流体包裹体及应用

合集下载

流体包裹体特征及其在石油地质上的应用

流体包裹体特征及其在石油地质上的应用

流体包裹体特征及其在⽯油地质上的应⽤2019-08-06摘要:流体包裹体是地质时期形成各种矿物体过程中的地质液体,通过对流体包裹体的特征研究能得出各种矿藏形成的条件,根据流体包裹体的内涵以及特点出发,在对相应的流体包裹体的特征了解的基础之上实现了对⽯油矿藏的有效指引和开发,从⽽在⽯油地质上得到了有效的应⽤及发展。

关键字:流体包裹体;特征;⽯油地质;应⽤⼀、流体包裹体内涵流体包裹体是在沉积盆地的演化过程中,通过各种沉积物的演化作⽤,在各种沉积物形成各种矿物、岩⽯、矿藏的形成中包含的⼤量的流体包裹体,这些流质的包裹体记录下了⼤量的关于流体介质的性质、组成部分、物化的条件以及地球的动⼒学因素,实际上是对相应矿藏的演化过程的记录,在⼀定程度上可被看做是矿藏形成中的样品。

矿物的流体包裹体的按照形成的原因和过程可分为原⽣、次⽣和假次⽣的矿物包裹体。

原⽣包裹体在形成后就建⽴了与外界环境相互隔绝的体系,从⽽能切实反映矿物在演化过程中的如温度、压⼒以及矿物溶液的密度以及流体的来源等⽅⾯的切实数据,实际上也是对相应矿物形成条件的真实记录和定格。

流体包裹体是油⽓演化和形成过程中的原始记录,通过对原⽣包裹体的研究能实现对⽯油地质上的有效应⽤。

⼆、流体包裹体的类型特征根据具体的流体包裹体的成分以及相态,可分为盐⽔溶液和有机包裹体,盐⽔溶液的流体包裹体⼜包括单相盐⽔、汽液双相的盐⽔包裹体,有机包裹体⼜存在单相汽态、⽓液双相、⽓态烃、沥青、含⽓态烃的有机包裹体。

与⽯油地质相关的流体包裹体主要包括⽓液双相的盐⽔包裹体、纯⽓态烃、纯液态烃的包裹体以及⽓液两相烃包裹体、沥青包裹体。

各种包裹体均具有不同形式的特征,从⽽能在⽯油地质的探索和研究过程中根据其不同的特征和形成的条件对当地的矿物形成过程进⾏还原和推导。

⽓液两相的盐⽔包裹体的⽓液⽐⼤于5%,⽆⾊透明状,体壁边壁较为清晰,体积较⼩;纯⽓态烃包裹体⼜⽓态烃构成,透明度较差,边壁属厚壁状,个体⼤⼩各异,但呈群体分布;纯液态烃包裹体有液态烃构成,紫⾊,透明度差,蓝荧光下具有弱荧光特征;⽓液两相的流体包裹体由两相烃类构成,在不同时期形成的矿物中具有不同的颜⾊,透明度差,边壁较厚,蓝⾊荧光下液相烃有弱黄荧光特征;沥青包裹体由固态的沥青构成,⿊⾊;不透明,不规则形态,不同矿物样品中沥青含量变化⼤。

2 包裹体研究方法

2 包裹体研究方法
10 μm
FN2-3-10,2124m,长4+5,油层
FN2-3-8(荧光), 2124m,长4+5,油层
早期油气包裹体(峰2井,水层)
10 μm
35 μm
FN2-4-8,2129m,长4+5,水层
10 μm
FN2-4-7(偏光), 2129m,长4+5,水层
35 μm
FN2-4-3,2129m,长4+5,水层
椭圆型, 随机分布, 串珠状分 布
油气有机质含量 高,早期油气运 移成藏流体的含 油饱和度高
晚期
椭圆型, 不规则状, 串珠状分 布,加大 边。
油气有机质含量 低,晚期油气运 移成藏流体的含 油饱和度低
五、油气包裹体与油气聚集成藏期次
6. 油、水井(层)的油气包裹体特征
油/ 水层 包体 类型 GOI (%) 荧光 产状 包裹类型组合
包体放射性同位素年代分析 含油气包体脉体年代分析 包 体 测 试 均一温度 油气成藏年代学研究
油气包裹体油气成分、成熟度、油源、 运移、期次等研究
冰点温 度
共结点温度
包裹体形成时流体环境条件 (温度\深度\盐度)
包 裹 体 显 微 镜 研 究 流 体 包 裹 体 分 类:



1. 按相态分类: (1) 固体包裹体 (2) 液态包裹体 (3) 气态包裹体 (4) 多相包裹体 2. 按照形成时间分类: (1) 原生包裹体 : 与主矿物同时形成; (2) 次生包裹体 :在矿物形成后,沿裂隙充填 分布,裂隙切穿矿物边缘和多个矿物边界; (3) 假次生包裹体: 在矿物形成后,沿裂隙充 填分布, 裂隙限在矿物内部, 没有穿透矿物边缘,是 早期裂隙,之后矿物又生长裂隙愈合。 3. 按照包裹体形态特征分类

