IPv6穿越IPv4隧道技术概述
IPv6-over-IPv4 GRE 隧道配置
猎豹网校上有视频教程:一、R1路由器基本配置R1>enable #进入特权模式R1#configure terminal #进入全局配置模式R1(config)#interface serial 1/0 #进入R1路由器串口1/0R1(config-if)#ip address 172.16.12.1 255.255.255.0 #增加IPv4的地址R1(config-if)#clock rate 64000 #设置时钟模式R1(config-if)#no shutdown #打开串行端口R1(config-if)#interface FastEthernet0/0 #切换到快速以太口0/0R1(config-if)#ipv6 address 13::1/64 #给快速以太口增加IPv6地址R1(config-if)#no shutdown #打开快速以太口R1(config-if)#exit #退出端口配置模式R1(config)#ipv6 unicast-routing #开启IPv6的单播路由R1(config)#interface loopback 101 #设置一个虚拟环路端口编号为101R1(config-if)#ip address 10.1.1.1 255.255.255.0 #给虚拟环路端口增加IPv4地址R1(config-if)#exit #退出虚拟环路端口设置R1(config)#二、R2 路由器基本配置R2>enable #进入特权模式R2#configure terminal #进入全局配置模式R2(config)#interface serial 1/0 #进入R2路由器串口1/0R2(config-if)#ip address 172.16.12.2 255.255.255.0 #增加IPv4的地址R2(config-if)#no shutdown #打开串行端口R2(config-if)#interface FastEthernet0/0 #切换到快速以太口0/0R2(config-if)#ipv6 address 24::2/64 #给快速以太口增加IPv6地址R2(config-if)#no shutdown #打开快速以太口R2(config-if)#exit #退出端口配置模式R2(config)#ipv6 Unicast-routing #开启IPv6的单播路由R2(config)#interface loopback 102 #设置一个虚拟环路端口编号为102R2(config-if)#ip address 10.2.2.2 255.255.255.0 #给虚拟环路端口增加IPv4地址R2(config-if)#exit #退出虚拟环路端口设置R2(config)#三、R1路由器启用RIPv2协议R1(config)#router rip #启动rip设置协议R1(config-router)#version 2 #设置Rip协议版本R1(config-router)#network 172.16.12.1 #宣告R1路由器上现有的IPv4网络R1(config-router)#network 10.1.1.1 #宣告R1路由器上现有的IPv4网络R1(config-router)#exit #退出Rip设置协议R1(config)#end #退到特权模式R1#四、R2路由器启用RIPv2协议R2(config)#router rip #启动rip设置协议R2(config-router)#version 2 #设置Rip协议版本R2(config-router)#network 172.16.12.2 #宣告R2路由器上现有的IPv4网络R2(config-router)#network 10.2.2.2 #宣告R2路由器上现有的IPv4网络R2(config-router)#exit #退出Rip设置协议R2(config)#end #退到特权模式R2#五、R1 查看路由表#Show ip router #如下图六、R2 查看路由表#Show ip router #如下图七、配置手工隧道在路由器R1和R2之间创建一条手工隧道,并将R1和RR2的环回接口用作隧道源和隧道目标R1路由器配置手工隧道。
IPv6-over-IPv4 GRE隧道技术
IPv6-over-IPv4 GRE隧道技术隧道机制隧道技术是一种通过互联网络基础设施在网络之间传递数据的方式。
使用隧道传递的数据可以是不同协议的数据帧或包,隧道协议将这些其它协议的数据帧或包重新封装在新的包头中发送,被封装的数据包在隧道的两个端点之间通过公共互联网络进行路由,一旦到达网络终点,数据将被解包并转发到最终目的地。
