2009年中考数学试卷及答案

合集下载

2009年湖北省黄冈市中考数学试卷及答案

2009年湖北省黄冈市中考数学试卷及答案

2009年湖北省黄冈市中考数学试卷及答案一、选择题(共6小题,每小题3分,满分18分)1.(3分)8的立方根是()A.2 B.﹣2 C.±2 D.22.(3分)下列运算正确的是()A.a3+a3=a6 B.2(a+b)=2a+b C.(ab)﹣2=ab﹣2 D.a6÷a2=a43.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°4.(3分)化简的结果是()A.﹣4 B.4 C.2a D.﹣2a5.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.76.(3分)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟二、填空题(共6小题,满分36分)7.(9分)||=;()0=;﹣的相反数是.8.(9分)计算:tan60°=;3x3•(﹣x2)=;﹣(﹣2a2)4=.9.(9分)①分解因式:6a 3﹣54a= ;②66°角的余角是度;③当 时,二次根式有意义. 10.(3分)已知点(﹣,)是反比例函数图象上的一点,则此反比例函数图象的解析式是 .11.(3分)在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于 .12.(3分)矩形ABCD 的边AB=8,AD=6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置A 1B 1C 1D 1时(如图所示),则顶点A 所经过的路线长是 .三、解答题(共8小题,满分66分)13.(5分)解不等式组.14.(6分)如图,在△ABC 中,∠ACB=90°,点E 为AB 中点,连接CE ,过点E 作ED ⊥BC 于点D ,在DE 的延长线上取一点F ,使AF=CE .求证:四边形ACEF 是平行四边形.15.(7分)如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连接BC ,AC ,过点C 作直线CD ⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连接BF ,与直线CD 交于点G .求证:BC 2=BG•BF .16.(6分)某商场在今年“六•一”儿童节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树状图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.17.(7分)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):(1)计算甲、乙两种电子钟走时误差的平均数;(2)计算甲、乙两种电子钟走时误差的方差;(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?18.(10分)如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为千米,且位于临海市(记作点B)正西方向千米处,台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭请说明理由;(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?19.(11分)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB 和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=﹣5x2+205x ﹣1230的一部分,且点A,B,C的横坐标分别为4,10,12.(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多,最多利润是多少万元?20.(14分)如图,在平面直角坐标系xOy中,抛物线y=x2﹣x﹣10与y轴的交点为点B,过点B 作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x 轴于点F.设动点P,Q移动的时间为t(单位:秒).(1)求A,B,C三点的坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.2009年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)(2012•乌鲁木齐)8的立方根是()A.2 B.﹣2 C.±2 D.2【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵2的立方等于8,∴8的立方根等于2.故选:A.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2009•黄冈)下列运算正确的是()A.a3+a3=a6 B.2(a+b)=2a+b C.(ab)﹣2=ab﹣2 D.a6÷a2=a4【分析】根据负整数指数幂、合并同类项、同底数幂的除法的知识点进行解答.【解答】解:A、是合并同类项,结果为2a3,故不对;B、是去括号,得2(a+b)=2a+2b,故不对;C、是负整数指数幂,即,故不对;故选D.【点评】合并同类项,只需把系数相加减,字母和字母的指数不变,应用单项式去乘单项式的每一项,a﹣p=(a≠0),同底数幂除法法则:底数不变,指数相减.3.(3分)(2009•黄冈)如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°【分析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.【解答】解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.故选B.【点评】本题考查轴对称的性质及三角形内角和定理;把已知条件转化到同一个三角形中利用内角和求解是正确解答本题的关键.4.(3分)(2009•黄冈)化简的结果是()A.﹣4 B.4 C.2a D.﹣2a【分析】由乘法分配律(a+b)c=ab+bc可知,解答该题可以运用分配律可约去各个分式的分母,使计算简便.【解答】解:原式=﹣(a+2)+(a﹣2)=﹣4,故选A.【点评】此题根据乘法的分配律先进行分式的乘法运算,然后再进行加减的运算,使运算简单化了,计算过程要注意符号间的变化.5.(3分)(2010•密云县)一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.7【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.(3分)(2009•黄冈)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟【分析】依据图象分别求出平路、上坡路和下坡路的速度,然后根据路程,求出时间即可.【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),所以他从单位到家门口需要的时间是(分钟).故选:B.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.二、填空题(共6小题,满分36分)7.(9分)(2009•黄冈)||=;()0=1;﹣的相反数是.【分析】根据相反数,绝对值,零指数幂的概念解题.【解答】解:||=;()0=1;﹣的相反数是.【点评】本题考查绝对值、零指数幂和相反数的概念.负数的绝对值是它的相反数;一个不为0的零次幂等于1,负数的相反数是正数.8.(9分)(2009•黄冈)计算:tan60°=;3x3•(﹣x2)=;﹣(﹣2a2)4=﹣16a8.【分析】本题考查特殊角的三角函数值、整式的乘法及乘方的计算.【解答】解:tan60°=;3x3•(﹣x2)=5;﹣(﹣2a2)4=﹣16a8.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.9.(9分)(2009•黄冈)①分解因式:6a3﹣54a=6a(a+3)(a﹣3);②66°角的余角是24度;③当x≤4时,二次根式有意义.【分析】①因式分解时,有公因式的要首先提取公因式,然后运用公式法;②和为90°的两个角互为余角,求一个角的余角即让90°减去已知角;③二次根式有意义的条件:被开方数大于等于0.【解答】解:①6a3﹣54a=6a(a2﹣9)=6a(a﹣3)(a+3);②66°角的余角是90°﹣66°=24°;③根据二次根式有意义的条件,得4﹣x≥0,即x≤4.【点评】本题考查因式分解、互为余角和二次根式的有关概念.10.(3分)(2009•黄冈)已知点(﹣,)是反比例函数图象上的一点,则此反比例函数图象的解析式是y=.【分析】先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解答】解:设反比例函数为y=,把x=﹣,y=代入求出k=﹣3,即y=﹣.故答案为:y=﹣.【点评】本题考查了用待定系数法求反比例函数的解析式,比较简单,是中学阶段的重点.11.(3分)(2009•黄冈)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于70°或20°.【分析】此题根据△ABC中∠A为锐角与钝角分为两种情况,当∠A为锐角时,∠B等于70°,当∠A为钝角时,∠B等于20°.【解答】解:根据△ABC中∠A为锐角与钝角,分为两种情况:①当∠A为锐角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠A=40°,∴∠B===70°;②当∠A为钝角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠1=40°,∴∠BAC=140°,∴∠B=∠C==20°.故答案为:70°或20°.【点评】此题考查了等腰三角形的性质及线段垂直平分线的性质;分类讨论的应用是正确解答本题的关键.12.(3分)(2009•黄冈)矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置A1B1C1D1时(如图所示),则顶点A所经过的路线长是12π.【分析】提示:点A经过的路线长由三部分组成:以B为圆心,AB为半径旋转90°的弧长;以C为圆心,AC为半径旋转90°的弧长;以D为圆心,AD为半径旋转90°的弧长,利用弧长公式计算即可.【解答】解:.【点评】本题的关键是弄清弧长的半径及圆心,圆心角的度数.三、解答题(共8小题,满分66分)13.(5分)(2009•黄冈)解不等式组.【分析】解先求出各不等式的解集,再求其公共解集即可.【解答】解:由①得:3x+6<x+8.解得:x<1.由②得:3x≤2x﹣2.解得:x≤﹣2.∴不等式组的解集为x≤﹣2.【点评】解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.(6分)(2009•黄冈)如图,在△ABC中,∠ACB=90°,点E为AB中点,连接CE,过点E作ED⊥BC 于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.【分析】要证明四边形ACEF是平行四边形,需求证CE∥AF,由已知易得△BEC,△AEF是等腰三角形,则∠1=∠2,∠3=∠F,又∠2=∠3,∴∠1=∠F,∴CE∥AF.【解答】证明:∵点E为AB中点,∴AE=EB又∵∠ACB=90°,∴CE=AE=EB,又∵AF=CE,∴AF=AE,∴∠3=∠F,又EB=EC,ED⊥BC,∴∠1=∠2(三线合一),又∠2=∠3,∴∠1=∠F,∴CE∥AF,∴四边形ACEF是平行四边形.【点评】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.15.(7分)(2009•黄冈)如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG•BF.【分析】结合图形,可以把所要证明的线段放到△CBG和△FBC中,两个三角形中已经有一个公共角,只需进一步证明∠BCG=∠F,根据等角的余角相等和圆周角定理,借助中间角∠A即可证明.【解答】证明:∵AB是⊙O的直径,∠ACB=90°,又CD⊥AB于D,∴∠BCD=∠A,又∠A=∠F.∴∠F=∠BCD.在△BCG和△BFC中,,∴△BCG∽△BFC.∴.即BC2=BG•BF.【点评】熟练运用等角的余角相等和圆周角定理发现∠BCG=∠A,掌握相似三角形的判定和性质.16.(6分)(2009•黄冈)某商场在今年“六•一”儿童节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树状图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.【分析】列举出所有情况,让两次摸出的小球的标号之和为“8”或“6”的情况数除以总情况数即为所求的概率.【解答】解:画出如图的树状图3分6=2+4=3+3=4+2,8=4+4,∴小彦中奖的概率.6分【点评】此题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.17.(7分)(2010•密云县)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):(1)计算甲、乙两种电子钟走时误差的平均数;(2)计算甲、乙两种电子钟走时误差的方差;(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?【分析】根据平均数与方差的计算公式易得(1)(2)的答案,再根据(2)的计算结果进行判断.【解答】解:(1)甲种电子钟走时误差的平均数是:(1﹣3﹣4+4+2﹣2+2﹣1﹣1+2)=0,乙种电子钟走时误差的平均数是:(4﹣3﹣1+2﹣2+1﹣2+2﹣2+1)=0.=[(1﹣0)2+(﹣3﹣0)2+…+(2﹣0)2]=×60=6(s2),(2)S 2甲S2乙=[(4﹣0)2+(﹣3﹣0)2+…+(1﹣0)2]=×48=4.8(s2),∴甲乙两种电子钟走时误差的方差分别是6s2和4.8s2;(3)我会买乙种电子钟,因为两种类型的电子钟价格相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.同时考查平均数公式:.18.(10分)(2009•黄冈)如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为千米,且位于临海市(记作点B)正西方向千米处,台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭请说明理由;(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?【分析】(1)过A作AH⊥MN于H,故AMH是等腰直角三角形,可求出AM,则可以判断滨海市是否会受到此次台风的侵袭.同理,过B作BH1⊥MN于H1,求出BH1,可以判断临海市是否会受到此次台风的侵袭.(2)求该城市受到台风侵袭的持续时间,以B为圆心60为半径作圆与MN交于T1、T2,则T1T2就是台风影响时经过的路径,求出后除以台风的速度就是时间.【解答】解:(1)设台风中心运行的路线为射线MN,于是∠AMN=60°﹣15°=45°.过A作AH⊥MN于H,故AMH是等腰直角三角形.∵AM=,∠AMH=60°﹣15°=45°,∴AH=AM•sin45°=61>60.∴滨海市不会受到台风的影响;过B作BH1⊥MN于H1.∵MB=,∠BMN=90°﹣60°=30°,∴BH1=×<60,因此临海市会受到台风的影响.(2)以B为圆心60千米为半径作圆与MN交于T1、T2,则BT1=BT2=60.在Rt△BT1H1中,sin∠BT1H1=,∴∠BT1H1=60°.∴△BT1T2是等边三角形.∴T1T2=60.∴台风中心经过线段T1T2上所用的时间=小时.因此临海市受到台风侵袭的时间为小时.【点评】解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.19.(11分)(2009•黄冈)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=﹣5x2+205x﹣1230的一部分,且点A,B,C的横坐标分别为4,10,12.(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多,最多利润是多少万元?【分析】(1)根据各段图象所过的特殊点易求其解析式,注意自变量的取值范围,综合起来得结论;;(2)在各段中,s=y x﹣y(x﹣1)(3)根据函数性质分别求出各段中s的最大值比较后得结论.【解答】解:(1)设直线OA的解析式为y=kx,∵点O(0,0),A(4,﹣40)在该直线上,∴﹣40=4k,解得k=﹣10,∴y=﹣10x;∵点B在抛物线y=﹣5x2+205x﹣1230上,设B(10,m),则m=320.∴点B的坐标为(10,320).∵点A为抛物线的顶点,∴设曲线AB所在的抛物线的解析式为y=a(x﹣4)2﹣40,∴320=a(10﹣4)2﹣40,解得a=10,即y=10(x﹣4)2﹣40=10x2﹣80x+120.∴y=;(2)利用第x个月的利润应该是前x个月的利润之和减去前x﹣1个月的利润之和:即S=;(3)由(2)知当x=1,2,3,4时,s的值均为﹣10,当x=5,6,7,8,9时,s=20x﹣90,即当x=9时s有最大值90,而在x=10,11,12时,s=﹣10x+210,当x=10时,s有最大值110,因此第10月公司所获利润最大,它是110万元.【点评】此题为分段函数问题中较复杂的一题,问题较多,认真审题很重要.理解s的意义及表示方法是本题难点.20.(14分)(2009•黄冈)如图,在平面直角坐标系xOy中,抛物线y=x2﹣x﹣10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒).(1)求A,B,C三点的坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.【分析】(1)已知抛物线的解析式,当x=0时,可求得B的坐标;由于BC∥OA,把B的纵坐标代入抛物线的解析式,可求出C的坐标;当y=0时,可求出A的坐标.求顶点坐标时用公式法或配方法都可以;(2)当四边形ACQP是平行四边形时,AP、CQ需满足平行且相等的条件.已知BC∥OA,只需求t为何值时,AP=CQ,可先用t表示AP,CQ,再列出方程即可求出t的值;(3)当0<t<时,根据OA=18,P点的速度为4单位/秒,可得出P点总在OA上运动.△PQF中,Q是否为定值,已知QC∥到PF的距离是定值即OB的长,因此只需看PF的值是否有变化即可得出S△PQFPF,根据平行线分线段成比例定理可得出:,因此可得出OP=AF,那么PF=PA+AF=PA+OP=OA,由于OA的长为定值即PF的长为定值,因此△PQF的面积是不会变化的.其面积的值可用OA•OB求出;(4)可先用t表示出P,F,Q的坐标,然后根据坐标系中两点间的距离公式得出PF2,PQ2,FQ2,进而可分三种情况进行讨论:①△PFQ以PF为斜边.则PF2=PQ2+FQ2,可求出t的值.②△PFQ以PQ为斜边,方法同①③△PFQ以FQ为斜边,方法同①.综合三种情况即可得出符合条件的t的值.【解答】解:(1)y=(x2﹣8x﹣180),令y=0,得x2﹣8x﹣180=0,即(x﹣18)(x+10)=0,∴x=18或x=﹣10.∴A(18,0)在y=x2﹣x﹣10中,令x=0得y=﹣10,即B(0,﹣10).由于BC∥OA,故点C的纵坐标为﹣10,由﹣10=x2﹣x﹣10得,x=8或x=0,即C(8,﹣10)且易求出顶点坐标为(4,),于是,A(18,0),B(0,﹣10),C(8,﹣10),顶点坐标为(4,);(2)若四边形PQCA为平行四边形,由于QC∥PA.故只要QC=PA即可,而PA=18﹣4t,CQ=t,故18﹣4t=t得t=;(3)设点P运动t秒,则OP=4t,CQ=t,0<t<4.5,说明P在线段OA上,且不与点OA、重合,由于QC∥OP知△QDC∽△PDO,故∵△AEF∽△CEQ,∴AF:CQ=AE:EC=DP:QD=4:1,∴AF=4t=OP∴PF=PA+AF=PA+OP=18又∵点Q到直线PF的距离d=10,=PF•d=×18×10=90,∴S△PQF于是△PQF的面积总为90;(4)设点P运动了t秒,则P(4t,0),F(18+4t,0),Q(8﹣t,﹣10)t∈(0,4.5).∴PQ2=(4t﹣8+t)2+102=(5t﹣8)2+100FQ2=(18+4t﹣8+t)2+102=(5t+10)2+100.①若FP=FQ,则182=(5t+10)2+100.即25(t+2)2=224,(t+2)2=.∵0≤t≤4.5,∴2≤t+2≤6.5,∴t+2==.∴t=﹣2,②若QP=QF,则(5t﹣8)2+100=(5t+10)2+100.即(5t﹣8)2=(5t+10)2,无0≤t≤4.5的t满足.③若PQ=PF,则(5t﹣8)2+100=182.即(5t﹣8)2=224,由于≈15,又0≤5t≤22.5,∴﹣8≤5t﹣8≤14.5,而14.52=()2=<224.故无0≤t≤4.5的t满足此方程.注:也可解出t=<0或t=>4.5均不合题意,故无0≤t≤4.5的t满足此方程.综上所述,当t=﹣2时,△PQF为等腰三角形.【点评】本题着重考查了二次函数的性质、图形平移变换、平行四边形的判定、直角三角形的判定等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.。