流体包裹体研究进展、地质应用及展望

流体包裹体研究进展、地质应用及展望

流体包裹体研究进展、地质应用及展望一、本文概述流体包裹体,作为地球内部流体活动的重要记录者,一直以来都是地质学领域的研究热点。

它们以微小包裹体的形式被固定在矿物晶体中,为我们提供了了解地球内部流体性质、活动历史以及成矿作用的关键信息。

本文旨在综述流体包裹体的研究进展,包括其形成机制、分析方法以及地质应用等方面的内容,并对未来的研究方向进行展望。

通过梳理流体包裹体的研究历程,我们可以更好地理解地球内部流体系统的运作机制,为资源勘探、环境评价等领域提供理论支持和实践指导。

二、流体包裹体的形成与演化流体包裹体,作为地质作用中重要的记录者,其形成与演化过程对于理解地壳内流体活动、物质迁移以及成矿作用等具有重要意义。

包裹体的形成通常与岩浆活动、变质作用、构造活动等地质过程密切相关。

在岩浆活动中,随着岩浆冷却和结晶,其中的挥发分和溶解物被捕获在矿物晶格中,形成原生包裹体。

而在变质作用中,由于温度、压力的变化,原有岩石中的矿物发生重结晶,其中的流体被包裹在新的矿物中,形成次生包裹体。

包裹体的演化过程则是一个复杂的物理化学过程。

随着地质环境的变化,包裹体中的流体可能发生相变、溶解-沉淀、氧化还原等反应,导致其成分、形态、大小等发生变化。

这些变化不仅记录了地质历史中的流体活动信息,也为研究地壳内流体性质、运移路径和成矿机制提供了重要线索。

近年来,随着科学技术的进步,尤其是微区分析技术的发展,使得对流体包裹体进行更加精细的研究成为可能。

例如,通过激光拉曼光谱、电子探针等手段,可以对包裹体中的流体成分进行定性定量分析;而通过显微测温、压力计算等方法,则可以揭示包裹体的形成温度和压力条件。

这些技术的发展为深入研究流体包裹体的形成与演化提供了有力工具。

未来,随着研究方法的不断完善和创新,我们对流体包裹体的认识将更加深入。

通过综合应用多种技术手段,结合地质背景分析,有望揭示更多关于地壳内流体活动、物质迁移和成矿作用的细节信息。

应用流体包裹体研究油气成藏以塔中奥陶系储集层为例

应用流体包裹体研究油气成藏以塔中奥陶系储集层为例

应用流体包裹体研究油气成藏以塔中奥陶系储集层为例1. 本文概述随着全球能源需求的不断增长,对油气资源的勘探与开发显得尤为重要。

在我国,塔里木盆地作为重要的油气生产基地,其奥陶系储集层的研究对于理解油气成藏机制、提高油气勘探成功率具有重要意义。

本文旨在通过应用流体包裹体技术,对塔中奥陶系储集层油气成藏过程进行深入研究,以期为该区域的油气勘探提供科学依据。

流体包裹体作为地质流体活动的直接记录者,能够提供油气藏形成和演化的重要信息。

本文首先对流体包裹体的基本概念、形成机制及其在油气成藏研究中的应用进行概述。

接着,详细介绍了塔中奥陶系储集层的地质背景、流体包裹体的岩相学特征及其在油气成藏过程中的作用。

通过分析流体包裹体的显微测温数据,探讨了油气成藏的温度、压力条件及其演化历史。

结合区域地质资料,建立了塔中奥陶系储集层油气成藏的动力学模型,并对油气勘探前景进行了评价。

本文的研究成果不仅有助于深化对塔中奥陶系储集层油气成藏机制的认识,而且对于指导我国类似盆地的油气勘探具有重要的实践意义。

2. 塔中奥陶系储集层地质概况塔中地区位于中国塔里木盆地中央隆起带的东部,是一个典型的油气富集区。

该地区的奥陶系储集层是塔里木盆地内重要的油气储层之一,其发育和分布对于油气成藏具有重要的控制作用。

奥陶系储集层主要由碳酸盐岩组成,包括石灰岩、白云岩和泥质灰岩等。

这些碳酸盐岩在沉积过程中经历了多期构造运动和成岩作用,形成了复杂的储集空间系统。

储集空间主要包括溶蚀孔洞、裂缝和晶间孔等,其中溶蚀孔洞是最主要的储集空间类型。

这些储集空间的形成与分布受到了多种因素的控制,包括沉积环境、成岩作用、构造运动以及流体活动等。

在地质历史上,塔中地区经历了多期的构造运动和热液活动,这些活动对于奥陶系储集层的形成和演化产生了重要影响。

构造运动导致了储集层的褶皱和断裂,形成了有利于油气运移和聚集的构造格局。

热液活动则提供了丰富的流体来源和能量,促进了储集空间的溶蚀和扩大,同时也为油气的生成和运移提供了有利条件。

流体包裹体在深部找矿中的应用(周云,汪雄武,陈兵,秦志鹏等

流体包裹体在深部找矿中的应用(周云,汪雄武,陈兵,秦志鹏等

作者简介:周云,女,1984年生,硕士研究生,研究方向成矿规律与成矿预测1E-m ai:l boh et2007@yahoo 1co m 1cn流体包裹体在深部找矿中的应用周云1,汪雄武1,陈兵2,秦志鹏1,侯林1,张欣1,彭慧娟1,赵岩1(11成都理工大学 地球科学学院,四川成都610059;21中铁二院 成都地勘岩土工程有限责任公司,四川成都610031)据联合国发布的最新预测,2050年世界人口将达92亿,人口的增长将同时相应刺激人类对矿产需求的增多,由于现有矿床大量采空,这就要求有经济可行矿床的持续再补给来满足这种需求。

然而,找矿勘查难度越来越大,在21世纪及其以后,矿床勘查新方法的发展显得极为重要。

流体包裹体研究作为一种找矿方法已被广泛认可,它在促进我们认识各种矿床的成矿流体演化过程方面作出了较大的贡献(Roedder ,1984;W il k i n son ,2001;Andre w,2007),对其研究提供数据间接判断出的矿床模式,在矿床勘查阶段相当有效(Roberts &Sheahan ,1988;Robb,2005;W illia m s Jones &H einrich ,2005)。

在过去的半个世纪中,各种岩浆-热液矿床中流体包裹体的研究成果数以千计,基于这些研究,许多矿床类型中流体包裹体的特征被我们所认知,并且这些特征现阶段可以作为经验被应用于暂未发现的新矿床的勘探。

流体包裹体可应用于矿床勘查的初期阶段,用于判断矿床的类型,圈定找矿靶区,在确定一个潜在成矿系统后,再确定可能的成矿载体。

这些应用只需要基本的流体包裹体知识,一旦一个成矿系统被确定后,可以采集更多详细的流体包裹体数据来判断该矿床成矿流体特征是否与已知成矿系统相似。

流体包裹体方法尤其适用于强烈风化地区和有地质露头地区(Bodnar ,2008)。

造山带型金矿成矿系统以低-中等盐度,显示不混溶现象,富含CO 2碳质流体包裹体为特征,(CO 2+C H 4)的摩尔分数为5%~30%或更高,可见H 2O-CO 2不混溶,盐度通常低于10%N a C11eq ,少量盐度可达20%NaC11eq ,偶见含盐类子晶的包裹体(图1A,B ,C )。

