初二动点问题含答案
初二数学动点问题归类复习(含例题、练习及答案)
初二数学动点问题归类复习(含例题、练习及答案)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。
一、等腰三角形类:因动点产生的等腰三角形问题例1:(2013年上海市虹口区中考模拟第25题)如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.解答:(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM==.所以1531444CQ CN QN=+=+=.(3)如图5,如图2,在Rt△PDQ中,3tan4QD DNQPDPD DM∠===.在Rt△ABC中,3tan4BACCA∠==.所以∠QPD=∠C.由∠PDQ=90°,∠CDE=90°,可得∠PDF=∠CDQ.因此△PDF∽△CDQ.当△PDF是等腰三角形时,△CDQ也是等腰三角形.①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).此时4433PM QN==.所以45333BP BM PM=-=-=.②如图6,当QC=QD时,由cosCHCCQ=,可得5425258CQ=÷=.所以QN=CN-CQ=257488-=(如图2所示).此时4736PM QN==.所以725366BP BM PM=+=+=.③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).图5 图6考点伸展:如图6,当△CDQ是等腰三角形时,根据等角的余角相等,可以得到△BDP也是等腰三角形,PB=PD.在△BDP中可以直接求解256BP=.二、直角三角形:因动点产生的直角三角形问题例2:(2008年河南省中考第23题)如图1,直线434+-=xy和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0).(1)试说明△ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;②设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;③在运动过程中,当△MON为直角三角形时,求t的值.图1思路点拨:1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点.2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程.4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能. 解答:(1)直线434+-=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4). Rt △BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5. 因此BC =BA ,所以△ABC 是等腰三角形.(2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45NH t =. 如图2,当M 在AO 上时,OM =2-t ,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-+.定义域为0<t ≤2.如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-.定义域为2<t ≤5.图2 图3②把S =4代入22455S t t =-,得224455t t -=.解得12t =,22t =.因此,当点M 在线段OB 上运动时,存在S =4的情形,此时2t = ③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =-,3cos 5B =, 所以535t t -=.解得258t =. 如图5,当∠OMN =90°时,N 与C 重合,5t =. 不存在∠ONM =90°的可能.所以,当258t =或者5t =时,△MON 为直角三角形.图4 图5考点伸展:在本题情景下,如果△MON 的边与AC 平行,求t 的值.如图6,当ON //AC 时,t =3;如图7,当MN //AC 时,t =2.5.图6 图7三、平行四边形问题:因动点产生的平行四边形问题 例3:(2010年山西省中考第26题)在直角梯形OABC 中,CB //OA ,∠COA =90°,CB =3,OA =6,BA=.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系.(1)求点B 的坐标;(2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2EB ,直线DE 交x 轴于点F .求直线DE 的解析式;(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一点N ,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.图1 图2思路点拨:1.第(1)题和第(2)题蕴含了OB 与DF 垂直的结论,为第(3)题讨论菱形提供了计算基础.2.讨论菱形要进行两次(两级)分类,先按照DO 为边和对角线分类,再进行二级分类,DO与DM 、DO 与DN 为邻边.解答:(1)如图2,作BH⊥x轴,垂足为H,那么四边形BCOH为矩形,OH=CB=3.在Rt△ABH中,AH=3,BA=BH=6.因此点B的坐标为(3,6).(2) 因为OE=2EB,所以223E Bx x==,243E By y==,E(2,4).设直线DE的解析式为y=kx+b,代入D(0,5),E(2,4),得5,2 4.bk b=⎧⎨+=⎩解得12k=-,5b=.所以直线DE的解析式为152y x=-+.(3) 由152y x=-+,知直线DE与x轴交于点F(10,0),OF=10,DF=.①如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点.此时点M的坐标为(5,52),点N的坐标为(-5,52).②如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8).③如图5,当DO、DM为菱形的邻边时,NO=5,延长MN交x轴于P.由△NPO∽△DOF,得NP PO NODO OF DF==,即510NP PO==NP=,PO=.此时点N的坐标为(-.图3 图4考点伸展如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形.图5 图6四、相似三角形:因动点产生的相似三角形问题例4:(2013年苏州中考28题)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.思路点拨:(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在.解答:(1)若四边形EBFB′为正方形,则BE=BF,即:10﹣t=3t,解得t=2.5;(2)分两种情况,讨论如下:①若△EBF∽△FCG ,则有,即,解得:t=2.8;②若△EBF∽△GCF ,则有,即,解得:t=﹣14﹣2(不合题意,舍去)或t=﹣14+2.∴当t=2.8s或t=(﹣14+2)s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.(3)假设存在实数t,使得点B′与点O重合.如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM =BC﹣BF=6﹣3t,OM=5,由勾股定理得:OM2+FM2=OF2,即:52+(6﹣3t)2=(3t)2解得:t =;过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,由勾股定理得:ON2+EN2=OE2,即:62+(5﹣t)2=(10﹣t)2解得:t=3.9.∵≠3.9,∴不存在实数t,使得点B′与点O重合.考点伸展:本题为运动型综合题,考查了矩形性质、轴对称、相似三角形的判定性质、勾股定理、解方程等知识点.题目并不复杂,但需要仔细分析题意,认真作答.第(2)问中,需要分类讨论,避免漏解;第(3)问是存在型问题,可以先假设存在,然后通过推导出互相矛盾的结论,从而判定不存在.拓展练习:1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
初中八年级上册数学动点问题试卷附答案
初中八年级上册数学动点问题试卷附答案
一、选择题
1. 一辆汽车以每小时60千米的速度向东行驶,经过2小时后改变方向,以每小时40千米的速度向北行驶,求其位移。
A. 40千米
B. 80千米
C. 100千米
D. 120千米
答案:D. 120千米