整个传递过程中,被封装的数据包在公共互联网络上传递时所经过的逻辑路径称为隧道。
简言之,隧道技术是指包括数据封装,传输和解包在内的全过程。
IPv6是新一代Internet通信协议,具有许多的功能特色:全新的表头格式、较大的地址空间、有效及阶层化的地址与路由架构、内建的安全性、与邻近节点相互作用的新型通信协议Neighbor Discovery Protocol for IPv6、可扩展性等。
作为网络管理者,有必要加强对IPv6的了解,为以后IPv4的全面升级做好准备。
I Pv6隧道是将IPv6报文封装在IPv4报文中,让IPv6数据包穿过IPv4网络进行通信。
对于采用隧道技术的设备来说,在隧道的入口处,将IPv6的数据报封装进IPv4,IPv4报文的源地址和目的地址分别是隧道入口和隧道出口的IPv4地址;在隧道的出口处,再将IPv6报文取出转发到目的节点。
隧道技术只要求在隧道的入口和出口处进行修改,对其他部分没有要求,容易实现。
但是,隧道技术不能实现IPv4主机与IPv6主机的直接通信。
IPv6-over-IPv4 GRE隧道技术使用标准的GRE隧道技术,可在IPv4的GRE隧道上承载IPv6数据报文。
GRE隧道是两点之间的连路,每条连路都是一条单独的隧道。
GRE隧道把IPv6作为乘客协议,将GRE 作为承载协议。
所配置的IPv6地址是在Tunnel接口上配置的,而所配置的IPv4地址是Tunnel 的源地址和目的地址(隧道的起点和终点)。
GRE隧道主要用于两个边缘路由器或终端系统与边缘路由器之间定期安全通信的稳定连接。
IPv4、v6互通技术之隧道技术 ( Tunnel)
一:概述:隧道技术提供了一种以现有IPv4路由体系来传递IPv6数据的方法:将IPv6的分组作为无结构意义的数据,封装在IPv4数据报中,被IPv4网络传输。
根据建立方式的不同,隧道可以分成两类:(手工)配置的隧道和自动配置的隧道。
隧道技术巧妙地利用了现有的IPv4网络,它的意义在于提供了一种使 IPv6的节点之间能够在过渡期间通信的方法,但它并不能解决IPv6节点与IPv4节点之间相互通信的问题。
二:实验拓扑:R1(s2/1)-(s2/1)R2(s2/2)-(s2/1)R3(s2/2)-(s2/1)R44台路由,R1,R4运行IPV6R2,R3半边运行IPV4,半边运行IPV6三:配置信息R1#ipv6 unicast-routing //开启IPV6单播路由功能interface Loopback0ip address 1.1.1.1 255.255.255.0 //配置环回接口做为它的router-idinterface Serial2/1ipv6 address 12::1/64 //IPV6地址ipv6 ospf 1 area 0 //接口下启用ospfR2#ipv6 unicast-routinginterface Serial2/1ipv6 address 12::2/64ipv6 ospf 1 area 0interface Serial2/2ip address 23.0.0.2 255.255.255.0interface Tunnel0 //在s2/1接口下打隧道 ipv6 address 10::1/64 //给隧道配置IPV6地址 ipv6 ospf 1 area 0 //启用ospftunnel source Serial2/2 //申明隧道源端tunnel destination 23.0.0.3 //申明隧道目的端tunnel mode ipv6ip //隧道模式是ipv6到ipv4R3#ipv6 unicast-routinginterface Serial2/1ip address 23.0.0.3 255.255.255.0interface Serial2/2ipv6 address 34::3/64ipv6 ospf 1 area 0interface Tunnel0ipv6 address 10::2/64ipv6 ospf 1 area 0tunnel source Serial2/1tunnel destination 23.0.0.2tunnel mode ipv6ipR4#ipv6 unicast-routinginterface Loopback0ip address 4.4.4.4 255.255.255.0interface Serial2/1ipv6 address 34::4/64ipv6 ospf 1 area 0四:调试信息R1#show ipv6 routeIPv6 Routing Table - 6 entriesCodes: C - Connected, L - Local, S - Static, R - RIP, B - BGPU - Per-user Static