流体包裹体及应用

流体包裹体及应用

流体包裹体在其 他领域的应用
宝石鉴定与优化处理
添加标题
宝石鉴定:流体包裹体 可以作为宝石真伪的鉴 别依据通过观察包裹体 的形态、大小、颜色等 特征来判断宝石是否经
过人工处理或合成。
添加标题
优化处理:在宝石的优化 处理中流体包裹体也被广 泛应用。通过加热、加压 等方式改变流体包裹体的 状态可以使宝石的颜色、 透明度等外观特征得到改 善提高宝石的美观度和价
地球科学研究
流体包裹体在地球 科学研究中的应用
流体包裹体在石油 和天然气勘探中的 应用
流体包裹体在矿床 学研究中的应用
流体包裹体在地质 年代学研究中的应 用
地质灾害预警
监测地壳活动预测地震
识别地下水污染保护水资源
Байду номын сангаас
添加标题
添加标题
评估滑坡、泥石流等灾害风险
添加标题
添加标题
监测矿产资源开发中的环境问题
流体包裹体是地质 过程中岩石或矿物 中包含的流体相物 质
形成机理包括成岩 期、变质期和成矿 期等不同地质时期
流体包裹体的形成 与地下水、油气、 地热等流体活动密 切相关
形成机理的研究有 助于了解地质历史 和矿产资源形成过 程
流体包裹体的研 究方法
显微观察技术
显微观察技术: 通过显微镜观察 流体包裹体的形 态、大小、数量 和分布特征确定 其类型和成因。
农业地质调查:利用流体包裹体研究土壤和地下水形成历史 农业环境监测:通过流体包裹体分析土壤和水体的污染状况 农业资源利用:利用流体包裹体研究土壤肥力和植物生长状况 农业气候变化研究:通过流体包裹体分析气候变化对农业的影响
感谢您的观看
汇报人:
添加 标题
流体包裹体的特征:具有封闭性、原生性和不 可再生性是地质历史中流体活动的记录和证据。

流体包裹体

流体包裹体

流体包裹体在地学中的应用一.概述流体包裹体在矿物晶体中出现是普遍的,它几乎是和主矿物同时并由相同物质形成的。

流体充填在晶体缺陷中后,立即为继续生长的主矿物所封闭,基本没有物质的渗漏,体积基本不变。

因此,流体包裹体是原始成矿,成岩溶液或岩浆熔融体的代表。

流体包裹体作为成矿流体样品是矿物最重要的标型特征之一,通过研究流体包裹体,可为解决一些地质问题提供可靠资料[1]。

二.流体包裹体的基本概念流体是一个在应力作用下发生流动, 并且与周围介质处于相对平衡状态下的物体。

矿物中流体包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中, 被包裹在矿物晶格缺陷或穴窝中的至今尚在主矿物中封存并与主矿物有着相的界限的那一部分物质。

根据成因, 包裹体可分为原生、假次生和次生等。

矿物流体包裹体作为一种研究方法, 起初主要被应用于矿床学的研究。

目前, 流体包裹体的分析已广泛应用于矿床学、构造地质学、壳幔演化、地壳尺度上的流体迁移石油勘探以及岩浆岩系统的演化过程等地学领域。

流体包裹体研究的基本任务之一, 即是尽可能地提供准确详细的有关古流体组成的物理化学信息, 以便于建立古流体作用过程的地球化学模型[2]。

三.流体包裹体研究方法流体包裹体研究是地质流体研究的一个重要组成部分。

自20世纪70年代以来,流体包裹体研究有重大进展,尤其在单个流体包裹体成分分析方面。

随着激光拉曼显微探针(LRM)、扫描质子微探针( PIXE)、同步加速X—射线荧光分析(SXRF)及一些质谱测定法的应用与发展,我们巳经能够较精确的测定单个流体包裹体成分,并且己有可能对流体包裹体中最重要的参数一重金属元素进行较精确的测定。

相对而言,流体包裹体镜下观察和均一温度的研究手段较为单一,主要为测温分析与扫描电子显微镜等方法,而成分分析研究方法则多样化。

成分测试主要向微区方向发展,可分为显微测温(对包裹体盐度的测试)及包裹体成分的仪器分析,仪器分析又可分为三类,即非破坏性单个包裹体的成分分析(如红外光谱法),破坏性单个包裹体成分分析(如激光等离子光谱质谱法)和破坏性群体包裹体的成分分析(如色谱—质谱法)。

包裹体实验技术与应用-

包裹体实验技术与应用-

含2.5wt% NaCl和5 wt%CaCl2包裹体低温相变照片
公式:S=0.00+1.78θ-0.0442θ2+0.000557θ3 S为NaCl的重量百分数,θ为冰点下降温度(℃)NaCl是地球上盐水包裹体的最主要质 。冷冻法在NaCl-H2O体系只适法
(1)石油流体中发荧光的主要是芳香烃(2)与碳-碳双键的跃迁有关(3)重质油荧光光谱波 较长,成熟度高荧光颜色蓝移(4)油气的荧光演化与有机质荧光反向。
实测不同密度原油的透光和荧光特征
4-1 单个包裹体分析--显微荧光和色度分析
比色系数 光强度
色 度 坐 标 图
色度计算界面
4-1 单个包裹体分析--显微荧光和色度分析
1、研究内容、方法和流程简介 2、油气包裹体岩相学 3、油气包裹体测温 4、油气包裹体成分测定 5、油气包裹体捕获温度和压力 6、油气包裹体测年学
二 油气包裹体的研究内容和方法
分析项目 分析内容
1、研究内容、方法和流程简介 使用仪器 多功能显微镜(透射光+偏光+荧光) 阴极发光显微镜 多功能显微镜+冷热台 显微荧光光谱仪 显微傅里叶红外光谱仪 显微激光拉曼光谱仪 同步辐射X射线荧光(SXRF) 微束质子诱发X射线法(PIXE) 激光剥蚀(消融)电感耦合等离子体 质谱(LA-ICP-MS) 色谱-质谱-同位素质谱仪 电感耦合等离子质谱仪 离子色谱仪 激光共聚焦扫描显微镜 PVTsim模拟软件
影响因素(1)色层效应
颜色变浅、荧光蓝移(2)生物降解 石油稠化,荧光红移
有机包裹体的荧光特征反 映了其内有机质(石油)的成 分特征及其热演化程。 石油中芳烃成分越高时 ,其荧光光谱主峰向长波方 向偏移,即“红移”,反之 则“蓝移” 原生有机包裹体热演化程 度较低,其内有机质芳烃较 多;次生有机包裹体热演化程 度较高。 至于暗褐红色荧光有机包 裹体由于其中气态烃和大部 分液态烃泄漏,而剩余的主 要为固态烃和重烃部分,有 机包裹体的荧光特征即为其 中剩余重烃部分的荧光,与 原生有机包裹体相比,荧光 明显“红移”。

