49,故选:A.【点评】本题主要考查了平方根,掌握平方根的性质是解题的关键.7.(2022秋•莱州市期末)如图,面积为3的正方形ABCD的顶点A在数轴上,且表示的数为﹣1,若AD=AE,则数轴上点E所表示的数为()A.3−1B.3+1C.−3+1D.3【分析】先求出张方形的边长AD,再根据向右动就用加法计算求解.【解答】解:正方形ABCD的边长为:3,∴点E所表示的数为:﹣1+3,故选:A.【点评】本题考查了实数与数轴,正方形是面积公式是解题的关键.8.(2022春•五华区校级期中)下列判断:①0.25的平方根是0.5;②只有正数才有平方根;③(25)2的平方根是±25;④﹣7是﹣49的一个平方根.其中正确的有()个.A.1B.2C.3D.4【分析】根据平方根的定义解答即可.【解答】解:①0.25的平方根是±0.5,原说法错误;②只有正数才有平方根,0也有平方根,原说法错误;③(25)2的平方根是±25,原说法正确;④﹣7不是﹣49的平方根,负数没有平方根,原说法错误.所以正确的有1个;故选:A.【点评】本题考查了平方根.解题的关键是掌握平方根的定义,注意负数不能开平方.平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.9.(2022春•景县期末)一个自然数的一个平方根是a,则与它相邻的下一个自然数的平方根是()A.±�+1B.a+1C.a2+1D.±�2+1【分析】先用a表示该自然数,然后再求出这个自然数相邻的下一个自然数的平方根.【解答】解:由题意可知:该自然数为a2,∴该自然数相邻的下一个自然数为a2+1,∴a2+1的平方根为±�2+1.故选:D.【点评】本题考查算术平方根,解题的关键是求出该自然数的表达式,本题属于基础题型.10.(2021春•商河县校级期末)已知4m+15的算术平方根是3,2﹣6n的立方根是﹣2,则6�−4�=()A.2B.±2C.4D.±4【分析】利用算术平方根,立方根定义求出m与n的值,代入原式计算即可求出值.【解答】解:∵4m+15的算术平方根是3,∴4m+15=9,解得m=﹣1.5,∵2﹣6n的立方根是﹣2,∴2﹣6n=﹣8,解得n=5 3,∴6�−4�=10+6=4.故选:C.【点评】本题考查了算术平方根、立方根的定义.解题的关键是掌握算术平方根、立方根的定义.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.二、填空题(每小题3分,共8个小题,共24分)11.(2022秋•浑南区月考)25的平方根为;6的算术平方根为;﹣64的立方根为.【分析】根据平方根、算术平方根以及立方根的定义进行计算即可.【解答】解:∵(±5)2=25,∴25的平方根为±25=±5;6的算术平方根为6;﹣64的立方根为3−64=−4;故答案为:±5,6,﹣4.【点评】本题考查平方根、算术平方根,立方根,理解平方根、算术平方根以及立方根的定义是正确解答的前提.12.(2022秋•莲湖区校级月考)计算16的平方根结果是.【分析】根据算术平方根以及平方根的定义解决此题.【解答】解:∵16=4,∴16的平方根是±4=±2.故答案为:±2.【点评】本题主要考查算术平方根以及平方根,熟练掌握算术平方根以及平方根的定义是解决本题的关键.13.已知368.8=4.098,36.88=1.902,则36880=.【分析】把6.88的小数点向右移动3位得出数6880.即可得出答案.【解答】解:∵36.88=1.902,∴36880=19.02,故答案为:19.02.【点评】本题考查了立方根的应用,注意:被开方数的小数点每移动3位,立方根的小数点移动一位.14.(2022•南京模拟)有一个数值转换器,原理如下:当输入的x=9时,输出的y等于.【分析】根据算术平方根的概念计算即可.【解答】解:∵9=3,3为3的算术平方根,且是无理数,∴输出的y等于3,故答案为:3.【点评】本题主要考查算术平方根及无理数的概念,熟练掌握其算术平方根及无理数的概念是解题的关键.15.(2022秋•龙岗区期中)若m,n满足�−1+|n+15|=0,则�−�的平方根是.【分析】根据非负数的性质求出m和n的值,再代入�−�计算可得答案.【解答】解:由题意得,m﹣1=0,n+15=0,解得m=1,n=﹣15,∴�−�=1+15=4,∴�−�的平方根是±2.故答案为:±2.【点评】本题考查的是非负数的性质,掌握非负数之和等于0时,各项都等于0是解题的关键.16.(2022春•永定区校级月考)已知点A与数轴上表示−3的点重合,若一只蚂蚁从点A 出发沿数轴向右爬行一个单位长度后到达点B,则点B表示的数为.【分析】根据题意可知,点A表示的数为−3,根据数轴上的点表示的数右边>左边,向右爬行一个单位长度,则将点A表示的数加1即可.【解答】解:∵点A表示的数为−3,∴点B表示的数=−3+1,故答案为:−3+1.【点评】本题主要考查了数轴上的点和无理数的加法,掌握数轴上的点表示的数右边>左边是解题的关键.17.(2022秋•丰泽区校级期末)已知31−2�与33�−7互为相反数,则x=.【分析】直接利用相反数的定义结合立方根的性质得出等式求出答案.【解答】解:∵31−2�与33�−7互为相反数,∴1﹣2x+3x﹣7=0,解得:x=6.故答案为:6.【点评】此题主要考查了实数的性质,正确掌握立方根的性质是解题关键.18.(2022秋•九龙坡区期末)正方形ABCD在数轴上的位置如图所示,点A、B对应的数分别为﹣2和﹣1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点C所对应的数为0;则翻转2022次后,点C所对应的数是.A.B.2021C.2022D.2023【分析】结合数轴发现根据翻折的次数与点C应的数字的关系即可做出判断.【解答】解:正方形ABCD每翻转4次为一个循环,第一次翻转C在0,第五次翻转到了4,第九次翻转到了8,依次类推,第2022次翻转到了2021,转2022次点C所对应的数为2020.故答案为:2020.【点评】本题考查和数轴有关的规律变化问题,关键是明白正方形ABCD每翻转4次为一个循环.三、解答题(共8个小题,共66分)19.(每小题4分,共8分)(2022秋•龙口市期末)计算:(1)(2)2−(−3)2+(3−9)3+364.(2)﹣12020+(−2)2−327+|2−3|【分析】(1)先计算平方根、立方根、平方和立方,最后计算加减.(2)首先计算乘方、开方和绝对值,然后从左向右依次计算即可.【解答】解:(1)(2)2−(−3)2+(3−9)3+364=2﹣3﹣9+4=﹣6.(2)﹣12020+(−2)2−327+|2−3|=﹣1+2﹣3+2−3=−3.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.20.(每小题4分,共8分)(2022秋•北碚区校级月考)解方程:(1)5(x+1)2﹣125=0;(2)(3x+2)3﹣1=61 64.【分析】(1)根据平方根的定义得出答案;(2)根据立方根的定义得出答案.【解答】解:(1)∵5(x+1)2﹣125=0,∴5(x+1)2=125,∴(x+1)2=25,∴x+1=±5,∴x=4或﹣6;(2)∵(3x+2)3=6164+1,∴(3x+2)3=12564,∴3x+2=54,∴x=−14.【点评】本题考查了平方根,立方根,注意一个正数的平方根有2个是解题的关键.21.(8分)(2021春•饶平县校级期末)已知3�−2+2=x,且33�−1与31−2�互为相反数,求x,y的值.【分析】已知第一个等式变形得到立方根等于本身确定出x的值,再利用相反数之和为0列出等式,将x的值代入即可求出y的值.【解答】解:∵3�−2+2=x,即3�−2=x﹣2,∴x﹣2=0或1或﹣1,解得:x=2或3或1,∵33�−1与31−2�互为相反数,即33�−1+31−2�=0,∴3y﹣1+1﹣2x=0,即3y﹣2x=0,∴x=2时,y=43;当x=3时,y=2;当x=1时,y=2 3.【点评】此题考查了立方根,以及实数的性质,熟练掌握立方根的定义是解本题的关键.22.(8分)(2022秋•萧县期中)已知实数a,b,c满足(a﹣2)2+|2b+6|+5−�=0.(1)求实数a,b,c的值;(2)求�−3�+�的平方根.【分析】(1)直接利用非负数的性质结合偶次方的性质、绝对值的性质、算术平方根的性质得出a,b,c的值;(2)直接利用平方根定义得出答案.【解答】解:(1)∵(a﹣2)2+|2b+6|+5−�=0,∴a﹣2=0,2b+6=0,5﹣c=0,解得:a=2,b=﹣3,c=5;(2)由(1)知a=2,b=﹣3,c=5,则�−3�+�=2−3×(−3)+5=4,故�−3�+�的平方根为:±2.【点评】此题主要考查了非负数的性质,正确掌握相关性质得出a,b,c的值是解题关键.23.(8分)(2022秋•北仑区期中)如图,一只蚂蚁从A点沿数轴向右直爬2个单位长度到达点B,点A表示−2,设点B所表示的数为m,(1)求m的值.(2)求|m﹣3|+m+2的值.【分析】(1)根据数轴上的点运动规律:右加左减的规律可求出m的值;(2)主要将m的值代入到代数式中即可,只要注意运算的顺序和绝对值的计算方法即可.【解答】解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位到达点B,∴点B所表示的数比点A表示的数大2,∵点A表示−2,点B所表示的数为m,∴m=−2+2;(2)|m﹣3|+m+2=|−2+2+3|−2+2+2=5−2−2+4=9﹣22.【点评】此题主要考查了实数运算以及实数与数轴,根据已知得出m的值是解题关键.24.(8分)(2022秋•新泰市期末)已知4a﹣11的平方根是±3,3a+b﹣1的算术平方根是1,c是20的整数部分.(1)求a,b,c的值;(2)求﹣2a+b﹣c的立方根.【分析】(1)根据平方根的定义列式求出a的值,再根据算术平方根的定义列式求出b的值,根据4<20<5可得c的值;(2)把a、b、c的值代入所求代数式的值,再根据立方根的定义计算即可.【解答】解:(1)∵4a﹣11的平方根是±3.∴4a﹣11=9,∴a=5,∵3a+b﹣1的算木平方根是1,∴3a+b﹣1=1,∴b=﹣13;∵c是20的整数部分,4<20<5,∴c=4.(2)3−2�+�−�=3(−2)×5+(−13)−4,=3−27,=﹣3,∴﹣2a+b﹣c的立方根是﹣3.【点评】本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.25.(8分)(2022秋•南岗区校级期中)小李同学想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2,他不知道能否裁得出来,正在发愁,这时小于同学见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”(1)长方形纸片的长和宽是分别多少cm?(2)你是否同意小于同学的说法?说明理由.【分析】(1)设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=52,而面积为400平方厘米的正方形的边长为20厘米,由于152>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为2:3;(2)根据(1)中的长方形纸片的长和宽即可得出结论.【解答】解:(1)解:设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得,3x•2x=300,6x2=300,x2=50,∵x>0,∴x=50=52,∴长方形纸片的长为152cm,答:长方形纸片的长是152cm,宽是102cm;(2)不同意小于同学的说法.理由:∵50>49,∴52>7,∴152>21.∴长方形纸片的长大于20cm,由正方形纸片的面积为400cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长,∴不能用这块纸片裁出符合要求的长方形纸片.【点评】本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.26.(10分)(2022春•铁东区期末)阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来.于是小明用(2−1)来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵4<7<9,即∵2<7<3,∴7的整数部分是2,小数部分为(7−2).(1)17的整数部分是,小数部分是.(2)5的小数部分为a,13的整数部分为b,则a+b−5的值;(3)已知:10+3=x+y,其中x是整数,且0<y<1,求x﹣y的值.【分析】(1)根据算术平方根的定义估算无理数17的大小即可;(2)估算无理数5,13的大小,确定a、b的值,再代入计算即可;(3)估算10+3的大小,结合题意得出x、y的值,代入计算即可.【解答】解:(1)∵16<17<25,即4<17<5,∴17的整数部分为4,小数部分为17−4,故答案为:4,17−4;(2)∵2<5<3,3<13<4,∴5的小数部分a=5−2,13的整数部分b=3,∴a+b−5=5−2+3−5=1,答:a+b−5的值为1;(3)∵1<3<2,∴11<10+3<12,又∵10+3=x+y,其中x是整数,且0<y<1,∴x=11,y=10+3−11=3−1,∴x﹣y=11−3+1=12−3.【点评】本题考查估算无理数的大小,掌握算术平方根的定义是正确估算的前提,理解不等式的性质是得出答案的关键.。
第六章 实数单元 期末复习测试综合卷检测试卷