2. 一辆自行车向前行驶30分钟后,记下此时的位置。
然后车辆停下来,待30分钟后,以相同的时间和速度往后倒退,到达原点。
求此自行车的位移。
A. 0千米
B. 5千米
C. 10千米
D. 15千米
答案:A. 0千米
二、填空题
1. 一个物体从A点出发,以每秒2米的速度向东行驶10秒,
然后改变方向,以每秒3米的速度向南行驶15秒,最后以每秒4
米的速度向西行驶20秒。
求物体的位移为______米。
答案:-20
2. 一架飞机以每秒200米的速度向东飞行30秒,然后改变方向,以每秒300米的速度向南飞行40秒,最后以每秒400米的速
度向西飞行50秒。
求飞机的位移为______米。
答案:-4000
三、解答题
1. 一个人从原点出发,以每小时5千米的速度向西行驶1小时,然后改变方向,以每小时8千米的速度向南行驶2小时,最后以每
小时10千米的速度向东行驶3小时。
求此人的位移和位移方向。
答案:位移为-23千米,位移方向为东南方向。
2. 一个物体以每秒10米的速度向北行驶30秒,然后改变方向,以每秒15米的速度向东行驶40秒,最后以每秒20米的速度向南
行驶50秒。
求物体的位移和位移方向。
答案:位移为20米,位移方向为南方。
(完整版)初二动点问题(含答案)
动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想类型:1。
利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4。
分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6。
动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.的长为 ;的长为 ;4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BCEFCF于点F,求证:AE=EF.AB的中点M,连接ME,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点"改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ACBAED图1NMA BCDEMN图2ACBEDNM图36、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值(1)如果点P在线段BC上以3cm/s的速度由B点向CCA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能(2)若点Q以②中的运动速度从点C来的运动速度从点B边运动,求经过多长时间点P与点Q第一次哪条边上相遇?A DFC GEB图1A DFC GEB图3A DFC GEB图2。
初二数学动点问题练习(含答案)
动态问题之五兆芳芳创作所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关头是动中求静,灵活运用有关数学知识解决问题.关头:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q辨别从A,C同时出发,设移动时间为t秒.当t=时,四边形是平行四边形;6当t=时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时ADOE CDAαlOCA(备用图)的长为;(2解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300. ∴AB =4,AC∴AO在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形, ∴四边形EDBC 是菱形4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)①∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90°∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEBCBAE D图1 N MA B CDE M N图2ACB EDNM图3②∵△ADC≌△CEB∴CE=AD,CD=BE ∴DE=CE+CD=AD+BE(2) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE又∵AC=BC∴△ACD≌△CBE ∴CE=AD,CD=BE∴DE=CE-CD=AD-BE(3) 当MN旋转到图3的位置时,DE=BE-AD(或AD=BE-DE,BE=AD+DE等)∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方EF形,点E是边BC经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC在此根本上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改成“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的不雅点正确吗?如果正确,写出证明进程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的不雅点正确吗?如果正确,写出证明进程;如果不正确,请说明理由.解:(1)正确.ASA).(2)正确.ASA).6、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB标的目的以1个单位/秒的速度移动,设P的运动时间为t.求(1)△PAB为等腰三角形的t值;(2)△PAB为直角三角形的t值;(3)若AB=5且∠ABM=45 °,其他条件不变,直接写出△PAB为直角三角形的t值7、如图1A DFC GEB图1A DFC GEB图3A DFC GEB图2A DFGBN求:(1距离;(223明理由解(1)如图1,于点∵为的中点,∴(2图1A DEBFCGA DEBFC图4(备A DEBFC图5(备A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)不产生改动.如图2cos30︒=中,PN的周长=PM在线段DC等边三角形.3当时,如图45图3A DEBFCPNM图4A DEBFCPMN图5A DEBFCMNGGRG图2A DEBFCPNMGH48中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B点P与点Q解:(1又米,米,∴②∵,∴,又∵,,则/秒.(2)设经过秒后点与点第一次相遇,由题意,得1532104x x =+⨯,解得803x =秒.∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇.9、如图所示,在菱形ABCD 中,AB =4,∠BAD =120°,△AEF 为正三角形,点E 、F 辨别在菱形的边BC .CD 上滑动,且E 、F 不与B .C .D 重合.(1)证明不管E 、F 在BC .CD 上如何滑动,总有BE =CF ; (2)当点E 、F 在BC .CD 上滑动时,辨别探讨四边形AECF 和△CEF 的面积是否产生变更?如果不变,求出这个定值;如果变更,求出最大(或最小)值.【答案】解:(1)证明:如图,连接AC∵四边形ABCD 为菱形,∠BAD =120°,∠BAE +∠EAC =60°,∠FAC +∠EAC =60°,∴∠BAE =∠FAC .∵∠BAD =120°,∴∠ABF =60°. ∴△ABC 和△ACD 为等边三角形.∴∠ACF =60°,AC =AB .∴∠ABE =∠AFC .∴在△ABE 和△ACF 中,∵∠BAE =∠FAC ,AB =AC ,∠ABE =∠AFC ,∴△ABE ≌△ACF (ASA ).∴BE =CF .(2)四边形AECF 的面积不变,△CEF 的面积产生变更.理由如下:由(1)得△ABE ≌△ACF ,则S △ABE =S △ACF . ∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值.作AH ⊥BC 于H 点,则BH =2,22AECF ABC 11S S BC AH BC AB BH 4322∆==⋅⋅=⋅-=四形边.由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变更而变更,且当AE最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大.∴S △CEF =S 四边形AECF ﹣S △AEF()()221432323332=-⋅⋅-=.∴△CEF 的面积的最大值是3.【考点】菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,垂直线段的性质.