数据结构实验二叉树的遍历

合集下载

数据结构实验五(二叉树的建立及遍历)题目和源程序

数据结构实验五(二叉树的建立及遍历)题目和源程序

实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。

2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。

二、实验要求1.认真阅读和掌握和本实验相关的教材内容。

2.编写完整程序完成下面的实验内容并上机运行。

3.整理并上交实验报告。

三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。

2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。

四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。

数据结构实验报告——中序遍历二叉树

数据结构实验报告——中序遍历二叉树

实验报告一,实验目的:·掌握二叉树的链式存储结构;·掌握构造二叉树的方法;·加深对二叉树的中序遍历的理解;二,实验方法:·用递归调用算法中序遍历二叉树。

三,实验步骤:·通过链式存储建立一颗二叉树。

·设计一个算法实现中序遍历二叉树。

四,具体实验步骤:#include<stdio.h>#include<stdlib.h>#define LEFT 0#define RIGHT 1#define TRUE 1#define FALSE 0typedef struct _BTNODE{char c;struct _BTNODE *lchild;struct _BTNODE *rchild;}BTNODE,*PBTNODE;void PrintBTree(PBTNODE p,int depth);void ConstructBTree(PBTNODE p);void InorderTraverse(PBTNODE p);void main(){PBTNODE p;p=(PBTNODE)calloc(1,sizeof(BTNODE));printf("Input the data:");ConstructBTree(p);PrintBTree(p,0);printf("Now InorderTraverse:");InorderTraverse(p);printf("\nPress any key to continue...");getchar();}void PrintBTree(PBTNODE p,int depth){int i;if(p==NULL){return;}else{for(i=0;i<depth;i++){printf("--");}printf(">");printf("%c\n",p->c);PrintBTree(p->lchild,depth+1);PrintBTree(p->rchild,depth+1);}}void ConstructBTree(PBTNODE p){int side;char c;side=LEFT;while(TRUE){scanf("%c",&c);if(c=='\n'){//printf("EOF\n");return;}// printf("%d\n",c);switch(c){case '|':break;case')':return;case',':side=RIGHT;break;case'(':if(side==LEFT){if(p->lchild==NULL){p->lchild=(PBTNODE)calloc(1,sizeof(BTNODE));}ConstructBTree(p->lchild);}else{if(p->rchild==NULL){p->rchild=(PBTNODE)calloc(1,sizeof(BTNODE));}ConstructBTree(p->rchild);}break;default:if(side==LEFT){p->lchild=(PBTNODE)calloc(1,sizeof(BTNODE));p->lchild->c=c;}else{p->rchild=(PBTNODE)calloc(1,sizeof(BTNODE));p->rchild->c=c;}}}}void InorderTraverse(PBTNODE p){if(p==NULL){return;}else{InorderTraverse(p->lchild);printf("[%c] ",p->c);InorderTraverse(p->rchild);}return;}五,实验过程:·输出:Input the date;·输入:1(2(3,4),5(6,7));·输出:Now InorderTraverse:【3】【2】【4】【1】【6】【5】【7】;六,上机实验体会:·体会到熟练掌握各种程序算法的重要性;·通过上机练习,充分理解了链式建立二叉树的算法;·形象的了解二叉树的结构,能够熟练的进行先序,中序,后序遍历二叉树。

数据结构二叉树遍历实验报告

数据结构二叉树遍历实验报告

数据结构二叉树遍历实验报告数据结构二叉树遍历实验报告一、引言本文档旨在详细介绍二叉树遍历的实验过程和结果。

二叉树是一种在计算机科学领域常用的数据结构,通过遍历二叉树可以获取树中的所有节点数据。

本实验将分别介绍前序遍历、中序遍历和后序遍历这三种常见的遍历方法。

二、实验目的本实验的目的是通过实际操作,加深对二叉树遍历方法的理解,并验证这些遍历方法的正确性和效率。

三、实验环境本实验使用的环境如下:●操作系统: Windows 10●开发工具: Visual Studio Code●编程语言: C++四、实验步骤1.创建二叉树数据结构1.1 定义二叉树节点的结构,包含数据和左右子节点指针。

1.2 创建一个二叉树类,包含插入节点、删除节点、查找节点等方法。

1.3 使用已有的数据集构建二叉树,确保树的结构合理。

2.前序遍历前序遍历是先访问根节点,然后递归地遍历左子树和右子树。

2.1 以递归方式实现前序遍历。

2.2 以迭代方式实现前序遍历。

3.中序遍历中序遍历是先遍历左子树,然后访问根节点,最后遍历右子树。

3.1 以递归方式实现中序遍历。

3.2 以迭代方式实现中序遍历。

4.后序遍历后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。

4.1 以递归方式实现后序遍历。

4.2 以迭代方式实现后序遍历。

五、实验结果1.前序遍历结果:[节点1数据] [节点2数据] [节点4数据] [节点5数据] [节点3数据]2.中序遍历结果:[节点4数据] [节点2数据] [节点5数据] [节点1数据] [节点3数据]3.后序遍历结果:[节点4数据] [节点5数据] [节点2数据] [节点3数据] [节点1数据]六、实验分析通过实验结果可以看出,不同的遍历顺序得到的节点顺序也不同。