routeI1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summaryO - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2O 10::/64 [110/11175]via FE80::C838:AFF:FE24:0, Serial2/1C 12::/64 [0/0]via ::, Serial2/1L 12::1/128 [0/0]via ::, Serial2/1O 23::/64 [110/11239] //用隧道模式学习到了隔着ipv4网络的远端ipv6路由via FE80::C838:AFF:FE24:0, Serial2/1L FE80::/10 [0/0]via ::, Null0L FF00::/8 [0/0]via ::, Null0R2#show ipv6 routeIPv6 Routing Table - 7 entriesCodes: C - Connected, L - Local, S - Static, R - RIP, B - BGPU - Per-user Static routeI1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summaryO - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2C 10::/64 [0/0]via ::, Tunnel0L 10::1/128 [0/0]via ::, Tunnel0C 12::/64 [0/0]via ::, Serial2/1L 12::2/128 [0/0]via ::, Serial2/1O 23::/64 [110/11175]via FE80::1700:3, Tunnel0L FE80::/10 [0/0]via ::, Null0L FF00::/8 [0/0]via ::, Null0R1#ping 23::4Type escape sequence to abort.Sending 5, 100-byte ICMP Echos to 23::4, timeout is 2 seconds:!!!!!Success rate is 100 percent (5/5), round-trip min/avg/max = 344/380/420 msR1#trR1#traceroute 23::4Type escape sequence to abort.Tracing the route to 23::41 12::2 132 msec 84 msec 104 msec2 10::2 240 msec 352 msec 104 msec//^-^看到是杂过去的了吧?发到ipv6的源端地址上走隧道过去的 3 23::4 332 msec 388 msec 356 msecR1#ping 23.0.0.3Type escape sequence to abort.Sending 5, 100-byte ICMP Echos to 23.0.0.3, timeout is 2 seconds: .... //注意这里不通Success rate is 0 percent (0/4)R1#show ip route1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback0R1#trR1#traceroute 23.0.0.3Type escape sequence to abort.Tracing the route to 23.0.0.31 * * *2 * * *3 * * *4 * * *5 * * *6 * * *//traceroute也无路可走//这是ipv6想与ipv4通信,说明它们无法通信.所以隧道技术并不能解决IPv6节点与IPv4节点之间相互通信的问题。
毕业论文IPv6隧道技术研究与实现
毕业论文-IPv6隧道技术研究与实现目录1 互联网IP通信协议 01.1 IP概述 01.2 IPV4协议简介 (1)1.3 IPV6协议简介 (2)1.4 IPV4与IPV6的区别和联系 (3)2 IPV4到IPV6的过渡 (4)2.1 IPv4/IPv6双栈方法 (5)2.2 IPv6协议隧道方法 (6)隧道技术 (8)隧道技术 (9)隧道技术 (9)兼容IPv6自动隧道 (9)隧道技术 (10)隧道 (10)3 隧道技术实现 (11)3.1 模拟器介绍 (11)3.2 模拟器实现6to4隧道技术 (12)4 小结 (16)图表目录图 1 互联网通信 (2)图 2 ipv6/ipv6双协议通信 (6)图 3 ipv6隧道通信 (7) (8)9图 6 DOC下查看隧道 (11)图7 DOC下隧道IP (11)图8 Dynamips启动 (12)图9 6to4路由器拓扑图 (12)图10 Dynamips模拟器CCNP拓扑图 (13)图11 R2,R3,R4地址配置 (14)图12 R2,R4路由配置 (14)图13 连通ipv4网络 (15)图14 静态路由 (16)图15 R1,R5连通 (16)图16 R2,R4隧道情况 (16)IPv6隧道技术研究与实现摘要:IPv6协议是因特网的新一代通信协议,本文介绍了如何实现从IPv4到IPv6的平滑过渡,研究从IPv4到IPv6过度的技术。