第六章 实数单元 期末复习测试综合卷检测试卷一、选择题1.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……②②-①得10661S S -=-,即10561S =-,所以10615S -=. 得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是A .201811a a -- B .201911a a -- C .20181a a - D .20191a - 2.若()2320m n -++=,则m n +的值为( )A .5-B .1-C .1D .53.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,把(3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把(0)a a a a a a ÷÷÷÷÷≠记作a ⓒ,读作“a 的圈c 次方”,关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数a ,21()aa =④ C .3=4④④D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数.4.已知280x y -++=,则x y +的值为( ) A .10 B .-10 C .-6 D .不能确定5.130a b -+-=,则a b +的值是( )A .0B .±2C .2D .46.实数33,10,25的大小关系是( )A .310325<<B .331025<<C .310253<<D .325310<<7.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x8.在实数:3.14159,364,1.010010001....,4.21••,π,227中,无理数有( ) A .1个 B .2个 C .3个 D .4个9.在实数13-,0.7,34,π,16中,无理数有( )个.A .1B .2C .3D .4 10.已知实数x ,y 满足关系式241x y -++|y 2﹣9|=0,则6x y +的值是( ) A .±3 B .3 C .﹣3或3 D .3或3二、填空题11.如果一个有理数a 的平方等于9,那么a 的立方等于_____.12.若已知x-1+(y+2)2=0,则(x+y)2019等于_____.13.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).14.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.15.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.16.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.17.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.18.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.19.0.050.55507.071≈≈≈≈,按此规500_____________20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b 是有理数,并且满足等式253a 2b 3a 3=+,求a ,b 的值. 解:因为253a 2b 3a 3-=+ 所以()253a 2b a 33=-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y 是有理数,并且满足等式2x 2y 2y 1742--=-x y +的值.22.(概念学习) 规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ;23.对于实数a ,我们规定:用符号⎡⎣a a ⎡⎣a 为a 的根整数,例如:93⎡=⎣,10=3.(1)仿照以上方法计算:4=______;26=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.24.让我们规定一种运算a b ad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x =- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程).25.已知2+a b(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.26.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯= 计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据题意,设M=1+a+a 2+a 3+a 4+…+a 2014,求出aM 的值是多少,然后求出aM-M 的值,即可求出M 的值,据此求出1+a+a 2+a 3+a 4+…+a 2019的值是多少即可.【详解】∵M=1+a+a 2+a 3+a 4+…+a 2018①,∴aM=a+a 2+a 3+a 4+…+a 2014+a 2019②,②-①,可得aM-M=a 2019-1,即(a-1)M=a 2019-1,∴M= 201911a a --. 故选:B.【点睛】考查了整式的混合运算的应用,主要考查学生的理解能力和计算能力.2.C解析:C【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m-3=0,n+2=0,解得m=3,n=-2,所以,m+n=3+(-2)=1.故选:C .【点睛】此题考查非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.3.C解析:C【解析】【分析】根据定义依次计算判定即可.【详解】解:A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、a ④=21111()a a a a a a a a a ÷÷÷=⨯⨯⨯=; 所以选项B 正确; C 、3④=3÷3÷3÷3=19,4④=4÷4÷4÷4=116,,则 3④≠4④; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;故选:C .【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时对新定义,其实就是多个数的除法运算,要注意运算顺序.4.C解析:C【分析】根据算术平方根的非负性求出x,y,然后再求x+y即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.5.C解析:C【分析】由算术平方根和绝对值的非负性,求出a、b的值,然后进行计算即可.【详解】解:根据题意,得a﹣1=0,b﹣3=0,解得:a=1,b=3,∴a+b=1+3=4,∴2.故选:C.【点睛】本题考查了算术平方根和绝对值的非负性,解题的关键是正确求出a、b的值.6.D解析:D【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=><<,3【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较. 7.C解析:C【分析】根据点E,F,M,N表示的实数的位置,计算个代数式即可得到结论.【详解】解:∵﹣2<0<x<2<y,∴x+y>0,2+y>0,x﹣2<0,2+x>0,故选:C.【点睛】本题考查了实数,以及实数与数轴,弄清题意是解本题的关键.8.B解析:B【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】解:因为3.14159,227是有限小数,4.21是无限循环小数,所以它们都是有理数;=4,4是有理数;因为1.010010001…,π=3.14159265…,所以1.010010001…,π,都是无理数.综上,可得无理数有2个:1.010010001…,π.故选:B.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.B解析:B【分析】根据无理数的定义判断即可.【详解】13,0.716π是无理数,故选:B.本题主要考查无理数的定义,熟练掌握定义是关键.10.D解析:D【分析】由非负数的性质可得y2=9,4x-y2+1=0,分别求出x与y的值,代入所求式子即可.【详解】2﹣9|=0,∴y2=9,4x﹣y2+1=0,∴y=±3,x=2,∴y+6=9或y+6=3,3=故选:D.【点睛】本题考查绝对值、二次根式的性质;熟练掌握绝对值和二次根式的性质,能够准确计算是解题的关键.二、填空题11.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则. 12.-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】解:∵+(y+2)2=0∴∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟解析:-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】(y+2)2=0∴1020 xy-=+=⎧⎨⎩12 xy=⎧∴⎨=-⎩∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟练掌握性质,并求出x与y是解题的关键. 13.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a (b×c+c) +(b×c+c)=abc+ac+bc+c 2 两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.14.255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)解析:255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.15.【分析】设,代入原式化简即可得出结果.原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 16.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.17.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.18.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.19.36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】解:观察,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的解析:36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】≈≈≈≈,7.071不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,≈.因此得到第三个数的估值扩大1022.36故答案为22.36.【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.20.1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为解析:1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x =7时,第1次输出的结果为10,x =10时,第2次输出的结果为11052⨯=, x =5时,第3次输出的结果为5+3=8, x =8时,第4次输出的结果为1842⨯=, x =4时,第5次输出的结果为1422⨯=, x =2时,第6次输出的结果为1212⨯=, x =1时,第7次输出的结果为1+3=4,……,由此发现,从第4次输出的结果开始,每三次结果开始循环一次,∵(2019﹣3)÷3=672,∴第2019次输出的结果与第6次输出的结果相同,∴第2019次输出的结果为1,故答案为:1.【点睛】本题考查了程序框图和与实数运算相关的规律题;根据题意,求出一部分输出结果,从而发现结果的循环规律是解题的关键.三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21n a -⎛⎫ ⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11n a a a -⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12, 111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤ 111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8; 深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82; (2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.23.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,]=5,故答案为2,5;(2)∵12=1,22=4,且]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.24.(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()();2-3253310935xx x x x x x =⨯---⨯=---=--()()().故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.25.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:20a b ++=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.26.(1)2550;(2)50505150a m +【分析】(1)利用所给规律计算求解即可;(2)先去括号,再分组利用所给规律计算.【详解】解:(1)原式()()()21004985052=++++⋅⋅⋅++102252550=⨯=(2)原式()()23100234101a a a a m m m m =+++⋅⋅⋅+++++⋅⋅⋅+50505150a m =+【点睛】本题考查的知识点是去括号与添括号、有理数的加法、合并同类项,灵活运用加法的运算律是解此题的关键.。
人教版七年级初一数学下学期第六章 实数单元 期末复习测试综合卷学能测试