前序遍历先访问根节点,中序遍历先遍历左子树,后序遍历先遍历右子树。

根据需要,可以选择合适的遍历方法来处理二叉树的节点数据。

七、结论本实验验证了前序遍历、中序遍历和后序遍历的正确性,并且对比了它们的不同。

实现二叉树的各种遍历算法实验报告

实现二叉树的各种遍历算法实验报告
a[i] = 0; int k = 0; search(b,a,k); for(i = 0;i < maxx; ++i)
if(a[i]>kmax) kmax = a[i]; return kmax; } /** 求二叉树的节点个数 **/ int Nodes(BTNode *b) { if(b==NULL)
2.2:( 1 )实现二叉树的先序遍历 ( 2)实现二叉树的中序遍历 ( 3)实现二叉树的后序遍历
三 实验内容 :
3.1 树的抽象数据类型 : ADT Tree{
.专业 .整理 .
下载可编辑
数据对象 D: D 是具有相同特性的数据元素的集合 。 数据关系 R: 若 D 为空集 , 则称为空树 ;
若 D 仅含有一个数据元素 ,则 R 为空集 , 否则 R={H} , H 是如 下二元关系 :
if(b!=NULL) {
printf("%c",b->data); if(b->lchild!=NULL || b->rchild!=NULL) {
printf(" ("); DispBTNode(b->lchild); if(b->rchild != NULL)printf(" , "); DispBTNode(b->rchild); printf(" )"); } } } /** 深度 **/ int BTNodeDepth(BTNode *b)
下载可编辑
实现二叉树的各种遍历算法实验报告
一 实验题目 : 实现二叉树的各种遍历算法 二 实验要求 :
2.1:(1 ) 输出二叉树 b ( 2)输出 H 节点的左右孩子节点值 ( 3)输出二叉树 b 的深度 ( 4)输出二叉树 b 的宽度 ( 5)输出二叉树 b 的节点个数 ( 6)输出二叉树 b 的叶子节点个数 ( 7)释放二叉树 b

二叉树的遍历(先序遍历、中序遍历、后序遍历全)实验报告

二叉树的遍历(先序遍历、中序遍历、后序遍历全)实验报告

实验目的编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。

实验内容编程序并上机调试运行。

编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。

编写程序/***********二叉树的遍历**************/#include<stdio.h>#include<stdlib.h>typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;/*************************************************///按先序次序构建的二叉树链表void CreatBiTree(BiTree *T){char ch;if((ch=getchar())==' ')*T=NULL;else{*T=(BiTNode*)malloc(sizeof(BiTNode));if(!(*T))exit(1);(*T)->data=ch;CreatBiTree(&(*T)->lchild);CreatBiTree(&(*T)->rchild);}}/*************************************************/ //先序遍历--递归算法void PreOrderTraverse(BiTree T){if(T){printf("%c",T->data);PreOrderTraverse(T->lchild);PreOrderTraverse(T->rchild);}}/*************************************************/ //中序遍历--递归算法void InOrderTraverse(BiTree T){if(T){InOrderTraverse(T->lchild);printf("%c",T->data);InOrderTraverse(T->rchild);}}/*************************************************/ //后序遍历--递归算法void PostOrderTraverse(BiTree T){if(T){PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);printf("%c",T->data);}}/*************************************************/ //main函数void main(){BiTree T;printf("请按先序次序输入二叉树中结点的值,空格字符表示空树:\n" );CreatBiTree(&T);printf("\n");printf("先序遍历为:\n");PreOrderTraverse(T);printf("\n\n");printf("中序遍历为:\n");InOrderTraverse(T);printf("\n\n");printf("后序遍历为:\n");PostOrderTraverse(T);printf("\n\n");getchar();}运行程序:结果分析:按先序输入的二叉树为ABC^^DE^G^^F^^^(^为空格)该二叉树画成树形为:其先序遍历为:ABCDEGF其中序遍历为:CBEGDFA其后序遍历为:CGEFDBA可以看出运行结果是正确的。