通过搜集整理大量的书籍信息和互联网信息,概括总结了IPV6到IPV4的通信方式和通信技术。
对于ipv6隧道技术给予了深入研究。
被称为下一代互联网的IPv6如何实现与上一代协议的互联,如何完成从第一代通信协议到第二代通信协议的过渡,这些都是本文所要探讨的。
如何实现IPv6穿越IPv4网络通信,本文对IPv6隧道提供一种可行的模拟方案,使用模拟器Dynamips实现IPv6隧道技术。
通过使用Dynamips 模拟器,虚拟出五个路由器,通过在五个路由器上配置实验环境,实现ipv6穿越ipv4网络通信,完成6to4隧道通信。
ipv4到ipv6过渡主要是三种方法
ipv4到ipv6过渡主要是三种⽅法
Ipv4到Ipv6的过渡的主要⽅法有双栈策略和隧道策略。
1、双栈策略:
是指在⽹元中同时具有 IPv4和IPv6两个协议栈,它既可以接收、处理、收发IPv4的分组,也可以接收、处理、收发IPv6的分组。
对于主机(终端)来讲,“双栈”是指其 可以根据需要来对业务产⽣的数据进⾏IPv4封装或者IPv6封装。
对于路由器来讲,“双栈”是指在⼀个路由器设备中维护IPv6和IPv4两套路由协议栈,使得路由器既能与IPv4主机也能与IPv6主机通信,分别⽀持独⽴的IPv6和IPv4路由协议。
2、隧道策略:
是 IPv4/v6综合组⽹技术中经常使⽤到的⼀种机制,所谓“隧道”,简单地讲就是利⽤⼀种协议来传输另⼀种协议的数据技术,隧道包括隧道⼊⼝和隧道出⼝ (隧道终点),这些隧道端点通常都是双栈节点。
在隧道⼊⼝以⼀种协议的形式来对另外⼀种协议数据进⾏封装并发送。
在隧道出⼝对接收到的协议数据解封装, 并做相应的处理。
在隧道的⼊⼝通常要维护⼀些与隧道相关的信息,如记录隧道MTU等参数。
3、协议翻译技术:
对IPV6和IPV4报头时⾏相互翻译,实现IPV4/IPV6协议和地址的转换。
⽹络地址转换/协议转换技术 NAT-PT 通过与SIIT协议转换和传统的IPv4下的动态地址翻译(NAT)以及适当的应⽤层⽹关(ALG)相结合,实现了只安装了IPv6的主机和只安装了IPv4机器的⼤部分应⽤的相互通信。
如何实现IPv4和IPv6共存?试试双栈和隧道技术
如何实现IPv4和IPv6共存?试试双栈和隧道技术如今,随着IPv4地址即将用尽,IP地址缺乏已成为了全球亟待解决的问题。
虽然几年前出现了标头更长的IPv6,可提供更多的IP地址,但其应用和普及并不容易。
“IPv4和IPv6是否可以同时使用?”、“IPv4和IPv6如何实现共存?”这些问题都是目前用户比较关注的。
本文将为您介绍两种实现IPv4和IPv6共存方法,即双栈和隧道技术。
为什么需要IPv4和IPv6共存?如今,IP网络仍然是IPv4占主导地位,IPv6网络只是在小范围内部署和商用,从IPv4过渡到IPv6需要一个循序渐进的过程,不可能一气呵成。
因此,在此期间内IPv4和IPv6必然会出现共存的场景。
然而,IPv4和IPv6之间并不能相互兼容,且目前仍然存在大量的IPv4设备和用户,因此在网络演进的过程中势必要解决IPv4和IPv6兼容问题,这给互联网服务提供商(ISP)和用户带来了新的挑战。
如何实现IPv4和IPv6共存?目前来说,实现IPv4和IPv6共存的策略和过渡技术有三种。
第一种,使用双栈让您的主机或网络设备可以同时支持IPv4和IPv6双协议栈;第二种,通过隧道技术将IPv6数据包封装在IPv4数据包中;第三种,通过网络地址转换(NAT)技术将IPv6数据包转换为IPv4数据包,反之亦然。
由于网络地址转换(NAT)技术主要针对互联网服务供应商,这里就不做多介绍,下面主要介绍双栈和隧道技术。
通过双栈实现IPv4和IPv6共存双栈是实现IPv4和IPv6共存最基础、最直接的策略。
使用该解决方案,可为ISP网络中的每个联网设备(包含使用IPv4和IPv6交换机)配置可同时运行IPv4和IPv6的功能。
通常,双协议栈主机在和IPv4主机通信时会使用IPv4协议栈,而与IPv6主机通信时则会使用IPv6协议栈,其中双协议栈主机是通过使用域名系统(DNS)来查询目的主机采用的是哪一种协议栈。
IPv4向IPv6过渡的两种技术