2009年江苏省常州市中考数学试卷(含参考答案)

2009年江苏省常州市中考数学试卷(含参考答案)

江苏省常州市2009年中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b -> D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A .平均数B .众数C .中位数D .方差 7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应.....位置..上) 9.计算2(3)-= .10x 的取值范围是.11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为km 2. 12.反比例函数1y x=-的图象在第 象限. 13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 .圆柱 圆锥 球正方体(第3题)(第5题)图②图①ACBDF E(第7题)14.若2320a a --=,则2526a a +-= .15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= .17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18.如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2. 三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--++ (2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数. 21.(本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?22.(本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.23.(本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形.(1)AD 与BC 有何等量关系?请说明理由; (2)当AB DC =时,求证:ABCD 是矩形.各类学生人数比例统计图 A D E BC F (第16题)(第17题)(第18题)(第15题) ADCB24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上.(1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.25.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处. (1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).1.73,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)26.(本题满分10分)(1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)ED C F BA图③ED C ABF G ' D 'ADEC B F α图④图⑤A图①A图②FE28.(本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒. (1)请用含t 的代数式分别表示出点C 与点P 的坐标;(2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB . ①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.江苏省常州市2009年中考数学试卷参考答案及评分建议一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.9 10.1x ≥ 11.51.02610⨯ 12.二、四 13.27800(1)9100x +=14.1 15.< 16.25 17.2π 18.16三、解答题(本大题共有10小题,共96分.解答必须写出必要的文字说明、推理步骤或证明过程) 19.解:(1)原式2123=-+=. ······························································ (4分)(2)原式2221(1)(1)(1)1(1)1a a a a a a a a a a a --+-+=÷=⨯=--. ············· (8分) 20.解:(1)280,48,180. ······································································ (3分)(2)抽取的学生中,成绩不合格的人数共有(804848)176++=,所以成绩合格以上的人数为20001761824-=, 估计该市成绩合格以上的人数为182460000547202000⨯=. 答:估计该市成绩合格以上的人数约为54720人. ·········································· (8分) 21.解:用树状图分析如下:P (1个男婴,2个女婴)38=.答:出现1个男婴,2个女婴的概率是38. ···················································· (8分) 22.解:本题答案不惟一,下列解法供参考.解法一 问题:普通公路和高速公路各为多少千米? (3分) 解:设普通公路长为x km ,高度公路长为y km .根据题意,得2 2.2.60100x y x y=⎧⎪⎨+=⎪⎩,解得60120x y =⎧⎨=⎩,. ··············································· (7分) 答:普通公路长为60km ,高速公路长为120km . ············································ (8分)解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时? ·················· (3分) 解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h .根据题意,得 2.2602100.x y x y +=⎧⎨⨯=⎩,解得11.2.x y =⎧⎨=⎩,················································ (7分)答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h . ······························ (8分) 23.(1)解:13AD BC =. ······································································· (1分) 理由如下:AD BC AB DE AF DC ∥,∥,∥,∴四边形ABED 和四边形AFCD 都是平行四边形. AD BE AD FC ==,.又四边形AEFD 是平行四边形,AD EF ∴=. AD BE EF FC ∴===.13AD BC ∴=. ······················································································ (5分) (2)证明:四边形ABED 和四边形AFCD 都是平行四边形, DE AB AF DC ∴==,. AB DC DE AF =∴=,.又四边形AEFD 是平行四边形,∴四边形AEFD 是矩形. ························· (10分)24.解:(1)2221(1)2y x x x =--=--,所以顶点A 的坐标为(12)-,. ·························因为二次函数2y ax bx =+的图象经过原点,且它的顶点在二次函数221y x x =--图象的对称轴l 上,所以点C 和点O 关于直线l 对称,所以点C的坐标为(20),. ············································ (6分) (2)因为四边形AOBC 是菱形,所以点B 和点A 关于直线OC 对称,因此,点B 的坐标为(12),. 因为二次函数2y ax bx =+的图象经过点B (12),,(20)C ,,所以2420.a b a b +=-⎧⎨+=⎩,(男男男) (男男女)男(男女男) (男女女) 女(女男男) (女男女) 男(女女男) (女女女)女男女开始第一个 第二个 第三个所有结果解得24a b =-⎧⎨=⎩,.所以二次函数2y ax bx =+的关系式为224y x x =-+. ································· (10分)25.解:(1)设AB 与l 交于点O .在Rt AOD △中,6024cos60ADOAD AD OA ∠====°,,°.又106AB OB AB OA =∴=-=,.在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==°,°(km ). ∴观测点B 到航线l 的距离为3km . ····························································· (4分) (2)在Rt AOD △中,tan 60OD AD ==°. 在Rt BOE △中,tan 60OE BE ==°DE OD OE ∴=+=.在Rt CBE △中,763tan 3tan76CBE BE CE BE CBE ∠==∴=∠=°,,°.3tan 76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CDCD ∴==⨯≈(km/h ). 答:该轮船航行的速度约为40.6km/h . ······················································· (10分) 26.解:(1)同意.如图,设AD 与EF 交于点G .由折叠知,AD 平分BAC ∠,所以BAD CAD ∠=∠.又由折叠知,90AGE DGE ∠=∠=°, 所以90AGE AGF ∠=∠=°,所以AEF AFE ∠=∠.所以AE AF =,即AEF △为等腰三角形. ······································· (5分) (2)由折叠知,四边形ABFE 是正方形,45AEB ∠=°,所以135BED ∠=°.又由折叠知,BEG DEG ∠=∠,所以67.5DEG ∠=°.从而9067.522.5α∠=-=°°°. ······························································ (10分) 27.解法一:(1)根据题意,当销售利润为4万元,销售量为4(54)4÷-=(万升). 答:销售量x 为4万升时销售利润为4万元. ················································· (3分)(2)点A 的坐标为(44),,从13日到15日利润为5.54 1.5-=(万元), 所以销售量为1.5(5.54)1÷-=(万升),所以点B 的坐标为(55.5),. 设线段AB 所对应的函数关系式为y kx b =+,则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩,∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ··························· (6分)从15日到31日销售5万升,利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=(万元).∴本月销售该油品的利润为5.5 5.511+=(万元),所以点C 的坐标为(1011),.设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.m n m n =+⎧⎨=+⎩,解得 1.10.m n =⎧⎨=⎩,所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. ···························· (9分) (3)线段AB . ···················································································· (12分) 解法二:(1)根据题意,线段OA 所对应的函数关系式为(54)y x =-,即(04)y x x =≤≤.当4y =时,4x =.答:销售量为4万升时,销售利润为4万元. ················································ (3分) (2)根据题意,线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-,即 1.52(45)y x x =-≤≤. ····································································· (6分) 把 5.5y =代入 1.52y x =-,得5x =,所以点B 的坐标为(55.5),. 截止到15日进油时的库存量为651-=(万升).当销售量大于5万升时,即线段BC 所对应的销售关系中, 每升油的成本价144 4.54.45⨯+⨯==(元).所以,线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤. ······························· (9分) (3)线段AB . ···················································································· (12分)28.解:(1)(50)C t -,,34355P t t ⎛⎫- ⎪⎝⎭,. ·················································· (2分)(2)①当C ⊙的圆心C 由点()50M ,向左运动,使点A 到点D 并随C ⊙继续向左运动时,有3532t -≤,即43t ≥. 当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由CDF EDO ∠=∠,ACD F EG得CDF EDO △∽△,则3(5)45CF t --=.解得485t CF -=. 由12CF ≤t ,即48152t t -≤,解得163t ≤.∴当C ⊙与射线DE 有公共点时,t 的取值范围为41633t ≤≤. ······················· (5分)②当PA AB =时,过P 作PQ x ⊥轴,垂足为Q ,有222PA PQ AQ =+221633532525t t t ⎛⎫=+--+ ⎪⎝⎭. 2229184205t t t ∴-+=,即2972800t t -+=. 解得1242033t t ==,. ································ (7分)当PA PB =时,有PC AB ⊥,3535t t ∴-=-.解得35t =. ····················· (9分) 当PB AB =时,有 222221613532525PB PQ BQ t t t ⎛⎫=+=+--+ ⎪⎝⎭.221324205t t t ∴++=,即278800t t --=. 解得452047t t ==-,(不合题意,舍去). ················································ (11分)∴当PAB △是等腰三角形时,43t =,或4t =,或5t =,或203t =. ············· (12分)。

2009年河北省中考数学试卷(含答案及考点解析)

2009年河北省中考数学试卷(含答案及考点解析)

2009年河北省初中毕业生升学文化课考试数 学 试 卷一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. (-1)3等于( )A .-1B .1C .-3D .3【解析】本题考查了有理数的乘方。

(-1)3=-1,故选A . 答案:A2.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <0【解析】本题考查了二次根式有意义的条件,由二次根式有意义的条件可知:x ≥0,故选A 。

答案:A3.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于( )A .20B .15C .10D .5【解析】本题考查了菱形的性质和等边三角形的判定。

根据菱形的性质知:AB =BC ,∠B +∠BCD =180°,又有∠BCD =120°,∴∠B =60°,所以三角形ABC 为等边三角形,所以AC =AB =5。

答案:D4.下列运算中,正确的是( )A .4m -m =3B .―(m ―n )=m +nC .(m 2)3=m 6D .m 2÷m 2=m【解析】本题考查整式的运算。

答案:C5.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45° C .60° D .90°【解析】本题考查了圆周角和圆心角的有关知识。

根据圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,所以本题的答案为90°×12=45°。

答案:BBACD图1A 图2图36.反比例函数y =1x(x >0)的图象如图3所示,随着x 值的增大,y 值( )A .增大B .减小C .不变D .先减小后增大【解析】本题考查反比例函数的性质。

2009年江苏省中考数学试卷(附答案)

2009年江苏省中考数学试卷(附答案)