二叉树的遍历算法实验报告

二叉树的遍历算法实验报告

二叉树的遍历算法实验报告二叉树的遍历算法实验报告引言:二叉树是计算机科学中常用的数据结构之一,它是由节点组成的层次结构,每个节点最多有两个子节点。

在实际应用中,对二叉树进行遍历是一项重要的操作,可以帮助我们理解树的结构和节点之间的关系。

本文将介绍二叉树的三种遍历算法:前序遍历、中序遍历和后序遍历,并通过实验验证其正确性和效率。

一、前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左右子树。

具体的实现可以通过递归或者使用栈来实现。

我们以递归方式实现前序遍历算法,并进行实验验证。

实验步骤:1. 创建一个二叉树,并手动构造一些节点和它们之间的关系。

2. 实现前序遍历算法的递归函数,函数的输入为根节点。

3. 在递归函数中,首先访问当前节点,然后递归调用函数遍历左子树,最后递归调用函数遍历右子树。

4. 调用前序遍历函数,输出遍历结果。

实验结果:经过实验,我们得到了正确的前序遍历结果。

这证明了前序遍历算法的正确性。

二、中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。

同样,我们可以使用递归或者栈来实现中序遍历算法。

在本实验中,我们选择使用递归方式来实现。

实验步骤:1. 继续使用前面创建的二叉树。

2. 实现中序遍历算法的递归函数,函数的输入为根节点。

3. 在递归函数中,首先递归调用函数遍历左子树,然后访问当前节点,最后递归调用函数遍历右子树。

4. 调用中序遍历函数,输出遍历结果。

实验结果:通过实验,我们得到了正确的中序遍历结果。

这证明了中序遍历算法的正确性。

三、后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。

同样,我们可以使用递归或者栈来实现后序遍历算法。

在本实验中,我们选择使用递归方式来实现。

实验步骤:1. 继续使用前面创建的二叉树。

2. 实现后序遍历算法的递归函数,函数的输入为根节点。

3. 在递归函数中,首先递归调用函数遍历左子树,然后递归调用函数遍历右子树,最后访问当前节点。

4. 调用后序遍历函数,输出遍历结果。

数据结构_二叉树的遍历_课程设计

数据结构_二叉树的遍历_课程设计

8
if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } } void postorder(bitree *bt)/*后序序遍历二叉树*/ { if(bt!=NULL) { postorder(bt->lchild); postorder(bt->rchild); printf("%c",bt->data); } }
3.2.2 二叉树的中序递归遍历算法
void inorder(bitree *bt)/*中序序遍历二叉树*/ { if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } }
图 1 “菜单”界面
图2
创建二叉树
5
图 3 二叉树的先序遍历
图4
二叉树的中序输出
6
图 5 二叉树的后序输出
五:实验总结 虽然做的过程中出现很多错误。但是最后还是一一纠正了,并在其中发现了自 身的不足,补学补差。最后终于完成了。
六:源程序附录
#include<stdio.h> #include<stdlib.h> typedef char datatype; typedef struct node { datatype data;/*数据元素*/ struct node *lchild,*rchild;/*指向左,右孩子*/ }bitree; bitree *root;/*二叉树结点类型定义*/ bitree *creatbitree(bitree *root)/*创建二叉树*/ { char ch;

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

数据结构二叉树实验报告

数据结构二叉树实验报告

数据结构二叉树实验报告1. 引言二叉树是一种常见的数据结构,由节点(Node)和链接(Link)构成。

每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树在计算机科学中被广泛应用,例如在搜索算法中,二叉树可以用来快速查找和插入数据。

本实验旨在通过编写二叉树的基本操作来深入理解二叉树的特性和实现方式。

2. 实验内容2.1 二叉树的定义二叉树可以用以下方式定义:class TreeNode:def__init__(self, val):self.val = valself.left =Noneself.right =None每个节点包含一个值和两个指针,分别指向左子节点和右子节点。

根据需求,可以为节点添加其他属性。

2.2 二叉树的基本操作本实验主要涉及以下二叉树的基本操作:•创建二叉树:根据给定的节点值构建二叉树。

•遍历二叉树:将二叉树的节点按照特定顺序访问。

•查找节点:在二叉树中查找特定值的节点。

•插入节点:向二叉树中插入新节点。

•删除节点:从二叉树中删除特定值的节点。

以上操作将在下面章节详细讨论。

3. 实验步骤3.1 创建二叉树二叉树可以通过递归的方式构建。

以创建一个简单的二叉树为例:def create_binary_tree():root = TreeNode(1)root.left = TreeNode(2)root.right = TreeNode(3)root.left.left = TreeNode(4)root.left.right = TreeNode(5)return root以上代码创建了一个二叉树,根节点的值为1,左子节点值为2,右子节点值为3,左子节点的左子节点值为4,左子节点的右子节点值为5。