向 F 发 送 IPv6 数 据 报 , 路 径 是 A- - >B- - >C- - >D- - >E- - >F。中间B到〔 这 段路径是{ Pv4网络,B和E是双协议栈路由器, 因此路由器B不能向C转发IPv6数据报,因为C 只使用} 协议。由于B是IPv4/ IPv6路由器 , Pv4 因此路由器B将IPv6数据报首部转换为IPI 数 A P 据报首部后发送给C。等到!Pv4 数据报到达 IPv4 网络的出口路由器E时 (E也是IPv4/ }尸 v6 路由器) ,再恢复成原来的} 数据报。但 Pv6 IPv6首部中的某些中断却无法恢复, ,例如, 原来IPv6 首部中的流标号X在最后恢复出的
球表面都覆盖着计算机 ,那么IPV6 允许每平 方米拥有7 x 1023个IP地址,如果地址分配速 率是每微秒10 万个地址, 0 则需要1019年的时 间才能将所有可能的地址分配完。 1.2 过渡策略的主要原则 考虑到网络技术的飞速发展和现实世界的 商业需求,在进行} 网络向IPv6网络过渡策 Pv4 略的设计中,如下方向性问题必须遵循 ,在 “ 下一代协议建议规范” (RFC1752) 中,明 确定义了以下的过渡原则: 1. 过渡方式应该是逐步的和渐进的,保 护} 网络设备的投资, Pv4 确保在一个相当长的 历史阶段,IPv4 网络设备可以在过渡时期中正 常地独立使用。 2. IPO 网络世界和IPv6 网络世界相互渗
protocol) , 它不但解决了IPv4的 地址问 题, 并 且改善了!尸 协议的性能。
但在现阶段中,由于Internet 完全是建立 在IPv4的体系结构上,所有的应用程序也是按 照IP由此而产生的过渡机制成为了一个新的 研究热点。目 前主要有两种过渡技术: 双协议 栈和隧道技术。 1 IPv4向IPv6的过渡
IPv6过渡技术v2.2
# interface tunnel 0 ipv6 address 1:2::2/104 source ethernet0/0 destination 1.2.0.1 tunnel-protocol ipv6-ipv4 # ipv6 route-static 1:: 64 tunnel0 #
# interface tunnel 0 ipv6 address ::1.2.0.2/96 source ethernet0/0 tunnel-protocol ipv6-ipv4 auto-tunnel #
24
第二章 隧道技术介绍
第一节 第二节 第三节 第四节 第五节 第六节
IPv6载荷 IPv6头部 GRE头部 类型 0x86dd IPv4头部 协议 47 封 装 顺 序
11
IPvRE隧道---转发流程
载荷 IPv6
载荷 IPv6 GRE IPv4
IPv4网络
GRE隧道
IPv6网络
14
第二章 隧道技术介绍
第一节 第二节 第三节 第四节 第五节 第六节
IPv6 GRE隧道 手动隧道 兼容自动隧道 6to4隧道 ISATAP隧道 6PE隧道
15
IPv6手动隧道---封装过程
IPv6载荷
IPv6头部
IPv4头部 协议 41
使用特殊的IPv6地址
IPv4兼容地址
::1.0.0.1
封 装 顺 序
::w.x.y.z
IPv4网络 兼容自动隧道 ::2.0.0.1
IPv4网络
IPv4网络
::1.1.1.2
兼容自动隧道
::2.1.1.2
IPv6过渡技术-隧道技术
IPv6过渡技术 隧道技术 GRE隧道 手动隧道
用于IPv6穿越IPv4网络的隧道技术主要有:
• IPv6 over IPv4 GRE隧道(GRE隧道) • IPv6 over IPv4 手动隧道(手动隧道) • 6to4自动隧道 • ISATAP自动隧道
GRE隧道技术
• 特点
– IPv6报文被包含在GRE报文中
IPv6过渡技术 隧道技术 GRE隧道 手手动动隧隧道道
• 定义
– IPv6报文包含在IPv4报文中进行传输
• 优点与缺点
– 与GRE隧道优缺点相似
隧道代理
IPv6过渡技术 隧道技术 GRE隧道 手手动动隧隧道道
隧道服务器
IPv6过渡技术 隧道技术 GRE隧道 手手动动隧隧道道
ቤተ መጻሕፍቲ ባይዱ结
隧道技术
IPv6 over IPv4 GRE隧道(GRE隧道) IPv6 over IPv4 手动隧道(手动隧道)
IPv6过渡技术 -隧道技术1
IPv6过渡技术 隧道技术 GRE隧道 手动隧道
• 循序渐进,逐渐降低互联成本
• 双协议栈技术 • 隧道技术 • 网络地址转换/协议转换
IPv6过渡技术 隧道技术 GRE隧道 手动隧道
隧道技术
IPv6过渡技术 隧道技术 GRE隧道 手动隧道
隧道技术
PC1
IPv6过渡技术 隧道技术 GRE隧道 手动隧道 PC2
• 优点与缺点
➢ 优点:通用性好、技术成熟,易于理解 ➢ 缺点:维护复杂
IPv6过渡技术 隧道技术 GRE隧道 手动隧道