利用流体包裹体确定油气成藏年代

利用流体包裹体确定油气成藏年代

利用流体包裹体确定油气成藏年代1.1国内外研究现状近年来由于包裹体测试技术的提高,有机包裹体已成为含油气盆地研究的重要手段之一。

流体包裹体作为地球化学的一种手段,已广泛用于矿床学等领域中,并取得了显著成效。

而包裹体在沉积学及石油地质中的应用,只有十几年的历史。

研究表明,流体包裹体在测定古地温、探讨油气演化及生油岩的评价等方面有着广泛的用途。

1.2原理流体包裹体是在矿物生长过程中被包裹在矿物晶格的缺陷或窝穴中的成矿流体。

流体包裹体在油气储层中广泛分布,按其相态可分为液体包裹体,气体包裹体和气液包裹体;按其成分可以分为盐水包裹体和油气包裹体。

油气包裹体是油气在储集层中运移和聚集过程中,被储集层的成岩矿物所包裹而形成的,储集层中的油气包裹体存在反映了在地质历史时期储集层油气充注事件。

伴随生烃盆地的演化,形成的有机包裹体的类型、特征等不断地发生规律性的变化。

根据有机包裹体的演化特点可以确定有机质的热演化程度和油气的形成阶段。

在这里要指出的一点是,烃类包裹体的荧光色不能作为区分期次的主要依据,因为许多情况下荧光色与包裹体形成过程的分异作用有关。

在实验室将气液包裹体置于冷热台上加热至气相消失,再恢复成均一液相时的温度称为流体包裹体的均一温度,以成岩矿物次序为基础,通过流体包裹体均一化温度和冰融点测试,结合储集层的埋藏受热史,可确定流体包裹体形成时储集层受热的温度,以及相应的埋深和地质时代,从而判断油气充注的时间。

1.3具体实例说明以塔里木盆地英南2井气藏为例,用流体包裹体进行油气成藏期次的研究。

镜下观察流体包裹体,并对与烃类共生的盐水包裹体进行均一化温度和冰融点测试,进行油气藏成藏期的分析。

流体包裹体分析表明英南2井气藏多为气态烃包裹体,大部分存在于石英次生加大边中,共生的盐水包裹体的均一化温度集中且接近现今井温,对比埋藏史得出:天然气是在近10Ma时一次性充注成藏。

英南2井是一个油气藏,在侏罗系、志留系和奥陶系共发现了59层累计厚度达451.5 m的油气显示,在侏罗系井段3624.80—3667.56 m不仅获得了高产工业气流,而且获得了低产凝析油,但未钻遇任何烃源岩。

储层流体包裹体在油气成藏期次和过程中的应用

储层流体包裹体在油气成藏期次和过程中的应用
第二期油气注入发生在石英次生加大期间至晚期方解 石沉淀胶结之前,其主要证据为石英加大边的内-中-外 带及中-晚期方解石胶结物中均发育中期的油气包裹体。 该期包裹体以气液烃包裹体为主,其次为液烃包裹体和 气烃包裹体,均一温度为90~120℃左右,发育程度 较高,反映深部成熟油气的大规模运移、储集。
2.4 确定成藏期次
1.1 流体包裹体定义
1.1 流体包裹体定义
进行包裹体研究的三个基本假设 (1)均一性:包裹体形成时,被捕获的包裹
体内物质为均匀相; (2)封闭性:包裹体形成后,不再有物质的
交换作用; (3)等容性:包裹体形成后,其体积不发生
变化
1.2 流体包裹体分类
按相态划分:液体包裹体、气体包裹体和气液 ቤተ መጻሕፍቲ ባይዱ裹体
按成分划分:盐水包裹体和油气包裹体 按照成因分类:有原生、次生、假次生三种 。
纯液
气液
烃+水
原油-沥青
1.3 流体包裹体特点
(1)在沉积成岩成矿作用的任一阶段,只要 沉积物发生结晶或重结晶、胶结(次生加大)或 自生矿物的形成作用,即可形成流体包裹体;
(2)流体包裹体不包括介质中的碎屑物质 (晶体、晶屑或岩屑等);
1.3 流体包裹体特点
(7)无论是在被包裹前或被包裹后,流体包 裹体与主矿物间几乎不发生物质的溶解、交换 或其它化学反应;
(8)现今所见流体包裹体的外壁就是主矿物 与包裹体的相界限。由于界限的存在,包裹体 与主矿物之间互为独立。
2 流体包裹体在成藏期次和过程中的应用
在油气成藏期次及充注史研究中, 流体包裹体方法的应用主要表 现在以下三个方面(郝芳等;1996)
第三期油气注入发生在晚期方解石及自生石英、石英 胶结物沉淀期间。此期油气包裹体发育程度高,主要为 气液烃包裹体,其次为气烃包裹体,均一温度相对较高, 位于120~160℃之间。表明此期是成熟-高成熟油气 的一个大规模运移期。

流体包裹体及其在含油气盆地研究中应用

流体包裹体及其在含油气盆地研究中应用

摘要流体包裹体及其在含油气盆地研究中应用流体包裹体是成矿成岩流体(含气液的流体或硅酸盐熔融体)在矿物结晶过程中,被包裹在矿物晶格缺陷或穴窝中的、至今尚在主矿物中封存并与主矿物有着明显的相边界的那一部分物质。