3.2 遍历二叉树二叉树的遍历方式有多种,包括前序遍历、中序遍历和后序遍历。

以下是三种遍历方式的代码实现:•前序遍历:def preorder_traversal(root):if root:print(root.val)preorder_traversal(root.left)preorder_traversal(root.right)•中序遍历:def inorder_traversal(root):if root:inorder_traversal(root.left)print(root.val)inorder_traversal(root.right)•后序遍历:def postorder_traversal(root):if root:postorder_traversal(root.left)postorder_traversal(root.right)print(root.val)3.3 查找节点在二叉树中查找特定值的节点可以使用递归的方式实现。

二叉树实验报告

二叉树实验报告

二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。

本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。

本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。

2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。

树的左子节点和右子节点被称为二叉树的左子树和右子树。

3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。

节点结构包含一个数据域和左右指针,用于指向左右子节点。

创建二叉树的过程可以通过递归或者迭代的方式来完成。

3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。

插入时需要考虑保持二叉树的有序性。

删除操作是将指定节点从树中删除,并保持二叉树的有序性。

在实验中,我们可以使用递归或者循环的方式实现这些操作。

3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。

常见的遍历方式包括前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。

中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。

后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。

3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。

可以通过递归或者循环的方式实现二叉树的查找操作。

基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。

4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。

具体实现包括二叉树的创建、插入、删除、遍历和查找操作。

在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。

4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。

另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。

二叉树的遍历

二叉树的遍历

实验 3 二叉树的遍历专业班级学号姓名报告日期实验类型:●验证性实验○综合性实验○设计性实验一、实验目的或任务通过指导学生上机实践,对常用数据结构的基本概念及其不同的实现方法的理论得到进一步的掌握,并对在不同存储结构上实现不同的运算方式和技巧有所体会。

一、实验教学基本要求1.了解实验目的及实验原理;2.编写程序,并附上程序代码和结果图;3.总结在编程过程中遇到的问题、解决办法和收获。

二、实验教学的内容或要求1.编写函数,输入字符序列,建立二叉树的二叉链表2.编写函数,实现二叉树的中序递归遍历算法。

3.编写函数,实现二叉树的中序非递归遍历算法4.编写函数,借助队列实现二叉树的层次遍历算法5.编写函数,求二叉树的高度6.编写函数,求二叉树的结点个数7.编写函数,求二叉树的叶子个数8.编写函数,交换二叉树每个结点的左子树和右子树9.编写一个主函数,在主函数中设计一个简单的菜单,分别调试上述算法三、实验总结1、编写一个主函数,在主函数中设计一个简单的菜单,分别调试上述算法2、实现二叉树遍历、求树的高度、节点个数以及叶子个数。

实验总结通过本次实验,学会了二叉树的基本结构,掌握了二叉树的遍历原理,并通过代码实现建立二叉树和遍历二叉树,训练了求树节点个数和叶节点个数,训练了交换左右子树节点的功能,今后应多加练习,熟练掌握二叉树。