人教版七年级初一数学下学期第六章 实数单元 期末复习测试综合卷学能测试一、选择题1.下列式子正确的是( )A .25=±5B .81=9C .2(10)-=﹣10D .±9=3 2.下列说法中正确的是( )A .若a a =,则0a >B .若22a b =,则a b =C .若a b >,则11a b> D .若01a <<,则32a a a << 3.下列数中,有理数是( ) A .﹣7 B .﹣0.6 C .2π D .0.151151115…4.下列各数中,比-2小的数是( )A .-1B .-5C .0D .1 5.0,0.121221222,13,25,2π,33这6个实数中有理数的个数是( ) A .2 B .3 C .4 D .56.下列实数中是无理数的是( )A .B .C .0.38D .7.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;③3a -=﹣3a ;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个 8.在实数:3.14159,364,1.010010001....,4.21••,π,227中,无理数有( ) A .1个B .2个C .3个D .4个 9.某数的立方根是它本身,这样的数有( )A .1 个B .2 个C .3 个D .4 个 10.若a 、b 为实数,且满足|a -2|+2b -=0,则b -a 的值为( )A .2B .0C .-2D .以上都不对二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.估计512-与0.5的大小关系是:512-_____0.5.(填“>”、“=”、“<”)13.m的平方根是n+1和n﹣5;那么m+n=_____.14.1111111111 112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.15.已知实数x的两个平方根分别为2a+1和3-4a,实数y的立方根为-a,则2x y+的值为______.16.46的整数部分是________.17.已知:202044.9444≈⋯,20214.21267≈⋯,则20.2(精确到0.01)≈__________.18.已知2(21)10a b++-=,则22004a b+=________.19.若x、y分别是811-的整数部分与小数部分,则2x-y的值为________.20.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O到达点'O,则点'O对应的数是_______.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a,b是有理数,并且满足等式253a2b3a3=+,求a,b的值.解:因为253a2b3a3-=+所以()253a2b a33=-所以2b a52a3-=⎧⎪⎨-=⎪⎩解得2a313b6⎧=⎪⎪⎨⎪=⎪⎩()2已知x,y是有理数,并且满足等式2x2y2y1742--=-x y+的值.22.对于实数a,我们规定用a}a{a}为 a的根整数.如10}=4.(1)计算{9}=? (2)若{m}=2,写出满足题意的m 的整数值;(3)现对a 进行连续求根整数,直到结果为2为止.例如对12进行连续求根整数,第一次{12}=4,再进行第二次求根整数{4}=2,表示对12连续求根整数2次可得结果为2.对100进行连续求根整数, 次后结果为2.23.化简求值:()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.24.2是无理数,而无理数是无限不循环小数,22﹣12的小数部2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为47927<37的整数部分为27﹣2) 请解答:(110的整数部分是 ,小数部分是 ;(25a 13b ,求a +b 525.已知2a -的平方根是2±,33a b --的立方根是3,整数c 满足不等式81c c <+. (1)求,,a b c 的值.(2)求2232a b c ++的平方根.26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B根据平方根、算术平方根的定义求出每个式子的值,再进行判断即可.【详解】A 5,故选项A 错误;B 9,故选项B 正确;C =10,故选项C 错误;D 、=±3,故选项D 错误.故选:B .【点睛】本题主要考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的定义与性质.2.D解析:D【分析】根据绝对值的性质、平方根的性质、倒数的性质、平方和立方的性质对各项进行判断即可.【详解】 若a a =则0a ≥,故A 错误;若22a b =则a b =或=-a b ,故B 错误;当0a b >>时11b a<,故C 错误; 若01a <<,则32a a a <<,正确,故答案为:D .【点睛】本题考查了有理数的运算,掌握有理数性质的运算是解题的关键.3.B解析:B【分析】根据有理数的定义选出即可.【详解】解:A 是无理数,故选项错误;B 、﹣0.6是有理数,故选项正确;C 、2π是无理数,故选项错误;D 、0.l51151115…是无理数,故选项错误.故选:B .【点睛】本题考查了实数,注意有理数是指有限小数和无限循环小数,包括整数和分数.解析:B【分析】根据正数大于零,零大于一切负数,两个负数比大小,绝对值越大负数反而小,可得答案【详解】解:1>0>-1,|-5|>|-2|>-1 ,∴-5<-2<-1,故选:B .【点睛】本题考查了实数大小比较,利用负数的绝对值越大负数反而小是解题关键.5.C解析:C【分析】根据有理数的定义:整数和分数统称为有理数即可判断.【详解】0是整数,是有理数,0.121221222是有限小数,是有理数,13是分数,是有理数, 25=5,是有理数,2是含π的数,是无理数, 33含开方开不尽的数,是无理数, 综上所述:有理数有0,0.121221222,13,25,共4个, 故选C.【点睛】本题考查了实数的定义,解答此题要明确有理数和无理数的概念和分类.有理数是指有限小数和无限循环小数,无理数是无限不循环小数. 6.A解析:A【解析】【分析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【详解】解: A 、π是无限不循环小数,是无理数;B 、=2是整数,为有理数;C、0.38为分数,属于有理数;D. 为分数,属于有理数.故选:A.【点睛】本题考查的是无理数,熟知初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解答此题的关键.7.A解析:A【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;3a3a④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.8.B解析:B【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】解:因为3.14159,227是有限小数,4.21是无限循环小数,所以它们都是有理数;364=4,4364是有理数;因为1.010010001…,π=3.14159265…,所以1.010010001…,π,都是无理数.综上,可得无理数有2个:1.010010001…,π.故选:B.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.C解析:C根据立方根的定义,可以先设出这个数,然后列等式进行求解.【详解】设这个说为a ,a =,∴3a =a ,∴a=0或±1,故选C.【点睛】本题考查立方根,熟练掌握立方根的定义是解题关键.10.C解析:C【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=,所以a=2,b=0.故b -a 的值为0-2=-2.故选C.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A 的距离为4π,由于圆形是逆时针滚动,所以A′在A 的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A ′与A 的距离为4π,由于圆形是逆时针滚动,所以A ′在A 的左侧,所以A ′表示的数为-4π,故答案为-4π.12.>【解析】∵ . , ∴ , ∴ ,故答案为>.解析:>【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.13.11【分析】直接利用平方根的定义得出n 的值,进而求出m 的值,即可得出答案.解:由题意得,n+1+n ﹣5=0,解得n =2,∴m =(2+1)2=9,∴m+n =9+2=11.故答解析:11【分析】直接利用平方根的定义得出n 的值,进而求出m 的值,即可得出答案.【详解】解:由题意得,n +1+n ﹣5=0,解得n =2,∴m =(2+1)2=9,∴m +n =9+2=11.故答案为11.【点睛】此题主要考查了平方根,正确利用平方根的定义得出n 的值是解题关键.14.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 15.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键. 16.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解 解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键. 17.50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,04.5≈,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.18.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a +1=0,b−1=0,∴a =,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】 本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.19.【分析】估算出的取值范围,进而可得x ,y 的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x =4,小数部分y =,∴2x-y =8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x ,y 的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x =4,小数部分y =448=∴2x -y =8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x ,y 的值.20.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.(1)3;(2)2,3,4(3)3【分析】(1的大小,再根据新定义可得结果;(2)根据定义可知12,可得满足题意的m 的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为2.【详解】解:(1)根据新定义可得,,故答案为3;(2)∵{m}=2,根据新定义可得,1,可得m 的整数值为2,3,4,故答案为2,3,4; (3)∵{100}=10,{10}=4,{4}=2,∴对100进行连续求根整数,3次后结果为2;故答案为3.【点睛】本题考查了估算无理数的大小的应用,主要考查了对新定义的理解能力,准确理解新定义是解题的关键.23.(1)±3;(2)2a +b ﹣1.【解析】分析:(1)由于34a =3,根据算术平方根的定义可求b(2)利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.详解:(1)∵34,∴a =3.=3,∴b =993; (2)由数轴可得:﹣1<a <0<1<b ,则a +1>0,b ﹣1>0,a ﹣b <0,则+|a ﹣b | =a +1+2(b ﹣1)+(a ﹣b )=a +1+2b ﹣2+a ﹣b=2a +b ﹣1. 点睛:本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.24.(1)3,﹣3;(2)1.【分析】(1)根据34<解答即可;(2)根据23得出a ,根据34得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵34<<,3﹣3,故答案为:3﹣3;(2)∵23,a 2,∵34,∴b =3,a +b 2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.25.(1)6a =,8b =-,2c =;(2)12±【分析】(1)利用平方根,立方根定义以及估算方法确定出a ,b ,c 的值即可;(2)把a ,b ,c 的值代入计算即可求出所求.【详解】解:(1)根据题意得:a−2=4,a−3b−3=27,23<<,∴a=6,b=−8,c=2;(2)原式=2×62+(-8)2+23=72+64+8=144,144的平方根是±12.∴2232a b c ++的平方根是±12.【点睛】此题考查了估算无理数的大小,平方根以及立方根的定义,熟练掌握运算法则是解本题的关键.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。
七年级初一数学下学期第六章 实数单元 期末复习测试综合卷学能测试试题