矿物包裹体的形成贯穿在整个地质作用过程中。

它记录并保存地质作用不同阶段的物理-化学特征包括温度、压力、PH、EH、化学组成、矿化度、同位组成、热动力条件等。

油气运移过程中形成的流体包裹体,往往产自于碳酸盐岩和碎屑岩中的方解石脉、石英脉、石英次生加大边、石英颗粒裂缝愈合处或与其同期形成的萤石、硬石膏等自生矿物中,特别是被包裹在晶格缺陷或窝穴内的那部分由有机的液体、气体组成的包裹体,称为有机包裹体,它们是油气运移聚集过程的直接标志。

流体包裹体作为一个独立的地球化学体系,可以反映成矿时的流体性质(包括温度、压力、pH值等),作为流体活动的唯一原始样品和直接标志,正日益受到国内外地质学家的高度重视。

有机包裹体研究在盆地演化史分析、恢复盆地古地温、分析断裂构造、研究油气运移通道、确定油气运移成藏期次、确定油气演化程度和形成阶段、确定油气勘探深度和预测远景区以及油气源对比等领域取得了明显的进展,已成为生油盆地研究的重要手段之一。

流体包裹体的均一温度、冰点和成分是目前研究流体包裹体最为关心的内容,特别是在油气勘探方面。

包裹体的均一温度反映的是包裹体形成时的温度,对于油气包裹体而言也就是油气充注时的温度,因此利用包裹体的均一温度可以研究成藏期次及充注时间。

包裹体的冰点可以用于研究流体的盐度,从而恢复古环境。

包裹体的成分还可以直接反映流体的组分。

一、流体包裹体的分类流体包裹体可根据组成的不同分为七个亚类:1)、纯液体包裹体。

在室温下为单相液体包裹体,纯液体包裹体通常是从均匀流体中捕获的,形成温度一般较低(图1);2)、纯气体包裹体。

在室温下为单相气体包裹体,一般是在火山喷气、气成条件或沸腾条件下形成的;3)、液体包裹体。

流体包裹体在油藏地球化学中的应用(精)

流体包裹体在油藏地球化学中的应用(精)

Agilent 7000B

性能特点:对于诸如食品、环境、药物和法医鉴定基质中 的农药、多环芳烃、多氯联苯、拟除虫菊酯、四氢大麻酚 和甾族化合物的分析具有飞克级的灵敏度。对于高通量分 析,Agilent 7000B可以配置Agilent 7693A自动液体进 样器(ALS),从而实现许多分析工作的自动化。该ALS是 一个完全模块化的设备,用户可以按照自己的需求配置确 切的自动进样器。从带16位样品盘的基本进样器开始,可 以根据需要增加样品盘容量。可选项包括实现长时间无人 值守操作的第二个进样塔、150位样品盘、以及包含新的 样品制备功能的加热器/混合器/条形码识别器。该ALS支 持“三明治”进样,它能够在注射前加入等量的内标和/ 或溶剂。Agilent 7000B GC/MS/MS的运行采用强有力 的、容易学习的MassHunter工作站软件实现仪器控制、 数据采集、定性和定量数据分析、以及报告。
赛默飞世尔Thermo Scientific MAT 253稳定同位素比质谱仪

系统利用其所具有的高灵敏度和高精确度很适合 同位素比测定。
仪器特点: 1、可从最小量的样品中获得精确的测量结 果,是这种仪器独有的特点。 2、质量数范围:1~150amu。 3、可连接多种样品制备装置包括元素分析 仪、气相色谱仪、多用途样品制备装置等。 4、更可扩展到Si、Cl的气体样品以及惰性 气体的同位素比值精确测定。
Agilent 7890A气相色谱仪

性能特点: 1、采用微板流控技术,提供强大的 色谱分析功能,缩短分析周期 * 溶剂旁路 * 中 心切割——将选择的组份切到另外一个色谱柱 * 反吹——缩短分析周期及延长色谱柱寿命 * 分 流——-可以采集多种信号,如FPD, NPD, MS和 ECD * QuickSwap(GC/MS)——更换色谱柱无 需放真空 * 全二维气相——复杂样品体系的分离 检测 2、精度最高的电子气路控制(EPC): 0.001psi 3、板转式进样口设计-进样口维护更 加方便快捷 4、仪器监控和智能诊断软件,大大 延长运行时间 5、可以配置FID, NPD, TCD, FPD, SCD, NCD和质谱检测器 6、分析方法与 Agilent 6890系统兼容

运用流体包裹体探讨上古生界油气成藏期次和时间

运用流体包裹体探讨上古生界油气成藏期次和时间

运用流体包裹体探讨上古生界油气成藏期次和时间摘要:流体包裹体在沉积盆地中广泛分布,它是封存于矿物晶穴或裂隙中的原始流体,是流体运移聚集过程的原始记录。

流体包裹体在绝大多数情况下不因后期油气继承性活动的叠加改造而消失,在这些保存至今的形成于油气生、运、聚、散各阶段的原始样品中,含有丰富的油气成藏信息,对成矿流体的运移聚集成藏具有重要的示踪作用,成为追踪盆地流体活动的有利工具,近年来流体包裹体技术在油气成藏研究中得到广泛的应用。

文章运用流体包裹体测温方法确定上古生界的油气成藏期次和成藏时间。

关键词:流体包裹体;上古生界;油气成藏;期次和时间流体包裹体是指成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中,被包裹在矿物晶格缺陷或穴窝中的、至今尚在主矿物中封存并与主矿物有着相的界限的那一部分物质。

本文以苏里格地区为例探讨18口井中的本溪组—石河子组盒八段致密砂岩储层中采集了66块流体包裹体样品,并进行了流体包裹体的透光和荧光观察,为了使样品在平面和垂向上均匀分布,挑选了采自太原组—山西组的35块样品进行成岩流体包裹体均一温度等测量,进一步划分苏里格地区上古生界的油气成藏期次,并结合埋藏史确定其成藏时期。