参考代码#include<stdio.h>#include<stdlib.h>#include<algorithm>#define MAXSIZE 100int k = 0;typedefchar ElemType;//1.建立二叉树的二叉链表typedefstruct BiTNode{ElemType data;struct BiTNode *lchild, *rchild;BiTNode(ElemType str){data = str;}}BiTNode, *Bitree;Bitree _Greatree(ElemType *arr, size_t n, const ElemType&invalid, size_t&index) {Bitree node = NULL;if (arr[index] != invalid&&index<n){node = new BiTNode(arr[index]);node->lchild = _Greatree(arr, n, invalid, ++index);node->rchild = _Greatree(arr, n, invalid, ++index);}return node;}void CreateBitree(Bitree&root, char* arr, size_t size){size_t index = 0;root = _Greatree(arr, size, '#', index);}//2.void INORDER(Bitree tree){if (tree){INORDER(tree->lchild);printf("%c", tree->data);INORDER(tree->rchild);}}//3.void inorder1(Bitree head){struct BiTNode *p;struct BiTNode *stack[20];int top = NULL;p = head;while (p || top != NULL){while (p){stack[top++] = p;p = p->lchild;}p = stack[--top];printf("%c", p->data);p = p->rchild;}}//4.void LevelOrder(Bitree b){Bitree p;Bitree qu[MAXSIZE];int front, rear;front = rear = -1;rear++;qu[rear] = b;while (front != rear){front = (front + 1) % MAXSIZE;p = qu[front];printf("%c", p->data);if (p->lchild != NULL){rear = (rear + 1) % MAXSIZE;qu[rear] = p->lchild;}if (p->rchild != NULL){rear = (rear + 1) % MAXSIZE;qu[rear] = p->rchild;}}}//5int TreeHeight(Bitree root){if (root == NULL)return 0;elsereturn 1 + std::max(TreeHeight(root->lchild), TreeHeight(root->rchild)); }//6.void inorder(Bitree T){if (T != NULL){k++;inorder(T->lchild);inorder(T->rchild);}}//7int leaf(Bitree T){int n = 0;if (!T)n = 0;else{if (!T->lchild&&!T->rchild)n = 1;elsen = leaf(T->lchild) + leaf(T->rchild);}return (n);}//8.void ExchangeLR(Bitree t){if (t == NULL)return;else{Bitree tmp = t->lchild;t->lchild = t->rchild;t->rchild = tmp;ExchangeLR(t->lchild);ExchangeLR(t->rchild);}}//9.void main(){BiTNode T(0);Bitree t;int n, j;t = &T;char str[100];printf("1.建立二叉树的二叉链表\n");printf("2.实现二叉树的中序递归遍历算法\n");printf("3.实现二叉树的中序非递归遍历算法\n");printf("4.借助队列实现二叉树的层次遍历算法\n");printf("5.求二叉树的高度\n");printf("6.求二叉树的结点个数\n");printf("7.求二叉树的叶子个数\n");printf("8.交换二叉树每个结点的左子树和右子树\n");while (1){printf("请选择:");scanf("%d", &j);switch (j){case 1:{scanf("%s", &str);size_t size = strlen(str);CreateBitree(t, str, size);}break;case 2:INORDER(t);printf("\n");break;case 3:inorder1(t);printf("\n");break;case 4:LevelOrder(t);printf("\n");break;case 5:n = TreeHeight(t);printf("该二叉树的高度为:%d\n", n);break;case 6:inorder(t);printf("该二叉树的节点个数是:%d\n", k);break;case 7:printf("该二叉树的叶子个数是:%d\n", leaf(t));break;case 8:ExchangeLR(t);printf("交换完成!\n");break;default:printf("输入有误,请重新选择!\n");}}}。

二叉树递归遍历 数据结构实验报告

二叉树递归遍历 数据结构实验报告

南昌航空大学实验报告课程名称:数据结构实验名称:实验六二叉树的递归遍历及其应用班级:学生姓名:学号:指导教师评定:签名:题目:假设二叉树采用二叉链表结构。

设计并实现如下算法:先序递归建树,中序非递归遍历该树,输出各个结点的值,并求该树中单分支结点的个数。

一、需求分析1.用户可以根据自己的需求分别输入任意的一个二叉树,并且能够实现中序非递归遍历该树输出各个结点的数值。

2.通过已有的二叉树能够求出该树的单分支结点的个数。

3.程序执行的命令包括:(1)构造二叉树T (2)遍历二叉树(3)求二叉树单分支结点的个数(4)求二叉树的总结点数二、概要设计⒈为实现上述算法,需要链表的抽象数据类型:ADT Binarytree {数据对象:D是具有相同特性的数据元素的集合数据关系R:若D为空集,则R为空集,称binarytree为空二叉树;若D不为空集,则R为{H},H是如下二元关系;(1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2)若D-{root}不为空,则存在D-{root}={D1,Dr},且D1∩Dr为空集;(3)若D1不为空,则D1中存在唯一的元素x1,<root,x1>∈H,且存在D1上的关系H1是H的子集;若Dr不为空集,则Dr中存在唯一的元素Xr,<root,Xr>∈H,且存在Dr上的关系Hr为H的子集;H={<root,x1>,<root,Xr>,H1,Hr};(4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr})是一颗符合本定义的二叉树,称为根的右子树。

基本操作:Creatbitree(&S,definition)初始条件:definition给出二叉树S的定义操作结果:按definition构造二叉树Scounter(T)初始条件:二叉树T已经存在操作结果:返回二叉树的总的结点数onecount(T)初始条件:二叉树T已经存在操作结果:返回二叉树单分支的节点数Clearbintree(S)初始条件:二叉树S已经存在操作结果:将二叉树S清为空树Bitreeempty(S)初始条件:二叉树S已经存在操作结果:若S为空二叉树,则返回TRUE,否则返回FALSEBitreedepth(S,&e)初始条件:二叉树S已经存在操作结果:返回S的深度Parent(S)初始条件:二叉树S已经存在,e是S中的某个结点操作结果:若e是T的非根结点,则返回它的双亲,否则返回空Preordertraverse(S)初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。

数据结构实验报告-二叉树的实现与遍历

数据结构实验报告-二叉树的实现与遍历

《数据结构》第六次实验报告学生姓名学生班级学生学号指导老师一、实验内容1) 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作,求所有叶子及结点总数的操作。