【阐发】(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠ACF=60°,AC=AB,从而求证△ABE≌△ACF,便可求得BE=CF.(2)由△ABE≌△ACF可得S△ABE=S△ACF,故按照S四边形F=S△AEC+S△ACF=S△AEC+S△AB E=S△ABC便可得四边形AECF的面积AEC是定值.当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF 的面积会随着AE的变更而变更,且当AE最短时,正三角形AEF 的面积会最小,按照S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.10、如图,在△AOB中,∠AOB=90°,OA=OB=6,C为OB上一点,射线CD⊥OB交AB于点D,OC=2.点P从点A出发以每秒个单位长度的速度沿AB标的目的运动,点Q从点C出发以每秒2个单位长度的速度沿CD标的目的运动,P、Q两点同时出发,当点P到达到点B时停止运动,点Q也随之停止.过点P作PE⊥OA 于点E,PF⊥OB于点F,得到矩形PEOF.以点Q为直角顶点向下作等腰直角三角形QMN,斜边MN∥OB,且MN=QC.设运动时间为t(单位:秒).(1)求t=1时FC的长度.(2)求MN=PF时t的值.(3)当△QMN和矩形PEOF有重叠部分时,求重叠(阴影)部分图形面积S与t的函数关系式.(4)直接写出△QMN的边与矩形PEOF的边有三个公共点时t的值.考点:相似形综合题.阐发:(1)按照等腰直角三角形,可得,OF=EP=t,再将t=1代入求出FC的长度;(2)按照MN=PF,可得关于t的方程6﹣t=2t,解方程便可求解;(3)分三种情况:求出当1≤t≤2时;当2<t≤时;当<t≤3时;求出重叠(阴影)部分图形面积S与t的函数关系式;(4)分M在OE上;N在PF上两种情况讨论求得△QMN的边与矩形PEOF的边有三个公共点时t的值.解答:解:(1)按照题意,△AOB、△AEP都是等腰直角三角形.∵,OF=EP=t,∴当t=1时,FC=1;(2)∵AP=t,AE=t,PF=OE=6﹣tMN=QC=2t∴6﹣t=2t解得t=2.故当t=2时,MN=PF;(3)当1≤t≤2时,S=2t2﹣4t+2;当2<t≤时,S=﹣t2+30t﹣32;当<t≤3时,S=﹣2t2+6t;(4)△QMN的边与矩形PEOF的边有三个公共点时t=2或.点评:程思想,分类思想的运用,有一定的难度.。
初二动点问题(含标准答案)
初二动点问题(含答案)作者:日期: 2动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目•解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题•关键:动中求静•数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD 中,AD // BC,/ B=90 ° , AB=14cm,AD=18cm,BC=21cm,点P 从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P, Q分别从A , C同时出发,设移动时间为t秒。
当t= _____ 时,四边形是平行四边形;6当t= _____ 时,四边形是等腰梯形• 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1 , N为对角线AC上任意一点,则DN+MN的最小值为_________ 53、如图,在只也ABC中,ACB 90°, B 60°, BC 2•点°是AC的中点,过点°的直线l从与AC重合的位置开始,绕点°作逆时针旋转,交AB边于点D •过点C作2CE // AB 交直线I 于点E ,设直线I 的旋转角为(1)①当度时,四边形EDBC 是等腰梯形,此时AD 的长为②当度时,四边形EDBC 是直角梯形,此时 AD 的长为(2)当 90°时,判断四边形 EDBC 是否为菱形,并说明理由.解:(1 [① 30, 1 :② 60, 1.5;(2)当/% =900时,四边形 EDBC 是菱形•v/a =/ACB=90°,「. BC//ED. T CE//AB,二四边形 EDBC 是平行四边形 在 Rt △ABC 中,/ ACB=900,/ B=60°,BC=2, /./ A=30°.137AC3••• AB=4,AC=2 '3. ••• A°= 2 = 3 •在 Rt △ AOD 中,/ A=30,二 AD=2.B• BD=2. • BD=BC. 又•••四边形 EDBC 是平行四边形, •四边形EDBC 是菱形 4、C ,A(1) 当直线 MN 绕点C 旋转到图1的位置时,求证:①△ ADC ◎△ CEB •,②DE=AD + BE ;⑵当直线 MN 绕点C 旋转到图2的位置时,求证: DE=AD-BE ;⑶当直线MN 绕点C 旋转到图3的位置时,试问 DE 、AD 、BE 具有怎样的等量关系?请写出这个等量 关系,并加以证明•解:(1 [① •••/ ACD= / ACB=90 •••/ CAD+ / ACD=90 /-Z BCE+ / ACD=90•••/ CAD= Z BCE •/ AC=BCADC ◎△ CEB② •/△ ADC ◎△ CEB • CE=AD , CD=BE • DE=CE+CD=AD+BE(2) T Z ADC= Z CEB= Z ACB=90°ACD= Z CBE又 ■: AC=BCACD ◎△ CBE • CE=AD , CD=BE • DE=CE-CD=AD-BE(3) 当 MN 旋转至U 图 3 的位置时,DE=BE-AD(或 AD=BE-DE , BE=AD+DE 等)•/Z ADC= Z CEB= Z ACB=90° /Z ACD= Z CBE , 又 ■: AC=BC ,ACD ◎△ CBE ,• AD=CE , CD=BE ,• DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题: 如图1,四边形ABCD 是正方形,点E 是边BC 的中点. AEF 90°,且EF 交正方形外角 DCG 的平行线CF 于点F ,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB 的中点 M 连接 ME 则 AM =EC,易证△ AME ECF ,所以 AE EF .在此基础上,同学们作了进一步的研究:(1 )小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点 E 是边BC 上(除B, C 外)的任意 一点”,其它条件不变,那么结论“ AE=EF'仍然成立,你认为小颖的观点正确吗?如果正确,写出证明 过程;如果不正确,请说明理由;(3) 若AB=5且Z ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF' 仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程; 解:(1)正确. 证明:在 AB 上取一点M ,使AM45°DCFBM BE . BME QCF 是外角平分线,AMEQ AEBBAE(2)正确.证明:在BA 的延长线上取一点 NBN BE . N PCEQ 四边形ABCD 是正方形, ADAE BEA . NAE △ ANEECF (ASA ). AE EF .ECF . BAE 90°, CEF . AEB△6、如图,射线MB 上,MB=9,A 是射线 MB 方向以1个单位/秒的速度移动,设 求(PAB 为等腰三角形的t 值;MB 外一点,AB=5且A 到射线 P 的运动时间为t.(2)△ PAB 为直角三角形的t 值; 如果不正确,请说明理由. MB 的距离为3,动点P 从图沿射线2 >过P 作PG 丄IVIN 于G VMN/7AB^NM=NP过N 作NR 丄MP^R 则有:RM=0.5FM= V宀 忑 J :Rt ANMRM^RM- y MN=」CMV3 再A — {5・X j ■亍:、x=43。
(完整版)初二数学动点问题练习(含答案)