1 流体包裹体的一般分类1.1 流体包裹体成因分类成因分类是按同一矿物中包裹体形成先后及其与母液的成因联系而划分的。

1.2 流体包裹体成份分类根据常温下包裹体的成份和相态的差异,将与成岩作用有关的包裹体划分为3类:①盐水溶液包裹体;②烃类包裹体;③CO2包裹体。

2 探讨区流体包裹体特征关于流体包裹体特征的描述对探讨本区流体性质及其成因十分重要,所探讨的流体包裹体宿主矿物主要是石英次生加大边、石英颗粒微裂隙及石英颗粒碎屑,胶结物绝大多数是绿泥石,其不发育包裹体,在方解石交接物中可见少量的包裹体。

绝大部分群体包裹体具定向排列的特点,这种定向排列由微裂隙和裂缝造成;部分呈面状、孤立状分布的包裹体个体较大,一般认为是继承性包裹体。

流体包裹体方法在油气源追踪对比中的应用——以四川盆地碳酸盐岩大型气田为例

流体包裹体方法在油气源追踪对比中的应用——以四川盆地碳酸盐岩大型气田为例

6! 前言
九十年代以来, 流体包裹体已广泛应用于油气地质领域 ( +/EE "* $0J , 6RRS ;TG>N’)I’=M "* $0J , 6RR8 ;1G*M "* $0J , 6RR8 ; P)>@F=&)*N0 "* $0J , :77: ) , 但在油气源追踪对比研究中运用 较少, 原因在于含油气盆地往往经历了多期构造运动叠加和 多期成藏, 使得油气运移和油气源追踪的研究复杂化。而解 决这些问题是辨别混合后的多源多期油气, 恢复油气生、 运、
>&*$ /"*%-0-;+&$ ?+)+&$! 岩石学报
流体包裹体方法在油气源追踪对比中的应用 — — —以四川盆地碳酸盐岩大型气田为例
!
陶士振! 张宝民! 赵长毅 "#$ %&’(&)*,(+#,- ./01’* /*2 (+#$ 3&/*45’
中国石油勘探开发研究院, 北京! 677789 !"#"$%&’ ()#*+*,*" -. /"*%-0",1 2340-%$*+-) $)5 6"7"0-41")* -. 8’+)$,9"+:+); 677789 ,8’+)$ :77: <6: <67 收稿, :779 <7; <76 改回=
< B A 1
样品取自四川盆地磨溪、 五百梯、 沙坪场和卧龙河气田 的储层碳酸盐岩和有关烃源岩 ( 海相泥页岩、 泥质灰岩和上 二叠统煤系源岩) 。包裹体寄主矿物主要为碳酸盐岩中胶结 物、 重结晶矿物 ( 方解石和白云石) 和碳酸盐脉, 以及烃源岩 中的石英脉和方解石脉。 在实验研究中, 将样品磨制为两面抛光的包裹体片, 制 片后首先在 J7,9F5# 普通显微镜下观察、 寻找、 圈定包裹体 所在部位, 然后在英国产 K6/0E93LM=22 显微冷热台 ( 误差为 2% &N ) 上进行均一温度、 初熔温度和冰点的测定。对选定的 气液两相包裹体进行加温, 至气泡刚消失时的温度, 即为均 一温度, 经过压力校正为捕获温度。在进行盐度测试时, 首 先降低至过冷却状态, 使包裹体完全冻结, 然后回温至冰晶 刚刚熔化, 这时的温度为低共熔点 ( 即初熔温度) , 据此确定 溶液体系类型。测定冰点 ( 即过冷却包裹体的最后一颗冰晶 熔化或溶液刚开始结冰时的温度) 后, 根据冰点3盐度对应数 值表或有关相图得出溶液的盐度。 单个烃类包裹体成分的测试, 是用英国 !$/6#.EO 公司生 产的 !E9E/ H,#*$9 PQR3&222 型显微激光拉曼光谱仪。使用 低功率激 光 源 可 对 样 品 中 包 裹 体 的 气、 液部分进行微区 ( & !9) 探测分析, 分辨率可达 &/9。扫描波段可任意选择, 可一次性获得全波段拉曼和荧光光谱 ( 2 S =(22-9 T & ) , 样品 鉴定速度极快, 通常不超过 =2 秒。

包裹体在油气地质中的应用

包裹体在油气地质中的应用

油气测试分析技术与应用作业:流体包裹体姓名:学号:老师:陈永进流体包裹体在油气地质上的应用中国地质大学(北京)能源学院10060913班摘要:流体包裹体在油气地质上的应用很广泛,流体包裹体在研究油气成藏期次、有机质的成熟度、流体包裹体均一温度与油气的生成与演化以及在油气运移聚集研究中有重要作用。

关键词:流体包裹体地质应用油气成藏示踪引言:在矿物形成过程中,由于各种因素的影响,使正在生长(或长成后)的矿物产生各种缺陷,介质在矿物继续生长过程中被圈闭于这些缺陷中而保留、保存下来。

这些独立的封闭体系就是流体包裹体。

包裹体含有丰富的成岩成矿信息,因而被广泛应用于确定成岩成矿流体的性质形成条件与形成时代。

一.流体包裹体概念包裹体(inclusion)也简称为包体,原是矿物学中使用的一个术语,指矿物中由一相或多相物质组成的并与宿主矿物具有相的界限的封闭系统。

包裹体的物质来源可以是与宿主矿物无关的外来物质或是相同于宿主矿物的成岩、成矿介质。

包裹体的成分多样,形状和大小各异,既有固相,也有液相和气相的,还有这三种相态的不同组合。

包裹体含有成岩成矿的“母液”,因此它是研究地质作用的珍贵样品,能较客观地反映地质历史的原貌。

油气包裹体是存在于储层并被捕获封闭于成岩自生矿物晶格缺陷或碎屑矿物成岩愈合裂隙中的显微流体样品主要成分有甲烷乙烷等各种烷烃芳香族化合物液体原油及沥青等有机质有时也含一定量的盐水溶液这种包裹体通常也称作烃流体包裹体或者有机包裹体。

按它与主矿物形成的时间关系,可分为原生、假次生和次生包裹体;按其含有物的物理状态,可分为岩浆包裹体和流体包裹体,后者又可按气液比分为气相包裹体(气液比>50%)和液相包裹体(气液比<50%);按相态数分为单相、两相和多相包裹体;按成分分为高盐度、低盐度、含二氧化碳、硫化氢以及含有机质包裹体等。