江苏省2009年中考数学试卷说明: 1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号. 3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( )A .2B .2-C .12D .12- 2.计算23()a 的结果是( ) A .5a B .6a C .8a D .23a3.如图,数轴上A B 、两点分别对应实数a b 、则下列结论正确的是( )10 a b (第3题)A .0a b +>B .0ab >C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格6.某商场试销一种新款衬衫,一周内销售情况如下表所示: 商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A .平均数B .众数C .中位数D .方差 7.如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;圆柱 圆锥 球 正方(第5题)图图AC BDFE(第7题)④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 9.计算2(3)-= .10x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2.12.反比例函数1y x=-的图象在第 象限.13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= . 15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦C D A B ∥.若65ABD ∠=°,则A D C ∠= .17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18是梯形ABCD 的中位线,DEF△的面积为24cm ,则梯形ABCD 的面积为 cm 2. 三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--++(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.(第15AD E BCF (第16(第17(第1820.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:21.(本题满分8的机会相同,那么这多少?22.(本题满分8分)一辆汽车从A地驶往B地,前路段为普通公3路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.23.(本题满分10分)如图,在梯形ABCD中,∥,∥,∥,、两点在边BC上,且四边形AEFD是A D B C A B D E A F D平行四边形.(1)AD与BC有何等量关系?请说明理由;A DCBFE(2)当AB DC =时,求证:ABCD 是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上. (1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+25.(本题满分10分)如图,在航线l点A 到航线l 的距离为2km ,点B 位于点A 北偏东距10km 处.现有一艘轮船从位于点B 南偏西76该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处. (1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:1.73,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用AACDB图A CDB图F E将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度ED C F B A图③ E D C AB F G ADEC B F G 图④ 图⑤1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.五月份销售记录(万升)/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒. (1)请用含t 的代数式分别表示出点C 与点P 的坐标;(2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接PA 、PB .二、填空题(本大题共有10小题,每小题3分,共30分)9.9 10.1x ≥ 11.51.02610⨯ 12.二、四 13.27800(1)9100x +=14.1 15.< 16.25 17.2π 18.16 三、解答题(本大题共有10小题,共96分.解答必须写出必要的文字说明、推理步骤或证明过程)19.解:(1)原式2123=-+=. ··········· (4分)(2)原式2221(1)(1)(1)1(1)1a a a a a a a a a a a --+-+=÷=⨯=--. (8分) 20.解:(1)280,48,180. ············ (3分)(2)抽取的学生中,成绩不合格的人数共有(804848)176++=,所以成绩合格以上的人数为20001761824-=,估计该市成绩合格以上的人数为182460000547202000⨯=. 答:估计该市成绩合格以上的人数约为54720人. ··· (8分) 21.解:用树状图分析如下:P (1个男婴,2个女婴)38=.答:出现1个男婴,2个女婴的概率是38. ······· (8分) 22.解:本题答案不惟一,下列解法供参考.解法一??????问题:普通公路和高速公路各为多少千米? (3分) 解:设普通公路长为x km ,高度公路长为y km .根据题意,得2 2.2.60100x y x y =⎧⎪⎨+=⎪⎩,解得60120x y =⎧⎨=⎩,. ········ (7分) 答:普通公路长为60km ,高速公路长为120km . ···· (8分) 解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时? ························· (3分) 解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h .根据题意,得 2.2602100.x y x y +=⎧⎨⨯=⎩,解得11.2.x y =⎧⎨=⎩,········ (7分)答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h .(8分)(男男男) (男男女) 女 男(男女男) (男女女)女 女(女男男) (女男女)女 男(女女男)(女女女) 女 女男女 开始第一个第二个 第三个 所有结果23.(1)解:13AD BC =. ·············· (1分) 理由如下:AD BC AB DE AF DC ∥,∥,∥,∴四边形ABED 和四边形AFCD 都是平行四边形.AD BE AD FC ==,.又四边形AEFD 是平行四边形,AD EF ∴=.AD BE EF FC ∴===.13AD BC ∴=. ··················· (5分)(2)证明:四边形ABED 和四边形AFCD 都是平行四边形,DE AB AF DC ∴==,. AB DC DE AF =∴=,.又四边形AEFD 是平行四边形,∴四边形AEFD 是矩形. (10分) 24.解:(1)2221(1)2y x x x =--=--,所以顶点A 的坐标为(12)-,. ······ (3分)因为二次函数2y ax bx =+的图象经过原点,且它的顶点在二次函数221y x x =--图象的对称轴l 上,所以点C 和点O 关于直线l 对称,所以点C 的坐标为(20),. ······ (6分)(2)因为四边形AOBC 是菱形,所以点B 和点A 关于直线OC 对称,因此,点B 的坐标为(12),.因为二次函数2y ax bx =+的图象经过点B (12),,(20)C ,,所以2420.a b a b +=-⎧⎨+=⎩,解得24a b =-⎧⎨=⎩,.所以二次函数2y ax bx =+的关系式为224y x x =-+. ···· (10分)25.解:(1)设AB 与l 交于点O .在Rt AOD △中,6024cos60AD OAD AD OA ∠====°,,°. 又106AB OB AB OA =∴=-=,.在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==°,°(km ). ∴观测点B 到航线l 的距离为3km . ·········· (4分) (2)在Rt AOD △中,tan 60OD AD ==°.在Rt BOE △中,tan 60OE BE ==°DE OD OE ∴=+=.在Rt CBE △中,763tan 3tan76CBE BE CE BE CBE ∠==∴=∠=°,,°.3tan 76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CD CD ∴==⨯≈(km/h ). 答:该轮船航行的速度约为40.6km/h . ······· (10分)26.解:(1)同意.如图,设AD 与EF 交于点G .由折叠知,AD 平分BAC ∠,所以BAD CAD ∠=∠.又由折叠知,90AGE DGE ∠=∠=°,所以90AGE AGF ∠=∠=°,所以AEF AFE ∠=∠.所以AE AF =,即AEF △为等腰三角形. ······ (5分)(2)由折叠知,四边形ABFE 是正方形,45AEB ∠=°,所以A CD B FE G135BED ∠=°.又由折叠知,BEG DEG ∠=∠,所以67.5DEG ∠=°. 从而9067.522.5α∠=-=°°°. ············· (10分)27.解法一:(1)根据题意,当销售利润为4万元,销售量为4(54)4÷-=(万升).答:销售量x 为4万升时销售利润为4万元. ····· (3分)(2)点A 的坐标为(44),,从13日到15日利润为5.54 1.5-=(万元), 所以销售量为1.5(5.54)1÷-=(万升),所以点B 的坐标为(55.5),. 设线段AB 所对应的函数关系式为y kx b =+,则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩, ∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ·· (6分) 从15日到31日销售5万升,利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=(万元). ∴本月销售该油品的利润为5.5 5.511+=(万元),所以点C 的坐标为(1011),.设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.m n m n =+⎧⎨=+⎩,解得1.10.m n =⎧⎨=⎩, 所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. · (9分)(3)线段AB . ·················· (12分) 解法二:(1)根据题意,线段OA 所对应的函数关系式为(54)y x =-,即(04)y x x =≤≤.当4y =时,4x =.答:销售量为4万升时,销售利润为4万元. ····· (3分)(2)根据题意,线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-,即 1.52(45)y x x =-≤≤. ··············· (6分) 把 5.5y =代入 1.52y x =-,得5x =,所以点B 的坐标为(55.5),. 截止到15日进油时的库存量为651-=(万升). 当销售量大于5万升时,即线段BC 所对应的销售关系中, 每升油的成本价144 4.5 4.45⨯+⨯==(元). 所以,线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤.······ (9分) (3)线段AB . ·················· (12分)28.解:(1)(50)C t -,,34355P t t ⎛⎫- ⎪⎝⎭,. ········· (2分) (2)①当C ⊙的圆心C 由点()50M ,向左运动,使点A 到点D 并随C ⊙继续向左运动时, 有3532t -≤,即43t ≥.当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由CDF EDO∠=∠, 得CDF EDO △∽△,则3(5)45CF t --=.解得485t CF -=. 由12CF ≤t ,即48152t t -≤,解得163t ≤. ∴当C ⊙与射线DE 有公共点时,t 的取值范围为41633t ≤≤. (5分) ②当PA AB =时,过P 作PQ x ⊥轴,垂足为Q ,有222PA PQ AQ =+ 221633532525t t t ⎛⎫=+--+ ⎪⎝⎭. 2229184205t t t ∴-+=,即2972800t t -+=. 解得1242033t t ==,. ······ (7分)当PA PB =时,有PC AB ⊥, 3535t t ∴-=-.解得35t =. ··· (9分) 当PB AB =时,有222221613532525PB PQ BQ t t t ⎛⎫=+=+--+ ⎪⎝⎭.221324205t t t ∴++=,即278800t t --=. 解得452047t t ==-,(不合题意,舍去). ········ (11分) ∴当PAB △是等腰三角形时,43t =,或4t =,或5t =,或203t =.(12分)。

2009年河南省中考数学试卷(解析版)

2009年河南省中考数学试卷(解析版)

2009年河南省中考数学试卷一、选择题(共6小题,每小题3分,满分18分) 1.(3分)﹣5的相反数是( )A.51B.-51C.-5D.5【分析】根据相反数的定义直接求得结果. 【解答】解:﹣5的相反数是5. 故答案为:D .【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)不等式﹣2x <4的解集是( )A .x >﹣2B .x <﹣2C .x >2D .x <2【分析】利用不等式的基本性质,将两边同除以﹣2,得x >﹣2. 【解答】解:系数化为1得,x >﹣2.故选A .【点评】本题考查了不等式的性质3:不等式两边同除以同一个负数,不等号的方向改变.在这一点上学生容易想不到改变不等号的方向误选B ,而导致错误的发生.3.(3分)下列调查适合普查的是( )A .调查2009年6月份市场上某品牌饮料的质量B .了解中央电视台直播北京奥运会开幕式的全国收视率情况C .环保部门调查5月份黄河某段水域的水质量情况D .了解全班同学本周末参加社区活动的时间【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A :调查2009年6月份市场上某品牌饮料的质量具有破坏性,适合用抽样调查; B 、C :了解中央电视台直播北京奥运会开幕式的全国收视率情况以及环保部门调查5月份黄河某段水域的水质量情况,范围比较大,普查的意义或价值不大,应选择抽样调查; D :了解全班同学本周末参加社区活动的时间适合普查.故选D . 【点评】适合普查的方式一般有以下几种: ①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.4.(3分)方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=0【分析】方程移项后提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.(3分)如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)【分析】根据旋转的性质,旋转不改变图形的形状、大小及相对位置.【解答】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(﹣2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.【点评】本题主要考查平面直角坐标系及图形的旋转变换的相关知识,学生往往因理解不透题意而出现问题.6.(3分)一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为()A.3 B.4 C.5 D.6【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,也可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选B.【点评】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.二、填空题(共9小题,每小题3分,满分27分)7.(3分)16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.(3分)如图,AB∥CD,CE平分∠ACD,若∠1=25°,那么∠2的度数是50度.【分析】根据平行线的性质、角平分线的定义,可得∠2=2∠1=50度.【解答】解:∵AB∥CD,CE平分∠ACD,∠1=25°,∴∠2=∠1+∠3,∵∠1=∠3=25°,∴∠2=25°+25°=50°.【点评】本题考查平行线的性质、角平分线的定义.9.(3分)下图是一个简单的运算程序.若输入x的值为﹣2,则输出的数值为6.【分析】本题其实是代数式求值的问题,即当x=﹣2时,求x2+2的值,直接代入即可求得结果.【解答】解:由图示可得(﹣2)2+2=6.【点评】如果能理解了算式实际表达的意思,直接代入即可求得结果,学生的困难在于理解不了运算程序,从而造成失误.也有学生把(﹣2)2当成了﹣4,从而得到错误结果﹣2.10.(3分)如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB 的长是2.【分析】根据平行四边形的性质证明点O为AC的中点,而点E是BC边的中点,可证OE为△ABC的中位线,利用中位线定理解题.【解答】解:由平行四边形的性质可知AO=OC,而E为BC的中点,即BE=EC,∴OE为△ABC的中位线,OE=AB,由OE=1,得AB=2.故答案为2.【点评】本题结合平行四边形的性质考查了三角形的中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半.11.(3分)如图,AB为半圆O的直径,延长AB到点P,使BP=AB,PC切半圆O于点C,点D是上和点C不重合的一点,则∠CDB的度数为30度.【分析】连接OC,由切线的性质得OC⊥PC,于是易得Rt△OCP中,OC=OB=PB;利用30°所对的边等于斜边的一半,可得∠P=30°,于是得∠COP=60°,再由“同弧所对的圆周角等于它所对的圆心角的一半”得∠CDB=30度.【解答】解:连接OC,∵PC切半圆O于点C,∴OC⊥PC,∴OC=OB=PB,∴∠P=30°,即∠COP=60°,∴∠CDB=∠COP=30°.【点评】本题考查了直角三角形中30°角的确定及圆周角与圆心角的关系,属综合性稍强的题目,学生由于应用中的某一类知识欠缺导致出现错误.12.(3分)点A(2,3)在反比例函数的图象上,当1≤x≤3时,y的取值范围是2≤y≤6.【分析】首先根据点A(2,3)在反比例函数的图象上,求出系数k的值,可得y=,然后根据1≤x≤3,进而求出y的取值范围.【解答】解:∵点A(2,3)在反比例函数的图象上,∴3=,解得k=6,∴y=,∵1≤x≤3,∴2≤y≤6.故答案为2≤y≤6.【点评】本题主要考查反比例函数的性质,解答本题的关键是求出反比例函数的系数k的值,还要熟练掌握解不等式的知识点,此题基础题,比较简单.13.(3分)在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:∴一共有20种情况,两个球都是黑球的有两种,∴两个球都是黑球的概率为=.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(3分)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC 边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q 分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为2.【分析】本题关键在于找到两个极端,即BA′取最大或最小值时,点P或Q的位置.经实验不难发现,分别求出点P与B重合时,BA′取最大值3和当点Q与D重合时,BA′的最小值1.所以可求点A′在BC边上移动的最大距离为2.【解答】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.故答案为:2【点评】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).【分析】首先要明确S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF,然后依面积公式计算即可.【解答】解:连接OF,∵∠AOD=45°,四边形CDEF是正方形,∴OD=CD=DE=EF,于是Rt△OFE中,OE=2EF,∵OF=,EF2+OE2=OF2,∴EF2+(2EF)2=5,解得:EF=1,∴EF=OD=CD=1,∴S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF=﹣×1×1﹣1×1=.【点评】本题失分率较高,学生的主要失误在于找不到解题的切入点,不知道如何添加辅助线,也有学生对直角三角形三边关系不熟悉,误认为∠FOB=30°造成失误.三、解答题(共8小题,满分75分)16.(8分)先化简,然后从中选取一个你认为合适的数作为x的值代入求值.【分析】首先利用分式的运算方法进行化简,本题有两种方法:一是对括号里的式子先通分、合并,再将后式除法变为乘法,分解因式后约分;二是先把后式除法变乘法,再利用乘法分配律化简.在选值计算时,要保证在分式有意义的情况下选值.【解答】解:原式==,∵x﹣1≠0,x+1≠0,∴x≠±1,原式=.【点评】本题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.这是个分式混合运算题,运算顺序是先乘除后加减,加减法时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.17.(9分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.【分析】首先进行判断:OE⊥AB,由已知条件不难证明△BAC≌△ABD,得∠OBA=∠OAB再利用等腰三角形“三线合一”的性质即可证得结论.【解答】解:OE垂直且平分AB.证明:在△BAC和△ABD中,,∴△BAC≌△ABD(SAS).∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.又点E是AB的中点,∴OE垂直且平分AB.【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质;解决此类问题,要熟练掌握三角形全等的判定、等腰三角形的性质等知识.18.(9分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m=,n=;(2)在扇形统计图中,D组所占圆心角的度数为度;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?【分析】(1)利用总数和C所占的百分比即可求出m,进而求出n;(2)求出D组所占的百分比,再求D组所占圆心角的度数即可;(3)利用样本估计总体,先求出该校平均每周体育锻炼时间不少于6小时的学生所占的百分比,即可求出答案.【解答】解:(1)由统计表和扇形图可知:m=50×16%=8人;n=50﹣8﹣15﹣20﹣1﹣2=4人;(2)扇形统计图中,D组所占圆心角的度数=360×=144度;(3)该校平均每周体育锻炼时间不少于6小时的学生站的百分比==78%,则3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有3000×78%=2340人.【点评】解决这类问题的关键是要弄清楚频数的意义,理解频数分布表与扇形统计图的对应关系,还要掌握用样本估计总体的统计思想.19.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】先设函数式为:y=kx+b,然后利用两对数值可求出函数的解析式,把x=400代入函数解析式可得到y,有y的值就能确定是否能回到家.【解答】解:(1)设y=kx+b,当x=0时,y=45,当x=150时,y=30,∴,解得,∴y=x+45(0≤x≤450);(2)当x=400时,y=×400+45=5>3,∴他们能在汽车报警前回到家.【点评】解题思路:本题考查一次函数的实际应用,用待定系数法求一次函数的解析式,再通过其解析式计算说明问题.由一次函数的解析式的求法,找到两点列方程组即可解决.20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78度.李师傅的身高为1.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)【分析】本题中问题的解决要弄清楚电工李师傅所站的地方离地面的高度,通过解直角三角形来解决.首先可求得点A离地面的距离,再用相似三角形对应边成比例,或者同角三角函数的比例,求得第三级离地面的高度,即可求得他头顶离房顶的距离.【解答】解:过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.∵AB=AC,∴CE=BC=0.5.在Rt△AEC和Rt△DFC中,∵tan78°=,∴AE=EC×tan78°≈0.5×4.70=2.35.又∵sinα==,DF=•AE=×AE≈1.007.∴李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787.头顶与天花板的距离约为:2.90﹣2.787≈0.11.∵0.05<0.11<0.20,∴他安装比较方便.【点评】命题立意:考查利用解直角三角形知识解决实际问题的能力.要求学生应用数学知识解决问题,在正确分析题意的基础上建立数学模型,把实际问题转化为数学问题.21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=30度时,四边形EDBC是等腰梯形,此时AD的长为1;②当α=60度时,四边形EDBC是直角梯形,此时AD的长为 1.5;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.【分析】(1)根据旋转的性质和等腰梯形的性质,①假设四边形EDBC是等腰梯形,根据题目已知条件及外角和定理可求α,AD;②假设四边形EDBC是直角梯形,根据题目已知条件及内角和定理可求α,AD.(2)根据∠α=∠ACB=90°先证明四边形EDBC是平行四边形.再利用Rt△ABC中,∠ACB=90°,∠B=60°,BC=2求得AB,AC,AO的长度;在Rt△AOD中,∠A=30°,AD=2,可求BD,比较得BD=BC,可证明四边形EDBC是菱形.【解答】解:(1)①当四边形EDBC是等腰梯形时,∵∠EDB=∠B=60°,而∠A=30°,∴α=∠EDB﹣∠A=30°,∴△ADO是等腰三角形,∴AD=OD,过点O作OF∥BC,∵BC⊥AC,∴OF⊥AC,∴OF是△ABC的中位线,∴OF=BC=1,∵α=∠EDB﹣∠A=30°,∴∠ODF=60°=∠DOF=60°,∴△ODF是等边三角形,∴OD=OF=DF=1,∵∠A=∠α=30°,∴AD=OD=1;②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,根据三角形的内角和定理,得α=90°﹣∠A=60°,此时,AD=AC×=1.5.(2)当∠α=90°时,四边形EDBC是菱形.∵∠α=∠ACB=90°,∴BC∥ED,∵CE∥AB,∴四边形EDBC是平行四边形.在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠A=30°,∴AB=4,AC=2,∴AO==.在Rt△AOD中,∠A=30°,OD=AD,AD==,∴AD=2,∴BD=2,∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形.【点评】解决此问题,既要弄清等腰梯形、直角梯形及菱形的判定,又要掌握有关旋转的知识,在直角三角形中,30度角所对的直角边等于斜边的一半,也是解决问题的关键.22.(10分)某家电商场计划用32 400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?进价(元/台)售价(元/台)价格种类电视机20002100冰箱24002500洗衣机16001700【分析】(1)由题意可知:电视机的数量和冰箱的数量相同,则洗衣机的数量等于总台数减去2倍的电视机或洗衣机的数量,又知洗衣机数量不大于电视机数量的一半,则15﹣2x ≤x;根据各个电器的单价以及数量,可列不等式2000x+2400x+1600(15﹣2x)≤32400;根据这两个不等式可以求得x 的取值,根据x的取值可以确定有几种方案;(2)分别计算出方案一和方案二的家电销售的总额,分别将总额乘以13%,即可求得补贴农民的钱数.【解答】解:(1)设购进电视机、冰箱各x台,则洗衣机为(15﹣2x)台依题意得:解这个不等式组,得6≤x≤7∵x为正整数,∴x=6或7;方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台;(2)方案1需补贴:(6×2100+6×2500+3×1700)×13%=4251(元);方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);答:国家的财政收入最多需补贴农民4407元.【点评】对于方案设计的问题,首先考虑的是如何根据已知条件列出不等式,在所求得的取值范围中找出符合题意的值,得出可能产生的几种方案.23.(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.【分析】(1)由于四边形ABCD为矩形,所以A点与D点纵坐标相同,A点与B点横坐标相同;(2)①根据相似三角形的性质求出点E的横坐标表达式即为点G的横作标表达式.代入二次函数解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答.②若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ=QC,EC=CQ,EQ=EC三种情况讨论.若有两种情况时间相同,则三边长度相同,为等腰三角形.【解答】解:(1)因为点B的横坐标为4,点D的纵坐标为8,AD∥x轴,AB∥y轴,所以点A的坐标为(4,8).将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx得,解得a=﹣,b=4.故抛物线的解析式为:y=﹣x2+4x;(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=.∴PE=AP=t.PB=8﹣t.∴点E的坐标为(4+t,8﹣t).∴点G的纵坐标为:﹣(4+t)2+4(4+t)=﹣t2+8.∴EG=﹣t2+8﹣(8﹣t)=﹣t2+t.∵﹣<0,∴当t=4时,线段EG最长为2.②共有三个时刻.(①)当EQ=QC时,因为Q(8,t),E(4+t,8﹣t),QC=t,所以根据两点间距离公式,得:(t﹣4)2+(8﹣2t)2=t2.整理得13t2﹣144t+320=0,解得t=或t==8(此时E、C重合,不能构成三角形,舍去).(②)当EC=CQ时,因为E(4+t,8﹣t),C(8,0),QC=t,所以根据两点间距离公式,得:(4+t﹣8)2+(8﹣t)2=t2.整理得t2﹣80t+320=0,t=40﹣16,t=40+16>8(此时Q不在矩形的边上,舍去).(③)当EQ=EC时,因为Q(8,t),E(4+t,8﹣t),C(8,0),所以根据两点间距离公式,得:(t﹣4)2+(8﹣2t)2=(4+t﹣8)2+(8﹣t)2,解得t=0(此时Q、C重合,不能构成三角形,舍去)或t=.于是t1=,t2=,t3=40﹣16.【点评】抛物线的求法是函数解析式中的一种,通常情况下用待定系数法,即先列方程组,再求未知系数,这种方法本题比较适合.对于压轴题中的动点问题、极值问题,先根据条件“以静制动”,用未知系数表示各自的坐标,如果能构成二次函数,即可通过配方或顶点坐标公式求其极值.。