eandr动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等AA(备用图)CBAED图1NMA BCDEMN图2ACBEDNM图3量关系,并加以证明.解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等)∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC ,∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠= ,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME .BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠= °,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=.(2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ).AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD F C GB图1ADFC GEB图3A DFC GB 图2AD FC GE B MADFGE BNAllthisinth7、如图1,在等腰梯形ABCD中,AD BC∥,E是AB的中点,过点E作EF BC∥交CD于点F.46AB BC==,,60B=︒∠.求:(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM EF⊥交BC于点M,过M作MN AB∥交折线ADC于点N,连结PN,设EP x=.①当点N在线段AD上时(如图2),PMN△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由解(1)如图1,过点E作EG BC⊥于点G.∵E为AB的中点,∴122BE AB==.在Rt EBG△中,60B=︒∠,∴30BEG=︒∠.∴112BG BE EG====,.即点E到BCA DA DEBFC图4(备用)A DEBFC图5(备用)A DEBFC图1图2A DEBFCPNM图3A DEBFCPNM(第25题)si(2)①当点N在线段AD上运动时,PMN△的形状不发生改变.∵PM EF EG EF⊥⊥,,∴PM EG∥.∵EF BC∥,∴EP GM=,PM EG==同理4MN AB==.如图2,过点P作PH MN⊥于H,∵MN AB∥,∴6030NMC B PMH==︒=︒∠∠,∠.∴12PH PM==∴3cos302MH PM=︒=A.则35422NH MN MH=-=-=.在Rt PNH△中,PN===∴PMN△的周长=4PM PN MN++=++.②当点N在线段DC上运动时,PMN△的形状发生改变,但MNC△恒为等边三角形.当PM PN=时,如图3,作PR MN⊥于R,则MR NR=.类似①,32MR=∴23MN MR==.∵MNC△是等边三角形,∴3MC MN==.此时,6132x EP GM BC BG MC===--=--=.当MP MN=时,如图4,这时MC MN MP===此时,615x EP GM===--=当NP NM=时,如图5,30NPM PMN==︒∠∠.则120PMN=︒∠,又60MNC=︒∠,∴180PNM MNC+=︒∠∠.因此点P与F重合,PMC△为直角三角形.∴tan301MC PM=︒=A.此时,6114x EP GM===--=.综上所述,当2x=或4或(5时,PMN△为等腰三角形.8、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;图3A DEBFCPNM图4A DEBFCPMN图5A DEBF(PCMNGGRG图2A DEBFCPNMGH②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =.又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△.②∵P Qv v ≠,∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
(完整版)初二数学动点问题归类复习(含例题、练习及答案)
初二数学动点问题归类复习(含例题、练习及答案)所谓“动点型问题”是指题设图形中存在一个或多个动点, 它们在线段、射线或弧线上运动的一类开放性题目. 解决这类问题的关键是动中求静, 灵活运用有关数学知识解决问题.关键: 动中求静. 数学思想:分类思想数形结合思想转化思想本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。
一、等腰三角形类:因动点产生的等腰三角形问题例1:(2013 年上海市虹口区中考模拟第25 题)如图1,在Rt△ABC 中,∠ A=90°,AB=6,AC =8,点 D 为边BC 的中点,DE⊥BC 交边AC 于点E,点P 为射线AB 上的一动点,点Q 为边AC 上的一动点,且∠ PDQ =90°.(1)求ED 、EC 的长;(2)若BP=2,求CQ 的长;(3)记线段PQ与线段DE的交点为F,若△ PDF 为等腰三角形,求BP的长.思路点拨1.第(2)题BP= 2 分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF 时,根据相似三角形的传递性,转化为探求等腰三角形CDQ .解答:(1)在Rt△ ABC 中,AB=6,AC=8,所以BC=10.3 15 25在Rt△CDE 中,CD =5,所以ED CD tan C 5 ,EC .4 4 4(2)如图2,过点 D 作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN 是△ABC 的两条中位线,DM=4,DN=3.由∠ PDQ =90°,∠ MDN =90°,可得∠ PDM =∠ QDN .因此△ PDM∽△ QDN.①如图3,当BP=2,P在BM 上时,PM=1.3 3 3 19此时QN 3PM 3.所以CQ CN QN 4 3 19.4 4 4 4②如图4,当BP=2,P在MB 的延长线上时,PM=5.所以PMQNDM 4.所以QN 3PM ,PM 4QN.DN 3 4 3图2图33 15 15 31此时QN 3PM 15.所以CQ CN QN 4 15 31.4444(3)如图5,如图2,在Rt △PDQ 中,tan QPD QD DN3PD DM4在Rt△ ABC 中,tan C BA 3BA 3.所以∠ QPD=∠ C.CA 4由∠ PDQ =90°,∠ CDE =90°,可得∠ PDF=∠ CDQ.因此△ PDF∽△ CDQ.当△ PDF 是等腰三角形时,△ CDQ 也是等腰三角形.①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图 3 所示).4 4 4 5此时PM QN .所以BP BM PM 3 .3 3 3 3②如图6,当QC=QD 时,由CH cosC CH,可得CQ5425 CQ25825所以QN=CN-CQ=4257(如图 2 所示).8847此时PM QN .所以BP BM PM 3 7253666③不存在DP=DF 的情况.这是因为∠ DFP≥∠ DQP >∠ DPQ (如图5,图6所示).图5 图 6考点伸展:如图6,当△ CDQ 是等腰三角形时,根据等角的余角相等,可以得到△BDP 也是等腰三25角形,PB=PD .在△ BDP 中可以直接求解BP .6二、直角三角形:因动点产生的直角三角形问题4 例2:(2008年河南省中考第23题)如图1,直线y x 4和x轴、y轴的交点分别为B、C,点3A 的坐标是(-2,0).(1)试说明△ ABC 是等腰三角形;2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒 1 个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S.① 求S与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在S=4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△ MON 为直角三角形时,求t 的值.5思路点拨:1.第( 1)题说明△ ABC 是等腰三角形,暗示了两个动点 M 、N 同时出发,同时到达终点. 2.不论 M 在 AO 上还是在 OB 上,用含有 t 的式子表示 OM 边上的高都是相同的,用含有 t 的 式子表示 OM 要分类讨论.3.将 S =4 代入对应的函数解析式,解关于 t 的方程.4.分类讨论△ MON 为直角三角形,不存在∠ ONM = 90°的可能. 解答:4( 1)直线 y3 x4 与 x 轴的交点为 B (3,0)、与 y 轴的交点 C ( 0,4).3Rt △BOC 中, OB = 3,OC = 4,所以 BC = 5.点 A 的坐标是( -2,0),所以 BA =5. 因此 BC = BA ,所以△ ABC 是等腰三角形.( 2)①如图 2,图 3,过点 N 作 NH ⊥AB ,垂足为 H .44 在 Rt △BNH 中, BN =t , sin B ,所以 NH t . 55 如图 2,当 M 在 AO 上时, OM =2-t ,此时1 1 42 2 4 S OM NH (2 t) t t t .定义域为 0< t ≤2.2 2 5 5 5如图 3,当 M 在 OB 上时, OM =t - 2,此时11 42 2 SOM NH (t 2) t t 2 2 25 5解得 t 1 2 11, t 2 2 11(舍去负值)因此,当点 M 在线段 OB 上运动时,存在 S =4 的情形,此时 t 2 11 .3③ 如图 4,当∠ OMN =90°时,在 Rt △BNM 中, BN = t ,BM 5 t ,cosB ,4.55 5 54t5t 325 所以 .