七年级初一数学下学期第六章 实数单元 期末复习测试综合卷学能测试试题一、选择题1.设记号*表示求,a b 算术平均数的运算,即*2a b a b +=,那么下列等式中对于任意实数,,a b c 都成立的是( ) ①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;③()()()**a b c a b a c +=++;④()()**22a a b c b c +=+ A .①②③ B .①②④ C .①③④D .②④ 2.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B .2C .3D .6 3.计算:122019(1)(1)(1)-+-++-的值是( ) A .1-B .1C .2019D .2019- 4.在-2,117,0,23π,3.14159265,9有理数个数( ) A .3个 B .4个 C .5个 D .6个5.在下列结论中,正确的是( ).A .255-44=±() B .x 2的算术平方根是xC .平方根是它本身的数为0,±1D .64 的立方根是2 6.0,0.121221222,13,25,2π,3这6个实数中有理数的个数是( ) A .2 B .3 C .4 D .57.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .38.下列各组数的大小比较正确的是( ) A 56 B 3πC .5.329D . 3.1->﹣3.19.下列判断正确的有几个( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③33是3的立方根;④无理数是带根号的数;⑤2的算术平方根是2.A .2个B .3个C .4个D .5个10.有下列说法:(1)16的算术平方根是4; (2)绝对值等于它本身的数是非负数;(3)某中学七年级有12个班,这里的12属于标号;(4)实数和数轴上的点一一对应;(5)一个有理数与一个无理数之积仍为无理数;(6)如果a ≈5.34,那么5.335≤a <5.345,其中说法正确的有( )个A .2B .3C .4D .5二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______13.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.14.已知72m =,则m 的相反数是________.15.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.16.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.17.设a ,b 都是有理数,规定 3*=a b a b ()()48964***-⎡⎤⎣⎦=__________.1846________. 19.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.22.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)23.观察下列各式 ﹣1×12=﹣1+12﹣1123⨯=﹣11+23﹣1134⨯=﹣11+34 (1)根据以上规律可得:﹣1145⨯= ;11-1n n += (n ≥1的正整数). (2)用以上规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣1120152016⨯). 24.让我们规定一种运算a b ad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335xx =-(2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 25.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).26.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法: 设22019202012222s =+++++ ① 则22020202122222s =++++ ②②-①得,2021221s s s -==-请仿照小明的方法解决以下问题:(1)291222++++=________;(2)220333+++=_________; (3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据材料新定义运算的描述,把等式的两边进行变形比较即可.【详解】①中()*2b c a b c a ++=+,()*()22a b a c b c a b a c a ++++++==+,所以①成立; ②中()2a b c a b c ++*+=,()*2a b c a b c +++=,所以②成立; ③中,()()32*2a b c a b a c ++++=,()2*2a b c a b c +++=,所以③不成立; ④中()2a b a b c c +*+=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立.故选:B .【点睛】 考核知识点:代数式.理解材料中算术平均数的定义是关键.2.B解析:B【分析】首先从排列图中可知:第1排有1个数,第2排有2个数,第3排有3个数,然后抽象出第5排第4个数,第15排第8个数,然后可以得到答案.【详解】解:(5,4)表示第5排从左往右第4,(15,8) 表示第15排第8个数,从上面排列图中可以看出奇数行1排在最中间,所以第15行最中间是1,且为第8个,所以1和.故本题选B .【点睛】本题是规律题的呈现,考查学生的从具体情境中抽象出一般规律,考查学生观察与归纳能力.3.A解析:A【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案.【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1,∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+- =2019(1)-=1-;故选:A.【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.4.C解析:C【分析】根据有理数包括整数和分数,无理数包括无限不循环小数、开方开不尽的数、含π的数,逐一判断,找出有理数即可得答案.【详解】-2、0是整数,是有理数,117、3.14159265是分数,是有理数, 23π是含π的数,是无理数,,是整数,是有理数,综上所述:有理数有-2,117,0,3.141592655个, 故选C.【点睛】本题考查实数的分类,有理数包括整数和分数;无理数包括无限不循环小数、开方开不尽的数、含π的数. 5.D解析:D【分析】利用算术平方根、平方根、立方根的定义解答即可.【详解】54=,错误; B. x 2的算术平方根是x ,错误;C. 平方根是它本身的数为0,错误;=8,8 的立方根是2,正确;故选D.【点睛】此题考查算术平方根、平方根、立方根的定义,正确理解相关定义是解题关键.6.C解析:C【分析】根据有理数的定义:整数和分数统称为有理数即可判断.【详解】0是整数,是有理数,0.121221222是有限小数,是有理数,13是分数,是有理数,,是有理数,2π是含π的数,是无理数,3含开方开不尽的数,是无理数,综上所述:有理数有0,0.121221222,134个, 故选C.【点睛】本题考查了实数的定义,解答此题要明确有理数和无理数的概念和分类.有理数是指有限小数和无限循环小数,无理数是无限不循环小数. 7.D解析:D【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 1-,解得.故选D.8.A解析:A【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】,∴选项A符合题意;,∴选项B不符合题意;∵5.3∴选项C不符合题意;-<﹣3.1,∵ 3.1∴选项D不符合题意.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9.B解析:B【分析】根据平方根的定义判断①;根据实数的定义判断②;根据立方根的定义判断③;根据无理数的定义判断④;根据算术平方根的定义判断⑤.【详解】解:①一个数的平方根等于它本身,这个数是0,因为1的平方根是±1,故①错误;②实数包括无理数和有理数,故②正确;3的立方根,故③正确;④π是无理数,而π不带根号,所以无理数不一定是带根号的数,故④错误;⑤2,故⑤正确.故选:B.【点睛】本题考查了平方根、立方根、算术平方根及无理数、实数的定义,是基础知识,需熟练掌握.10.B解析:B【分析】根据算术平方根的定义、绝对值的性质、数轴的意义实数的运算及近似数的表示方法逐一判断即可得答案.【详解】,4的算术平方根是22,故(1)错误,绝对值等于它本身的数是非负数;故(2)正确,某中学七年级共有12个班级,是对于班级数记数的结果,所以这里的12属于记数,故(3)错误,实数和数轴上的点一一对应;故(4)正确,0与无理数的乘积为0,0是有理数,故(5)错误,如果a≈5.34,那么5.335≤a<5.345,故(6)正确,综上所述:正确的结论有(2)(4)(6),共3个,故选:B.【点睛】本题考查算术平方根的定义、实数的运算、绝对值的性质及近似数的表示方法,熟练掌握相关性质及运算法则是解题关键.二、填空题11.、、、.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索,解析:43.【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.13.【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1、的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:,解得:,故答案解析:2-【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:=12,解得:,故答案为:【点睛】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.14.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】-=,解:m的相反数是2)2故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.15.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.16.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.17.1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵,∴=()()=(2+2)(3-4)=4(-1)==2-1=1.故答案为:1【点睛】本题考查平方解析:1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵*=a b∴()()48964***-⎡⎤⎣⎦=*)=(2+2)*(3-4)=4*(-1)==2-1=1.故答案为:1【点睛】本题考查平方根与立方根,正确理解规定,熟练掌握平方根和立方根的定义是解题关键. 18.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.19.9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: ,解得:,则这个正数是.故答案为:9.【解析:9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键.20.12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】6a ==479<<<<23<< ∴的整数部分是2,即2b =则6212ab =⨯=故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b 的值是解题关键.三、解答题21.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数 ∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.22.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.23.(1)1145-+,111n n -++;(2)20152016-. 【分析】(1)根据题目中的式子,容易得到式子的规律;(2)根据题目中的规律,将乘法变形为加法即可计算出所求式子的结果.【详解】解:(1)11114545-⨯=-+,1111-=-11n n n n +++, 故答案为:1145-+,111n n -++; (2)1111111(1)()()()2233420152016-⨯+-⨯+-⨯+⋯+-⨯ 11111111()()()2233420152016=-++-++-++⋯+-+ 112016=-+20152016=-. 【点睛】本题考查规律性:数字的变化类,解题的关键是明确题意,找出所求式子中数的变化的特点.24.(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可; (2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()();2-3253310935xx x x x x x =⨯---⨯=---=--()()().故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.25.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.【详解】(180b -=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);故答案为:(0,6),(8,0);(2)由(1)知,A (0,6),C (8,0),∴OA=6,OB=8,由运动知,OQ=t ,PC=2t ,∴OP=8-2t ,∵D (4,3), ∴114222ODQ D S OQ x t t =⨯=⨯=△, 1182312322ODP D S OP y t t =⨯=-⨯=-△(), ∵△ODP 与△ODQ 的面积相等,∴2t=12-3t ,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.26.(1)1021-;(2)21332-;(3)111naa+--【分析】(1)设式子等于s,将方程两边都乘以2后进行计算即可;(2)设式子等于s,将方程两边都乘以3,再将两个方程相减化简后得到答案;(3)设式子等于s,将方程两边都乘以a后进行计算即可.【详解】(1)设s=291222++++①,∴2s=29102222++++②,②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②,②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.。
【数学】人教版七年级数学下册第六章实数章末综合测试卷