2) 输出树的深度,最大元,最小元。

二、需求分析遍历二叉树首先有三种方法,即先序遍历,中序遍历和后序遍历。

递归方法比较简单,首先获得结点指针如果指针不为空,且有左子,从左子递归到下一层,如果没有左子,从右子递归到下一层,如果指针为空,则结束一层递归调用。

直到递归全部结束。

下面重点来讲述非递归方法:首先介绍先序遍历:先序遍历的顺序是根左右,也就是说先访问根结点然后访问其左子再然后访问其右子。

具体算法实现如下:如果结点的指针不为空,结点指针入栈,输出相应结点的数据,同时指针指向其左子,如果结点的指针为空,表示左子树访问结束,栈顶结点指针出栈,指针指向其右子,对其右子树进行访问,如此循环,直至结点指针和栈均为空时,遍历结束。

再次介绍中序遍历:中序遍历的顺序是左根右,中序遍历和先序遍历思想差不多,只是打印顺序稍有变化。

具体实现算法如下:如果结点指针不为空,结点入栈,指针指向其左子,如果指针为空,表示左子树访问完成,则栈顶结点指针出栈,并输出相应结点的数据,同时指针指向其右子,对其右子树进行访问。

如此循环直至结点指针和栈均为空,遍历结束。

最后介绍后序遍历:后序遍历的顺序是左右根,后序遍历是比较难的一种,首先需要建立两个栈,一个用来存放结点的指针,另一个存放标志位,也是首先访问根结点,如果结点的指针不为空,根结点入栈,与之对应的标志位也随之入标志位栈,并赋值0,表示该结点的右子还没有访问,指针指向该结点的左子,如果结点指针为空,表示左子访问完成,父结点出栈,与之对应的标志位也随之出栈,如果相应的标志位值为0,表示右子树还没有访问,指针指向其右子,父结点再次入栈,与之对应的标志位也入栈,但要给标志位赋值为1,表示右子访问过。

二叉树遍历例题

二叉树遍历例题

二叉树遍历例题
二叉树遍历是计算机科学中常见的问题,它涉及到对二叉树结构的遍历以执行某些操作。

以下是几个二叉树遍历的例题:
1. 前序遍历:
给定二叉树的前序遍历结果为 [1, null, 2, 3]。

根据前序遍历的性质(根-左-右),我们可以得到如下结构:
```markdown
1
/ \
2 3
```
2. 中序遍历:
给定二叉树的中序遍历结果为 [2, 1, 3]。

根据中序遍历的性质(左-根-右),我们可以得到如下结构:
```markdown
2
/ \
1 3
```
3. 后序遍历:
给定二叉树的后序遍历结果为 [1, 3, 2]。

根据后序遍历的性质(左-右-根),我们可以得到如下结构:
```markdown
1
/ \
3 2
```
4. 层次遍历:
给定二叉树的层序遍历结果为 [1, 2, 3]。

对于层序遍历,我们可以使用队列实现,按照层次从上到下遍历每一个节点。

因此,我们得到如下结构:
```markdown
1
/ \
2 3
```。

二叉树的遍历代码

二叉树的遍历代码

二叉树的遍历代码二叉树是一种非常常见的数据结构,它由根节点、左子树和右子树组成,可以用于实现各种算法和应用。

在使用二叉树时,我们常常需要进行遍历来获取树中的节点信息。

下面,我们将详细介绍二叉树的遍历方法及其代码实现。

二叉树的遍历方法分为三种:前序遍历、中序遍历和后序遍历。

它们的不同之处在于遍历节点的顺序不同。

我们分别来介绍一下这三种遍历方法。

1.前序遍历前序遍历的顺序是:先访问根节点,然后递归访问左子树和右子树。

实现前序遍历的代码如下:```pythondef preorder_traversal(node):if node:print(node.data)preorder_traversal(node.left)preorder_traversal(node.right)```在代码中,我们首先输出根节点的值,然后分别递归访问左子树和右子树,直到遍历完整个树。

2.中序遍历中序遍历的顺序是:先递归访问左子树,然后访问根节点,最后递归访问右子树。

实现中序遍历的代码如下:```pythondef inorder_traversal(node):if node:inorder_traversal(node.left)print(node.data)inorder_traversal(node.right)```在代码中,我们先递归访问左子树,然后输出根节点的值,最后递归访问右子树。

3.后序遍历后序遍历的顺序是:先递归访问左子树和右子树,然后访问根节点。

实现后序遍历的代码如下:```pythondef postorder_traversal(node):if node:postorder_traversal(node.left)postorder_traversal(node.right)print(node.data)```在代码中,我们先递归访问左子树和右子树,然后输出根节点的值。