解得 t .t 58如图 5,当∠ OMN =90°时, N 与 C 重合, t 5. 不存在∠ ONM =90°的可能.考点伸在本题情景下,如果△ MON 的边与 AC 平行,求 t 的值.如图 6,当 ON//AC 时, t =如图 7,当 MN //AC 时, t =2.5.6,BA =3 5 .分别以 OA 、OC 边所在直线为 x 轴、 y 轴建立如图 1 所示的平面直角坐标系.图1图2 思路点拨: 1.第( 1)题和第( 2)题蕴含了 OB 与 DF垂直的结论,为第( 3)题讨论菱形提供了计 算基础.2.讨论菱形要进行两次 (两级)分类,先按照 DO 为边和对角线分类, 再进行二级分类,图6三、平行四边形问题:因动点产生的平行四边形问题 例 3:( 2010年山西省中考第 26 题)在直角梯形 OABC 中,CB//OA ,∠ COA =90°, CB =3,OA( 1)求点 B 的坐标;(2)已知 D 、E 分别为线段 OC 、OB 上的点, 直线 DE 的解析式;(3)点 M 是(2)中直线 DE 上的一个动点,在 D 、M 、N 为顶点的四边形是菱形?若存在,请求OD =5,OE =2EB ,直线 DE 交 x 轴于点 F .求 x 轴上方的平面内是否存在另一点 N ,使以 O 、 N 的坐标;若不存在,请说明理由.DO 与DM、DO 与DN 为邻边.解答:(1)如图2,作BH⊥x 轴,垂足为H,那么四边形BCOH 为矩形,OH=CB=3.在Rt△ ABH 中,AH =3,BA=3 5,所以BH=6.因此点 B 的坐标为(3,6).22(2) 因为OE=2EB,所以x E x B 2 ,y E y B 4 ,E(2,4).33 b 5, 1设直线DE 的解析式为y=kx+b,代入D(0,5),E(2,4),得解得k ,b 5 .所2k b 4. 21 以直线DE 的解析式为y x 5 .21(3) 由y x 5,知直线DE 与x轴交于点F(10,0),OF=10,DF=5 5 .2①如图3,当DO 为菱形的对角线时,MN 与DO 互相垂直平分,点M 是DF 的中点.此时点M55 的坐标为(5, ),点N 的坐标为( -5, ).22②如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8).③如图5,当DO、DM 为菱形的邻边时,NO =5,延长MN交x轴于P.考点伸展如果第( 3)题没有限定点N 在x 轴上方的平面内,那么菱形还有如图 6 的情形.由△ NPO ∽△ DOF ,得NP POOFNO,即NP PO 5.解得NP 5DF 5 10 5 5图3图5 图6DOPO四、相似三角形:因动点产生的相似三角形问题例4:(2013 年苏州中考28 题)如图,点O 为矩形ABCD 的对称中心,AB=10cm,BC=12cm,点E、F、G 分别从A、B、C 三点同时出发,沿矩形的边按逆时针方向匀速运动,点 E 的运动速度为1cm/s,点 F 的运动速度为3cm/s,点G 的运动速度为 1.5cm/s,当点 F 到达点 C (即点 F 与点 C 重合)时,三个点随之停止运动.在运动过程中,△ EBF 关于直线EF 的对称图形是△EB′F.设点E、F、G 运动的时间为t(单位:s).(1)当t= s 时,四边形EBFB ′为正方形;(2)若以点E、B、F 为顶点的三角形与以点F,C,G 为顶点的三角形相似,求t 的值;(3)是否存在实数t,使得点B′与点O 重合?若存在,求出t的值;若不存在,请说明理由.相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t 值,它们互相矛盾,所以不存在.解答:(1)若四边形EBFB′为正方形,则BE=BF ,即:10﹣t=3t,解得t=2.5;(2)分两种情况,讨论如下:① 若△EBF∽△FCG ,则有,即,解得:t=2.8;② 若△EBF∽△GCF ,则有,即,解得:t=﹣14﹣2 (不合题意,舍去)或t=﹣14+2 .∴当t=2.8 s或t=(﹣14+2 )s时,以点E、B、F 为顶点的三角形与以点F,C,G 为顶点的三角形相似.(3)假设存在实数t,使得点B′与点O 重合.如图,过点O 作OM⊥BC 于点M,则在Rt△OFM 中,OF =BF =3t,FM = BC﹣BF=6﹣3t,OM=5,由勾股定理得:OM2+FM 2=OF2,即:52+(6﹣3t)2=(3t)2解得:t= ;过点O 作ON⊥AB 于点N,则在Rt△OEN 中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,由勾股定理得:ON2+EN2=OE2,即:62+(5﹣t)2=(10﹣t)2解得:t=3.9.∵ ≠3.9,∴不存在实数t,使得点 B ′与点O 重合.考点伸本题为运动型综合题,考查了矩形性质、轴对称、相似三角形的判定性质、勾股定理、解方程等知识点.题目并不复杂,但需要仔细分析题意,认真作答.第(2)问中,需要分类讨论,避免漏解;第(3)问是存在型问题,可以先假设存在,然后通过推导出互相矛盾的结论,从而判定不存在.拓展练习:1、如图1,梯形ABCD 中,AD∥ BC,∠ B=90 °,AB=14cm,AD=18cm,BC=21cm, 点P从 A 开始沿AD 边以1cm/秒的速度移动,点Q 从 C 开始沿CB 向点 B 以 2 cm/秒的速度移动,如果P,Q 分别从A,C同时出发,设移动时间为t 秒。
初二数学动点问题练习(含答案)
初⼆数学动点问题练习(含答案)动态问题所谓“动点型问题”是指题设图形中存在⼀个或多个动点,它们在线段、射线或弧线上运动的⼀类开放性题⽬.解决这类问题的关键是动中求静,灵活运⽤有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平⾏四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正⽅形ABCD的边长为4,点M在边DC上,且DM=1,N为对⾓线AC上任意⼀点,则DN+MN的最⼩值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转⾓为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直⾓梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平⾏四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC=23. ∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. ⼜∵四边形EDBC是平⾏四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明. OE CDAαlOCA(备⽤图)CBAED图1NMA BCDEMACBEDNM解:(1)①∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB②∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE ⼜∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE ,⼜∵AC=BC ,∴△ACD ≌△CBE ,∴AD=CE ,CD=BE ,∴DE=CD-CE=BE-AD.5、数学课上,张⽼师出⽰了问题:如图1,四边形ABCD 是正⽅形,点E 是边BC 的中点.90AEF ∠=o,且EF 交正⽅形外⾓DCG ∠的平⾏线CF 于点F ,求证:AE =EF .经过思考,⼩明展⽰了⼀种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进⼀步的研究:(1)⼩颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意⼀点”,其它条件不变,那么结论“AE =EF ”仍然成⽴,你认为⼩颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)⼩华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意⼀点,其他条件不变,结论“AE =EF ”仍然成⽴.你认为⼩华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB 上取⼀点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF Q 是外⾓平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠. 90AEB BAE ∠+∠=Q °,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=.