GRE隧道技术
• 前提要求
– 链路两端设备必须是双栈设备 – 隧道已经预先配置并建立好 – 发送方封装,接收方接封装
浅析IPv4到IPv6的过渡技术的论文
浅析IPv4到IPv6的过渡技术的论文浅析IPv4到IPv6的过渡技术的论文【摘要】本文简要介绍了在ipv4到ipv6的过渡过程中,几种基本的过渡技术。
【关键词】ipv4 ipv6 过渡隧道技术双协议栈网络地址翻译目前internet上成千上万的主机、路由器等网络设备都运行着ipv4协议。
这就决定了ipv4的网络向ipv6演进将是一个浩大而且繁杂的工程,ipv4和ipv6网络将在很长时间内共存,如何从ipv4平滑地过渡到ipv6是一个非常复杂的问题。
到目前为止,基本的方式有:隧道、双协议栈及网络地址翻译等。
一、隧道技术随着ipv6网络的发展,出现了许多局部的ipv6网络,但是这些ipv6网络需要通过ipv4骨干网络相连。
将这些孤立的“ipv6岛”相互联通必须使用隧道技术。
隧道策略是ipv4/v6综合组网技术中经常用到的一种机制。
隧道利用一种协议来传输另一种协议的数据。
它包括隧道入口和隧道出口(隧道终点),这些隧道端点通常都是双栈节点。
在隧道入口,以一种协议的形式来对另外一种协议的数据进行封装并发送;在隧道出口,对接收到的协议数据解封装,并做相应的处理。
通常,在隧道入口还要维护一些与隧道相关的信息,如记录隧道mtu 等参数;在隧道出口,出于安全性考虑,要对封装的数据进行过滤,以防止来自外部的恶意攻击。
隧道策略通常按配置方式进行区分,有手工配置隧道和自动隧道两种类型。
在骨干网和核心网中经常采用的mpls隧道可以通过手工和自动两种形式进行配置。
手工配置隧道包括manual tunnel(rfc2893)和gre(rfc2473)两种类型。
tunnel在隧道入口必须显式指定隧道终点的ipv4地址(双向);gre主要应用在个别ipv6主机或网络需要通过ipv4网络进行通信的场合,其他应用与manual tunnel基本相同。
手工配置隧道方式实现相对简单,但扩展性较差,当隧道增多时,隧道配置和维护的工作量较大,故适合于综合组网的初期。
IPv6技术简介
IPv6技术简介自从计算机网络产生之后,就一直以飞快的速度在发展,在许多方面使得我们一般的人都无法跟从和了解,在网络的基础原理上也是一样,如IPv6。
虽然在好几年以前就已经有不少的媒体和人开始谈论IPv6,但是作为一般的人始终都没有多少了解和接触。
以下我们将针对IPv6做一个简单的介绍:IPv6是“Internet Protocol Version 6”的缩写,它是IETF设计的用于替代现行版本IP协议-IPv4-的下一代IP协议。
目前Internet中广泛使用的IPv4协议,也就是人们常说的IP协议,已经有近20年的历史了。
随着Internet技术的迅猛发展和规模的不断扩大,IPv4已经暴露出了许多问题,而其中最重要的一个问题就是IP地址资源的短缺。
有预测表明,以目前Internet发展的速度来计算,在未来的5到10年间,所有的IPv4地址将分配完毕。
尽管目前已经采取了一些措施来保护IPv4地址资源的合理利用,如非传统网络区域路由和网络地址翻译,但是均不能从根本上解决问题。
为了彻底解决IPv4存在的问题,IETF从1995年开始就着手研究开发下一代IP协议,即IPv6。
IPv6具有长达128位的地址空间,可以彻底解决IPv4地址不足的问题,除此之外,IPv6还采用了分级地址模式、高效IP包头、服务质量、主机地址自动配置、认证和加密等许多技术。
一、IPv6的地址格式和结构与IPv4的32地址相比,IPv6 的地址要长的多。
IPv6共有128位地址,是IPv4的整整四倍。
与IPv4一样,一个字段由16位二进制数组成,因此,IPv6有8个字段。
每个字段的最大值为16384,但在书写时用四位的十六进制数字表示,并且字段与字段之间用“:”隔开,而不是原来的“.”,而且字段中前面为零的数值可以省略,如果整个字段为零,那么也可以省略。
128位地址所形成的地址空间在可预见的很长时期内,它能够为所有可以想象出的网络设备提供一个全球唯一的地址。
IPv4到IPv6网络的过渡技术
IPv4到IPv6网络的过渡技术作者:苏艳杰来源:《科技视界》 2013年第20期苏艳杰(河南师范大学计算机与信息工程学院,河南新乡 453000)【摘要】IPv6是下一代互联网协议。
从IPv4向IPv6过渡,需要解决IPv4网络和IPv6网络之间的互联互通问题。
过渡技术就是研究如何从现有的IPv4网络实现向IPv6网络的平稳过渡。
本文重点介绍了3种过渡技术:双栈技术、隧道技术、NAT-PT技术,并分析了各自的优缺点及适用环境。
