液压设计步骤.
液压系统设计步骤
装载机旳构造原理-工作液压系统目前我国轮式装载机旳工作液压系统已发展到采用小阀操纵大阀旳先导工作液压系统。
但目前用得最多旳仍是机械式旳轮轴操纵工作液压系统。
图9所示为柳工ZL50C型装载旳轮轴操纵工作液压系统。
该系统由转斗缸1、动臂缸2、分派阀3、操纵杆7、工作泵8、软轴10等重要零部件构成。
该系统分派阀内带有控制系统最高压力旳主安全阀,此外在分派阀旳下面通转斗缸大小腔分别带有一种双作用安全阀(图中未画出)。
其作用是在工作装置运动过程中,转斗缸发生干涉时间起卸压力及补压作用。
两根操纵杆7通过两根软轴10直接操纵分派阀旳转斗阀及动臂阀,使定量齿轮工作泵8旳压力油进入转斗缸或动臂缸,使工作装置完毕作业运动。
图10a为该系统旳工作原理图。
2.1 设计环节液压系统旳设计环节并无严格旳次序,各环节间往往要互相穿插进行。
一般来说,在明确设计规定之后,大体按如下环节进行。
1)确定液压执行元件旳形式;2)进行工况分析,确定系统旳重要参数;3)制定基本方案,确定液压系统原理图;4)选择液压元件5)液压系统旳性能验算;6)绘制工作图,编制技术文献。
2.2 明确设计规定设计规定是进行每项工程设计旳根据。
在制定基本方案并深入着手液压系统各部分设计之前,必须把设计规定以及与该设计内容有关旳其他方面理解清晰。
1)主机旳概况:用途、性能、工艺流程、作业环境、总体布局等;2)液压系统要完毕哪些动作,动作次序及彼此联锁关系怎样;3)液压驱动机构旳运动形式,运动速度;4)各动作机构旳载荷大小及其性质;5)对调速范围、运动平稳性、转换精度等性能方面旳规定;6)自动化程序、操作控制方式旳规定;7)对防尘、防爆、防寒、噪声、安全可靠性旳规定;8)对效率、成本等方面旳规定。
设计计算环节1. 初选系统工作压力由机械设计手册表23.4-3 多种机械常用旳系统工作压力(小型工程机械工作压力为10-18MPa2. 液压缸尺寸旳选定采用差动连接时,按速比规定确定d/D,由表23.4-6得 d =0.71D由表23.4-7 常用内径D (mm )选用D=63 d=45 活塞杆受压时2211A p A p mFw F -==η Fw-为实际受力,由载荷计算旳三个液压缸共受力109288.3N ;m η-液压缸旳效率,由机械设计手册查旳等于0.95241D A π=-无杆腔活塞有效作用面积; ()2242d D A -=π-有杆腔活塞有效作用面积; P1-液压缸工作腔压力(Pa );P2-液压缸回油腔压力(Pa ),初算时可参照表23.4-4取值为1MPa ;D-活塞直径;d-活塞杆直径。
液压系统设计小结
液压系统设计小结液压系统设计是现代机械制造中重要的一环。
液压系统能够实现力、速度的集成控制,并且在一些特殊工作场合,液压系统有其它传动方式无法替代的工作效果。
对于液压系统设计来说,设计方案要不仅要能够满足工作要求,还要考虑力、速、功的匹配,以及可靠性和安全性。
液压系统设计包括以下几个步骤:需求分析、系统参数确定、元件选型、系统方案设计、回路图绘制、系统试验和运行调试。
(1) 需求分析:液压系统设计的前提是了解工程技术需求。
设计人员需要与机器操作者交流,以了解系统的工作要求。
同时,还需要了解系统的工作环境、操作方式和安全要求等方面的信息。
(2) 系统参数确定:系统参数的确定对液压系统的设计有着决定性的影响。
例如,液压缸的直径、工作行程、工作半径以及工作压力等参数都需要根据实际需求进行确定。
此外,液压泵、阀门和控制器等元件的型号、安装位置以及内部参数也需要确定,以保证系统能够正常工作。
(3) 元件选型:根据系统参数和工作要求,选择合适的液压元件。
液压元件的选择需要考虑以下因素:① 额定工作压力:液压元件的额定工作压力需要大于系统工作压力。
一般规定元器件的最高工作压力应为系统工作压力的1.5-2倍。
② 流量:液压元件的流量必须满足系统工作要求。
③ 控制方式:液压元件控制方式的选择也需要针对不同情况进行调整。
电磁液压阀是常用的控制元件之一,其具有控制精度高、动作迅速等优点。
但是,所需的控制电路、电源等辅助设备比较复杂。
此外,气控和电控柔性操作和链式安全回路等也是常用的控制方式。
(4) 系统方案设计:按照选定的元件进行系统方案的设计。
系统方案的设计需要结合系统参数、工作要求以及应用环境的特点,制定相应的方案。
在系统方案确定后,应绘制液压回路图便于检查和维护。
(5) 回路图绘制:对液压回路图进行精确定位和编写。
在编写液压回路图时,应注意以下几个方面:① 正确绘制液压回路图。
按照系统方案进行液压回路图的绘制。
液压系统的设计计算步骤和内容
• 最大负载值是初步确定执行元件工作压力和结构尺寸的依据。 • 液压马达的负载力矩分析与液压缸的负载分析相同,只需将上述负载
设计计算
步骤和内容
4~5
>5~7
18
系统工作压力的确定
表9-3 按主机类型选择系统工作压力
设备 类型
磨床
机床
组合机床 牛头刨床
插床 齿轮加工
机床
车床 铣床 镗床
珩磨 拉床 机 龙门 床 刨床
农业机械 汽车工业 小型工程 机械及辅 助机械
工程机械 重型机械 锻压设备 液压支架
船用 系统
压力 /MPa
摆动缸
单叶片缸转角小于300°,双叶片缸转角小于150°
往复摆动运动
齿轮、叶片马达 轴向柱塞马达 径向柱塞马达
结构简单、体积小、惯性小 运动平稳、转大、转速范围宽 结构复杂、转大、转速低
设计计算
步骤和内容
高速小转矩回转运动 大转矩回转运动 低速大转矩回转运动
7
负载分析
• 负载分析就是通过计算确定各液压执行元件的负载大小和方向,并分 析各执行元件运动过程中的振动、冲击及过载能力等情况。
设计计算
步骤和内容
2
1.1 液压系统的设计依据和工况分析
液压系统的设计依据
• 设计要求是进行工程设计的主要依据。设计前必须把主机对液压系统 的设计要求和与设计相关的情况了解清楚,一般要明确下列主要问题:
液压系统设计步骤
液压系统设计的步骤大致如下:1.明确设计要求,进行工况分析。
2.初定液压系统的主要参数。
3.拟定液压系统原理图。
4.计算和选择液压元件。
5.估算液压系统性能。
6.绘制工作图和编写技术文件。
一、工况分析本机主要用于剪切工件装配时可通过夹紧机构来剪切不同宽度的钢板。
剪切机在剪切钢板时液压缸通过做弧形摆动提供推力。
主机运动对液压系统运动的要求:剪切机在剪切钢板时要求液压装置能够实现无级调速,而且能够保证剪切运动的平稳性,并且效率要高,能够实现一定的自动化。
该机构主要有两部分组成:机械系统和液压系统。
机械机构主要起传递和支撑作用,液压系统主要提供动力,它们两者共同作用实现剪切机的功能。
本次主要做液压系统的设计。
在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。
该系统的剪切力为400T剪切负载F=400×10000=4×106N一、运动分析主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。
1.位移循环图L—t图(1)为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。
该图清楚地表明液压机的工作循环分别由快速下行、运行压制、保压、泄压和快速回程五个阶段组成。
图(1)位移循环图2.速度循环图v—t(或v—L)工程中液压缸的运动特点可归纳为三种类型。
图(2)为种液压缸的v—t图,液压缸开始作匀加速运动,然后匀速运动,速度循坏图液压缸在总行程的一大半以上以一定的加速度作匀加速运动,然后匀减速至行程终点。
v—t图速度曲线,不仅清楚地表明了液压缸的运动规律,也间接地表明了三种工况的动力特性。
二、动力分析液压缸运动循环各阶段的总负载力。
液压系统设计步骤
液压系统设计步骤液压系统的设计步骤与设计要求液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。
着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。
1 设计步骤液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。
一般来说,在明确设计要求之后,大致按如下步骤进行。
1)确定液压执行元件的形式;2)进行工况分析,确定系统的主要参数;3)制定基本方案,拟定液压系统原理图;4)选择液压元件;5)液压系统的性能验算;6)绘制工作图,编制技术文件。
2 明确设计要求设计要求是进行每项工程设计的依据。
在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。
1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等;2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何;3)液压驱动机构的运动形式,运动速度;4)各动作机构的载荷大小及其性质;5)对调速范围、运动平稳性、转换精度等性能方面的要求;6)自动化程序、操作控制方式的要求;7)对防尘、防爆、防寒、噪声、安全可靠性的要求;8)对效率、成本等方面的要求。
制定基本方案和绘制液压系统图3制定基本方案(1)制定调速方案液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。
方向控制用换向阀或逻辑控制单元来实现。
对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。
对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。
速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现。
相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。
节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。
液压升降工作台的设计步骤解读
液压升降工作台的设计步骤解读
介绍
液压升降工作台是一种常用的工业设备,用于提升和调节工作台的高度。
本文将介绍液压升降工作台的设计步骤。
步骤一:确定需求
在设计液压升降工作台之前,首先需要明确需求。
例如,工作台需要承载多大的重量?提升的高度范围是多少?是否需要具备其他特殊功能?
步骤二:选择液压系统
液压升降工作台的关键是液压系统。
根据需求,选择适合的液压系统。
常见的液压系统有单作用液压系统和双作用液压系统。
单作用液压系统只能进行单向的升降运动,而双作用液压系统可以实现双向的升降运动。
步骤三:确定工作台结构
根据液压系统的选择,确定工作台的结构。
这包括工作台的底座、升降机构和工作平台的设计。
底座需要具备足够的稳定性和强
度,升降机构需要能够与液压系统相连接并实现升降运动,工作平台需要适应工作需求的大小和形状。
步骤四:设计液压控制系统
液压升降工作台需要一个液压控制系统来实现升降的控制。
设计液压控制系统需要考虑控制方式、控制器的选择和安装位置等因素。
步骤五:进行安全性评估
在设计液压升降工作台之后,应进行安全性评估。
评估工作台是否符合相关的安全标准,是否存在安全隐患,并采取相应的改进措施。
步骤六:制造和安装
最后一步是制造和安装液压升降工作台。
根据设计图纸进行制造,并按照设计规范进行安装。
总结
设计液压升降工作台的步骤包括确定需求、选择液压系统、确定工作台结构、设计液压控制系统、进行安全性评估以及制造和安装。
这些步骤将确保液压升降工作台的功能和安全性。
液压系统的设计毕业设计
液压系统的设计毕业设计液压系统的设计毕业设计引言液压系统是一种利用液体传递能量的技术,广泛应用于各个领域,如工业、农业、航空航天等。
在液压系统的设计中,需要考虑多个因素,包括系统的结构、元件的选择、流体的性质等。
本文将探讨液压系统的设计过程,并介绍一些常见的设计原则和方法。
一、液压系统的基本原理液压系统的基本原理是利用液体在封闭的管路中传递力和能量。
液压系统由液压泵、执行元件、控制阀等组成。
液压泵通过机械能转化为液压能,将液体压入管路中。
控制阀通过控制液体的流动方向和流量来实现对执行元件的控制。
执行元件将液体的能量转化为机械能,完成所需的工作。
二、液压系统的设计步骤1. 确定系统的需求:在进行液压系统的设计之前,需要明确系统的工作要求和目标。
例如,需要确定系统的工作压力、流量需求、工作环境等。
2. 选择液压元件:根据系统的需求,选择合适的液压元件,包括液压泵、执行元件、控制阀等。
在选择液压元件时,需要考虑元件的性能参数、可靠性、成本等因素。
3. 设计管路布局:根据系统的工作需求和元件的选择,设计合理的管路布局。
管路布局应考虑液体的流动路径、压力损失、泄漏等因素,以确保系统的稳定性和效率。
4. 进行系统分析:通过数学模型和仿真软件对系统进行分析,评估系统的性能和可靠性。
分析过程中需要考虑液体的性质、流动特性、压力变化等因素。
5. 进行系统优化:根据系统分析的结果,对系统进行优化。
优化的目标可以包括提高系统的效率、减少能量损失、降低成本等。
6. 进行系统测试:设计完成后,进行系统的实际测试。
测试过程中需要检查系统的各个部件是否正常工作,是否满足设计要求。
三、液压系统设计的原则和方法1. 简化系统结构:在液压系统的设计中,应尽量简化系统的结构,减少元件的数量和复杂性。
简化系统结构可以提高系统的可靠性和维护性。
2. 选择合适的元件:在选择液压元件时,应考虑元件的性能参数、可靠性、成本等因素。
选择合适的元件可以提高系统的性能和效率。
液压缸设计步骤和液压缸计算方法档
液压缸设计步骤和液压缸计算方法档液压缸(油缸)设计步骤:1.确定液压缸的工作参数:包括工作压力、负荷要求、行程长度、作用力、运动速度等。
这些参数可以根据设备的应用需求来确定。
2.选择液压缸的类型:有单作用和双作用两种,单作用液压缸只能在一个方向上产生推或拉力,而双作用液压缸可以在两个方向上产生推拉力。
3.计算活塞直径和活塞杆直径:活塞直径和活塞杆直径是根据负荷要求和工作压力来计算的。
一般来说,活塞直径越大,液压缸的承载能力越大,但也会增加摩擦阻力和油液消耗量。
4.确定液压缸筒体和活塞杆材料:根据工作环境的要求和负荷的性质选择合适的材料,一般常用的材料有铸铁、钢等。
5.完成液压缸内部部件的设计:包括密封件、液压缸密封结构、液压缸的阻尼装置等。
密封结构的设计需要考虑到液压缸的工作环境和工作温度。
6.进行液压缸的强度计算:计算液压缸各个部件的强度,包括活塞杆、筒体和密封结构等。
强度计算需要考虑到工作压力和作用力等参数。
7.进行液压缸的动态计算:根据液压缸的运动速度和所需的加速度等参数,进行液压缸的动态计算。
1.计算缸体容积:液压缸的容积可以通过下式计算得到:V=π/4*D^2*L其中,V为缸体容积,D为活塞直径,L为活塞行程长度。
2.计算活塞面积:根据活塞直径计算活塞面积,可以通过下式计算得到:A=π/4*D^2其中,A为活塞面积,D为活塞直径。
3.计算活塞杆面积:根据活塞杆直径计算活塞杆面积,可以通过下式计算得到:A'=π/4*D'^2其中,A'为活塞杆面积,D'为活塞杆直径。
4.计算推力:根据工作压力和活塞面积计算液压缸的推力,可以通过下式计算得到:F=P*A其中,F为液压缸的推力,P为工作压力,A为活塞面积。
5.计算液压缸的速度:液压缸的速度可以通过可控阀门来调节,一般使用油流量来计算液压缸的速度,可以通过下式计算得到:V=Q/A其中,V为液压缸的速度,Q为油流量,A为活塞面积。
液压油缸的设计内容和步骤
液压油缸的设计内容和步骤液压油缸是一种广泛应用于机械、工程和农业等领域的装置,通过利用液体的压力将机械能转化为液压能,并实现力的放大和方向的改变。
液压油缸的设计涉及多个主要内容和步骤,下面将详细介绍。
一、液压油缸设计前的准备工作1.确定应用环境:液压油缸的设计应该先明确所处的工作环境和工作条件,包括温度、湿度、压力要求等。
2.确定工作要求:确定液压油缸需要承受的最大负荷和所需的运动速度、力的输出方向等。
3.选择液压油缸类型:根据应用的具体要求,选择合适的液压油缸类型,例如单作用液压油缸、双作用液压油缸等。
二、液压油缸设计步骤1.计算负荷:根据液压油缸的工作要求,计算液压油缸所需承受的最大负荷。
这可以通过计算受力分析和力的分解来实现。
2.计算液压缸行程:液压油缸的行程是指活塞从一个极端位置到另一个极端位置的线性位移量。
根据工作要求,计算液压缸的行程。
3.计算活塞面积:液压油缸的活塞面积是指活塞所覆盖的面积。
根据负荷和压力要求,计算出活塞面积。
4.选择密封件:为保证液压缸的密封性,选择合适的密封件材料和形状,并按照密封性能计算具体尺寸。
5.计算液压油缸尺寸:根据活塞面积、行程和密封件尺寸,计算液压油缸的具体尺寸,包括外径、内径、长度等。
6.选择材料:根据工作环境和负荷要求,选择合适的液压油缸材料,例如铸铁、碳钢、不锈钢等。
7.设计活塞杆:液压油缸的活塞杆是负责传递力量的部分,根据需求选择合适的活塞杆材料和直径。
8.计算液压油缸的稳定性:通过计算液压油缸的稳定性,确定液压油缸的最小稳定直径,以确保其在工作过程中不会发生扭转。
9.计算液压油缸的工作压力:根据所需负荷和活塞面积,计算液压油缸所需的工作压力。
10.设计油缸壳体:根据液压油缸的尺寸、行程和工作压力,设计油缸的壳体结构,保证其足够强度和刚度。
11.进行液压油缸的组装:根据设计要求和步骤,对液压油缸的各个组成部分进行组装。
通过以上这些步骤,液压油缸的设计过程可以得以实现。
第九章液压系统的设计与计算
按各执行元件在工作中的速度v以及位移s或经历的时间t 绘制v-s或v-t速度循环图。
三、确定液压系统的主要参数
液压系统的主要参数——工作压力和流量是选择液压元 件的主要依据,而系统的工作压力和流量分别取决于液压执 行元件工作压力、回路上压力损失和液压执行元件所需流量 、回路泄漏,所以确定液压系统的主要参数实质上是确定液 压执行元件的主要参数。 1. 初选液压系统的主要参数 执行元件工作压力是确定其结构参数的重要依据。工作 压力选得低一些,对液压系统工作平稳性、可靠性和降低噪 声等都有利,但对液压系统和元件的体积、重量就相应增大 ;工作压力选得过高,虽然液压元件结构紧凑,但对液压元 件材质、制造精度和密封要求都相应提高,制造成本也相应 提高。执行元件的工作压力一般可根据负载进行选择。
二、液压系统的工况分析和系统的确定
对执行元件负载分析与运动分析,也称为液压系统的工 况分析。工况分析就是分析每个液压执行元件在各自工作过 程中负载与速度的变化规律,一般执行元件在一个工作循环 内负载、速度随时间或位移而变化的曲线——用负载循环图 和速度循环图表示。 1. 负载分析 液压缸与液压马达运动方式不同,但他们的负载都是由 工作负载、惯性负载、摩擦负载、背压负载等组成的。 (1) 工作负载 FW 包括切削力、夹紧力、挤压力、重力等, 其方向与液压缸运动方向相反时为正,相同时为负;
2. 确定执行元件的主要结构参数 (1)确定液压缸主要结构参数 根据负载分析得到的最
大负载Fmax和初选的液压缸工作压力p,再设定液压缸回
油腔背压pb以及杆径比d/D,即可由第四章中液压缸的力 平衡公式来求出缸的内径D、活塞杆直径d和缸的有效工作
面积A,其中D、d值应圆整为标准值 。
(2)确定液压马达排量VM 排量VM 由马达的最大负载扭矩Tmax、
液压系统的设计步骤与设计要求
液压系统的设计步骤与设计要求液压系统是一种以液体为工作介质的动力传动系统,被广泛应用于机械、工程、冶金、航空等领域。
设计液压系统时,需要考虑以下几个步骤和设计要求。
设计步骤:1.确定液压系统的工作条件和要求:包括工作压力、流量、工作环境温度、振动等,以及工作循环和运行时间。
2.选择合适的液压元件:根据系统的工作条件和要求,选择适合的泵、阀门、缸、管路等液压元件。
液压元件的选型要考虑其工作压力、流量、工作温度范围、密封性能、耐腐蚀性等因素。
3.设计液压系统的管路布局:根据系统的功能和工作要求,设计液压系统的管路布局。
要考虑管路的布置方便性、管道直径、管路长度及弯曲程度等因素,以确保液压系统的工作效率和稳定性。
4.进行液压系统的水力计算:根据系统的工作条件和要求,进行液压系统的水力计算,包括流量、压力、液压功率等参数的计算。
通过水力计算,可以确定液压元件的尺寸和数量,以及泵的功率等参数。
5.进行液压系统的动力计算:根据系统的工作条件和要求,进行液压系统的动力计算,包括泵的功率、液压缸的速度和力矩等参数的计算。
通过动力计算,可以确定液压元件的尺寸和数量,以及泵的功率等参数。
6.进行液压系统的控制电路设计:根据系统的工作条件和要求,设计液压系统的控制电路。
要考虑液压系统的控制方式、工作状态、安全性等因素,以确保液压系统的可靠性和稳定性。
7.进行液压系统的安装和试验:按照设计要求,对液压系统进行安装和试验。
安装时要注意各液压元件的正确连接和固定,试验时要进行系统的各项功能和性能的测试,以确保液压系统的正常工作。
设计要求:1.选择合适的液体:要选择适合系统工作条件的液压介质,如矿物油、合成油、水等。
液体的选择要考虑其粘度、温度范围、密封性要求等因素。
2.保证系统的工作可靠性:要确保液压系统的各个元件和管路的安装质量和性能可靠性,保证系统的工作稳定性和高效性。
3.设计合理的液压缸:液压系统中的液压缸是关键元件之一,要根据工作条件和要求,设计合理优化液压缸的径向承载能力、轴向刚度、密封性能等。
液压系统设计方法
液压系统设计方法液压系统是一种通过液体传递能量的系统,广泛应用于各种工业和机械设备中。
液压系统设计的目标是实现高效、可靠的能量传递和控制,同时满足系统的性能要求。
下面是液压系统设计的一般方法和步骤。
第一步:明确系统的工作要求在液压系统设计之前,首先需要明确系统的工作要求,包括工作条件、所需输出力或动力、速度和精度要求等。
这些要求将直接影响到系统的设计和选型。
第二步:选择液压元件在液压系统中,液压元件起到能量传递和控制的作用。
选择适合系统要求的液压元件是液压系统设计的核心步骤之一、常见的液压元件包括液压泵、阀门、缸体、马达等。
在选择液压元件时,需要考虑其技术参数、工作压力范围、流量要求、密封性能和可靠性等。
第三步:设计液压系统布局液压系统布局是指液压元件在系统中的位置和连接方式。
液压系统布局的设计直接影响液压系统的性能和工作效率。
在设计液压系统布局时,需要考虑以下几个因素:1.系统的可维修性和易操作性,便于维护和检修。
2.尽量减少管路的长度和对流动的阻力,提高系统的工作效率。
3.避免液压元件之间的相互干扰和干涉,确保系统的正常工作。
第四步:计算和选择液压元件参数在设计液压系统时,需要计算和选择液压元件的参数。
例如,液压泵的流量和压力选择要根据系统的工作需求来确定,阀门的开口面积需要根据所需流量来计算,缸体的尺寸和活塞面积需要根据所需输出力来选择等。
第五步:进行系统的动态和静态模拟在液压系统设计的过程中,进行系统的动态和静态模拟可以帮助工程师预测系统的性能和响应。
动态模拟可以用于分析系统的运动特性和响应时间,判断系统是否满足要求;静态模拟可以用于分析系统的压力分布和流动性能,优化设计。
第六步:进行系统的试验验证总结:。
液压系统的设计步骤与设计要求
液压系统的设计步骤与设计要求步骤1:系统规划与需求分析第一步是进行系统规划与需求分析,确定液压系统的工作范围和目标。
需要考虑的因素包括系统的功能要求、工作环境条件、工作压力范围、装置的预算等。
此步骤通常由工程师们与用户进行沟通,并综合考虑各个因素,确定系统的基本要求。
步骤2:组件选择和设计在此步骤中,需要选择合适的液压元件和装置。
这些组件包括液压泵、液压马达、液压缸、液压阀、液压管路等。
在选择时需要考虑到系统的压力、流量、负载以及环境因素等。
步骤3:系统布局和连接设计在这一步骤中,需要进行系统的布局和连接设计。
需要考虑到各个组件之间的连线和管路,以及系统中各个部件的安装位置和布局等。
合理的系统布局和连接设计可以提高系统的工作效率和可靠性。
步骤4:流量和压力的计算在液压系统的设计过程中,需要进行流量和压力的计算。
主要是根据系统的工作要求,计算出液压泵的流量和压力,并根据这些参数选择合适的液压元件和装置。
步骤5:系统调试和优化在液压系统的设计完成后,需要进行系统的调试和优化。
确定系统的工作参数,测试系统的性能,并进行必要的调整和改进。
此步骤通常需要通过实验和试验来完成。
1.安全性:液压系统的设计必须要保证系统在正常工作状态下的安全性,包括防止泄漏、爆炸和火灾等问题的发生。
2.可靠性:液压系统的设计要求系统能够长时间稳定地工作,能够承受额定工作压力和负荷,不易损坏,且能够满足系统的寿命要求。
3.效率:液压系统的设计要求系统能够高效地工作,具有较高的能量转换效率和工作效率,以及较低的能量损失。
4.环境适应性:液压系统的设计要求考虑到工作环境的特殊要求,包括温度、湿度、腐蚀性、振动和噪声等因素,确保系统在这些环境条件下能够正常工作。
5.经济性:液压系统的设计要求在满足系统功能要求的前提下,尽可能降低成本,选择合适的液压元件和装置,并兼顾系统的可维护性和维修成本。
6.可维护性:液压系统的设计要求考虑到系统的维护和维修问题,使得系统的维护工作变得简单、易操作,并且降低维修的时间和成本。
液压压力机设计步骤
液压压力机设计步骤液压压力机是一种常用的工业设备,用于对工件进行压力加工。
设计液压压力机需要经过一系列的步骤,以确保其功能正常、性能稳定。
以下是液压压力机设计的一般步骤:1. 确定设计需求:首先,需要明确设计液压压力机的具体需求,包括工件的尺寸、压力要求、加工方式等。
这些需求将成为设计的基础。
2. 确定压力机类型:根据设计需求,确定液压压力机的类型,例如C型、H型、四柱式等。
不同类型的压力机有不同的结构和功能,选择合适的类型可以提高工作效率和加工质量。
3. 计算压力和力:根据设计需求,计算出所需的压力和力。
这涉及到液压系统的设计,包括液压缸的尺寸和工作压力的确定等。
通过合理计算,可以确保液压系统能够提供足够的压力和力。
4. 设计液压系统:根据计算结果,设计液压系统的各个组成部分,包括液压缸、油泵、油箱等。
液压系统的设计需要考虑压力和流量的平衡,以及系统的安全性和可靠性。
5. 设计机械结构:同时,还需要设计液压压力机的机械结构,包括床身、滑块、导轨等。
机械结构的设计需要考虑工件的固定和移动,以及机械部件的刚度和稳定性。
6. 选配液压元件:根据设计需求,选配适合的液压元件,包括液压阀、油管、接头等。
选配合适的液压元件可以提高液压系统的工作效率和可靠性。
7. 进行结构强度计算:为了确保液压压力机的结构强度和稳定性,需要进行结构强度计算。
这涉及到材料的选择、结构的布局和连接方式的设计等。
8. 进行系统测试:在完成液压压力机的设计后,需要进行系统测试,验证其性能和功能是否符合设计要求。
通过测试,可以发现并解决潜在的问题,确保液压压力机的工作正常。
9. 完善设计文档:最后,需要将液压压力机的设计结果整理成设计文档,包括设计图纸、设计计算和测试报告等。
这些文档将成为生产和使用液压压力机的依据。
通过以上步骤,可以完成液压压力机的设计。
设计过程中需要考虑多个因素,包括设计需求、液压系统、机械结构和结构强度等。
只有综合考虑这些因素,才能设计出功能正常、性能稳定的液压压力机。
液压系统的设计与计算步骤
液压系统的设计与计算:
1、根据液压系统的要求设计液压系统,拟订油路图。
2、计算与选型
(1)油缸的工作压力、面积和流量
柱塞上的外部载荷P:(包括压板、板坯、密封阻力、工作载荷和柱塞)。
柱塞直径d:(柱塞总的工作面积F =P/p,每个缸子的柱塞面积为F/n)。
油缸的流量Q。
选型:
(2)油泵的选择
油泵工作压力的确定
低压泵工作压力(p d)的确定:(液压油流速取3.5m/s)
包括:板坯、压板、柱塞、摩擦阻力、局部压损和沿程压损。
高压泵工作压力(p g)的确定:
包括:主要指系统压力、板坯、压板、柱塞、摩擦阻力、局部压损和沿程压损。
油泵流量的确定:
总流量Q bz=K·Q z (k取1.2)
高压泵的流量:Q g=VxF/10(V取0.24m/min )
低压泵的流量:Q d= Q bz- Q g
根据流量和压力选型:
油泵电机功率的确定:
(3)阀的选择
(4)油管的计算(内径与壁厚)与选择
(5)液压系统性能的验算(包括压力损失的验算和系统发热的验算)
(6)柱塞缸壁厚的计算。
液压升降平台的设计步骤解读
液压升降平台的设计步骤解读1. 设计目标确定在设计液压升降平台之前,首先需要明确设计目标。
设计目标确定包括了平台的最大承载能力、升降高度范围、稳定性要求、升降速度等指标。
同时还需要考虑平台的使用环境和功能需求。
2. 原理分析在设计液压升降平台时,需要对其工作原理进行分析。
液压升降平台的工作原理是通过液压缸和液压系统来实现的。
液压升降平台的液压系统包括油箱、泵站、电机和液压油管等组成部分。
通过了解原理,可以更好地设计出平台的结构和布局。
3. 结构设计结构设计是液压升降平台设计的核心内容之一。
在结构设计中需要考虑平台的尺寸、材料选择、连接方式等因素。
同时还需要确保平台的稳定性和安全性,包括防止平台倾斜、抗风能力、抗震能力等。
4. 控制系统设计液压升降平台的控制系统设计是实现升降功能的关键。
在控制系统设计中,需要考虑采用何种控制方式,如手动控制、自动控制等。
还需要选择合适的控制设备,如液压阀门、控制器等。
同时需要设计电气系统,包括电机、开关、信号灯等。
5. 安全保护设计在设计液压升降平台时,安全是最重要的考虑因素之一。
安全保护设计包括防止事故发生和应对事故的紧急措施。
在设计中需要考虑安全防护措施,如扶手、防撞装置、安全门等。
同时还需要设置安全限位器,确保平台的升降范围和停止位置。
6. 性能测试与优化在设计完成后,需要进行性能测试与优化。
性能测试包括了平台的承载能力、升降速度、稳定性等方面的测试。
根据测试结果,可以对平台的结构和参数进行优化,以提高平台的性能和稳定性。
7. 文档整理与发布设计完成后,需要将设计过程和结果进行整理,并发布成文档。
文档中应包括了设计的各个步骤、原理分析、结构设计图纸、控制系统电路图等内容。
这样可以方便后续的使用和参考。
以上是液压升降平台的设计步骤解读。
通过明确设计目标、进行原理分析、结构设计、控制系统设计、安全保护设计、性能测试与优化以及文档整理与发布等步骤,可以设计出安全可靠的液压升降平台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压传动系统的设计计算3.1明确设计要求制定基本方案:设计之前先确定设计产品的基本情况,再根据设计要求制定基本方案。
以下列出了本设计——剪式液压升降台的一些基本要求:1 主机的概况:主要用途用于家用小型重型设备的起升,便于维修,占地面积小,适用于室外,总体布局简洁;2 主要完成起升与下降重物的动作,速度较缓,液压冲击小;3 最大载荷量定为2吨,采用单液压缸控制联接组合叉杆机构进行升降动作。
最大起升高度略大于一人高度;4 运动平稳性好;5 人工控制操作,按钮启动控制升降;6 工作环境要求:不宜在多沙石地面、木板砖板地面等非牢固地面进行操作,不宜在有坡度或有坑洼的地面进行操作,不宜在过度寒冷的室外进行操作;7 性能可靠,成本低廉,便于移动,无其他附属功能及特殊功能;3.2制定液压系统的基本方案3.2.1确定液压执行元件的形式液压执行元件大体分为液压缸或液压泵。
前者实现直线运动,后者完成回转运动,二者的特点及适用场合见下表。
注:A1——无杆腔的活塞面积 A2——有无杆腔的活塞面积对于本设计实现单纯并且简单直线及回转运动的机构,可以采用齿轮式液压泵及双活塞杆液压缸,这样不仅简化液压系统降低设备成本,而且能改善运动机构的性能和液压执行元件的载荷状况。
常用的扩程机构有如下二种形式:(a )图3-1扩程机构(b它们同时也可以实现增速,常用于电梯的升降、高低位升降台等液压设备。
还有一种运动转换机构,小角度的回转运动用液压缸来实现,其运动比较平稳,长行程的直线运动可以用液压马达来完成。
本设计要完成的剪叉式液压升降台综合了扩程、回转这两种工作形式。
3.2.2 确定液压缸的类型工程液压缸主要用于工程机械、重型机械、起重运输机械及矿山机械的液压系统。
根据主机的运动要求,按表37-7-5选择液压缸的类型为:直线运动单活塞杆双作用缓冲式液压缸。
其特点:活塞双向运动产生推、拉力。
活塞行程终了时减速制动,减速值不变。
3.2.3 确定液压缸的安装方式工程液压缸均为双作用单活塞式液压缸,安装方式多采用耳环型。
由于本设计中液压缸在作用过程中是一端固定,一端在垂直面上自由摆动的形式,因此根据表37-7-6选择液压缸的安装方式为:尾部耳环联接。
3.2.4 缸盖联接的类型按缸盖与缸体的联接方式,可分为外螺纹联接式、内卡键联接式及法兰联接式三种。
这里采用法兰联接。
型号说明:P37-180 3.2.5拟订液压执行元件运动控制回路液压执行元件确定之后,其运动方向和运动速度的控制是拟订液压回路的核心问题。
方向控制用换向阀或是逻辑控制单元来实现。
对于一般中小流量的液压系统,大多数通过换向阀的有机组合实现所要求的动作。
对于高压大流量的液压系统,现多采用插装阀于先导控制阀的组合来实现。
本设计剪叉式液压升降台其特点:起升压力大,运行缓慢、平稳,能人工控制起升至某一固定高度时并保持该高度自锁。
3.2.6液压源系统液压系统的工作介质完全由液压源提供,液压源的核心是液压泵。
在无其他辅助油源的情况下,液压泵的供油量要大于系统的需油量,多余的油经过溢流阀回油箱,溢流阀同时起到开展并稳定油源压力的作用。
容积调速系统多数是用变量泵供油,用安全阀限定系统的最高压力。
为节省能源并提高效率,液压泵的供油量要尽量于系统所需流量相匹配。
对在工作循环各阶段中系统所需油量相差较大的情况下,则采用多泵供油或变量泵供油。
对于本设计,由于工作周期短,循环次数少,供油量可以适当减少以节省能源,采用单泵供油即可,不需蓄能器储存能量。
对于油液的净化:油液的净化装置在液压源中是必不可少的。
一般泵的入口要装有粗滤油器,进入系统的油液根据被保护元件的要求,通过相应的精滤油器再次过滤。
为防止系统中杂质流回油箱,可在回油路上设置磁过滤或其他形式滤油器。
根据液压设备所处环境及对温升的要求,还要考虑加热、冷却等措施。
3.3确定液压系统的主要参数液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。
压力决定于外载荷。
流量取决于液压执行元件的运动速度和结构尺寸。
3.3.1载荷的组成与计算:首先,需要确定液压缸处于最大工作压力时的位置,通过上述的讨论,得知当液压缸与地面夹角θ为最小值时,也即支撑杆与地面夹角α为最小值时,液压缸处于最大的工作压力状态下。
根据轴距2.4m ,将支撑杆的长度选定2.1m/根。
当液压缸下降至最低高度时(设此时支撑杆与地面夹角a =a 0)a 0=5 ,根据上述公式θ=tan [-1l +a l -atan α]得θ0=9.9。
图3-2机构各参数现在a 值还是一个未知量,但a 值的大小必须在l /2之内,初步设定a =l /4。
根据活塞推力与台面荷重量关系式P =2l cos αa sin(θ+α +l sin(θ-αW得出P=13.3W。
若设a =l /3的话,就得出P=11.6W。
通过二者比较,a =l /3时,活塞的最大推力P 要小于a =l /4时。
即在α值不变的条件下,a 与P 是成反比的。
但考虑到活塞杆与支撑杆的铰接点A 又不能太靠近两支撑杆的铰接点B ,否则将会在两处铰接点产生很大的应力集中,以致降低疲劳强度。
因此,应选a =l /3比较合适。
这时将a =l /3代入公式得 P =6c o αss i n θ(+α+3θs i -n α(W,tan θ=2tan α当平台处于最低位置α0=5 时,液压缸荷重P 最大,P=11.6W=11.6⨯9800=113680N。
下面就根据载荷量来选取合适的液压缸。
图3-3液压缸本图表示一个以液压缸为执行元件的液压系统计算简图。
各有关参数标注于图上,其中F w 是作用在活塞杆上的外部载荷, F m 是活塞与缸壁以及活塞杆与导向套之间的密封阻力。
作用在活塞杆是的外部载荷包括工作载荷F g ,导轨的摩擦力F f 和由于速度变化而产生的惯性力F a 。
(1)工作载荷F g常见的工作载荷有作用于活塞杆上轴线的重力、切削力、挤压力等,这些作用力的方向与活塞的运动方向相同为负,相反为正。
在实际工作过程中,由于载荷量较大,活塞自身的重力可以忽略不计,切削力与挤压力共同组成的外力即为工作载荷F g ,在图3中,F g =P。
由于本设计按最大载荷量定为2吨来计算,所以每个液压缸F g=P=113680N。
(2)导轨摩擦载荷F f对于直动型安装的液压缸一般都附有活塞导轨以固定其运动方向,导轨摩擦相对于总载荷可以忽略不计,因此F f =0。
(3)惯性载荷F aF a =ma,a =∆v ∆t。
∆v ——速度变化量m/s∆t ——起动或制动时间,s 。
一般机械=0.1~0.5s,对轻度载荷低速运动部件取小值,对重载荷高速部件取大值。
行走机械一般取=0.5~1.5sa ——加速度m /s2初步选定速度变化量∆v =0.16m/s,∆t =0.6s,则a =F a =ma =2t /2⨯0.27=270N∆v ∆t=0.160.6=0.27m /s 2,以上三种载荷之和称为液压缸的外载荷F w ,F w =F g +F f +F a =113680+0+270=113950N。
起动加速时 F w =F g +F f +F a ,稳态运动时 F w =F g +F f ,减速制动时F w =F g +F f -F a。
工作载荷F g 并非每阶段都存在,如该阶段没有工作,则F g =0。
但在计算和校核时,应按照最大值取。
除了外载荷F w 外,作用于活塞上的载荷F 还包括液压缸密封处的摩擦阻力F m ,由于各种液压缸的密封材质和密封形式不同,密封阻力难以精确计算,一般估算为F m =(1-ηm PF w式中ηm ——液压缸的机械效率,一般取0.90~0.95,这里取0.95,=119568NF =ηm=1135900.953.3.2初选系统压力液压缸的选择要遵循系统压力的大小,要根据载荷的大小和设备类型而定。
还要考虑执行元件的装配空间、经济条件及元件供应情况等限制。
在载荷一定的情况下,工作压力低,势必要加大执行元件的结构尺寸,对某些设备来说,尺寸要受到限制,从材料消耗角度看也不是很经济;反之,压力选的太高,对泵、缸、阀等元件的材质、密封、制造精度也要求很高,必然要提高设备成本。
一般来说,对于固定尺寸不太受限的设备,压力可选低一些,行走机械重载设备压力要选的高一些。
按下表初步选取15Mpa 。
各种机械常用的系统工作压力3.3.3计算液压缸的主要结构尺寸⑴液压缸的相关参数和结构尺寸液压缸有关的设计参数见图所示:图3-4 液压缸设计参数图a 为液压缸活塞杆工作在受压状态,图b 表示活塞杆受拉状态。
活塞杆受压时F =F wηm=p 1A 1-p 2A 2活塞杆受拉时F =F wηm π4=p 1A 2-p 2A 1式中A 1=D2——无杆腔活塞有效工作面积 m 2A 2=π4(D -d22——有杆腔活塞有效工作面积 m 2PaPa ,其值根据回路的具体情况而定,一般可以按照下p 1——液压缸工作腔压力 p 2——液压缸回油腔压力表估算D ——活塞直径 m d ——活塞杆直径 m执行元件背压力表在这里我们取背压力值p 2=0.2M Pa在本设计中,液压缸不存在受拉的状态,所以只考虑其收压。
一般液压缸在收压状态下工作时,其活塞面积为:A 1=F +p 2A 1p 1用运此公式须事先确定A 1与A 2的关系,或是活塞杆径d 与活塞直径D 的关系,令杆径比φ=d/D,其比值可按下表选取。
按工作压力选取d/D按速度比要求确定d/D=A 1A 2=D222注:速度比ϕ,为活塞两侧有效面积A 1与A 2之比。
即ϕD -d如按工作压力应选取d/D=0.7,则相应的速度比ϕ=2,由于活塞不受拉力作用,所以活塞杆收缩时可以适当提高其速度,ϕ =2也是完全可以的。
运用直径求法公式D ===101.1m m,可以求出d=71.8mm。
液压缸的直径D 和活塞杆径d 的计算值要按国家标准规定的液压缸的有关标准进行圆整,如与标准液压缸参数相近,最好选用国产液压缸,免于自行设计加工。
按照机械手册中工程液压缸的技术规格表37-7-7可以选择圆整后的参数:缸径100mm ,活塞杆70mm, 速度比ϕ=2,工作压力16Mpa ,推力125.66kN 。
⑵计算活塞杆的行程当平台处于最低位置α0=5 时,此时活塞杆应处于完全收缩状态, 液压缸的长度为最小值d 0,d 0==1320mm。
平台的高度h =2l ⨯sin α=2⨯1500⨯sin 10=366m m。
再计算一下平台上升的最大高度,这里设上升至最大高度的α=30 ,计算得出最大高度H=2.1m。
此时活塞杆伸长至d m ==1760m m 。
当活塞杆处于完全收缩状态时,液压缸的长度就等于d 0,选定液压缸长度为1320mm 。