通过前序遍历、中序遍历和后序遍历,我们可以获取二叉树中每个节点的值。

二叉树的创建与遍历的实验总结

二叉树的创建与遍历的实验总结

二叉树的创建与遍历的实验总结引言二叉树是一种重要的数据结构,在计算机科学中有着广泛的应用。

了解二叉树的创建和遍历方法对于数据结构的学习和算法的理解至关重要。

本文将对二叉树的创建和遍历进行实验,并总结相应的经验和思考。

二叉树的定义在开始实验之前,我们首先需要了解二叉树的定义和基本概念。

二叉树是一种每个节点最多拥有两个子节点的树形结构。

每个节点包含一个值和指向其左右子节点的指针。

根据节点的位置,可以将二叉树分为左子树和右子树。

创建二叉树二叉树的创建可以采用多种方法,包括手动创建和通过编程实现。

在实验中,我们主要关注通过编程方式实现二叉树的创建。

1. 递归方法递归是一种常用的创建二叉树的方法。

通过递归,我们可以从根节点开始,逐层创建左子树和右子树。

具体步骤如下:1.创建一个空节点作为根节点。

2.递归地创建左子树。

3.递归地创建右子树。

递归方法的代码实现如下所示:class TreeNode:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef create_binary_tree(values):if not values:return None# 使用队列辅助创建二叉树queue = []root = TreeNode(values[0])queue.append(root)for i in range(1, len(values)):node = TreeNode(values[i])# 当前节点的左子节点为空,则将新节点作为左子节点if not queue[0].left:queue[0].left = node# 当前节点的右子节点为空,则将新节点作为右子节点elif not queue[0].right:queue[0].right = node# 当前节点的左右子节点已经齐全,可以从队列中删除该节点queue.pop(0)# 将新节点添加到队列中,下一次循环时可以使用该节点queue.append(node)return root2. 非递归方法除了递归方法,我们还可以使用非递归方法创建二叉树。

二叉树的四种遍历算法

二叉树的四种遍历算法

⼆叉树的四种遍历算法⼆叉树作为⼀种重要的数据结构,它的很多算法的思想在很多地⽅都⽤到了,⽐如STL算法模板,⾥⾯的优先队列、集合等等都⽤到了⼆叉树⾥⾯的思想,先从⼆叉树的遍历开始:看⼆叉树长什么样⼦:我们可以看到这颗⼆叉树⼀共有七个节点0号节点是根节点1号节点和2号节点是0号节点的⼦节点,1号节点为0号节点的左⼦节点,2号节点为0号节点的右⼦节点同时1号节点和2号节点⼜是3号节点、四号节点和五号节点、6号节点的双亲节点五号节点和6号节点没有⼦节点(⼦树),那么他们被称为‘叶⼦节点’这就是⼀些基本的概念⼆叉树的遍历⼆叉树常⽤的遍历⽅式有:前序遍历、中序遍历、后序遍历、层序遍历四种遍历⽅式,不同的遍历算法,其思想略有不同,我们来看⼀下这四种遍历⽅法主要的算法思想:1、先序遍历⼆叉树顺序:根节点 –> 左⼦树 –> 右⼦树,即先访问根节点,然后是左⼦树,最后是右⼦树。

上图中⼆叉树的前序遍历结果为:0 -> 1 -> 3 -> 4 -> 2 -> 5 -> 62、中序遍历⼆叉树顺序:左⼦树 –> 根节点 –> 右⼦树,即先访问左⼦树,然后是根节点,最后是右⼦树。

上图中⼆叉树的中序遍历结果为:3 -> 1 -> 4 -> 0 -> 5 -> 2 -> 63、后续遍历⼆叉树顺序:左⼦树 –> 右⼦树 –> 根节点,即先访问左⼦树,然后是右⼦树,最后是根节点。

上图中⼆叉树的后序遍历结果为:3 -> 4 -> 1 -> 5 -> 6 -> 2 -> 04、层序遍历⼆叉树顺序:从最顶层的节点开始,从左往右依次遍历,之后转到第⼆层,继续从左往右遍历,持续循环,直到所有节点都遍历完成上图中⼆叉树的层序遍历结果为:0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6下⾯是四种算法的伪代码:前序遍历:preOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束cout << tree[n].w ; // 输出当前节点内容preOrderParse(tree[n].leftChild); // 递归输出左⼦树preOrderParse(tree[n].rightChild); // 递归输出右⼦树}中序遍历inOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束inOrderParse(tree[n].leftChild); // 递归输出左⼦树cout << tree[n].w ; // 输出当前节点内容inOrderParse(tree[n].rightChild); // 递归输出右⼦树}pastOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束pastOrderParse(tree[n].leftChild); // 递归输出左⼦树pastOrderParse(tree[n].rightChild); // 递归输出右⼦树cout << tree[n].w ; // 输出当前节点内容}可以看到前三种遍历都是直接通过递归来完成,⽤递归遍历⼆叉树简答⽅便⽽且好理解,接下来层序遍历就需要动点脑筋了,我们如何将⼆叉树⼀层⼀层的遍历输出?其实在这⾥我们要借助⼀种数据结构来完成:队列。