人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10小题)1.下列式子,表示4的平方根的是( ) A . 4B .42C .-4D .±42.若a 是无理数,则a 的值可以是( )A .14B .1C .2D .93.已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A .-a<-b B .a+b<0 C .|a|<|b| D .a-b>04.实数3的大小在下列哪两个整数之间,正确的是( ) A .0和1 B .1和2 C .2和3 D .3和45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10 B .10,11 C .11,12 D .12,13 6.在-3、0、6、4这四个数中,最大的数是( ) A .-3 B .0 C . 6 D .47.下列说法正确的是( )A .立方根等于它本身的实数只有0和1B .平方根等于它本身的实数是0C .1的算术平方根是±1D .绝对值等于它本身的实数是正数8.已知a ,b 为两个连续整数,且a< 13<b,则a+b 的值为( ) A .9 B .8 C .7 D .6 9.如果一个实数的平方根与它的立方根相等,则这个数是( ) A .0 B .正实数 C .0和1 D .1 10.有下列说法:①实数与数轴上的点一一对应; ②2- 7的相反数是7-2;③在1和3之间的无理数有且只有2, 3,5,7这4个;④2+3x-4x 2是三次三项式;⑤绝对值等于本身的数是正数; 其中错误的个数为( ) A .1 B .2 C .3 D .4二.填空题(共6小题)11.4的算术平方根是 ,-64的立方根是 .12.若m 为整数,且5<m< 10,则m=13.某个正数的平方根是x 与y,3x-y 的立方根是2,则这个正数是 .14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= . 15.如图,在数轴上点A ,B 表示的数分别是1,- 2,若点B ,C 到点A 的距离相等,则点C所表示的数是 .16.如图,长方形内有两个相邻的正方形,面积分别为4和3,那么阴影部分的面积为 .三.解答题(共7小题)17.求x 的值: (1)2x 2-32=0; (2)(x-1)3=2718.计算:49-| 3-64|+(-3)2-31252719.已知2的平方等于a,2b-1是27的立方根,± c-2表示3的平方根. (1)求a,b,c 的值;(2)化简关于x 的多项式:|x-a|-2(x+b)-c,其中x <4.20.正数x 的两个平方根分别为3-a 和2a+7. (1)求a 的值;(2)求44-x 这个数的立方根.21.定义新运算:对任意实数a 、b ,都有a △b=a 2-b 2,例如:(3△2)=32-22=5,求(1△2)△4的值.22.如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm 3. (1)这个魔方的棱长为cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD 放置在数轴上,如图乙所示,使得点A 与数1重合,则D 在数轴上表示的数为.23.有两个大小完全一样的长方形OABC 和EFGH 重合放在一起,边OA 、EF 在数轴上,O 为数轴原点(如图1),长方形OABC 的边长OA 的长为6个坐标单位. (1)数轴上点A 表示的数为.(2)将长方形EFGH 沿数轴所在直线水平移动①若移动后的长方形EFGH 与长方形OABC 重叠部分的面积恰好等于长方形OABC 面积的13,则移动后点F 在数轴上表示的数为.②若出行EFGH 向左水平移动后,D 为线段AF 的中点,求当长方形EFGH 移动距离x 为何值时,D 、E 两点在数轴上表示的数是互为相反数?答案: 1.D 2.C 3.C 4.B 5.B 6.D 7.B 8.C 9.A 10.C 11.2,-4 12.3 13.4 14.1,15.2+ 16.2-3 17. 解:(1)∵2x 2-32=0, ∴2x 2=32, 则x 2=16, 所以x=±4;(2)∵(x-1)3=27, ∴x-1=3, 则x=4. 18.解:原式=23-4+3- 53=-2.19. 解:(1)由题意知a=22=4, 2b-1=3,b=2; c-2=3,c=5; (2)∵x <4, ∴|x-a|-2(x+b )-c =|x-4|-2(x+2)-5 =4-x-2x-4-5 =-3x-5. 20. 解:(1)∵正数x 的两个平方根是3-a 和2a+7, ∴3-a+(2a+7)=0, 解得:a=-10(2)∵a=-10,∴3-a=13,2a+7=-13.∴这个正数的两个平方根是±13, ∴这个正数是169. 44-x=44-169=-125, -125的立方根是-5. 21. 解:(1△2)△4 =(12-22)△4 =(-3)人教版七年级数学下册第六章 实数 单元巩固测试题一、选择题1.下列说法不正确的是(C ) A .251的平方根是51B .﹣9是81的一个平方根C .0.2的算术平方根是0.04D .﹣27的立方根是﹣3 2.下列说法正确的是( C ) A .立方根是它本身的数只能是0和1 B .立方根与平方根相等的数只能是0和1 C .算术平方根是它本身的数只能是0和1 D .平方根是它本身的数只能是0和1 3.估计20的算术平方根的大小在( C )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 4.16的算术平方根和25的平方根的和是( C ) A .9 B .﹣1 C .9或﹣1 D .﹣9或1 5. 下列选项中正确的是( C ) A .27的立方根是±3 B .的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是16.若 与 的整数部分分别为 , ,则 的立方根是(A ) A.B.C. 3D.7.若a 2=25,|b|=3,则a+b 的值是(D ) A .﹣8 B .±8 C .±2 D .±8或±28. 比较2, , 的大小,正确的是(C )A. 2< <B. 2< <C. <2<D. < <29. 如图,以数轴的单位长度为边长画正方形,以正方形的对角线为半径,-1所在的点为圆心画弧,交数轴于点A,则点A表示的数为( C)A. B.1- C. -1 D. +110.下列说法中:①每个正数都有两个立方根;②平方根是它本身的数有1,0;③立方根是它本身的数有±1,0;④如果一个数的平方根等于它的立方根,那么这个数是1或0;⑤没有平方根的数也没有立方根;⑥算术平方根是它本身的数有1,0.其中正确的有( A ) A.2个 B.3个 C.4个 D.5个二、填空题11的算术平方根是 2 ;12. 表示_______9_____的立方根;13.如图是一个简单的数值运算程序,若输入x的值为,则输出的数值为_____2_______;14.下列各数:0,﹣4,(﹣3)2,﹣32,﹣(﹣2),有平方根的数有 3 个.15.(1)若的值为最大的负整数,则a的值是______±4______.(2)若x2=64,则=_____±2_______.16. 已知下列实数:①;②-;③;④3.14;⑤;⑥;⑦3.1415926;⑧1.23;⑨2.020020002…(相邻两个2之间依次多一个0).属于有理数的有:___①②④⑥⑦⑧_________; 属于无理数的有:______③⑤⑨______.(填序号) 三、解答题17.解方程4(x ﹣1)2=9 解:把系数化为1,得 (x ﹣1)2=49 开方得x ﹣1=23 解得x 1=25,x 2=﹣21.18.求下列各式的值: (1)-3729+3512; 解:原式=-9+8=-1.(2)30.027-31-124125+3-0.001. 解:原式=0.3-31125+(-0.1) =0.3-15-0.1=0. 18.计算:(1)(1)-(2)(2) 2.19.已知2a ﹣1的平方根是±3,3a+b ﹣1的算术平方根是4,求a+2b 的值. 解:∵2a ﹣1的平方根是±3, ∴2a ﹣1=9, ∴a=5,∵3a+b ﹣1的算术平方根是4, ∴3a+b ﹣1=16, ∴3×5+b ﹣1=16, ∴b=2,∴a+2b=5+2×2=9.20.现有一个体积为125cm 3的木块,将它锯成同样大小的8块小正方体,求每个小正方体木块的表面积.=cm ,6×()2=37.5cm 2.21.小明买了一箱苹果,装苹果的纸箱的尺寸为2×3×9(长度单位为分米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,要求两个人教七年级上册数学第7章《平面直角坐标系》练习题 (A B 卷)人教版七年级数学下册第七章平面直角坐标系 单元测试题班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。
【3套精选】人教版初中数学七年级下册第六章《实数》单元综合练习卷(含答案解析)
人教版七年级数学下册第六章实数质量评估试卷 一、选择题(每小题3分,共30分)1.-3的绝对值是( )A.33 B.-33C. 3 D.1 32.在实数-227,9,π,38中,是无理数的是( )A.-227 B.9C.π D.3 83.下列四个数中,最大的一个数是( ) A.2 B. 3 C.0 D.-24.某正数的平方根为a5和4a-255,则这个数为( )A.1 B.2C.4 D.95.下面实数比较大小正确的是( )A.3>7 B.3> 2C.0<-2 D.22<36.实数a在数轴上的位置如图1所示,则下列说法不正确的是( )图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<07.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B之间表示整数的点共有( )图2A.3个 B.4个C.5个 D.6个8.|5-6|=( )A.5+ 6 B .5- 6C .-5- 6D .6- 59.若x-1+(y+1)2=0,则x-y的值为( )A.-1 B.1C.2 D.310. 已知3≈1.732,30≈5.477,那么300 000≈( ) A.173.2 B.±173.2C.547.7 D.±547.7二、填空题(每小题4分,共20分)11.比较大小:3-2 > -23(填“>”“<”或“=”).12.计算:9-14+38-|-2|=.13.3-5的相反数为,4-17的绝对值为的绝对值为,绝对值为327的数为 .14.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .15.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是个数据是.三、解答题(共70分)16.(6分)求下列各式的值.求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a -π|+|2-a |(2<a <π).(精确到0.01)17.(8分)求下列各式中x 的值.的值.(1)x 2-5=4; (2)(x -2)3=-0.125.18.(8分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm ,宽为2 dm ,且两块纸板的面积相等.,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm 2和3 dm 2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732人教版七年级下册 第六章 实数 单元同步测试一、选择题1、下列说法正确的是(、下列说法正确的是( ) A.A.负数没有立方根负数没有立方根负数没有立方根B.B.一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数一个正数的立方根有两个,它们互为相反数C.C.如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根如果一个数有立方根,则它必有平方根D.D.不为不为0的任何数的立方根,都与这个数本身的符号同号的任何数的立方根,都与这个数本身的符号同号 2、下列语句中正确的是(、下列语句中正确的是() A.-9的平方根是的平方根是-3 -3 -3 B.9的平方根是3 3 C.9的算术平方根是3± D.9的算术平方根是3 3、下列说法中正确的是(、下列说法中正确的是( )A 、若a 为实数,则0³aB 、若、若a 为实数,则a 的倒数为a1C 、若x,y 为实数,且x=y x=y,则,则y x = D、若a 为实数,则02³a 4、估算728-的值在的值在A. 7和8之间之间B. 6和7之间之间C. 3和4之间之间D. 2和3之间之间 5、下列各组数中,不能作为一个三角形的三边长的是(、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、10001000、、1000 1000B 、2、3、5C 、2225,4,3 D 、38,327,3646、下列说法中,正确的个数是(、下列说法中,正确的个数是( )(1)-)-6464的立方根是-的立方根是-44;(;(22)49的算术平方根是7±;(;(33)271的立方根为31;(;(44)41是161的平方根。
人教版七年级数学下册第六章 实数章末检测卷 (解析版)
第六章 实数章末检测卷一、单选题1.(上海市罗南中学七年级期中)下列等式中正确的是( )A 3B ±3C 3D 3【答案】C 【解析】 【分析】直接利用平方根和算数平方根的意义得出答案. 【详解】解:A 负数没有算术平方根,故此选项错误;、B 3,故此选项错误;C 3,故此选项正确;D 3,故此选项错误; 故选:C . 【点睛】此题主要考查了平方根和算术平方根的意义,掌握定义是解答此题的关键. 2.(2022·浙江海曙·七年级期末)下列说法正确的是( )A B .16的平方根是4±,4=±C .8.30万精确到百分位D 10b +=,则1a b =【答案】D 【解析】 【分析】根据实数的分类、平方根的定义、近似数的定义、算术平方根的非负性逐一判断. 【详解】解:A 是无理数,不是分数,故该选项错误; B 、16的平方根是4±,即4±,故该选项错误; C 、8.30万精确到百位,故该选项错误;D 10b +=,∴a=2022,b=-1,则2022(1)1a b =-=,故该选项正确; 故选:D . 【点睛】本题主要考查实数的有关定义与计算,熟练掌握实数的分类与大小比较及算术平方根、平方根的定义是关键.3.(2020·浙江省余姚市实验学校七年级期中)下列说法:①最大的负有理数是﹣1;②±36的平方根是±6;③a 与b 差的平方可表示为a 2﹣b 2;④近似数5.0×102精确到十位.其中正确的个数是( ) A .0 B .1 C .2 D .3【答案】B 【解析】 【分析】根据有理数的定义,平方根的定义,科学记数法与有效数字即可求出答案. 【详解】解:①最大的负有理数不是-1,故①不符合题意; ②36的平方根是±6,故②不符合题意;③a 与b 差的平方可表示为(a -b )2,故③不符合题意; ④近似数5.0×102精确到十位,故④符合题意. 综上,正确的只有④, 故选:B . 【点睛】本题考查了实数、科学记数法与有效数字,解题的关键是正确理解实数的定义,平方根的定义,科学记数法与有效数字,本题属于基础题型.4.(广东·广州大学附属中学荔湾实验学校九年级阶段练习)下列命题中,是假命题的是( ) A .平面内,若a ∥b ,a ⊥c ,那么b ⊥c B .两直线平行,同位角相等 C .负数的平方根是负数D =则a =b【答案】C【详解】根据平行线的性质、平方根的概念、算术平方根的概念判断即可.【解答】解:A、平面内,若a∥b,a⊥c,那么b⊥c,是真命题,不符合题意;B、两直线平行,同位角相等,是真命题,不符合题意;C、负数没有平方根,故本说法是假命题,符合题意;D=则a=b,是真命题,不符合题意;故选C.【点睛】本题主要考查了平行线的性质,平方根和算术平方根的定义,熟知相关知识是解题的关键.5.(福建洛江·八年级期末)−8 的立方根是()A.−2B.2C.±D.64【答案】A【解析】【分析】根据立方根的定义求解即可.