2009年中考答案中考数学试卷真题(附答案解析)

2009年中考答案中考数学试卷真题(附答案解析)

G (第23题图(1))
∴CD=20-x …………………………………5 分
A
∵ tan ACD AD ,即 tan 30 x
…6 分
M
DC
20 x
B
D
C

x
20 1
tan tan
30 30
20 10 3 1
3 1 7.3 (米) …7 分
N G
(第23题图(2))
答:路灯 A 离地面的高度 AD 约是 7.3 米.
∴∠OCD=90° ………………………3 分
∴∠OCB+∠DCF=90°
∵∠D+∠DCF=90°
∴∠OCB=∠D ………………………4 分
∵OB=OC
D
∴∠OCB=∠B
∵∠B=∠AEC
∴∠D=∠AEC ………………………5 分
(3)在 Rt△OCF 中,OC=5,CF=4
A C
O F E
B (第25题图 )
…………………………2 分
所以,抛物线的关系式为 y=(x-2)2-1=x2-4 x+3 ……3 分
(2)∵点 M(x,y1),N(x+1,y2)都在该抛物线上 ∴y1-y2=(x2-4 x+3)-[(x+1)2-4(x+1)+3]=3-2 x …………4 分

3-2
x>0,即
x
3 2
时,y1>y2
F
E (第22题图 )
C B
23.解:(1)见参考图 ……………………………3 分
A
(不用尺规作图,一律不给分。对图(1)画出弧 EF 给 1 分,
画出交点 G 给 1 分,连 AG 给 1 分;对图(2),画出弧 AMG
D
给 1 分,画出弧 ANG 给 1 分,连 AG 给 1 分)

2009年天津中考数学试题及答案

2009年天津中考数学试题及答案

2009年天津市初中毕业生学业考试试卷第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2sin30°的值等于()A.1BCD.22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.B.3个C.4个D.5个3.若x y,为实数,且20x+=,则2009xy⎛⎫⎪⎝⎭的值为()A.1 B.1-C.2 D.2-4.边长为a的正六边形的内切圆的半径为()A.2a B.a C D.12a5.右上图是一根钢管的直观图,则它的三视图为()A.B.C.D.6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A.8.5,8.5B.8.5,9C.8.5,8.75D.8.64,97.在ABC△和DEF△中,22AB DE AC DF A D==∠=∠,,,如果ABC△的周长是16,面积是12,那么DEF△的周长、面积依次为()A.8,3B.8,6C.4,3D.4,68.在平面直角坐标系中,已知线段AB的两个端点分别是()()41A B--,,1,1,将线段AB平移后得到线段A B'',若点A'的坐标为()22-,,则点B'的坐标为()A.()43,B.()34,C.()12--,D.()21--,9.如图,ABC△内接于O⊙,若28OAB∠=°,则C∠的大小为()A.28°B.56°C.60°D.62°10.在平面直角坐标系中,先将抛物线22y x x=+-关于x轴作轴对称变换,再将所得的抛物线关于y轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为()A.22y x x=--+B.22y x x=-+-H I N A第(9)题C .22y x x =-++D .22y x x =++2009年天津市初中毕业生学业考试试卷第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11= .12.若分式22221x x x x --++的值为0,则x 的值等于 .13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _. 15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x 本,付款金额为y 元,请填写下表:16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性: __________________________________________ _________________________________________ _________________________________________三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分)解不等式组5125431x x x x ->+⎧⎨-<+⎩,.黄瓜根数/株 第(16)题 第(18)题20.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率. 22.(本小题8分)如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=° (Ⅰ)求P ∠的大小;(Ⅱ)若2AB =,求PA 的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m,P C AO70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD . 结合以上分析完成填空:如图②,用含x 的代数式表示: AB =____________________________cm ; AD =____________________________cm ; 矩形ABCD 的面积为_____________cm 2;列出方程并完成本题解答. 25.(本小题10分)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;图② 图①(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.26.(本小题10分)已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上.(Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.。

【09年数学中考原题】江西省南昌市2009年中考数学试卷(word版含答案)

【09年数学中考原题】江西省南昌市2009年中考数学试卷(word版含答案)

y
(第 15 题)
y1 = x
B A C O
②当 x > 2 时, y2 > y1 ; ③当 x = 1 时, BC = 3 ; ④当 x 逐渐增大时, y1 随着 x 的增大而增大, y2 随着 x 的 增大而减小. 其中正确结论的序号是 . (本大题共 小题, 三, 本大题共 4 小题,每小题 6 分,共 24 分) ( 17. 化简求值: [(x-y)2+y(4x-y)-8x]÷2x,其中 x=8,y=2009.
数学试题参考答案及评分意见
说明: 说明: 1.如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制 定相应的评分细则后评卷. 2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅;当考 生的解答在某一步出现错误, 影响了后继部分时, 如果该步以后的解答未改变这一题的内容 和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如 果这一步以后的解答有较严重的错误,就不给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数. 小题, 一,选择题(本大题共 8 小题,每小题 3 分,共 24 分) 选择题( 1 2 3 4 5 6 题号 答案 A D C B A B 小题, 二,填空题(本大题共 8 小题,每小题 3 分,共 24 分) 填空题( 9.如 π,2,3,7 等 10. (Ⅰ) x = 4 ; (Ⅱ)0.464 11.(-2,3) 12.2 13.3600πcm2 14. 2 < x < 5 15.120 16.①③④ (说明:1.第 9 小题答案不唯一,只要符合题意即可满分; 2.第 16 小题,填了②的,不得分;未填②的,①,③,④中每填一个得 1 分) (本大题共 小题, 三, 本大题共 4 小题,每小题 6 分,共 24 分) ( 17.解:原式=(x2-2xy+y2+4xy-y2-8x)÷2x 2 分 =x(x+2y-8) ÷2x =

2009年中考数学及答案

2009年中考数学及答案

2009年上海市初中毕业统一学业考试数 学 卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.计算32()a 的结果是(B ) A .5aB .6aC .8aD .9a2.不等式组1021x x +>⎧⎨-<⎩,的解集是( C )A .1x >-B .3x <C .13x -<<D .31x -<<3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( A ) A .230y y +-= B .2310y y -+=C .2310y y -+=D .2310y y --=4.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( B ) A .()m n ,B .()m n -,C .()m n -,D .()m n --,5.下列正多边形中,中心角等于内角的是( C )A .正六边形B .正五边形C .正四边形 C .正三边形 6.如图1,已知AB CD EF ∥∥,那么下列结论正确的是(A )A .AD BCDF CE = B .BC DFCE AD =C .CD BCEF BE= D .CD ADEF AF= 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直线填入答题纸的相应位置】A B D C E F图1781=的根是 x=2 .9.如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k =.10.已知函数1()1f x x =-,那么(3)f = —1/2 .11.反比例函数2y x=图像的两支分别在第 I III 象限.12.将抛物线2y x =向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 .13.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是 1/6 .14.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是100*(1—m)^2 元(结果用含m 的代数式表示).15.如图2,在ABC △中,AD 是边BC 上的中线,设向量 , 如果用向量a ,b 表示向量AD ,那么AD =a +(b/2).16.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA = 5 .17.在四边形ABCD 中,对角线AC 与BD 互相平分,交点为O .在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是AC=BD 或者有个内角等于90度 .18.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 2 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22221(1)121a a a a a a +-÷+---+. = —120.(本题满分10分)解方程组:21220y x x xy -=⎧⎨--=⎩,①.②(X=2 y=3 ) (x=-1 y=0)图2A 图3B M C=142y x =5AB a =21.(本题满分10分,每小题满分各5分)如图4,在梯形ABCD 中,86012AD BC AB DC B BC ==∠==∥,,°,,联结AC .(1)求tan ACB ∠的值;(2)若M N 、分别是AB DC 、的中点,联结MN ,求线段MN 的长. (1) 二分之根号3(2)822.(本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分2分,第(4)小题满分3分)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图5所示(其中六年级相关数据未标出).表一根据上述信息,回答下列问题(直接写出结果):(1)六年级的被测试人数占所有被测试人数的百分率是 20% ;(2)在所有被测试者中,九年级的人数是 6 ;(3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是 35% ; (4)在所有被测试者的“引体向上”次数中,众数是 5 .23.(本题满分12分,每小题满分各6分)已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB的中点,F 为OC 的中点,联结EF (如图6所示).(1)添加条件A D ∠=∠,OEF OFE ∠=∠,求证:AB DC =. 证明:由已知条件得:2OE=2OC OB=OC 又 A D ∠=∠角AOB=角DOC 所以三角形ABO 全等于三角形DOC 所以AB DC =(2)分别将“A D ∠=∠”记为①,“OEF OFE ∠=∠”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 真 命题,命题2是 假 命题(选择“真”或“假”填入空格). 24.(本题满分12分,每小题满分各4分)A DC图4 B 九年级八年级 七年级六年级25%30% 25% 图5图6 O D CAB E F在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图7所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标;(3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.解:(1)点B (—1,0),代入得到 b=1 直线BD :y=x+1Y=4代入 x=3 点D (3,1)(2)1、PO=OD=5 则P (5,0)2、PD=OD=5 则PO=2*3=6 则点P (6,0)3、PD=PO 设P (x ,0) D (3,4)则由勾股定理 解得 x=25/6 则点P (25/6,0)(3)由P ,D 两点坐标可以算出:1、r=5—2、PD=5 r=13、PD=25/6 r=025.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.ADPCBQ 图8DAPCB(Q ) 图9图10CADPBQxb解:(1)AD=2,且Q 点与B 点重合,根据题意,∠PBC=∠PDA ,因为∠A=90。

河南省2009年中考数学试题(含答案)

河南省2009年中考数学试题(含答案)

2009年河南省初中学业水平暨高级中等学校招生考试试卷数学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟。