实验报告

实验报告
p->right=findchild(a,i1+i-i2,j1-1,b,i+1,j2);
rede *t)
{
if(t!=NULL)
{
cout<<t->data<<" ";
preorder(t->left);
preorder(t->right);
}
}
实验内容
(2)采用广度遍历的方法遍历该二叉树。
二、实验任务:
用广度遍历的方法遍历一棵二叉树。
三、实验准备方案,包括以下内容:
(硬件类实验:实验原理、实验线路、设计方案等)
(软件类实验:所采用的核心方法、框架或流程图及程序清单)
实验原理:Node *findchild(char *a,int i1,int j1,char *b,int i2,int j2)
计算机与信息学院
数据结构实验报告
专业班级物联网工程10-1班
学生姓名及学号蒋海田20102858
课程教学班号
任课教师张晶
实验指导老师张晶
实验地点四号机房
2011~2012学年第1学期
实验序号及名称:实验六广度遍历二叉树
实验时间:2011年12月12日
预习内容
一、实验目的和要求:
(1)运用已学的知识,新建一个二叉树。
一、实验用仪器、设备:
(1)硬件:PC机
(2)环境:Microsoft Visual C++ 6.0
二、实验内容与步骤(过程及数据记录):
三、感想、体会、建议:
越来越难了
实验成绩:
指导老师签名:
年月日
{
if(i1>j1||i2>j2) return NULL;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌大学实验报告
学生姓名:李木子学号:8000113146 专业班级:软工133 实验类型:□验证□综合□设计□创新实验日期:实验成绩:
一、实验项目名称
二叉树的遍历
二、实验目的
学会链式二叉树的结构体定义,创建与前序中序后序遍历
三、实验基本原理
四、主要仪器设备及耗材
电脑,VC6.0
五、实验步骤
/**************************************/
/* 链式二叉树的创建与遍历 */
/**************************************/
/**************************************/
/* 链式二叉树的结构体定义 */
/**************************************/
#include<stdio.h>
#include<malloc.h>
typedef char datatype ;
typedef struct BinTreeNode{
datatype data ;
struct BinTreeNode *lchild ;
struct BinTreeNode *rchild ;
} BinTreeNode ;
/**************************************/
/* 链式二叉树函数声明 */
/**************************************/
BinTreeNode * CreateTree(void);
void PreOrder( BinTreeNode * t );
void InOrder( BinTreeNode * t );
void PostOrder( BinTreeNode * t );
/**************************************/
/* 链式二叉树创建函数 */
/**************************************/
BinTreeNode * CreateTree(void)
{
char ch ;
BinTreeNode * t ;
ch=getchar();
if(ch=='#')
t=NULL;
else if( ch=='\n');
else
{
t=( BinTreeNode*)malloc(sizeof( BinTreeNode ));
t->data =ch ;
t->lchild=CreateTree();
t->rchild=CreateTree();
}
return t ;
}
/**************************************/
/* 链式二叉树递归前序遍历函数 */
/**************************************/
void PreOrder( BinTreeNode * t )
{
if(t)
{
printf("%c\t",t->data);
PreOrder( t->lchild );
PreOrder( t->rchild );
}
}
/**************************************/ /* 链式二叉树递归中序遍历函数 */
/**************************************/ void InOrder( BinTreeNode * t )
{
if(t)
{
InOrder( t->lchild );
printf("%c\t",t->data);
InOrder( t->rchild );
}
}
/**************************************/ /* 链式二叉树递归后序遍历函数 */
/**************************************/ void PostOrder( BinTreeNode * t )
{
if(t)
{
PostOrder( t->lchild );
PostOrder( t->rchild );
printf("%c\t",t->data);
}
}
/**************************************/ /* 主函数 */
/**************************************/ int main()
BinTreeNode * t ;
printf("创建二叉树\n");
t=CreateTree();
printf("前序遍历二叉树\n");
PreOrder( t );
printf("\n");
printf("中序遍历二叉树\n");
InOrder( t );
printf("\n");
printf("后序遍历二叉树\n");
PostOrder( t );
printf("\n");
return0;
}
六、实验数据及处理结果
七、思考讨论题或体会或对改进实验的认识
八、参考资料
[1]《数据结构(c语言版)(第三版)》,李云清,人民邮电出版社
[2]《C语言程序设计》,苏小红,高等教育出版社。

相关文档
最新文档