(2)正确.证明:在BA 的延长线上取⼀点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. Q 四边形ABCD 是正⽅形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=. 6、如图, 射线MB 上,MB=9,A 是射线MB 外⼀点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB ⽅向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三⾓形的t 值;(2)△ PAB 为直⾓三⾓形的t 值;(3)若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直⾓三⾓形的t 值AD FGB 图1 A D FC G B 图3A D FGB 图2A D F C GE B M A D FG B N7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =?∠.求:(1)求点E 到BC 的距离;(2)点P 为线段EF 上的⼀个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发⽣改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三⾓形?若存在,请求出所有满⾜要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G .∵E 为AB 的中点,∴122BE AB ==.在Rt EBG△中,60B =?∠,∴30BEG =?∠.∴112BG BE EG =即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发⽣改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥.∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==.如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==?=?∠∠,∠.∴12PH PM == ∴3cos302MH PM =?=g .则35422NH MN MH =-=-=.图1 A D E BF CGA D E BFCPNMG HA D E BF C图4(备⽤)AD EBF C 图5(备⽤)A D E BF CA D E BF C PNM图3A D EBFCPNM(第25题)在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发⽣改变,但MNC △恒为等边三⾓形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==.∵MNC △是等边三⾓形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当MP MN=时,如图4,这时MC MN MP ===此时,615x EP GM ===--= 当NP NM =时,如图5,30NPM PMN ==?∠∠.则120PMN =?∠,⼜60MNC =?∠,∴180PNM MNC +=?∠∠.因此点P 与F 重合,PMC △为直⾓三⾓形.∴tan301MC PM =?=g .此时,6114x EP GM ===--=.综上所述,当2x =或4或(5-时,PMN △为等腰三⾓形.8、如图,已知ABC △中,10AB AC ==厘⽶,8BC =厘⽶,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第⼀次在ABC △的哪条边上相遇?解:(1)①∵1t =秒,∴313BP CQ ==?=厘⽶,∵10AB =厘⽶,点D 为AB 的中点,∴5BD =厘⽶.图3A D E BFCPN M图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG⼜∵8PC BC BP BC =-=,厘⽶,∴835PC =-=厘⽶,∴PC BD =.⼜∵AB AC =,∴B C ∠=∠,∴BPD CQP △≌△.②∵P Qv v ≠,∴BP CQ ≠,⼜∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒,∴515443Q CQ v t===厘⽶/秒。
初二动点问题(答案)
初二动点问题1.分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE即3t-(24-t)=4解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答:解:(1)∵AQ=3-t∴CN=4-(3-t)=1+t在Rt△ABC中,AC2=AB2+BC2=32+42∴AC=5在Rt△MNC中,cos∠NCM= = ,CM= .(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t解得t=2.(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB即:(1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)∴S△MNC= (1+t)2= (1+t)2当t= 时,S△MNC=(1+t)2= ≠ ×4×3∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2而MN= NC= (1+t)PN=NC-PC=(1+t)-(4-t)=2t-3∴[ (1+t)]2+(2t-3)2=(4-t)2解得:t1= ,t2=-1(舍去)∴当t= ,t= ,t= 时,△PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4.分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20c m,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N 的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x= -1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.分析:(1)根据平行四边形的性质,对边相等,求得t值;(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.解答:解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6.分析:(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.解答:解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM= (16-t)×12=96-6t(0≤t≤ ).(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得,t2=16(不合题意,舍去).综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形.点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O 到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是81=8(秒),∴点P的速度是6+108=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由PDBO=APAB,得PD= 48-6t5.∴S= 12OQ•PD=- 35t2+245t.(3)当S= 485时,∵485>12×3×6∴点P在AB上当S= 485时,- 35t2+245t= 485∴t=4∴PD= 48-6×45= 245,AD=16-2×4=8AD= 82-(245)2= 325∴OD=8- 325= 85∴P(85,245)M1(285,245),M2(- 125,245),M3(125,- 245)点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.。
初中八年级下册数学动点问题试题附答案
初中八年级下册数学动点问题试题附答案
本文档为初中八年级下册数学动点问题试题及其答案附录。
以下为试题内容:
试题一
1. 一辆汽车每小时行驶60千米。
已知一条道路上两个小车相距120千米,两车同时从两端开始开过。
在2小时后两车相遇,求另一辆小车时速是多少?