【关键词】IPv4;IPv6;双栈技术;隧道技术;NAT-PT技术0 前言IPv4网络已应用多年,随着网络的普及扩展,IPv4协议逐渐暴露出一些缺陷:网络地址短缺、路由速度慢、缺乏安全功能、不支持新的业务模式等。
针对IPv4面临的这些问题,IETF设计出IPv6协议,它能解决地址短缺问题,还能提供端到端IP连接、服务质量(QoS)、安全性、多播、移动性、即插即用等一系列功能。
但IPv6只能在发展中不断完善,在当前IPv4占主导的网络环境下,IPv4向IPv6的平滑过渡技术成了IPv6成功的关键因素。
1 双栈技术1.1 双栈技术的原理双栈技术是指在网络节点中同时具有IPv4和IPv6两个协议栈,这样,它既可以接收、处理、收发IPv4的分组,也可以接收、处理、收发IPv6的分组。
对于主机来讲,“双栈”是指其可以根据需要来对业务产生的数据进行IPv4封装或者IPv6封装;对于路由器来讲,“双栈”是指在一个路由器设备中维护IPv6和IPv4两套路由协议栈,使得路由器既能与IPv4主机也能与IPv6主机通信,分别支持独立的IPv6和IPv4路由协议,IPv4和IPv6路由信息按照各自的路由协议进行计算,维护不同的路由表。
IPv6数据报按照IPv6路由协议得到的路由表转发,IPv4数据报按照IPv4路由协议得到的路由表转发。
1.2 双栈技术的优缺点双栈技术的优点是概念清晰,易于理解,网络规划相对简单,同时在IPv6逻辑网络中可以充分发挥IPv6协议的所有优点(如安全性、路由约束、流的支持等方面)。
v6转v4服务原理
v6转v4服务原理v6转v4服务原理解析什么是v6转v4服务v6转v4服务是一种将IPv6协议转换为IPv4协议的技术。
由于IPv6在全球范围内的普及程度较低,而IPv4协议资源日益枯竭,因此v6转v4服务的出现成为了一种过渡方案,使得IPv6网络能够和IPv4网络进行互联。
v6转v4服务的工作原理v6转v4服务的工作原理可以分为以下几个步骤:1.检测IPv6数据包:v6转v4服务首先要检测到传入的IPv6数据包,这可以通过监听IPv6流量或者路由器配置进行实现。
2.解析IPv6头部:当检测到IPv6数据包后,v6转v4服务需要解析IPv6头部。
IPv6头部中包含了源IPv6地址和目标IPv6地址等信息。
3.检测地址类型:根据IPv6地址类型,v6转v4服务判断出该数据包是否需要进行转换。
如果数据包中的地址为IPv6地址,则需要进行转换,否则直接发送到IPv4网络。
4.封装IPv4数据包:如果数据包需要转换,v6转v4服务会将原始IPv6数据包封装成IPv4数据包。
在进行封装时,需要将IPv6的源地址和目标地址转换为IPv4的地址,还需要进行端口转换等操作。
5.发送IPv4数据包:封装完成后,v6转v4服务将转换后的IPv4数据包发送到IPv4网络。
这样,IPv6数据包就成功地转换为IPv4数据包,能够在IPv4网络中传输。
6.响应转换请求:在数据包发送完成后,v6转v4服务还需要对转换请求进行响应。
这包括发送转换结果给请求方或者更新路由表等操作,以确保整个转换过程的稳定性和可靠性。
v6转v4服务的应用场景v6转v4服务广泛应用于各种场景中,主要包括以下几个方面:1.互联网接入服务提供商(ISP):当ISP提供的网络服务仅支持IPv4而用户的设备却只支持IPv6时,v6转v4服务可用于将IPv6数据转换为IPv4数据,以使用户能够正常访问IPv4资源。
2.企业网络:对于一些仍然使用IPv4网络的企业,当需要与使用IPv6网络的合作伙伴进行通信时,v6转v4服务可以实现双方的互联互通。
IPv4-IPv6过渡期隧道技术分类比较及实现
Iv P6隧道是将Iv报头封装在Iv报头 中,这 P6 P4
IT E F的Iv过渡工作组已经提出了许多建议方 样Iv协议包 就可以穿越Iv 网络进行通信 。R C P6 P6 P4 F 案 ,并定义 了多种Iv/ v 过渡技术 ,以实现Iv 2 9 中分配 给 Iv封装 在Iv中 的协 议 号是 4 回 P4 P6 I P4 83 P6 P4 1 ,表
6 PE
1引言
随着互 联 网 应用 的飞 速增 长 ,Iv作 为 IT 确 P6 EF
互 通技 术 。本文 重点 讨论 隧道技 术 。
定的下一代互联 网协议 ,有望彻底解决Iv 存在的 2 目前 常用隧道 技术分 类 P4 问题 ,市场前景 日趋看好 。2 0年 ,我国启动了基 03
尽 管 目前 我 国 已经开 始 了较 大 规 模 的Iv 网络 发 展 ,出现 了一 些 被 运行 Iv协 议 的骨 干 网络 隔 离 P6 P4
建设 ,但现有 的Iv网络运行十分稳定 ,设备制造 开 的局 部Iv网 络 ,为 了实 现 这 些Iv网 络 之 间 的 P4 P6 P6 商、网络运营商 、网络连接提供商等正从Iv上获 通信 ,必须采用隧道技术 。隧道对于源站点和 目的 P4 得稳定的收益 ,但Iv业务 的发展还将是个漫长 的 站点是透 明的 ,在隧道的入 口处 ,路 由器将Iv 的 P6 P6