【详解】解:∵(-2)3=-8,∴-8的立方根是-2.故选:A.【点睛】本题考查了立方根,掌握如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根是解题的关键.6.(北京·237中,无理数是()A B C.3.1415D.23 7【答案】A【解析】【分析】根据无理数的定义:限不循环小数叫无理数,结合算术平方根的性质分析,即可得到答案.,故选项A 符合题意;2,是整数,属于有理数,故选项B 不合题意;3.1415是有限小数,属于有理数,故选项C 不合题意;237是分数,属于有理数,故选项D 不合题意; 故选:A . 【点睛】本题考查了实数、算数平方根的知识;解题的关键是熟练掌握无理数的定义和算数平方根的性质,从而完成求解.7,则xy的值是( ) A .12 B .0 C .2- D .2【答案】A 【解析】 【分析】由相反数的定义,立方根的定义,求出x 、y 的值,然后代入计算即可. 【详解】 解:根据题意,,0=, ∴1120-+-=y x , ∴2y x =, ∴12x y =; 故选:A . 【点睛】本题考查了相反数的定义,立方根的定义,解题的关键是熟记定义进行解题.8.(全国·八年级单元测试)若方程2(1)5x -=的解分别为,a b ,且a b >,下列说法正确的是( ) A .a 是5的平方根 B .b 是5的平方根 C .1a -是5的算术平方根 D .1b -是5的算术平方根【解析】 【分析】根据方程解的定义和算术平方根的意义判断即可. 【详解】∵方程2(1)5x -=的解分别为,a b , ∴2(1)5a -=, 2(1)5b -=,∴a-1,b-1是5的平方根, ∵a b >, ∴11a b ->-,∴a-1是5的算术平方根, 故选C. 【点睛】本题考查了方程解的定义,算术平方根的定义,熟记定义,灵活运用定义是解题的关键. 9.(湖北房县·八年级期末)下面是一个按某种规律排列的数表,那么第7行的第2个数是:( )A B C D .【答案】B 【解析】根据观察,可得规律(n-1)最后一个数是(n-1),可得第n 行的第二个数的算术平方根是可得答案.【详解】,……第n第7行的第2故答案为:B . 【点睛】本题是通过算术平方根的变化探究数字变化规律,观察得出规律是解题关键. 10.(广东大埔·七年级期中)已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a =( ) A .10099101⨯B .9998100⨯C .989799⨯D .101100102⨯【答案】A 【解析】 【分析】通过观察,可得到规律:111(1)(2)1(2)n na n n n n n n +=+=++++,据此得出99a . 【详解】解:由已知通过观察得: 111212323a =+=⨯⨯,即11111123111(12)a +=+=⨯⨯+⨯+, 211323438a =+=⨯⨯,即21112234122(22)a +=+=⨯⨯+⨯+, 3114345415a =+=⨯⨯,即31113345133(32)a +=+=⨯⨯+⨯+, ⋯,111n na +∴=+=,所以9910010099(992)99101a ==⨯+⨯,故选:A . 【点睛】此题考查的知识点是数字变化类问题,也是考查学生分析归纳问题的能力,解题的关键是由已知找出规律:111(1)(2)1(2)n na n n n n n n +=+=++++.二、填空题11.(重庆·()2160b -=,则a b +=__. 【答案】2030 【解析】 【分析】先根据非负数的性质求出a 和b 的值,然后代入所给代数式计算即可. 【详解】解:()2160b -=,20140a ∴-=,160b -=,即2014a =,b =16, ∴2014162030a b +=+=, 故答案为:2030. 【点睛】本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a 和b 的值是解答本题的关键.12.(四川简阳·2=,则x +1的平方根是 _____. 【答案】3±##3和-3##-3和3 【解析】 【分析】根据平方根的定义求得x 的值,进而根据平方根的意义即可求得答案,平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根. 【详解】2=19x ∴+=,9的平方根是3±故答案为:3± 【点睛】本题主要考查了平方根和立方根的定义,解决本题的关键是要熟练根据平方根的意义和平方根的定义进行求解.13.(贵州六盘水·八年级期中)如图,4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方体组成,体积为512立方厘米,则小立方体的棱长为___厘米.【答案】2 【解析】 【分析】先求出每个小立方体的体积,然后根据立方体体积公式求解即可. 【详解】解:∵这个4阶魔方是由完全相同的64个小立方体组成,且魔方的体积为512立方厘米, ∴小立方体的体积3512648cm =÷=,∴小立方体的棱长=, 故答案为:2. 【点睛】本题主要考查了立方根的应用,解题的关键在于能够准确求出一个小立方体的体积.14.(北京·七年级期末)我们知道“对于实数m ,n ,k ,若m n =,n k =,则m k =”,即相等关系具有传递性.小捷由此进行联想,提出了下列命题:①对于实数a ,b ,c ,若a b >,b c >,则a c >;②对于直线a ,b ,c ,若a b ⊥,b c ⊥,则a c ⊥;③对于角α,β,γ,若α与β互为邻补角,β与γ互为邻补角,则α与γ互为邻补角;④对于图形M ,N ,P ,若M 可以平移到N ,N 可以平移到P ,则M 可以平移到P .其中所有真命题的序号是_____. 【答案】①④##④① 【解析】①正确,根据实数大小的比较法则.②错误,要考虑三条直线,不一定在同一平面内. ③错误,要考虑三个角的位置关系,即可. ④正确,利用平移变换的性质判定即可. 【详解】解:①对于实数a ,b ,c ,若a b >,b c >,则a c >.正确.②对于直线a ,b ,c ,若a b ⊥,b c ⊥,则a c ⊥,不一定成立,成立的条件是在同一平面内. ③对于角α,β,γ,若α与β互为邻补角,β与γ互为邻补角,则α与γ互为对顶角. ④对于图形M ,N ,P ,若M 可以平移到N ,N 可以平移到P ,则M 可以平移到P .正确, 故答案为:①④. 【点睛】本题考查命题与定理,解题的关键是掌握有理数的大小比较,两直线垂直的判定,邻补角的定义,平移的性质等知识,属于中考常考题型. 三、解答题15.(北京十二中钱学森学校七年级期中)代数式:①﹣x ;②x 2+x ﹣1;③nm ;④12m +;⑤﹣12;⑥πm 3y (1)请上述代数式的序号分别填在相应的圆圈内;(2)其中次数最高的多项式是 次 项式;(3)其中次数最高的单项式的次数是 ,系数是 . 【答案】(1)②④⑧;①⑤⑥ (2)二;三 (3)4,π 【解析】 【分析】(1)根据多项式与单项式的概念可直接进行求解;(3)由(1)及单项式的系数与次数可直接进行求解. (1) 解:如图,(2)解:其中次数最高的多项式是x 2+x ﹣1,它是二次三项式; 故答案为:二;三 (3)解:其中次数最高的单项式是πm 3y ,次数是4,系数是π. 故答案为:4,π. 【点睛】本题主要考查单项式与多项式,熟练掌握单项式与多项式的相关概念是解题的关键. 16.(2022·重庆实验外国语学校七年级期末)先化简,再求值:222231524323x y xy xy x y xy xy x y ⎡⎤⎛⎫⎛⎫---+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,其中40x -=.【答案】22xy - ,8- 【解析】 【分析】先算括号内的,再合并同类项,再根据绝对值,算术平方根的非负性,得到4,1x y ==- ,即可求解. 【详解】解:222231524323x y xy xy x y xy xy x y ⎡⎤⎛⎫⎛⎫---+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()222252463x y xy xy x y xy xy x y =--++-+222252463x y xy xy x y xy xy x y =-+---+22xy =- ,∴40,10x y -=+= , ∴4,1x y ==- ,∴原式()22418=-⨯⨯-=- . 【点睛】本题主要考查了整式加减中的化简求值,绝对值,算术平方根的非负性,熟练掌握整式加减混合运算法则是解题的关键.17.(江苏省无锡市经开区2021-2022学年八年级上学期期末数学试题)解方程: (1)2132x =; (2)()381270x +-=.【答案】(1)x 或x =; (2)x =12.【解析】 【分析】(1)利用平方根的概念解方程; (2)利用立方根的概念解方程. (1)解:2132x =,整理得:x 2=6,解得:x 或x =; (2)解:()381270x +-=, 整理得:(x +1)3=278, ∴x +1=32,∴x =12.【点睛】本题考查了利用平方根和立方根的概念解方程,掌握相关概念正确计算是解题关键.18.(2022·全国·八年级)(1)已知2a ﹣1的平方根是±1,3a +b ﹣1的平方根是±4,求a +2b 的算术平方根;(2)若x ,y 都是实数,且8y =求x +3y 的立方根.【答案】(12)3 【解析】 【分析】(1)根据题意,得到关于a b ,的二元一次方程,求得a b ,,代入代数式求解即可; (2)根据被开方数为非负数,求得x y ,,然后代数代入式求解即可. 【详解】解:(1)由2a ﹣1的平方根是±1,3a +b ﹣1的平方根是±4,可得2113116a a b -=⎧⎨+-=⎩,解得114a b =⎧⎨=⎩, 212829a b +=+=,a +2b(2)由8y =,3x =,8y = 333827x y +=+⨯=,x +3y 的立方根为3; 【点睛】此题考查了算术平方根和立方根的求解,涉及了被开方数为非负数的性质以及二元一次方程的求解,解题的关键是根据相关性质正确求出相应字母的值.19.(浙江长兴·七年级阶段练习)如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,(1)图1中阴影正方形的边长为 ;点P 表示的实数为 ; (2)如图2,在4×4方格中阴影正方形的边长为a . ①写出边长a 的值.②请仿照(1)中的作图在数轴上表示实数﹣a +1.【答案】(12;②见解析 【解析】 【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD 的面积,再求其算术平方根即可得;(2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为1a -+. 【详解】解:(1)正方形ABCD 的面积为:12241122⨯-⨯⨯⨯=,正方形ABCD ,AB =AP AB ∴=由题意得:点P 表示的实数为:11(2)①阴影部分正方形面积为:144413102⨯-⨯⨯⨯=,求其算术平方根可得:a = ②如图所示:点M 表示的数即为1a -+. 【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.20.(江苏江都·八年级阶段练习)已知实数a 、b 互为相反数,c 、d 互为倒数,x 求代数式(a +b +cd )x 【答案】6或-8 【解析】 【分析】根据题意可得a +b =0,cd =1,x =±7;代入计算即可. 【详解】解:∵实数a 、b 互为相反数,c 、d 互为倒数,x ∴a +b =0,cd =1,x =±7; ∴ 原式=x +0-1=x -1, 当x =7时,原式=6; 当x =-7时,原式=-8, ∴ 所求代数式的值为6或-8. 【点睛】本题考查了代数式求值,相反数的意义,倒数的定义,绝对值的意义,根据题意得出a +b =0,cd =1,x =±7是解本题的关键.21.(四川东坡·七年级期中)如图将边长为2cm 的小正方形与边长为x cm 的大正方形放在一起. (1)用x cm 表示图中空白部分的面积; (2)当x =5cm 时空白部分面积为多少?(3)如果大正方形的面积恰好比小正方形的面积大165cm 2,那么大正方形的边长应该是多少?【答案】(1)2122x x -+;(2)219cm 2;(3)13cm【解析】 【分析】(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;(2)将x=5代入计算可得; (3)根据题意列出方程求解即可. 【详解】解:(1)空白部分面积为222211122(2)2222x x x x x +-⨯⨯+-⋅=-+;(2)当x =5时,空白部分面积为22119552cm 22⨯-+=.(3)根据题意得,222165x -=, 解得x =13或-13(舍去), 所以,大正方形的边长为13cm 【点睛】此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.22.(湖北·黄石十四中七年级期中)(1)一个正数m 的两个平方根分别为3a -和21a +,求这个正数m .(2)已知52a +的立方根是3,31a b +-的算术平方根是4,c ,求3a b c -+的平方根.(3)3a =,求a b +的立方根. 【答案】(1)49;(2)4±;(3)-1 【解析】 【分析】(1)根据一个正数的平方根互为相反数列式子求解即可;(2)根据立方根和算术平方根的定义及无理数的估算列出关于a 、b 、c 的式子求值,再计算平方根即可;(3)先根据二次根式有意义的条件求出b 的值,从而得出a 的值,再计算两数的和,从而得出立方根. 【详解】解:(1)解:依题意:3210a a -++=,解得4a =-, 37a -=,2m 749==.(2)解依题意:3523a +=,2314a b +-=,34< 解得5a =,2b =,3c =316a b c -+=,16的平方根是4±(3)解:依题意2020b b -≥⎧⎨-≥⎩,得2b =,代入3a =,得3a =-1a b +=-,a b +的立方根是-1.【点睛】本题考查了平方根和立方根的综合,熟练掌握含义列出式子是解题的关键.23.(重庆南开中学九年级期中)若一个四位数m =abba ,其中a ,b 为一位正整数,则称这样的四位数为“镜箴数”,将这个“镜箴数”的个位与十位上的数字交换位置,同时将百位与千位上的数字交换位置,得到一个新的“镜箴数”'m =baab ,称交换前后的这两个“镜箴数”为一组“相关镜箴数”.规定G (m )=101m m '+,例如:m =1221,'m =2112,G (1221)=12212112101+=33.(1)G (5335)= ;G (2992)= ;(2)若m 是镜箴数,且它的百位数字大于千位数字,G (m )能被8整除,求所有满足条件的m 的值. 【答案】(1)88;121 (2)1771,2662,3553,7997 【解析】 【分析】(1)利用公式G (m )=101m m '+,进行计算即可; (2)设m =xyyx ,则m ′=yxxy ,利用公式计算G (m ),利用因式分解法和数位上的数字的特征即可解答. (1)解: G (5335)=53353553101+=88;G (2992)=29929229101+=121.故答案为:88;121. (2)解:∵m 是镜箴数,且它的百位数字大于千位数字,∴设m =xyyx ,则m ′=yxxy .x ,y 均为整数,且1≤x ≤9,1≤y ≤9,x <y . ∴m =1000x +100y +10y +x ,m ′=1000y +100x +10x +y . ∴G (m )=1000110010100010010101y y x y x x y +++++++=11111111101x y+=11(x +y ).∵G (m )能被8整除, ∴11(x +y )能被8整除.∵x,y均为整数,且1≤x≤9,1≤y≤9,∴2≤x+y≤18.∴x+y=8或16.∵x<y,∴x=1,y=7或x=2,y=6或x=3,y=5或x=7,y=9.∴所有满足条件的m的值为:1771,2662,3553,7997.【点睛】本题主要考查了列代数式,新定义下的实数运算.本题是阅读型题目,准确理解题干的定义和公式并熟练应用是解题的关键.。