请用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。

1.﹣5的相反数是【】(A)15(B )﹣15(C)﹣5(D)52.不等式﹣2x <4的解集是【】(A)x >﹣2(B )x <﹣2(C)x >2(D)x <23.下列调查适合普查的是【】(A)调查2009年6月份市场上某品牌饮料的质量(B )了解中央电视台直播北京奥运会开幕式的全国收视率情况(C)环保部门调查5月份黄河某段水域的水质量情况(D)了解全班同学本周末参加社区活动的时间4.方程2x =x 的解是【】(A)x =1(B )x =0(C)x 1=1x 2=0(D)x 1=﹣1x 2=05.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A’的坐标为【】(A)(2,2)(B )(2,4)(C)(4,2)(D)(1,2)6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为【】(A)3(B )4(C)5(D)6得分评卷人二、填空题(每小题3分,共27分)7.16的平方根是.8.如图,AB//CD,C E平分∠ACD,若∠1=250,那么∠2的度数是.9.下图是一个简单的运算程序.若输入x的值为﹣2,则输出的数值为.10.如图,在ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是.11.如图,AB为半圆O的直径,延长AB到点P,使BP=12AB,PC切半圆O于点C,点D是AC上和点C不重合的一点,则D∠的度数为.12.点A(2,1)在反比例函数ykx=的图像上,当1﹤x﹤4时,y的取值范围是.13.在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为.14.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为.15.如图,在半径为450的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在AB上,则阴影部分的面积为(结果保留π).得分评卷人三、解答题(本大题8个小题,共75分)16.(8分)先化简211()1122x x x x −÷−+−,然后从,1−中选取一个你认为合适..的数作为x 的值代入求值.17.(9分)如图所示,∠BAC =∠ABD ,AC =BD ,点O 是AD 、BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.得分评卷人得分评卷人18.(9分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m =______,n =_________;(2)在扇形统计图中,D 组所占圆心角的度数为_____________;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?l9.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y (升)是行驶路程x (千米)的一次函数,求y 与x 的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.得分评卷人组别锻炼时间(时/周)频数A 1.5≤t <3l B3≤t <4.52C 4.5≤t <6mD 6≤t <7.520E 7.5≤t <915Ft ≥9n得分评卷人得分评卷人20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.22.(10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?23.(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.2009年河南省初中学业水平暨高暨中等学校招生考试数学试题参考答案及评分标准说明:1.如果考试的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共18分)题号123456答案D A D C B D二、填空题(每小题3分,共27分)7、±48、5009、610、211、30012、12<y<213、11014、215、5182π−三、解答题16.原式=12-1+1 -1+1x xx x x⋅……………………4分=4x.……………………………………………………………6分当x时,原式=.…………………………………8分(注:如果x取1活-1,扣2分.)17.OE⊥AB.…………………………………………1分证明:在△BA C和△ABD中,AC=BD,∠BA C=∠ABD,AB=BA.∴△BA C≌△ABD.………………………………………………………5分∴∠OBA=∠OAB,∴OA=OB.………………………………………………………7分又∵AE=BE,∴OE⊥AB.………………………………………………………9分(注:若开始未给出判断“OE⊥AB”,但证明过程正确,不扣分)18.(1)8,4;………………………………………………………2分(2)1440;………………………………………………………5分(3)估计该校平均每周体育锻炼时间不少于6小时的学生约有:3000×2015450++=3000×3950=2340(人).……………………………9分19.(1)设y=kx+b,当x=0时,y=45,当x=150时,y=30.b=45∴150k+b=30………………………………………………4分k=110−解得b=45………………………………………………5分∴y=110−x+45.………………………………………………6分(2)当x=400时,y=110−×400+45=5>3.∴他们能在汽车报警前回到家.…………………………………9分20.过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.…………………………1分∵AB=AC,∴CE=12BC=0.5.……………………2分在Rt△ABC和Rt△DFC中,∵tan780=AE EC,∴AE=EC×tan780≈0.5×4.70=2.35.…………………4分又∵sinα=AE AC =DF DC,DF =DC AC ·AE =37×AE ≈1.007.………7分李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787.头顶与天花板的距离约为:2.90-2.787≈0.11.∵0.05<0.11<0.20,∴它安装比较方便.……………………9分21.(1)①30,1;②60,1.5;……………………4分(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED .∵CE //AB ,∴四边形EDBC 是平行四边形.……………………6分在Rt△ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC .∴AO =12AC =.……………………8分在Rt△AOD 中,∠A =300,∴AD =2.∴BD =2.∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形……………………10分22.设购进电视机、冰箱各x 台,则洗衣机为(15-2x )台…………………1分15-2x ≤12x ,依题意得:2000x +2400x +1600(15-2x )≤32400…………………5分解这个不等式组,得6≤x ≤7∵x 为正整数,∴x =6或7…………………7分方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台…………………8分(2)方案1需补贴:(6×2100+6×2500+1×1700)×13%=4251(元);方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);∴国家的财政收入最多需补贴农民4407元.…………………10分23.(1)点A 的坐标为(4,8)…………………1分将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx8=16a +4b得0=64a +8b解得a =-12,b =4∴抛物线的解析式为:y =-12x 2+4x …………………3分(2)①在Rt△APE 和Rt△ABC 中,tan∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8.…………………5分∴EG=-18t 2+8-(8-t )=-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2.…………………7分②共有三个时刻.…………………8分t 1=163,t 2=4013,t 3=.…………………11分。

2009年重庆市中考数学试卷及答案

2009年重庆市中考数学试卷及答案

重庆市2009年初中毕业暨高中招生考试数 学 试 卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2ab ac a b --,对称轴公式为ab x 2-=一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。

1.-5的相反数是( )A .5B .5-C .51 D .51-2.计算232x x ÷的结果是( )A .xB .x 2C .52xD .62x 3.函数31+=x y 的自变量取值范围是( )A .3->xB .3-<xC .3-≠xD .3-≥x 4.如图,直线CD AB 、相交于点E ,AB DF //,若︒=∠100A E C ,则D ∠等于( )A .70ºB .80ºC .90ºD .100º 5.下列调查中,适宜采用全面调查(普查)方式的是( )A .调查一批新型节能灯泡的使用寿命B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查6.如图,⊙O 是ABC ∆的外接圆,AB 是直径,若︒=∠80BOC ,则A ∠等于( ) A .60º B .50º C .40º D .30º7.由四个大小相同的正方体组成的集合体如图所示,那么它的左视图是()A BC D8.观察下列图形,则第n 个图形中三角形的个数是( )E F D CBA O CB A第1个第2个第3个……A.22+n B.44+n C.44-n D.n49.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是()A B C D10.如图,在等腰Rt△ABC中,∠C=90º,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF。

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

2009中考数学题及答案

2009中考数学题及答案

2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。

2009安徽省中考数学试卷及答案解析

2009安徽省中考数学试卷及答案解析

2009年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. (-3)2的值是( )A. 9B. -9C. 6D. -62. 如图,直线l 1∥l 2,则∠α为( )A. 150°B. 140°C. 130°D. 120°第2题图 第5题图3. 下列运算正确的是( )A. a 2·a 3=a 6B. (-a )4=a 4C. a 2+a 3=a 5D. (a 2)3=a 54. 甲志愿者计划用若干个工作日完成社区的某项工作.从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A. 8B. 7C. 6D. 55. 一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为( )A. 3,2 2B. 2,2 2C. 3,2D. 2,36.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A. 45B. 35C. 25D.157. 某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A. 12%+7%=x %B. (1+12%)(1+7%)=2(1+x %)C. 12%+7%=2·x %D. (1+12%)(1+7%)=(1+x %)28. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )9. 如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =22,BD =3,则AB 的长为( )A. 2B. 3C. 4D. 5第9题图10. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )A. 120°B. 125°C. 135°D. 150°二、填空题(本大题共4小题,每小题5分,满分20分)11. 如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为________.第11题图 第13题图12. 因式分解:a 2-b 2-2b -1=________________.13. 长为4 m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了________m.14. 已知二次函数的图象经过原点及点(-12,-14),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为________________.三、(本大题共2小题,每小题8分,满分16分)15. 计算:|-2|+2sin30°-(-3)2+(tan45°)-1.16. 如图,MP 切⊙O 于点M ,直线PO 交⊙O 于点A 、B ,弦AC ∥MP ,求证:MO ∥BC .第16题图四、(本大题共2小题,每小题8分,满分16分)17. 观察下列等式:1×12=1-12,2×23=2-23,3×34=3-34,… (1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.18. 如图,在对Rt △OAB 依次进行位似、轴对称和平移变换后得到Rt △O ′A ′B ′.(1)在坐标纸上画出这几次变换相应的图形;(2)设P (x ,y )为△OAB 边上任一点,依次写出这几次变换后点P 对应点的坐标.第18题图五、(本大题共2小题,每小题10分,满分20分)19. 学校植物园沿路护栏的纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm ,如图所示.已知每个菱形图案的边长为10 3 cm ,其一个内角为60°.(1)若d =26,则该纹饰要用231个菱形图案,求纹饰的长度L ;(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?第19题图20. 如图,将正方形沿图中虚线(其中x <y )剪成①②③④四块图形,用这四块图形恰能..拼成一个....矩形(非正方形). (1)画出拼成的矩形的简图;(2)求x y的值.第20题图21. 某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1 min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理.下面是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图);乙:跳绳次数不少于105次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4∶17∶15.根据这四名同学提供的材料,请解答如下问题:(1)这次跳绳测试共抽取多少名学生?各组有多少人?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1 min跳绳次数的平均值.第21题图七、(本题满分12分)22. 如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM 交AC于F,ME交BC于G.(1)写出图中两对相似三角形,并证明其中的一对;(2)请连接FG,如果α=45°,AB=42,AF=3,求FG的长.第22题图23. 已知某种水果的批发单价与批发量的函数关系如图①所示.(1)请说明图中①、②两段函数图象的实际意义.第23题图①(2)写出批发该种水果的资金金额w(元)与批发量n(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图②所示.该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.第23题图②2009年安徽省中考数学试卷参考答案与试题解析1. A 【解析】求一个负数的平方要注意结果是正数.(-3)2=(-3)×(-3)=9.2. D 【解析】α=70°+(180°-130°)=120°.3. B 【解析】互为相反数的两个数的偶次幂相等.4. A 【解析】设甲志愿者计划完成此项工作的天数为x 天,依题意得1x ×2+(1x +1x)(x -2-3)=1, 解得x =8.5. C 【解析】依据三视图画法特点:“主俯长对正,俯左宽相等,左主高平齐”.意思是说,主视图和俯视图的长与几何体的长相等,俯视图和左视图的宽与几何体的宽相等,左视图和主视图的高与几何体的高相等,由此可想象长方体的高与主视图中矩形的长相等,底面正方形的对角线长为22,由此求得底面正方形边长为2,故选C .6. B 【解析】通过列表知,从三名男生和两名女生中任选两人,共有10种选法,其中一男一女的选法共有6种,则选取一男一女的概率为610=35. 7. D 【解析】设2007年国内生产总值为a ,依题意得a (1+12%)×(1+7%)=a (1+x %)2,即(1+12%)(1+7%)=(1+x %)2.8. C 【解析】由已知一次函数经过(0,1),可求得k >0,b =1,∴2k >0,b =1,倾斜度增加,则画出图象草图,故选C .9. B 【解析】由垂径定理可得DH =2,所以BH =BD 2-DH 2=1,又可得△DHB ∽△ADB ,所以有BD 2=BH ·BA ,(3)2=1×BA ,AB =3.10. C 【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA =12(∠DAC +∠DCA )=12(180°-∠ADC )=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA )=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.11. 72° 【解析】360°×(1-45%-31%-4%)=72°.12. (a +b +1)(a -b -1) 【解析】a 2-b 2-2b -1=a 2-(b 2+2b +1)=a 2-(b +1)2=(a +b +1)(a -b -1).13. 2(3-2) 【解析】开始时梯子顶端离地面距离为4×sin45°=4×22=22,移动后梯子顶端离地面距离为4×sin60°=4×32=23,故梯子顶端沿墙面升高了 23-22=2(3-2)m.14. y =x 2+x 或y =-13x 2+13x 【解析】依题意,所求函数有可能经过(-1,0),(-12,-14) 或(1,0),(-12,-14) .设所求函数解析式为y =ax 2+bx +c ,图象经过原点,则c =0,当图象经过(-1,0),(-12,-14)时,代入可求得a =b =1,即所求解析式为y =x 2+x ; 当图象经过(1,0),(-12,-14)时,代入可求得a =-13,b =13,即所求解析式为y =-13x 2+13x .综上所述,所求函数的解析式为y =x 2+x 或y =-13x 2+13x . 15. 解:原式=2+1-3+1 ...................... (6分)=1. ...................... (8分)16. 证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∵MP 为⊙O 的切线,∴∠PMO =90°,∵MP ∥AC ,∴∠P =∠CAB ,∴∠MOP =∠B , ...................... (6分)故MO ∥BC . ...................... (8分)17. (1)解:猜想:n ×n n +1=n -n n +1. ...................... (3分) (2)证明:右边=n (n +1)-n n +1=n 2n +1=左边, 即n ×n n +1=n -n n +1. ...................... (8分) 18. 解:(1)变换后的图形如解图所示; ...................... (4分)第18题解图(2)设坐标纸中方格边长为单位1.则P (x ,y )――→以O 为位似中心放大为原来的2倍(2x ,2y )――→沿y 轴翻折(-2x ,2y )――→向右平移4个单位(-2x +4,2y )――→向上平移5个单位(-2x +4,2y +5). ...................... (8分)说明:如果以其他点为位似中心进行变换,或两次平移合并,或未设单位长,或(2)中直接写出各项变换对应点的坐标,只要正确就相应给分.19. 解:(1)菱形图案水平方向的对角线长为: 103×cos30°×2=30 cm.按题意,L =30+26×(231-1)=6010 cm. ...................... (5分)(2)当d =20 cm 时,设需x 个菱形图案,则有:30+20×(x -1)=6010. ...............(8分)解得x =300,即需300个这样的菱形图案. ...................... (10分)20.解:(1)拼成的矩形的简图如解图所示:第20题解图说明:其他正确拼法可相应得分. ...................... (5分)(2)解法一:由拼图前后的面积相等得[(x +y )+y ]y =(x +y )2, ...................... (8分)因为y ≠0,整理得(x y )2+x y-1=0, 解得x y =5-12(x y =-5-12<0,舍去). ...................... (10分) 解法二:由拼成的矩形可知:x +y (x +y )+y =x y. ...................... (8分) 以下同解法一. ...................... (10分)21. 解:(1)第①组频率为1-96%=0.04.∴第②组频率为0.12-0.04=0.08,从而,总人数为12÷0.08=150人.又②③④组的频数之比为4∶17∶15,可算得第①~⑥组的人数分别为6、12、51、45、24、12. ...................... (6分)(2)第⑤、⑥两组的频率之和为0.16+0.08=0.24.由样本是随机抽取的,估计全年级有900×0.24=216人达到优秀. ...................... (9分)(3)x =100×6+110×12+120×51+130×45+140×24+150×12150=127(次). .... (12分) 22. 解:(1)△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM 等.(写出两对即可) ..............................(2分)以下证明△AMF ∽△BGM .由题知∠A =∠B =∠DME =α,而∠AFM =∠DME +∠E ,∠BMG =∠A +∠E ,∴∠AFM =∠BMG ,∴△AMF ∽△BGM . ...................... (6分)(2)当α=45°时,可得AC ⊥BC 且AC =BC ,∵M 为AB 中点,∴AM =BM =2 2. ...................... (7分)由△AMF ∽△BGM 得,AF ·BG =AM ·BM ,∴BG =83. ...................... (9分) 又AC =BC =42cos45°=4,∴CG =4-83=43,CF =4-3=1, ∴FG =(43)2+12=53. ...................... (12分) 23. 解:(1)题图①中的①表示批发量不少于20 kg 且不多于60 kg 的该种水果,可按5元/kg 批发;题图①中的②表示批发量高于60 kg 的该种水果,可按4元/kg 批发. ...................... (3分)(2)由题意得w =⎩⎪⎨⎪⎧5n (20≤n ≤60)4n (n >60),第23题解图图象如解图所示.由解图可知,资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果. ...................... (8分)(3)解法一:设当日零售价为x元,由题图②可得日最高销量n为零售价x之间的函数关系为:n=320-40x,当n>60时,x<6.5.由题意得,销售利润为y=(x-4)(320-40x)=40(x-4)(8-x)=40[-(x-6)2+4]. ...................... (12分)从而x=6时,y最大=160,此时n=80.即经销商应批发80 kg该种水果,日零售价定为6元/kg,当日可得最大利润160元. ...................... (14分)解法二:设日最高销量为x kg(x>60).则由题图②可得日零售价p满足x=320-40p.于是p=320-x40,销售利润y=x(320-x40-4)=140x(160-x)=-140(x-80)2+160. ...................... (12分)从而x=80时,y最大=160.此时,p=6,即经销商应批发80 kg 该种水果,日零售价定为6元/kg,当日可得最大利润160元. ...................... (14分)。