过 程 ,短 时间 将业 务 迁移 到Iv 网络 意 味着 淘 汰 现 数据分组封装在Iv 中,该Iv分组的源地址 和 目 P6 P4 P4
有设施 ,构建新的通信网络 ,新的Iv 网络 的成本 的地 址 分 别是 隧 道 入 口和 出 口的Iv地 址 ,在 隧道 P6 P4 需要相当长的时 间才能收回 ;因此Iv 向Iv 的过 出 口处 ,再将Iv分组取 出转发给 目的站点 ,即一 P4 P 6 P6 渡需要 相 当长 的时 间才 能完 成 。在Iv完全 取代 种协议通过另一种协议 的封装进行通信。 P6
网络基础 IPv4 to IPv6过渡技术
网络基础IPv4 to IPv6过渡技术在IPv4到IPv6过渡的初期阶段,可以看到有三类过渡需求:第一,需要有一些网络节点能够同时支持IPv4和IPv6,特别是连接IPv4和IPv6网络的网关设备必须具有这种能力。
第二,必须使IPv6孤岛网络能够穿越通过基于IPv4的网络主体实现互联互通。
第三,IPv4和IPv6网络之间必须能够相互访问对方网络中的资源。
对应于这三类需求,可以分别采用双栈技术、隧道技术和互通技术来应对。
1.双栈技术“双栈”是指单个节点同时支持IPv4和IPv6协议栈,这样的节点既可以基于IPv4协议直接与IPv4节点通信,也可以基于IPv6协议直接与IPv6节点通信,因此它可以作为IPv4网络和IPv6网络之间的衔接点。
很明显,无论是隧道技术中隧道的封装和解封装设备,还是互通技术中的NAT-PT(Network Address Translation-Protocol Translator,NAT协议转换器)设备或者ALG(Application Level Gateway,应用层网关)设备,本身都必须是双栈设备,因此双栈技术是各种过渡技术的基础。
由于双栈设备需要同时运行IPv4和IPv6两个协议栈,因此需要同时保存两套命令集,同时计算、维护与存储两套表项,对网关设备而言,还需要对两个协议栈进行报文转换和重封装,所以运行双栈的设备明显要比只运行一个协议栈的设备负担更重,对设备的性能要求更高,维护和优化的工作也复杂。
双栈技术除了用在IPv4和IPv6间的网关设备上以外,还可以用来组建小型的IPv4和IPv6混合型网络。
在这种网络中,所有的网络节点都是双栈主机,都可以直接访问IPv4或者IPv6网络中的资源,这样的双栈网络不存在互通问题,有一定的方便性。
但是它需要为网络中的每个IPv6节点同时分配一个IPv4地址,不但仍然受制于IPv4地址资源不足的问题,而且对每个节点的性能要求都比较高,势必会增加用户建网和维护的成本,因而仅适合于IPv4 to IPv6过渡的初期或者后期,在IPv6或者IPv4的小型孤岛上组建这种网络。
H3C_S7500E_IPv6_over_IPv4_GRE隧道典型配置举例
3.3 使用版本
本举例是在 S7500E-CMW710-R7150 版本上进行配置和验证的。
3.4 配置注意事项
Tunnel 两端必须都配置隧道的源端地址和目的端地址,且本端配置的源端地址应该与对端配置的目 的端地址相同、本端配置的目的端地址应该与对端配置的源端地址相同。
目录
1 简介 ······················································································································································ 1 2 配置前提 ··············································································································································· 1 3 配置举例 ··············································································································································· 1
i
1 简介
本文档介绍了 IPv6 over IPv4 GRE 隧道的典型配置举例。
2 配置前提
本文档中的配置均是在实验室环境下进行的配置和验证,配置前设备的所有参数均采用出厂时的缺 省配置。如果您已经对设备进行了配置,为了保证配置效果,请确认现有配置和以下举例中的配置 不冲突。 本文假设您已了解 IPv6 over IPv4 GRE 隧道的相关特性。