二.形成机制一般认为油气运移充注过程只要发生成岩作用就会形成油气包裹体。

宝石学中对流体包裹体研究的应用探讨

宝石学中对流体包裹体研究的应用探讨

宝石学中对流体包裹体研究的应用探讨【摘要】在当前的宝石学的研究中,对于其中的流体包裹体的研究,为宝石学的研究增添了新的技术支持,也相应的提供了许多新的思路。

当前,我们对流体包裹提的研究主要针对的是;宝石学中的宝玉石在成矿理论中的研究,合成宝石的理论方法研究,以及处理宝石的理论方法研究上。

在这之中,相对于宝石的成矿研究,我们在宝石合成和处理以及宝玉石的鉴定方面,还处在一个比较初级的进展时期。

其中,对于宝石的鉴定研究,更加需要加强在研究科技和地质知识方面的提高。

【关键词】流体包裹体;宝石鉴定;处理方法0.引言针对于流体包裹体的研究,我们还处在不断发展的阶段,这种研究也是当前世界比较重多的地质科学研究。

流体包裹体的主要概念就是;在地下矿藏中的地质年代久远的流体物质。

这些流体物质中包含着不同年代以及不同环境中所遗留下来的化学物质。

一般,我们对于流体的研究,主要从构造地质学和矿床学来进行研究探讨,针对石油勘探和探讨岩浆岩的演化过程。

对于流体包裹体在宝石学中的应用还没有太多的研究。

其实,流体包裹体大多存在于宝石矿物之中,就目前,我们已经在很多的宝石矿物中发现了流体包裹体的存在。

像钻石,红宝石,蓝宝石,海蓝宝石以及祖母绿,橄榄石和水晶,翡翠等,其中都有流体包裹体的存在。

下面,我们就对流体包裹体在宝石学中的应用加以研究和探讨。

1.宝石学中的流体包裹体1.1宝石成矿理论研究流体包裹体是在矿床的形成过程中形成的,其过程是通过,成矿的流体在岩石中扩散和不断的渗透,使其经过侵蚀变化和重结晶中形成。

由于在此过程中,流体各个不同部位的温度和压力不同,导致了其包裹体自身的形状特征也不尽相同。

而且,在这些有规律的变化中,其范围往往会超过流体包裹体所在岩体本身的范围。

所以,人们很好的利用了这特点,将其应用于矿藏寻找的工作中,并得到了很好的效应。

宝石矿床大致分为岩浆岩,伟晶岩,热液以及变质着四种类型,这些矿床类型在其形成中,流体在其中都起到了一定的作用。

流体包裹体研究进展及其在矿床学中的应用

流体包裹体研究进展及其在矿床学中的应用

流体包裹体研究进展及其在矿床学中的应用摘要:流体包裹体是指在矿物晶体中包裹着的微小流体包裹体,其包含了形成矿床的重要信息,如成矿物质来源、物质输运途径、成矿环境等。

因此,研究流体包裹体对于理解矿床形成过程、找矿预测和矿产资源评价具有重要意义。

关键词:流体包裹体;研究进展;矿床学;应用引言流体包裹体研究是地球化学和矿床学领域的重要内容之一。

流体包裹体是岩石中由挤压在晶体内部的液体或气体组成的微小空泡,它们记录了地质历史过程中的流体性质和成矿环境条件。

本文将介绍流体包裹体研究的进展,并探讨其在矿床学中的应用。

1流体包裹体的形成机制流体包裹体的形成主要经历了三个关键过程:胶结、充填和固化。

(1)胶结过程:当地质体中的岩浆或热液冷却到一定温度时,其中的挥发性物质(液体或气体)会发生相互作用,形成微小的空隙或裂隙。

这些空隙或裂隙就是流体包裹体的初步形成,其中的流体被困在其中。

(2)充填过程:在胶结过程之后,流体包裹体会进一步发育和充填。

这一过程通常伴随着岩石中的晶体生长和矿物沉淀。

充填流体的组成和性质可以因岩石种类和矿床类型而异,可能包含有价值的矿物或矿物形成的前体。

(3)固化过程:充填过程完成后,流体包裹体会被周围的矿物和岩石牢固地固化起来,形成一个稳定的包裹体。

这种包裹体可由均匀的液体相(单相包裹体)或由液体相和气体相组成(二相包裹体)。

2流体包裹体研究方法2.1流体包裹体采集和制备流体包裹体的采集需要小心且精确的操作,以减少外部污染和失去流体包裹体。

常用的采集方法有两种:取样钻孔和岩芯采集、切片法。

(1)取样钻孔和岩芯采集:这是一种常见的流体包裹体采集方法。

通过岩石钻探或岩芯采集设备,在目标岩石或矿脉中定点采集岩石样品。

在采集过程中,需要注意避免污染和失去包裹体,保持样品的原始性和完整性。

(2)切片法:这种方法适用于流体包裹体较为丰富和明显的岩石。

将岩石样品切割成薄片,通常厚度为10-30微米,以提供透射显微镜的观察。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