2009年山西省中考数学真题及答案(word带详细解析)

2009年山西省中考数学真题及答案(word带详细解析)

2009年山西省初中毕业学业考试试卷数学全品中考网全品中考网一、选择题(每小题2分,共20分) 1.比较大小:2-3-(填“>”、“=”或“<“).1.>【解析】本题是基础题,考查了实数大小的比较.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比较,右边的数总比左边的数大.2.山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为.×1010×1010元.本题主要考查科学记数法的表示,解决本题的关键是先把原数写成原始数据,然后再看数据的整数位数,指数比整数位数少一位.3.请你写出一个有一根为1的一元二次方程:.3.答案不唯一,如x 2=1等.【解析】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y-1)(y+2)0,后化为一般形式为y 2+y-2=0.4.4.3【解析】12-3=23-3=3.本题属于基础题,主要考查算数平方根的开方及平方根的运算.5.如图所示,A 、B 、C 、D 是圆上的点,17040A ∠=∠=°,°, 则C ∠=度.5.30【解析】∠1=∠A+∠B,∠B=30°,又∵∠C=∠B=30°.(同弧所对的圆周角相等)本题主要考查同弧所对的圆周角相等及三角形的外角的性质.有的同学会错误地应用同弧所对的圆周角等于圆心角的一半从而得到∠C=21∠1=35°. 6.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为吨.6.210【解析】4月份本单位用水量为:(7+8+8+7+6+6)÷6×30=210(吨).本题主要考查用样本估计总体的方法.还可以根据已知数据有6天的用水量,求出总和然后乘以5即可. 7.如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是. .连接A ′A 、B ′B 、C ′C 并延长可以得到ABCD 的对角线BD 相交于点O ,点E 是CD 的中点,ABD △的周16cm ,则DOE △的周长是. 【解析】本题主要考查平行四边形的性质及三角形中位线的性质的应用.根据平行四边形的对边相等和对角线互相平分可得,,E 点是CD 的中点,可得OE 是△DCB 的中位OE=21BC.从而得到结果 ABCD 1(第5题)A C DB E O (第8题)AB C 3 4 56 7 8 9 10 119.若反比例函数的表达式为3y x=,则当1x <-时,y 的取值范围是. 9.-3<y<0【解析】本题主要考查反比例函数图象的性质,此题中的K=3>0,所以在每个象限内y 随x 的减小而增大,但又无限接近x 轴,因此-3<y<0.同学们往往容易忽略无限接近x 轴,从而容易出现漏解.10.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为. 全品中考网全品中考网10.3n+2【解析】本题体现了地域特色,对同学们有教育意义并且具有探究性质.第一个图案为3个窗花+2个窗花,第二个图案为6个窗花+2个窗花,第三个图案为9个窗花+2个窗花,…从而可以探究第n 个图案所贴窗花数为(3n+2)个.二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每小题3分,共24分) 11.下列计算正确的是()全品中考网A .623a a a ÷=B .()122--=C .()236326x x x -=-· D .()0π31-=11.D 【解析】本题主要考查幂的运算性质.A 式为同底数幂相除,底数不变底数相减,因此错误;B 为一个数的负指数幂等于这个数的正指数幂的倒数,因此错误;C 同底数幂相乘,底数不变,指数相加,从而出错.因此选D. 12.反比例函数ky x=的图象经过点()23-,,那么k 的值是()A .32-B .23-C .6-D .6 12.C 【解析】本题考查反比例函数图象的性质,反比例函数经过的点一定满足此函数,因此代入即可得到.k=xy=(-2)×3=-6,因此选C. 13.不等式组21318x x --⎧⎨->≥的解集在数轴上可表示为()A .BC 13.D 【解析】本题考查一元一次不等式组的解集及在数轴上的表示方法.解决本题的关键是先解不等式组,然后再在数轴上表示.容易出错的地方是在数轴上表示时,≥或≤用实心圆点而>或<用空心圆圈表示解集,发生混淆. 14.解分式方程11222x x x-+=--,可知方程() A .解为2x =B .解为4x =C .解为3x =D .无解14.D 【解析】本题考查分式方程的解法.一定要注意去分母会出现增根要检验的环节,否则容易出错.x x x -=+--21221,可变形为21221--=+--x x x ,两边都乘以2-x ,得(1-x)+2(2-x )=-1,解之,得x=2.代入最简公分母2-x =0,因此原分式方程无解.因此选D.15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数(1) (2) (3) …… …… (第10题)是()全品中考网全品中考网A .5B .6C .7D .8 15.B 【解析】本题考查三视图的知识.由主视图与左视图可以在俯视图上标注数字为:,因此总个数为6个,因此选B.16.如图,AB 是O ⊙的直径,AD 是O ⊙的切线,点C 在O ⊙上,BC OD ∥,23AB OD ==,,则BC 的长为()A .23B .32C .D 16.A 【解析】本题属于一个小综合题,主要考查的知识点有相似三角形的性质及判定、圆周角定理的推论、切线的性质、平行线的性质.根据BC ∥OD ,可得∠B=∠AOD ,根据直径所对的圆周角为90度,切线垂直于经过切点的直径,可以得到∠C=∠OAD,从而得到△ABC ∽△OAD,可得BC:OA=AB:OD,从而得到BC=32. 17.如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为() A .2m n- B .m n -C .2mD .2n 全品中考网全品中考网17.A 【解析】本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决.设去掉的小正方形的边长为x ,则有(n+x )2=mn+x 2,解之得x=2nm -.因此选A. 18.如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂 直平分线DE 交BC 的延长线于点E ,则CE 的长为()A .32B .76C .256D .218.B 【解析】本题主要考查直角三角形性质、线段垂直平分线的性质及相似三角形性质的应用及方程的数学思想,由题意可得△ABC ∽△EDB,可得BC:BD=AB:(BC+CE),从而得到CE=67. 三、解答题(本题共76分) 19.(每小题4分,共12分)(1)计算:()()()2312x x x +---(2)化简:222242x x x x +---(3)解方程:2230x x --=19.(1)解决本题的关键是掌握整式乘法法则(2)本题主要考查分式运算的掌握.(3)主要考查主视图 左视图 俯视图(第15题) A B C(第16题) m nn n (2)(1) (第17题) AD BE(第18题)一元二次方程的解法方法多样.20.(本题6分)已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成. (1)填空:图1中阴影部分的面积是(结果保留π);(2)请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计 一个完整的花边图案(要求至少含有两种图形变换).全品中考网全品中考网20.解决本题的关键是弄清图中的扇形的半径与圆心.21.(本题8分)根据山西省统计信息网公布的数据,绘制了山西省2004~2008固定电话和移动电话年末用户条形统计图如下: (1)数是万户; (221.22.(本题84顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 全品中考网全品中考网22.本题主要考查概率知识.解决本题的关键是弄清题意,满200元可以摸两次,但摸出一个后不放回,概率在变化.23.(本题8分)有一水库大坝的横截面是梯形ABCD ,AD BC EF ∥,为水库的水面,点E 在DC 上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡AB 的长为12米,迎水坡上DE 的长为2米,135120BAD ADC ∠=∠=°,°,求水深.(精确到0.1 1.73==) 全品中考网全品中考网23.本题主要考查三角函数及解直角三角形的有关知识.24.(本题8分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y 甲(万元)与进货量x (吨)近似满足函数关系0.3y x =甲;乙种水果的销售利润y 乙(万元)与进货量x (吨)近似满足函数关系2y ax bx =+乙(其中0a a b ≠,,为常数),且进货量x 为1吨时,销售利润y 乙为(第20题图1)(第20题图2)(第23题)万户(第21题)1.4万元;进货量x 为2吨时,销售利润y 乙为2.6万元. (1)求y 乙(万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少? 全品中考网全品中考网24.解决本题的关键是从现实问题中抽象出函数模型,然后解答.特别要注意数量间的关系.25.(本题12分)在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;(2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由;(3)在(2)的情况下,求ED 的长.全品中考网全品中考网 25.本题主要考查旋转、全等三角形、特殊平行四边形、解直角三角形等知识.解决本题的关键是结合图形,大胆猜想.26.(本题14分)如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长; (3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △关于t 的函数关系式,并写出相应的t 的取值范围. 全品中考网全品中考网26.面积、三角形的相似等知识点.为零,各个击破.2009年山西省初中毕业学业考试试卷数学AD BE CF AD BECF(第25题图1) (第25题图2)(第26题)一、选择题(每小题2分,共20分)1.>2.107.39310⨯3.答案不唯一,如21x =4.30 6.2107.(9,0)8.89.30y -<<10.32n +二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每小题3分,共24分) 题号 11 12 13 14 15 16 17 18 答案DCDDBAAB三、解答题(本题共76分)19.(1)解:原式=()226932x x x x ++--+ ······················································ (2分) =226932x x x x ++-+- ·············································································· (3分) =97x +. ·································································································· (4分) (2)解:原式=()()()22222x x x x x +-+-- ···························································· (2分) =222x x x --- ··························································································· (3分) =1. ······································································································· (4分) (3)解:移项,得223x x -=,配方,得()214x -=, ········································· (2分) ∴12x -=±,∴1213x x =-=,. ····································································· (4分) (注:此题还可用公式法,分解因式法求解,请参照给分) 20.解:(1)π2-; ···················································································· (2分)(2)答案不唯一,以下提供三种图案.(注:21.(1)935.7,859.0; ··············································································· (4分) (2)解:①2004~2008移动电话年末用户逐年递增.②2008年末固定电话用户达803.0万户. ·························································· (8分)(注:答案不唯一,只要符合数据特征即可得分) 22.解:(1)10,50; ··················································································· (2分) (2)解:解法一(树状图): ··········································································································· (6分)从上图可以看出,共有12种可0 20 30 10 20 30 10 0 20 30 10 30 40 0 10 30 20 20 30 50 20 30 0 10 50 30 40 第一次 第二次 和 (第20题图2) ···························· (6分)能结果,其中大于或等于30元共有8种可能结果,因此P (不低于30元)=82123=.························································································· (8分) 解法二(列表法):第一次第二次10 20 30 0 1020 3010 10 3040 2020305030 30 40 50····································································································· (6分) (以下过程同“解法一”) ··································································· (8分)23.解:分别过A D 、作AM BC ⊥于M DG BC ⊥,于G .过E 作EH DG ⊥于H ,则四边形AMGD 为矩形.∴456030B DCG GDC ∠=∠=∠=°,°,°.在Rt ABM △中,sin 12AM ABB ===· ∴DG = ························································································· (3分)在Rt DHE △中,cos 2DH DEEDH =∠==· ··································· (6分) ∴ 1.41 1.73HG DG DH =-=⨯-6≈6.7. ···································· (7分) 答:水深约为6.7米. ·············································································· (8分) (其它解法可参照给分) 24.解:(1)由题意,得: 1.442 2.6a b a b +=⎧⎨+=⎩,.解得0.11.5a b =-⎧⎨=⎩,.····································· (2分)∴20.1 1.5y x x =-+乙. ···················································································· (3分)(2)()()20.3100.1 1.5W y y t t t =+=-+-+乙甲.∴20.1 1.23W t t =-++. ········································································ (5分) ()20.16 6.6W t =--+.∴6t =时,W 有最大值为6.6. ································ (7分) ∴1064-=(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元. ······························································· (8分)25.解:(1)1EA FC =. ················································································· (1分)证明:(证法一)AB BC A C =∴∠=∠,.(第23题)AD BE CF由旋转可知,111AB BC A C ABE C BF =∠=∠∠=∠,,,∴ABE C BF 1△≌△. ················································ (3分) ∴BE BF =,又1BA BC =,∴1BA BE BC BF -=-.即1EA FC =. ···························· (4分)(证法二)AB BC A C =∴∠=∠,.由旋转可知,11A C A B CB ∠=∠,=,而1EBC FBA ∠=∠,∴1A BF CBE △≌△. ················································ (3分) ∴BE BF =,∴1BA BE BC BF -=-,即1EA FC =. ··························································· (4分)(2)四边形1BC DA 是菱形. ··········································································· (5分)证明:111130A ABA AC AB ∠=∠=∴°,∥,同理AC BC 1∥. ∴四边形1BC DA 是平行四边形. ·············································· (7分) 又1AB BC =,∴四边形1BC DA 是菱形.···································· (8分)(3)(解法一)过点E 作EG AB ⊥于点G ,则1AG BG ==. 在Rt AEG △中,1cos cos30AG AE A ===°……(10分) 由(2)知四边形1BC DA 是菱形, ∴2AD AB ==,∴2ED AD AE =-=-············································· (12分) (解法二)12030ABC ABE ∠=∠=°,°,∴90EBC ∠=°.在Rt EBC △中,tan 2tan 30BE BC C ==⨯=·°112EA BA BE ∴=-= ············································· (10分)∴12ED EA == ···················································· (12分) (其它解法可参照给分)全品中考网26.(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=. ··································································· (2分)由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ···························· (3分) ∴111263622ABC C S AB y ==⨯⨯=△·.··············································· (4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,. ······················································································ (5分) 又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,.全 ·································································· (6分) ∴8448OE EF =-==,.····························································· (7分)(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边).过C 作CM AB ⊥于M ,t ).即2333S t t =-++. ······················································ (10分) 全品中考网(图3) (图1) (图2)生于忧患,死于安乐《孟子•告子》舜发于畎亩之中,傅说举于版筑之间,胶鬲举于鱼盐之中,管夷吾举于士,孙叔敖举于海,百里奚举于市。