人教版第六章 实数单元 期末复习测试综合卷学能测试试题
人教版第六章 实数单元 期末复习测试综合卷学能测试试题一、选择题1.下列说法中正确的是( ) A .4的算术平方根是±2 B .平方根等于本身的数有0、1 C .﹣27的立方根是﹣3 D .﹣a 一定没有平方根2.下列各数中,不是无理数的是( ) A .30.8B .﹣3π C .14D .0.121 121 112…3.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N4.已知280x y -++=,则x y +的值为( )A .10B .-10C .-6D .不能确定 5.下列各数是无理数的为( )A .-5B .πC .4.12112D .06.在3.14,237,2-,327,π这几个数中,无理数有( ) A .1个 B .2个 C .3个 D .4个 7.已知一个正数的两个平方根分别是3a +1和a +11,这个数的立方根为( ) A .4 B .3 C .2 D .0 8.下列各数中,介于6和7之间的数是( )A .43B .50C .58D .3399.已知m 是整数,当|m ﹣40|取最小值时,m 的值为( ) A .5B .6C .7D .810.比较552、443、334的大小( ) A .554433234<<B .334455432<<C .553344243<<D .443355342<<二、填空题11.若x +1是125的立方根,则x 的平方根是_________.12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .13.实数,,a b c 在数轴上的点如图所示,化简()()222a a b c b c ++---=__________.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.15.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____. 16.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 17.对任意两个实数a ,b 定义新运算:a ⊕b=()()a ab b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是52)⊕3=___.18.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____.19.31.35 1.105≈3135 5.130≈30.000135-≈________. 20.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.三、解答题21.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<332768______位数;(2)由32768的个位上的数是8332768________,划去32768后面的三位数768得到32,因为333=27,4=64332768_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:3327683-110592________=22.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L =,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 23.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数) (2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 24.下面是按规律排列的一列数: 第1个数:11(1)2--+. 第2个数:()()231112(1)11234⎡⎤⎡⎤----+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦. 第3个数:()()()()2345111113(1)111123456⎡⎤⎡⎤⎡⎤⎡⎤------+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦. …(1)分别计算这三个数的结果(直接写答案).(2)写出第2019个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果. 25.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:… (1)请按这个顺序仿照前面的等式写出第④个等式:_____;(2)根据你上面所发现的规律,用含字母n 的式子表示第n 个等式:_____; (3)请利用上述规律计算:20+21+22+23+ (2100)26.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ; (2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点A B 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点A B 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据立方根与平方根的定义即可求出答案. 【详解】解:A 、4的算术平方根是2,故A 错误; B 、平方根等于本身的数是0,故B 错误; C 、(-3)3=-27,所以-27的立方根是-3,故C 正确; D 、﹣a 大于或等于0时,可以有平方根,故D 错误. 故选:C. 【点睛】本题考查了算术平方根、平方根、立方根的定义,熟记定义是解决此题的关键.注意平方根和算术平方根的异同.2.C解析:C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】30.8 B.3π-是无理数; 1142=,是有理数;D.0.121 121 112…是无理数;故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.C解析:C【分析】.【详解】<<,∵91516<<<<,即:343与4之间,故数轴上的点为点M,故选:C.【点睛】本题主要考查了二次根式的估算,熟练掌握相关方法是解题关键.4.C解析:C【分析】根据算术平方根的非负性求出x,y,然后再求x+y即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.5.B解析:B【分析】根据无理数与有理数的概念进行判断即可得.【详解】解:A. -5是有理数,该选项错误;B. π是无理数,该选项正确;C. 4.12112是有理数,该选项错误;D. 0是有理数,该选项错误. 故选:B 【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方0.1010010001…,等.6.B解析:B 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】3.14,237,π中无理数有:,π,共计2个. 故选B.【点睛】考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.A解析:A 【分析】根据一个正数的两个平方根互为相反数,可知3a+1+a+11=0,a=-3,继而得出答案. 【详解】∵一个正数的两个平方根互为相反数, ∴3a+1+a+11=0,a=-3, ∴3a+1=-8,a+11=8 ∴这个数为64,所以,这个数的立方根为:4. 故答案为:4. 【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.8.A解析:A 【分析】求出每个根式的范围,再判断即可. 【详解】解:A、67,故本选项正确;B、78,故本选项错误;C、78,故本选项错误;D、34,故本选项错误;故选:A.【点睛】本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.9.B解析:B【分析】根据绝对值是非负数,所以不考虑m为整数,则m取最小值是0,又0的绝对值为0,令0m=,得出m=m的整数可得:m =6.【详解】解:因为m取最小值,m∴=,∴=,m解得:m=240m=,∴<<,且m更接近6,m67∴当6m=时,m有最小值.故选:B.【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小. 10.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题11.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.12..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1; 第五次:1×3+5=8; 第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8. 故答案为8.13.0 【分析】由数轴可知,,则,即可化简算术平方根求值. 【详解】解:由数轴可知,, 则, ,故答案为:0. 【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算.解析:0 【分析】由数轴可知,0b c a <<<,则0,0a b b c +<-<,即可化简算术平方根求值. 【详解】解:由数轴可知,0b c a <<<, 则0,0a b b c +<-<,||()()0c a a b c b c a a b c b c =-+++-=--++-=,故答案为:0. 【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算.14.或 【解析】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得. 【详解】M{3,2x +1,4x -1}==2x+1解析:12或13 【解析】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}=321413x x +++-=2x+1,∵M{3,2x +1,4x -1}=min{2,-x +3,5x},∴有如下三种情况: ①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立; ②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立,∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.﹣2或﹣1或0或1或2. 【分析】 有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0, ∴[x]+(x )+[x )=-2或-1; ②当时,[x]=0,(x )=0,[x )=0, ∴[x]解析:﹣2或﹣1或0或1或2. 【分析】 有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0, ∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0, ∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1, ∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2. 故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键. 【详解】 请在此输入详解!16.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:221 3n n -+. 17.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关 解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】19.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】n=中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】≈5.130≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.20.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.三、解答题21.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∵只有个位数是4的立方数是个位数是4,4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∵只有个位数是8的立方数是个位数是2,8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.22.