采样
室内挑选
磨制两面光薄片(0.1-0.3mm)
素描
显微镜下观察
矿物共生组合及流体包裹体期次
划分
测试
测试
Thtot, ThCO2, Tm, 等
.
最常含有流体包裹体的10种矿物
石英
萤石
石盐
方解石 磷灰石
石榴石
闪锌矿
重晶石
Байду номын сангаас
黄玉
锡石
.
流体包裹体大小?
>mm: 博物馆藏品 3~25μm: 典型显微测温范围 1.5 μm: H2O或CO2 包裹体测试最小尺寸 5 μm: H2O + CO2 包裹体测试最小尺寸
均一温度正确 盐度正确
降温 至 和 L-V 曲线相交 .
捕获后变化 – 卡脖子-2
若一群次生包裹体
的“卡脖子”恰好发 生在 和 L-V 曲线 相交之时:
温度降低
均一温度不正确 盐度正确
.
“卡脖子”
捕获后变化 – 卡脖子-3
若一群饱和溶液 包裹体的“卡脖子” 发生在和 L-V 曲 线相交之时:
温度降低
均一温度不正确 盐度不正确
. “卡脖子”
1. 流体包裹体定义 2. 流体包裹体岩相学 3. 流体包裹体相体系
4. 流体包裹体显微测温 5. 流体包裹体分析 6. 流体不混溶 7. 流体包裹体在地质学中应用
.
简单 H2O 体系相图
液相
冰 气相
.
T
简单水溶液体系温度-密度关系图
不同压力但都在 540℃下捕获的4类 包裹体(A,B, C, D), 具有不同的均一方 式。
流体包裹体及应用
资料来源: 中国科学院地质与地球物理研究所
范宏瑞研究员讲义
.
Edwin Roedder
.
(1919-2006)
1. 流体包裹体定义 2. 流体包裹体岩相学 3. 流体包裹体相体系
4. 流体包裹体显微测温 5. 流体包裹体分析 6. 流体不混溶 7. 流体包裹体在地质学中应用
.
什么是流体包裹体?
4. 压力对流体的效应已知或可以忽略; 5. 包裹体的形成原因可以确定; 6. 包裹体的均一温度可以精确的测定。
地质温度计和地质. 压力计的基础
流体包裹体被捕获的机理
枝蔓状快速生长
层状包裹体群
包裹体在生长螺旋 之间或生长螺旋中
心被捕获
晶面裂纹、晶体不 良生长形成包裹体
晶体部分溶(熔)解产生蚀 坑,晶体再生后被捕获
晶体结构单元亚平行 生长,捕获.的包裹体
固体碎屑落在晶体 生长晶面上被捕获
1. 流体包裹体定义 2. 流体包裹体岩相学 3. 流体包裹体相体系
4. 流体包裹体显微测温 5. 流体包裹体分析 6. 流体不混溶 7. 流体包裹体在地质学中应用
.
流体包裹体研究的步骤
野外 – 对最终结果解释影响极大
采集岩石(矿石)样品
判别原生和次生包裹体要 . 格外小心
相比例估计
.
包裹体捕获后变化 – “卡脖子”
Necking down
“卡脖子”包裹 体群是指已形 成的包裹体, 在后来的重结 晶作用影响 下,被分离成 二个以上包裹 体的总称。
合成 NaNO3 晶体裂隙化后 的再愈合过程
.
捕获后变化 – 卡脖子-1
若一群次生包裹体 的“卡脖子”发生在 和 L-V 曲线相交 之前:
除液相或气相
外,含有各种
子矿物如NaCl,
KCl, 赤铁矿, 方
解石等
. 熔融(岩浆)包裹体
由玻璃质+气
泡±流体组 成,有时见 少量结晶质
石油-水包裹体
气相
石油
.
紫外荧光显微镜
.
紫外荧光显微镜下含 石油包裹体的观察
单偏光显微镜
紫外荧光显微镜
.
流体包裹体基本假设
1. 捕获在包裹体内的物质为均匀相-均一体系; 2. 包裹体的体积未发生变化-等容体系; 3. 捕获后未发生物质的渗漏或逃逸-封闭体系;
成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿 物结晶生长过程中,被包裹在矿物晶格缺陷或穴窝中的、 至今尚在主矿物中封存并与主矿物有着相的界限的那一 部分物质。
气相 – H2O, CO2, CH4, N2, H2S
液相 - H2O, CO2, 石油
固相 – 石盐 (NaCl), 钾盐 (KCl)
赤铁矿, 硬石膏, 云母, 黄铜矿, 黄铁矿, 磁铁矿, 碳酸盐, … 硅酸盐玻璃 或 重结.晶熔体
S
LV
S S
.
流体包裹体分类
根据相态
液体包裹体 气体包裹体
含子矿物包裹体
液相占整个 包裹体体积 50%以上, 均一到液相
气相占整个 包裹体体积 至少大于 50%以上, 均一到气相
在低于CO2临 界温度时可见 气体CO2、液 体CO2、和水
含CO2包裹体 溶液三相
有机包裹体
含有机质, 如甲烷、沥 青、高分子 碳氢化合物 等
液相
气相
CO2 体系
.
CO2-H2O体系 相图
通过获得CO2H2O包裹体部分、 完全均一温度及 均一方式,可以 获得体系的摩尔 体积及CO2摩尔 分数。
降温后气泡出现
.
包裹体世代关系


复杂世代的.流体包裹体
包裹体世代判别
原生包裹体和次生包裹体保存了 两种的形成主矿物的流体。原生 包裹体因捕获的是形成该主矿物 的母液,因此它的成分和热力学 参数,反映了矿物形成的化学环 境和物理化学条件的特点。而次 生包裹体是在主矿物形成之后, 捕获了与形成主矿物流体无关的 后期流体。因此,它只能反映主 矿物形成之后,经历过的化学环 境和物理化学条件。因为它们具 有不同的成因意义,如何正确区 分它们,在包裹题研究工作中是 非常重要的。
9mm
20 μ m
.
流体包裹体成因分类
原生 (P):与主矿物同时形 成,包裹的流体可代表主矿 物形成的流体和物理化学条 件。常为孤立状或束状分布, 有时呈平行生成带分布;
次生 (S):主矿物形成之后沿矿物
裂隙进入的热液在重结晶过程中 被捕获,常沿愈合的裂隙分布 。
假次生 (PS): 矿物生产过程中,
两类均一至液相, 一类均一至气相, 一类临界均一。
AB
.
CD
H2O-NaCl体系温度-组分图解
4类代表性NaCl-H2O包裹体 (1,2,3,4)由于其含盐度不同(10, 23.5, 25 and 27 wt% NaCl)在冷 冻过程中显示的相变有显著差别。
.
CO2 体系P-T相图
液-气相线
临界点 等容线(g/cc)
由于某种原因,晶体发生破裂或 形成蚀坑,成矿母液进入其中, 经封存愈合形成的包裹体。由于 晶体的继续生长,这种包裹体分 布在晶体内部。沿愈合的裂隙分 布但不切穿整个晶体。
.
原生和次生流体包裹体形成动画效果
.
原生和次生流体包裹体形成动画效果
.
原生和次生流体包裹体形成动画效果
S P
.
P和S包裹体具有不同相比例
相关文档
最新文档