2009年江苏省无锡市中考数学试卷(含参考答案)

2009年江苏省无锡市中考数学试卷(含参考答案)

2009年无锡市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是( )A .0a b +>B .0ab >C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差(第3题) (第5题)图②图①圆柱 圆锥 球 正方体7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数 D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.计算2(3)-= .10x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2. 12.反比例函数1y x=-的图象在第 象限. 13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= .15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),AC BDF E (第7题)则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= . 17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18.如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--++(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.各类学生人数比例统计图 A D E BC F (第16题)(第17题)(第18题)(第15题)21.(本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?22.(本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程. 23.(本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由; (2)当AB DC =时,求证:ABCD 是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上.(1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.ADCFB25.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).1.73,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.ED C F BA图③ED C ABF G ' D 'ADEC B α图④图⑤AC D 图①AC D图②FEA27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.2009年无锡市中考数学试卷参考答案及评分建议一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.9 10.1x ≥ 11.51.02610⨯ 12.二、四 13.27800(1)9100x +=14.1 15.< 16.25 17.2π 18.16三、解答题(本大题共有10小题,共96分.解答必须写出必要的文字说明、推理步骤或证明过程) 19.解:(1)原式2123=-+=. ······························································ (4分)(2)原式2221(1)(1)(1)1(1)1a a a a a a a a a a a --+-+=÷=⨯=--. ············· (8分) 20.解:(1)280,48,180. ····································································· (3分)(2)抽取的学生中,成绩不合格的人数共有(804848)176++=,所以成绩合格以上的人数为20001761824-=, 估计该市成绩合格以上的人数为182460000547202000⨯=. 答:估计该市成绩合格以上的人数约为54720人. ·········································· (8分) 21.解:用树状图分析如下:P (1个男婴,2个女婴)38=.答:出现1个男婴,2个女婴的概率是38. ···················································· (8分) 22.解:本题答案不惟一,下列解法供参考.解法一 问题:普通公路和高速公路各为多少千米? (3分)(男男男) (男男女) 男(男女男) (男女女) 女(女男男) (女男女) 男(女女男) (女女女)女男女开始第一个 第二个 第三个所有结果解:设普通公路长为x km ,高度公路长为y km .根据题意,得2 2.2.60100x y x y =⎧⎪⎨+=⎪⎩,解得60120x y =⎧⎨=⎩,. ··············································· (7分) 答:普通公路长为60km ,高速公路长为120km . ············································ (8分)解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时? ·················· (3分) 解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h . 根据题意,得 2.2602100.x y x y +=⎧⎨⨯=⎩,解得11.2.x y =⎧⎨=⎩,················································ (7分)答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h . ····························· (8分) 23.(1)解:13AD BC =. ······································································· (1分) 理由如下:AD BC AB DE AF DC ∥,∥,∥,∴四边形ABED 和四边形AFCD 都是平行四边形. AD BE AD FC ==,.又四边形AEFD 是平行四边形,AD EF ∴=. AD BE EF FC ∴===.13AD BC ∴=. ······················································································ (5分) (2)证明:四边形ABED 和四边形AFCD 都是平行四边形, DE AB AF DC ∴==,. AB DC DE AF =∴=,.又四边形AEFD 是平行四边形,∴四边形AEFD 是矩形. ························· (10分)24.解:(1)2221(1)2y x x x =--=--,所以顶点A 的坐标为(12)-,.··············································(3分) 因为二次函数2y ax bx =+的图象经过原点,且它的顶点在二次函数221y x x =--图象的对称轴l 上,所以点C 和点O 关于直线l 对称,所以点C 的坐标为(20),. ······(6分) (2)因为四边形AOBC 是菱形,所以点B 和点A 关于直线OC 对称,因此,点B 的坐标为(12),. 因为二次函数2y ax bx =+的图象经过点B (12),,(20)C ,,所以2420.a b a b +=-⎧⎨+=⎩, 解得24a b =-⎧⎨=⎩,.所以二次函数2y ax bx =+的关系式为224y x x =-+. ································· (10分)25.解:(1)设AB 与l 交于点O .在Rt AOD △中,6024cos60ADOAD AD OA ∠====°,,°.又106AB OB AB OA =∴=-=,.在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==°,°(km ). ∴观测点B 到航线l 的距离为3km . ····························································· (4分) (2)在Rt AOD △中,tan 60OD AD ==°. 在Rt BOE △中,tan 60OE BE ==°DE OD OE ∴=+=.在Rt CBE △中,763tan 3tan76CBE BE CE BE CBE ∠==∴=∠=°,,°.3tan 76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CDCD ∴==⨯≈(km/h ). 答:该轮船航行的速度约为40.6km/h . ······················································· (10分) 26.解:(1)同意.如图,设AD 与EF 交于点G .由折叠知,AD 平分BAC ∠,所以BAD CAD ∠=∠. 又由折叠知,90AGE DGE ∠=∠=°, 所以90AGE AGF ∠=∠=°,所以AEF AFE ∠=∠.所以AE AF =,即AEF △为等腰三角形. ········································ (5分)(2)由折叠知,四边形ABFE 是正方形,45AEB ∠=°,所以135BED ∠=°.又由折叠知,BEG DEG ∠=∠,所以67.5DEG ∠=°. 从而9067.522.5α∠=-=°°°. ······························································ (10分) 27.解法一:(1)根据题意,当销售利润为4万元,销售量为4(54)4÷-=(万升). 答:销售量x 为4万升时销售利润为4万元. ················································ (3分) (2)点A 的坐标为(44),,从13日到15日利润为5.54 1.5-=(万元), 所以销售量为1.5(5.54)1÷-=(万升),所以点B 的坐标为(55.5),. 设线段AB 所对应的函数关系式为y kx b =+,则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩,∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ··························· (6分)从15日到31日销售5万升,利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=(万元).A CD F EG∴本月销售该油品的利润为5.5 5.511+=(万元),所以点C 的坐标为(1011),.设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.m n m n =+⎧⎨=+⎩,解得 1.10.m n =⎧⎨=⎩,所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. ···························· (9分) (3)线段AB . ···················································································· (12分) 解法二:(1)根据题意,线段OA 所对应的函数关系式为(54)y x =-,即(04)y x x =≤≤.当4y =时,4x =.答:销售量为4万升时,销售利润为4万元. ················································ (3分) (2)根据题意,线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-,即 1.52(45)y x x =-≤≤. ····································································· (6分) 把 5.5y =代入 1.52y x =-,得5x =,所以点B 的坐标为(55.5),. 截止到15日进油时的库存量为651-=(万升).当销售量大于5万升时,即线段BC 所对应的销售关系中, 每升油的成本价144 4.54.45⨯+⨯==(元). 所以,线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤. ······························· (9分) (3)线段AB . ···················································································· (12分) 28.解:(1)(50)C t -,,34355P t t ⎛⎫- ⎪⎝⎭,. ·················································· (2分) (2)①当C ⊙的圆心C 由点()50M ,向左运动,使点A 到点D 并随C ⊙继续向左运动时,有3532t -≤,即43t ≥. 当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由CDF EDO ∠=∠,得CDF EDO △∽△,则3(5)45CF t --=.解得485t CF -=. 由12CF ≤t ,即48152t t -≤,解得163t ≤. ∴当C ⊙与射线DE 有公共点时,t 的取值范围为41633t ≤≤. ······················· (5分)②当PA AB =时,过P 作PQ x ⊥轴,垂足为Q ,有222PA PQ AQ =+221633532525t t t ⎛⎫=+--+ ⎪⎝⎭. 2229184205t t t ∴-+=,即2972800t t -+=. 解得1242033t t ==,. ······························· (7分) 当PA PB =时,有PC AB ⊥,3535t t ∴-=-.解得35t =. ····················· (9分) 当PB AB =时,有 222221613532525PB PQ BQ t t t ⎛⎫=+=+--+ ⎪⎝⎭. 221324205t t t ∴++=,即278800t t --=. 解得452047t t ==-,(不合题意,舍去). ················································ (11分) ∴当PAB △是等腰三角形时,43t =,或4t =,或5t =,或203t =. ············· (12分)。

2009年河北省中考数学试卷及答案

2009年河北省中考数学试卷及答案
体,得到一个如图5所示的零件,则这个零件的表面积是()
A.20B.22
C.24D.26
11.如图6所示的计算程序中,y与x之间的函数关系所对应的图
象应为()
12.古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、9、16 …这样的数称为“正方形数”.
从图7中可以发现,任何一个大于1
2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.
题号


19
20
21
22
23
24
25
26
得分
得分
评卷人
二、填空题(本大题共6个小题,每小题3分,共18分.把答案
写在题中横线上)
13.比较大小:-6-8.(填“<”、“=”或“>”)
14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约
得分
评卷人
19.(本小题满分8分)
已知a= 2, ,求 ÷ 的值.
得分
评卷人
20.(本小题满分8分)
图10是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,
OE⊥CD于点E.已测得sin∠DOE= .
(1)求半径OD;
(2)根据需要,水面要以每小时0.5 m的速度下降,
∴ED= =12.
在Rt△DOE中,
∵sin∠DOE = = ,
∴OD=13(m).
(2)OE=
= .
∴将水排干需:
5÷0.5=10(小时).
21.解:(1)30%;
(2)如图1;
(3) ;
(4)由于月销量的平均水平相同,从折线的走势看,A品牌的月销量呈下降趋势,而B品牌的月销量呈上升趋势.

2009年厦门中考数学试卷(含答案)

2009年厦门中考数学试卷(含答案)

页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。

——培根B主视图 左视图)2009年中考厦门市数学试题一、选择题(本大题共7小题,每小题3分,共21分)1.(09/3分)-2是( )A .负有理数B .正有理数C .自然数D .无理数2.(09/3分)下列计算正确的是( )A .3+3= 6B .3-3=0C .3·3=9D .(-3)2=-33.(09/3分)某种彩票的中奖机会是1%,下列说法正确的是( )A .买1张这种彩票一定不会中奖B .买100张这种彩票一定会中奖C .买1张这种彩票可能会中奖D .买100张这种彩票一定有99张彩票不会中奖4.(09/3分)下列长度的各组线段能组成一个三角形的是( )A .4cm ,6cm ,11cmB .4cm ,5cm ,1cmC .3cm ,4cm ,5cmD .2cm ,3cm ,6cm5.(09/3分)下列多边形中,能够铺满地面的是( )A .正八边形 B .正七边形 C .正五边形 D 6.(09/3分)如图,AB 、BC 、CA 是⊙O 的三条弦,∠OBC =50º,则∠A .25º B .40º C .80º D .100º7.(09/3分)药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( )A . 8 3≤y ≤ 64 11B . 64 11≤y ≤8C . 8 3≤y ≤8 D .8≤y ≤16二、填空题(本大题共10小题,每小题4分,共40分)8.(09/4分)|-2|= .9.(09/4分)已知∠A =70º,则∠A 的余角是 度.10.(09/4分)某班7名学生的考试成绩(单位:分)如下:52,76,80,78,71,92,68.则这组数据的极差是 分.11.(09/412.(09/4分)“a 的2倍与b 的和”用代数式表示为 .13.(09/4分)方程组⎩⎨⎧x -y =1x +y =3的解是 . 14.(09/4分)若点O 为□ABCD 的对角线AC 与BD 交点,且AO +BO =11cm ,则AC +BD = cm . 15.(09/4分)如图,在△ABC 中,∠C =90º,∠ABC 的平分线BD 交AC 于点D .若BD =10cm ,BC =8cm ,则点D 到直线AB 的距离是 cm . 16.(09/4分)已知ab =2.①若-3≤b ≤-1,则a 的取值范围是 ;②若b >0,且a 2+b 2=5,则a +b = .17.(09/4分)在平面直角坐标系中,已知点O (0,0)、A (1,n )、B (2,0),其中n >0,△OAB 是等边三角形.点P 是线段OB 的中点,将△OAB 绕点O 逆时针旋转30º,记点P 的对应点为点Q ,则n = ,点Q 的坐标是 .A B F E D C三、解答题(本大题共9小题,共89分)18.(本题满分18分)(09/6分)(1)计算:(-1)2÷ 1 2+(7-3)× 3 4-( 1 2)0; (09/6分)(2)计算:[(2x -y )(2x +y )+y (y -6x )]÷2x ;(09/6分)(3)解方程:x 2-6x +1=0.19.(09/8分)掷两枚普通的正六面体骰子,所得点数之和的所有可能如下表所示:(1)求出点数之和是11的概率;(2)你认为最有可能出现的点数之和是多少?请说明理由.20.(09/8分)已知:在△ABC 中,AB =AC .(1)设△ABC 的周长为7,BC =y ,AB =x (2≤x ≤3)写出y 关于x 画出此函数的图象;(2)如图,D 是线段BC 上一点,连接AD .若∠B =∠BAD ,求证:△ABC ∽△DBA .21.(09/8分)如图,已知梯形ABCD ,AD ∥BC ,AF 交CD 于E ,交BC 的延长线于F . (1)若∠B +∠DCF =180º,求证:四边形ABCD 是等腰梯形;(2)若E 是线段CD 的中点,且CF ∶CB =1∶3,AD =6,求梯形ABCD 中位线的长.22.(09/8分)供电局的电力维修工甲、乙两人要到45千米远的A 地进行电力抢修.甲骑摩托车先行,t (t≥0)小时后乙开抢修车载着所需材料出发.(1)若t = 3 8(小时),抢修车的速度是摩托车的1.5倍,且甲、乙两人同时到达,求摩托车的速度; (2)若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到则t 的最大值是多少?23.(09/9分)已知四边形ABCD ,AD ∥BC ,连接BD .(1)小明说:“若添加条件BD 2=BC 2+CD 2,则四边形ABCD 是矩形.”你认为小明的说法是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.(2)若BD 平分∠ABC ,∠DBC =∠BDC ,tan ∠DBC =1,求证:四边形ABCD 是正方形.24.(09厦门/9分)如图,已知AB 是⊙O 的直径,点C P 是△OAC 的重心,且OP = 2 3,∠A =30(1)求劣弧AC ⌒的长;(2)若∠ABD =120º,BD =1,求证:CD 是⊙O25.(09/9分)我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交.如图,在平面直角坐标系中,正方形OABC 的顶点为O (0,0)、A (1,0)、B (1,1)、C (0,1).(1)判断直线y = 1 3x + 5 6与正方形OABC 是否相交,并说明理由; (2)设d 是点O 到直线y =-3x +b 的距离,若直线y =-3x +b 与正方形OABC 相交,求d 的取值范围.26.(09/9分)已知二次函数y =x 2-x +c .(1)若点A (-1,a )、B (2,2n -1)在二次函数y =x 2-x +c 的图象上,求此二次函数的最小值;(2)若点D (x 1,y 1)、E (x 2,y 2)、P (m ,n )(m >n )在二次函数y =x 2-x +c 的图象上,且D 、E 两点关于坐标原点成中心对称,连接OP .当22≤OP ≤2+2时,试判断直线DE 与抛物线y =x 2-x +c + 3 8的交点个数,并说明理由.厦门市2009年初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;3.解答题评分时,给分或扣分均以1分为基本单位.一、选择题(本大题有7小题,每小题3分,共21分)40分)8. 2. 9. 20度. 10. 40分. 11.长方体(四棱柱). 12. 2a +b . 13.⎩⎨⎧x =2,y =1.14. 22厘米. 15. 6厘米. 16. (1) -2≤a ≤-23 ;(2) 3 . 17. 3;(32,12). 三、解答题(本大题有9小题,共89分)18. (本题满分18分)(1)解:(-1)2÷12+(7-3)×34-(12)0 =1×2+4×34-1 ……4分 =2+3-1 ……5分=4. ……6分(2)解:[(2x -y )( 2x +y )+y (y -6x )]÷2x=(4x 2-y 2+y 2-6xy )÷2x ……10分=(4x 2-6xy )÷2x ……11分=2x -3y . ……12分(3)解法1:x 2-6x +1=0∵ b 2-4ac =(-6)2-4=32 ……13分∴ x =-b ±b 2-4ac 2a……14分 =6±322……15分 =3±2 2. ……16分即x 1=3+22,x 2=3-2 2. ……18分解法2:x 2-6x +1=0(x -3)2-8=0 ……14分(x -3)2 =8 ……15分x -3=±2 2 ……16分即x 1=3+22,x 2=3-2 2. ……18分19.(本题满分8分)(1)解:P(点数之和是11)=236=118. ……4分 (2)解:最有可能出现的点数之和是7. ……6分 ∵ 在所有可能出现的点数之和中,7是众数. ……8分或: P(点数之和是7)=16, ……7分 是所有可能出现的点数之和的概率的最大值. ……8分20.(本题满分8分)(1)解:y =7-2x (2≤x ≤3) ……1分画直角坐标系 ……2分 画线段 ……4分(2)证明:∵ AB =AC ,∴ ∠B =∠C . ……5分∵ ∠B =∠BAD ,∴ ∠BAD =∠C . ……6分又∵ ∠B =∠B , ……7分∴ △BAC ∽△BDA . ……8分21.(本题满分8分)(1)∵ ∠DCB +∠DCF =180°, ……1分 又∵ ∠B +∠DCF =180°,∴ ∠B =∠DCB . ……2分∵ 四边形ABCD 是梯形,∴ 四边形ABCD 是等腰梯形. ……3分(2)∵ AD ∥BC ,∴ ∠DAE =∠F . ……4分∵ E 是线段CD 的中点,∴ DE =CE .又∵ ∠DEA =∠FEC ,∴ △ADE ≌△FCE . ……5分 ∴ AD =CF . ……6分∵ CF ∶BC =1∶3,∴ AD ∶BC =1∶3.∵ AD =6,∴ BC =18. ……7分 ∴ 梯形ABCD 的中位线是 (18+6)÷2=12. ……8分22.(本题满分8分)(1)解:设摩托车的速度是x 千米/时,则抢修车的速度是1.5x 千米/时.由题意得 45x -451.5x =38, ……2分 解得x =40. ……3分经检验,x =40千米/时是原方程的解且符合题意.答:摩托车的速度为40千米/时. ……4分(2)解:法1:由题意得t +4560≤4545, ……6分 解得t ≤14. ∴ 0≤t ≤14. ……7分 F E DC B AD C A法2:当甲、乙两人同时到达时,由题意得t +4560=4545, ……5分 解得t =14. ……6分 ∵ 乙不能比甲晚到,∴ t ≤14. ……7分 ∴ t 最大值是 14(时);或:答:乙最多只能比甲迟 14(时)出发. ……8分 23.(本题满分9分)(1)解: 不正确. ……1分如图作(直角)梯形ABCD , ……2分使得AD ∥BC ,∠C =90°. 连结BD ,则有BD 2=BC 2+CD 2. ……3分而四边形ABCD 是直角梯形不是矩形. ……4分(2)证明:如图,∵ tan ∠DBC =1,∴ ∠DBC =45°. ……5分∵ ∠DBC =∠BDC ,∴ ∠BDC =45°.且BC =DC . ……6分 法1: ∵ BD 平分∠ABC ,∴ ∠ABD =45°,∴ ∠ABD =∠BDC .∴ AB ∥DC .∴ 四边形ABCD 是平行四边形. ……7分又∵ ∠ABC =45°+45°=90°,∴ 四边形ABCD 是矩形. ……8分∵ BC =DC ,∴ 四边形ABCD 是正方形. ……9分法2:∵ BD 平分∠ABC , ∠BDC =45°,∴∠ABC =90°.∵ ∠DBC =∠BDC =45°,∴∠BCD =90°.∵ AD ∥BC ,∴ ∠ADC =90°. ……7分 ∴ 四边形ABCD 是矩形. ……8分又∵ BC =DC∴ 四边形ABCD 是正方形. ……9分法3:∵ BD 平分∠ABC ,∴ ∠ABD =45°. ∴ ∠BDC =∠ABD .∵ AD ∥BC ,∴ ∠ADB =∠DBC .∵ BD =BD ,∴ △ADB ≌△CBD .∴ AD =BC =DC =AB . ……7分 ∴ 四边形ABCD 是菱形. ……8分又∵∠ABC =45°+45°=90°,∴ 四边形ABCD 是正方形. ……9分24.(本题满分9分)(1)解:延长OP 交AC D CB A DC B A∵ P 是△OAC 的重心,OP =23, ∴ OE =1, ……1分且 E 是AC 的中点.∵ OA =OC ,∴ OE ⊥AC .在Rt△OAE 中,∵ ∠A =30°,OE =1,∴ OA =2. ……2分∴ ∠AOE =60°.∴ ∠AOC =120°. ……3分∴ ︵AC =43π. ……4分 (2)证明:连结BC .∵ E 、O 分别是线段AC 、AB 的中点,∴ BC ∥OE ,且BC =2OE =2=OB =OC .∴ △OBC 是等边三角形.……5分 法1:∴ ∠OBC =60°.∵ ∠OBD =120°,∴ ∠CBD =60°=∠AOE .……6分 ∵ BD =1=OE ,BC =OA ,∴ △OAE ≌△BCD .……7分 ∴ ∠BCD =30°.∵ ∠OCB =60°,∴ ∠OCD =90°.……8分 ∴ CD 是⊙O 的切线.……9分 法2:过B 作BF ∥DC 交CO 于F .∵ ∠BOC =60°,∠ABD =120°,∴ OC ∥BD .……6分 ∴ 四边形BDCF 是平行四边形.……7分 ∴ CF =BD =1.∵ OC =2,∴ F 是OC 的中点.∴ BF ⊥OC .……8分 ∴ CD ⊥OC .∴ CD 是⊙O 的切线.……9分 25.(本题满分10分)(1)解:相交.……2分 ∵ 直线y =13x +56与线段OC 交于点(0,56)同时……3分 直线y =13x +56与线段CB 交于点(12,1),……4分 ∴ 直线y =13x +56与正方形OABC 相交.(2)解:当直线y =-3x +b 经过点B 时,即有 1=-3+b ,∴ b =3+1.即 y =-3x +1+ 3.……5分 记直线y =-3x +1+3与x 、y 轴的交点分别为D、E .则D (3+33,0),E (0,1+3). ……6分 法1:在Rt△BAD 中,tan ∠BDA =BA AD =133=3, ∴ ∠EDO =60°, ∠OED =30°.过O 作OF 1⊥DE ,垂足为F 1,则OF 1=d 1. ……7分在Rt△OF 1E 中,∵ ∠OED =30°,∴ d 1=3+12. ……8分 法2:∴ DE =23(3+3). 过O 作OF 1⊥DE ,垂足为F 1,则OF 1=d 1. ……7分∴ d 1=3+33×(1+3)÷23(3+3) =3+12. ……8分 ∵ 直线y =-3x +b 与直线y =-3x +1+3平行. 法1:当直线y =-3x +b 与正方形OABC 相交时,一定与线段OB 相交,且交点不与 点O 、 B 重合.故直线y =-3x +b 也一定与线段OF 1相交,记交点为F ,则 F 不与 点O 、 F 1重合,且OF =d . ……9分 ∴ 当直线y =-3x +b 与正方形相交时,有 0<d <3+12. ……10分 法2:当直线y =-3x +b 与直线y =x (x >0)相交时,有 x =-3x +b ,即x =b1+3. ① 当0<b <1+3时,0<x <1, 0<y <1.此时直线y =-3x +b 与线段OB 相交,且交点不与点O 、 B 重合.② 当b >1+3时,x >1,此时直线y =-3x +b 与线段OB 不相交.而当b ≤0时,直线y =-3x +b 不经过第一象限,即与正方形OABC 不相交.∴ 当0<b <1+3时,直线y =-3x +b 与正方形OABC 相交. ……9分 此时有0<d <3+12. ……10分 26.(本题满分11分) (1)解:法1:由题意得⎩⎨⎧n =2+c ,2n -1=2+c .……1分 解得⎩⎨⎧n =1,c =-1.……2分 法2:∵ 抛物线y =x 2-x +c 的对称轴是x =12, 且 12-(-1) =2-12,∴ A 、B 两点关于对称轴对称.∴ n =2n -1 ……1分 ∴ n =1,c =-1. ……2分∴ 有 y =x 2-x -1 ……3分=(x -12)2-54. ∴ 二次函数y =x 2-x -1的最小值是-54. ……4分 (2)解:∵ 点P (m ,m )(m >0),∴ PO =2m .∴ 22≤2m ≤2+2.∴ 2≤m ≤1+ 2. ……5分法1: ∵ 点P (m ,m )(m >0)在二次函数y =x 2-x +c 的图象上,∴ m =m 2-m +c ,即c =-m 2+2m .∵ 开口向下,且对称轴m =1,∴ 当2≤m ≤1+ 2 时,有 -1≤c ≤0. ……6分法2:∵ 2≤m ≤1+2,∴ 1≤m -1≤ 2.∴ 1≤(m -1)2≤2.∵ 点P (m ,m )(m >0)在二次函数y =x 2-x +c 的图象上,∴ m =m 2-m +c ,即1-c =(m -1)2.∴ 1≤1-c ≤2.∴ -1≤c ≤0. ……6分∵ 点D 、E 关于原点成中心对称,法1: ∴ x 2=-x 1,y 2=-y 1.∴ ⎩⎨⎧y 1=x 12-x 1+c ,-y 1=x 12+x 1+c .∴ 2y 1=-2x 1, y 1=-x 1.设直线DE :y =kx .有 -x 1=kx 1.由题意,存在x 1≠x 2.∴ 存在x 1,使x 1≠0. ……7分∴ k =-1.∴ 直线DE : y =-x . ……8分法2:设直线DE :y =kx .则根据题意有 kx =x 2-x +c ,即x 2-(k +1) x +c =0.∵ -1≤c ≤0,∴ (k +1)2-4c ≥0.∴ 方程x 2-(k +1) x +c =0有实数根. ……7分∵ x 1+x 2=0,∴ k +1=0.∴ k =-1.∴ 直线DE : y =-x . ……8分若 ⎩⎪⎨⎪⎧y =-x ,y =x 2-x +c +38.则有 x 2+c +38=0.即 x 2=-c -38. ① 当 -c -38=0时,即c =-38时,方程x 2=-c -38有相同的实数根, 即直线y =-x 与抛物线y =x 2-x +c +38有唯一交点. ……9分 ② 当 -c -38>0时,即c <-38时,即-1≤c <-38时, 方程x 2=-c -38有两个不同实数根, 即直线y =-x 与抛物线y =x 2-x +c +38有两个不同的交点. ……10分 ③ 当 -c -38<0时,即c >-38时,即-38<c ≤0时, 方程x 2=-c -38没有实数根, 即直线y =-x 与抛物线y =x 2-x +c +38没有交点. ……11分页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年来宾市初中毕业升学统一考试试题
数学
(考试时间:120分钟;满分:120分)
第Ⅰ卷
说明:
1.本试卷分第Ⅰ卷(填空题和选择题)和第Ⅱ卷(答卷,含解答题)两部分.第Ⅰ卷共2页,第Ⅱ卷共6页.考试结束后,将第Ⅰ卷和第Ⅱ卷一并收回,并将第Ⅱ卷按规定装订密封.
2.请考生将填空题和选择题的正确答案填写在第Ⅱ卷中规定的位置,否则不得分.
一、填空题:本大题共10小题,每小题3分,共30分.请将答案填写在第Ⅱ卷相应题号后
的横线上.
1.如果将收入500元记作500元,那么支出237元记作__________元.
2.已知AB 、CD 分别是梯形ABCD 的上、下底,且AB =8,CD =12,EF 是梯形的中位线,则
EF =__________.
3.分解因式:x 2-4=____________________.
4.化简:823+=__________.
5.二元一次方程组⎩⎨⎧=-=+2
332y x y x 的解是__________.
6.如果反比例函数的图象过点(2,-1),那么这个函数的关系式是__________.
7.用四舍五入法,并保留3个有效数字对129 551取近似数所得的结果是__________.
8.如图,已知AB ∥CD ,CE 平分∠ACD ,∠A =50°,
则∠ACE =__________°.
9.已知关于x 的方程x 2+mx +n =0的两个根分别是1和
-3,则m =__________. 10.请写出一个对任意实数都有意义.........
的分式.你所写的分式是_____________.
(第8题图)A C E D
B
二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一
项是正确的,请将正确答案前的字母填写在第Ⅱ卷相应题号下的空格中.
11.下列图形中,不是..
正方体表面展开图的是
(第11题图)D C B
A
12.如图,在⊙O 中,∠BOC =100°,则∠A 等于
A .100°
B .50°
C .40°
D .25°
13.已知一个多边形的内角和是900°,则这个多边形是
A .五边形
B .六边形
C .七边形
D .八边形
14.已知下列运算:①()4222
y x xy =-;②224x x x =÷;③()c b a c b a --=--; ④43722=-x x .其中正确的有
A .①②③④
B .①②③
C .①②④
D .①② 15.不等式组⎩⎨⎧≤->+0
603x x 的解集是
A .-3<x ≤6
B .3<x ≤6
C .-3<x <6
D .x >-3 16.若圆锥的底面周长是10π,侧面展开后所得的扇形的圆心角为90°,则该圆锥的侧面积

A .25π
B .50π
C .100π
D .200π
17.如图,正方形的四个顶点在直径为4的大圆圆周上,四条边与
小圆都相切,AB 、CD 过圆心O ,且AB ⊥CD ,则图中阴影部分
的面积是
A .4π
B .2π
C .π
D .2π 18.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前4位的顺序,后3位是3,6,8
三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是
A .121
B .61
C .41
D . 3
1 B (第17题图)
(第12题图)。

相关文档
最新文档