答案:另一辆小车的时速是40千米/小时。
试题二
2. 一架直升机从A地出发,向东飞行100千米后转向南飞行,飞行速度为60千米/小时。
飞行2小时后,在B地降落。
求直升机从A地到B地的飞行距离及飞行时间。
答案:直升机从A地到B地的飞行距离为140千米,飞行时间为3小时。
试题三
3. 一列火车以每小时80千米的速度从A地开往B地,一辆汽
车以每小时60千米的速度同时从B地向A地开。
若两车从相距
200千米的时候开始计时,火车到达B地后返回A地的时候,两车
相距250千米。
求两地的距离。
答案:A地和B地的距离为450千米。
试题四
4. 一条有笔直通道,两边都是田地。
东边的直边上有一棵高度
为2米的树,西边的直边上有一棵高度为3米的树。
直道的宽度为
4米,人从田地一头走到另一头的时间为2分钟。
求人的步行速度。
答案:人的步行速度为60米/分钟。
希望上述试题及答案能帮助到您。
如有其他问题或需要进一步帮助,请随时告知。
八年级数学下册期末动点问题及压轴题带答案
1.(12分)已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.2.(12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm.一动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB 边向点B以3cm/s的速度运动.P,Q分别从点A和点C同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t s,则(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?(3)AB边的长是否存在一数值,使四边形PQCD为菱形.如果存在,请求出AB 边的长,如果不存在,请说出理由.3.(本题10分)已知:在正方形ABCD 中,AB =6,P 为边CD 上一点,过P 点作PE ⊥BD 于点E ,连接BP(1) O 为BP 的中点,连接CO 并延长交BD 于点F① 如图1,连接OE ,求证:OE ⊥OC② 如图2,若53=EF BF ,求DP 的长 (2) CP EP 22+=___________4.(本题12分)如图1,直线333+-=x y 分别与y 轴、x 轴交于点A 、点B ,点C 的坐标为(-3,0),D 为直线AB 上一动点,连接CD 交y 轴于点E(1) 点B 的坐标为__________,不等式0333>+-x 的解集为___________(2) 若S △COE =S △ADE ,求点D 的坐标(3) 如图2,以CD 为边作菱形CDFG ,且∠CDF =60°.当点D 运动时,点G 在一条定直线上运动,请求出这条定直线的解析式.5.(11分)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)菱形ABCO的边长是 ;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S≠0),点P 的运动时间为t 秒.①求S 与t 之间的函数关系式;②在点P 运动过程中,当S =3,请直接写出t 的值.6.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.7、如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、D Q、CQ、BQ,设AP=x.(1)BQ+DQ的最小值是_______,此时x的值是_______;(2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.①求证:点E是CD的中点;②求x的值.(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x 的值.8、如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.(1)求点B的坐标;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P 作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.1.【解答】解:(1)∵A(0,4),B(0,2),∴OA=4,OB=2,点B为线段OA的中点,又点D为OC的中点,即BD为△AOC的中位线,∴BD∥AC;(2)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,3),∵BD∥AC,BD与AC的距离等于1,∴BF=1,∵在Rt△ABF中,∠AFB=90°,AB=2,点G为AB的中点,∴FG=BG=AB=1,∴△BFG是等边三角形,∠ABF=60°.∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:OA==x,∵OA=4,∴x=∵点C在x轴的正半轴上,∴点C的坐标为(,0);(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,∴DE⊥OC,∵点D为OC的中点,∴OE=EC,∵OE⊥AC,∴∠OCA=45°,∴OC=OA=4,∵点C在x轴的正半轴上,∴点C的坐标为(4,0),设直线AC的解析式为y=kx+b(k≠0).将A(0,4),C(4,0)代入AC的解析式得:解得:∴直线AC的解析式为y=﹣x+4.2.【解答】解:(1)由运动知,AP=t,CQ=3t,∴DP=AD﹣AP=24﹣t,∵四边形PQCD为平行四边形,∴DP=CQ,∴24﹣t=3t,∴t=6;(2)如图2,过点D作DE⊥BC于E,过点P作PF⊥BC于F,∴四边形EFPD是矩形,∴DE=PF,[来源:Z|xx|]∵四边形PQCD是等腰梯形,∴∠PQC=∠DCQ,∵∠PFQ=∠DEC=90°,∴△PFQ≌△DEC,∴FQ=CE,∴BE=AD=24,∴CE=BC﹣BE=2,∵四边形PQCD为等腰梯形,∴CQ=DP+2CE,由运动知,AP=t,CQ=3t,∴DP=AD﹣AP=24﹣t,∴24﹣t+2×2=3t,∴t=7,(3)AB边的长是8时,四边形PQCD为菱形,理由:由(1)知,t=6时,四边形PQCD是平行四边形,∴DP=24﹣6=18,∵平行四边形PQCD是菱形,∴CD=DP=18,如图2,过点D作DE⊥BC于E,∴四边形ABED是矩形,∴AB=DE,在Rt△CDE中,CE=2,CD=18,∴DE==8.3.证明:(1) ① ∵∠PEB =∠PCB =90°,O 为BP 的中点∴OE =OB =OP =OC∴∠POE =2∠DBP ,∠POC =2∠CBP∴∠COE =∠POE +∠POC =2(∠DBP +∠CBP )=90°∴OE ⊥OC② 连接OE 、CE∵△COE 为等腰直角三角形∴∠ECF =45°在等腰Rt △BCD 中,BF 2+DE 2=EF 2设BF =3x ,EF =5x ,则DE =4x∴3x +4x +5x =26,解得x =22 ∴DP =2DE =424=x(2) ∵62==-+=+CD C DP CP EP ∴2322=+CP EP4.解:(1) (3,0)、x <3(2) ∵S △COE =S △ADE∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF∵∠CDF =60°∴△CDF 为等边三角形连接AC∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-) 令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6.解:根据题意得:PA=2t ,CQ=3t ,则PD=AD-PA=12-2t .(1)如图,过D 点作DE ⊥BC 于E ,则四边形ABED 为长方形,DE=AB=8cm ,AD=BE=12cm ,在直角△CDE 中,∵∠CED=90°,DC=10cm ,DE=8cm ,∴22DC DE -,∴BC=BE+EC=18cm .…………………………………………………………………2分(直接写出最后结果18cm 即可)(2)∵AD ∥BC ,即PD ∥CQ ,∴当PD=CQ 时,四边形PQCD 为平行四边形,即12-2t=3t ,解得t=125秒, 故当t=125秒时四边形PQCD 为平行四边形;………………………………………4分(3)如图,过D 点作DE ⊥BC 于E ,则四边形ABED 为长方形,DE=AB=8cm ,AD=BE=12cm ,当PQ=CD 时,四边形PQCD 为等腰梯形.