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =, ∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数 ∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.23.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章实数单元期末复习测试综合卷检测试卷一、选择题1.设[x]表示最接近x的整数(x≠n+0.5,n为整数),则[1]+[2]+[3]+…+[36]=()A.132 B.146 C.161 D.6662.有一个数阵排列如下:1 2 4 7 11 16 223 5 8 12 17 236 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为()A.425B.426C.427D.4283.若a2=(-5)2,b3=(-5)3,则a+b的值是()A.0或-10或10 B.0或-10 C.-10 D.04.按照下图所示的操作步骤,若输出y的值为22,则输入的值x为()A.3 B.-3 C.±3 D.±95.实数310,25)A310325<<B.331025<C310253<<D325310<<6.下列各组数的大小比较正确的是()A56B3πC.5.329D. 3.1->﹣3.1 7.33x y,则x和y的关系是( ).A.x=y=0B.x和y互为相反数C.x和y相等D.不能确定8.3的平方根是()A.3B.9 C3D.±99.下列各组数中互为相反数的是()A.32(3)-B.﹣|2|2)C3838-D.﹣2和1 210.下列运算中,正确的是()A .93=±B .382=C .|4|2-=-D .2(8)8-=-二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).13.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).14.若x +1是125的立方根,则x 的平方根是_________.15.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________.16.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.17.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________.18.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.19.如果某数的一个平方根是﹣5,那么这个数是_____.20.比较大小:51-__________0.5.(填“>”“<”或“=”) 三、解答题21.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方” (初步探究)(1)直接写出计算结果:2③,(﹣12)③. (深入思考)2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)猜想:有理数 a (a ≠0)的圈n (n ≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧ 22.观察下列各式: 111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; … (1)你发现的规律是_________________.(用含n 的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭23.对于实数a ,我们规定:用符号⎡⎣a a ⎡⎣a 为a 的根整数,例如:93⎡=⎣,10=3.(1)仿照以上方法计算:4=______;26=_____.(2)若1x =,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.24.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = . (2)直接写出下列各式的计算结果: ①1111...12233420152016++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯. 25.探究: ()()()211132432222122222222-=⨯-⨯=-==-== …… (1)请仔细观察,写出第5个等式;(2)请你找规律,写出第n 个等式;(3)计算:22018201920202222-2++⋅⋅⋅++.26.观察下列两个等式:112-2133=⨯+,225-5133=⨯+,给出定义如下:我们称使等式 1a b ab -=+ 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)数对(-2,1),(3,12)中是“共生有理数对”吗?说明理由. (2)若(m ,n )是“共生有理数对”,则(-n ,-m )是“共生有理数对”吗?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选:B.点睛本题考查了估算无理数的大小.2.B解析:B【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列,便知第20行第一个数为210,而每行的公差为等差数列,则第20行第10个数为426,故选B.3.B解析:B【分析】直接利用平方根和立方根的计算得出答案.【详解】∵a 2=(-5)2 ,b 3=(-5)3,∴a=±5,b=-5, ∴a+b=0或-10,故选B.【点睛】本题考查了平方根和立方根,掌握平方根和立方根的性质是关键.4.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,x=±,∴3故选:C.【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.5.D解析:D【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=><<,3故D为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较. 6.A解析:A【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】,∴选项A符合题意;,∴选项B不符合题意;∵5.3∴选项C不符合题意;-<﹣3.1,∵ 3.1∴选项D不符合题意.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7.B解析:B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y,即x、y互为相反数,故选B.点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.8.A解析:A【分析】直接根据平方根的概念即可求解.【详解】解:∵(2=3,∴3的平方根是为.故选A.【点睛】本题主要考查了平方根的概念,比较简单.9.B解析:B【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A3,3B、﹣||,﹣||)两数互为相反数,故本选项正确;C22D、﹣2和12两数不互为相反数,故本选项错误.故选:B.【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.10.B解析:B【分析】根据平方根及立方根的定义逐一判断即可得答案.【详解】,故该选项运算错误,2=,故该选项运算正确,2=,故该选项运算错误,8=,故该选项运算错误,故选:B.【点睛】本题考查平方根、算术平方根及立方根,一个正数的平方根有两个,它们互为相反数;其中正的平方根叫做这个数的算术平方根;一个数的立方根只有一个.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.12.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,-≤[x)<x,∴x1④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.13.515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.14.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.15.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】<<a的和,解:∵M a∴M=-1+0+1+2=2,∵N是满足不等式x∴N=2,∴M+N=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.16.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.17.【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=8 18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.18.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.19.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.20.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.三、解答题21.(1)12,-2;(2)(15)4,(﹣2)8;(3)n-21a⎛⎫⎪⎝⎭;(4)7-28.【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为1a,则aⓝ=a×(1a)n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=12,(﹣12)③=﹣12÷(﹣12)÷(﹣12)=﹣2;(2)5⑥=5×15×15×15×15×15=(15)4,同理得;(﹣12)⑩=(﹣2)8;(3)aⓝ=a×1a×1a×…×n-211a a⎛⎫= ⎪⎝⎭;(4)(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧=(-3)8×(1-3)7 -(﹣12)9×(-2)6=-3-(-1 2 )3=-3+1 8=7 -28.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.22.(1)111111n n n n-⨯=-+++;(2)20172018-【分析】(1)由已知的等式得出第n个式子为111111 n n n n-⨯=-+++;(2)根据规律将原式中的积拆成和的形式,运算即可.【详解】(1)∵第1个式子为11 1122 -⨯=-+第2个式子为1111 2323 -⨯=-+第3个式子为1111 3434 -⨯=-+……∴第n个式子为111111 n n n n-⨯=-+++故答案为:111111 n n n n-⨯=-+++(2)由(1)知:原式1111111 (1)()()()2233420172018 =-++-++-++⋅⋅⋅+-+112018 =-+20172018=-【点睛】本题考查有理数的混合运算以及数字规律,分析题目,找出规律是解题关键.23.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x<4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,]=5,故答案为2,5;(2)∵12=1,22=4,且]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.24.(1)111n n-+;(2)①20152016;②1nn+;(3)10074032.【分析】(1)观察所给的算式可得:分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,由此即可解答;(2)根据所得的规律把各分数进行转化,再进行分数的加减运算即可解答;(3)先提取14,类比(2)的运算方法解答即可. 【详解】 (1)()11n n + =111n n -+; (2)①1111...12233420152016++++⨯⨯⨯⨯=11111122334-+-+-+…+1120152016-=112016-=20152016; ②()1111...1223341n n ++++⨯⨯⨯⨯+=11111122334-+-+-+…+111n n -+=111n -+=1n n +; (3)1111 (24466820142016)++++⨯⨯⨯⨯ =14(1111 (12233410071008)++++⨯⨯⨯⨯), =14(11111122334-+-+-+…+1110071008-), =14(111008-), =14×10071008=10074032. 【点睛】 本题考查了有理数的运算,根据题意找出规律是解决问题的关键.25.(1)655552222122-=⨯-⨯=;(2)12222122n n n n n +--=⨯⨯=;(3)-2【分析】(1)直接根据规律即可得出答案;(2)根据前3个式子总结出来的规律即可求解;(3)利用规律进行计算即可.【详解】解(1)26﹣25=2×25﹣1×25=25 ,(2)2n +1﹣2n =2×2n ﹣1×2n =2n ,(3)21+22+…+22018+22019﹣22020=21+22+…+22018+(22019﹣22020)=21+22+…+22018﹣22019=21+22+…+22017+(22018﹣22019)=…=21﹣22=-2.【点睛】本题主要考查有理数的运算与规律探究,找到规律是解题的关键.26.(1) (−2,1)不是“共生有理数对”,13,2⎛⎫⎪⎝⎭是“共生有理数对”;理由见详解.(2)(−n,−m)是“共生有理数对”,理由见详解.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义即可判断;【详解】(1)−2−1=−3,−2×1+1=1,∴−2−1≠−2×1+1,∴(−2,1)不是“共生有理数对”,∵1515 3,312222 -=⨯+=,∴1133122-=⨯+,∴(13,2)是“共生有理数对”;(2)是.理由:− n−(−m)=−n+m,−n⋅(−m)+1=mn+1∵(m,n)是“共生有理数对”∴m−n=mn+1∴−n+m=mn+1∴(−n,−m)是“共生有理数对”,【点睛】考查有理数的混合运算,整式的加减—化简求值,等式的性质,读懂题目中“共生有理数对”的定义是解题的关键.。