过点P 作PF ⊥BC 于点F ,过点D 作DE ⊥BC 于点E ,则四边形PDEF 是长方形,EF=PD=12-2t ,PF=DE .在Rt △PQF 和Rt △CDE 中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分(4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103;②当DQ=DC时,36 2t=∴t=4;③当QD=QC时,3t×65 10=∴t=259.故存在t,使得△DQC是等腰三角形,此时t的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=25 97.解:(1);-1;(2)①证明:在正方形ABCD中,AB=BC,∠A=∠BCD=90°∵Q点为A点关于BP的对称点∴AB=QB,∠A=∠PQB=90°∴QB=BC,∠BQE=∠BCE∴∠BQC=∠BCQ∴∠EQC=∠EQB-∠CQB=∠ECB-∠QCB=∠ECQ∴EQ=EC在Rt△ABC中∵∠QDE=90°-∠QCE,∠DQE=90°-∠EQC∴∠QDE=∠DQE∴EQ+ED∴CE=EQ=ED即E是CD的中点②(3)或或8.解:(1)∵y=﹣x+b交x轴于点A(8,0),∴0=﹣×8+b,b=6,∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);(2)∵A(8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB=10=BC,∴OC=4,∴点C(0,﹣4),设直线AC解析式为y=kx+b’,∴,∴∴直线AC解析式为y=x﹣4,∵P在直线y=﹣x+6上,∴可设点P(t,﹣t+6),∵PQ∥y轴,且点Q在y=x﹣4 上,∴Q(t, t﹣4),∴d=(﹣t+6)﹣(t ﹣4)=﹣t+10;(3)过点M作MG⊥PQ于G,∴∠QGM=90°=∠COA,∵PQ∥y轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC与△GMQ中,,∴△OAC≌△GMQ,∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形GHRM是矩形,∴HR=GM=8,可设GH=RM=k,∵△MNQ是等腰直角三角形,∴∠QMN=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∴∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN,∴HN=RM=k,NR=QH=4+k,∵HR=HN+NR,∴k+4+k=8,∴k=2,∴GH=NH=RM=2,∴HQ=6,∵Q(t,t﹣4),∴N(t+2,t﹣4+6)即 N(t+2,t+2)∵N在直线AB:y=﹣x+6上,∴t+2=﹣(t+2)+6,∴t=2,∴P(2,),N(4,3),∴PH=,NH=2,∴PN==.。
(完整版)初二动点问题(含答案)2
3.分三种情况讨论等腰三角形 PMN ,三种情况各具特殊性,灵活运用几何性质解题.
满分解答
( 1)如图 4,过点 E 作 EG⊥BC 于 G.
在 Rt△ BEG 中, BE
1 AB
2 ,∠ B= 60°,
2
所以 BG BE cos60 1, EG BE sin 60 3 .
所以点 E 到 BC 的距离为 3 .
(3) 如图 3,BD 是正方形 ABCD 的对角线 ,L 在 BD 上,且 BL=BC, 连结 CL ,点 E 是 CL 上任一点 , EF⊥ BD 于点 F, EG⊥ BC 于点 G,猜想 EF、 EG、 BD 之间具有怎样的数量关系,直接写出你的猜想;
(4) 观察图 1、图 2、图 3 的特性,请你根据这一特性构造一个图形,
MD
C
M C
M C
EN
D
E
A
B
A
图1
E
图2
N
(1) 当直线 MN 绕点 C 旋转到图 1 的位置时,求证:①△
B
A
B
D
N
图3
ADC ≌△ CEB;② DE=AD +BE ;
图1
图2
图3
思路点拨
1.先解读这个题目的背景图,等腰梯形
ABCD 的中位线 EF =4,这是 x 的变化范围.平行线间的
距离处处相等, AD 与 EF 、 EF 与 BC 间的距离相等.
2.当点 N 在线段 AD 上时, △PMN 中 PM 和 MN 的长保持不变是显然的, 求证 PN 的长是关键. 图 形中包含了许多的对边平行且相等,理顺线条的关系很重要.
例 ( 10 年房山二模压轴) 25. (1)如图 1,已知矩形 ABCD 中,点 E 是 BC 上的一动点,过点 E
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC=23. ∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.OE CDAαlOCA (备CBAED图NMA BCDEMN图ACBEDNM图(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF Q 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠=Q °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确. 证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. Q 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠. ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FC G E B 图AD F C GE B 图AD F C GE B 图AD F C GE M A DF CG E B N7、在等腰梯形ABCD中,AD‖BC,E为AB的中点,过点E作EF‖BC交CD于点F.AB=4,BC=6, ∠B=60°。
(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M 作MN‖AB交折线ADC于点N,连接PN,设EP=x①当点N在线段AD上时,△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由②当点N在线段DC上时,是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的X 的值,若不存在,请说明理由。
①②1°①②1°2°3°2°3°8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
(2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯,解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇.7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求:(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G . ∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG △中,60B =︒∠, ∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=g . 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.图1 A D E BF CG图2A D E BFCPNMG HA D E BF C图4(备用)AD EBF C 图5(备用)A D E BF C图1 图2A D E BF C PNM图3A D EBF C PN M (第25题)②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=g . 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.图3A D E BFCPN M 图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG。