(整理)产纤维素酶菌种的筛选与优化.

合集下载

产纤维素酶细菌的筛选及培养

产纤维素酶细菌的筛选及培养

产纤维素酶细菌的筛选及培养一、筛选步骤1、菌种的采集采集山上距湿润的表层10cm处的土壤样本40g左右,用研钵研成粉末称取1g样本加入灭菌的250mL锥形瓶中,加入99mL无菌水摇匀静置。

2、菌种初筛(1)按照配方配制200mL CMC培养基,取1 X 250mL空锥形瓶和6 X 15mL试管,塞上棉塞并用报纸、棉线包扎,用报纸、棉线将试管包扎成一捆;取12套培养皿码齐包扎。

将上述器材与培养基、无菌水121℃高压蒸汽灭菌20min。

(2)于无菌台上倒9个CMC培养基备用。

(3)另取6支15mL经灭菌的试管,用移液枪吸取土壤溶液(上清液)1.000mL加入1号试管,加无菌水9.000mL。

混匀后吸取1.000mL 加入2号试管,重复上述操作,进行6次梯度稀释。

(4)待CMC培养基冷却后,在超净工作台分别吸取104、105、106倍稀释液0.100mL于CMC培养基上稀释涂布,每种稀释液涂布三份。

(5)将上述培养基置于37℃培养箱中培养24小时,标记菌落并记录各菌落形态(菌落高度、质地、颜色、气味、着生状态、边缘及表面纹理等)。

(6)配制200mL刚果红家别培养基,与三套培养皿一起121℃灭菌20min。

(7)在无菌操作台上倒3个鉴别培养基备用。

(8)将各菌落用牙签接种到冷却了的刚果红鉴别培养基上,37℃培养24h,挑选5株透明圈直径与菌落直径比最大的菌株进行摇瓶复筛。

3、菌种复筛(1)配制500mL基础发酵培养基,分装到5只250mL的锥形瓶中,121℃高压蒸汽灭菌20min。

(2)将初筛得到的菌株用接种环接种于液体培养基上(2环),37℃、150r/min下培养2—3天,转入4℃冰箱保藏。

二、培养方法1清洗实验器具2灭菌3配培养基(纤维素作唯一能量源的培养基)4倒平板 +选择培养原菌(可能会用摇床)5稀释菌样6涂布平板或平板划线7放入恒温箱(调制均适宜的温度)12-24h ,之后就可以收获细菌了8观察记录(数量、分布等)三、培养基种类及其组成1、初筛CMC培养基:CMC 5g、蛋白胨1 g、FeSO4·7H2O 0.005 g、NaCl 0.25g、琼脂粉10g 于1000mL锥形瓶中加蒸馏水至500mL、调节pH 7.2~7.6,加棉塞121℃灭菌20min。

产纤维素酶菌种的筛选与优化

产纤维素酶菌种的筛选与优化

产纤维素酶菌种的筛选与优化一、菌种筛选的原理与方法菌种筛选的原理是通过筛选产纤维素酶活性高、产量大的菌种。

常用的菌种筛选方法有以下几种:1.传统菌种筛选:分离环境中的纤维素降解菌株,通过纤维素酶活性测定筛选产纤维素酶能力较强的菌株,再通过多次温育和活性测定,逐步筛选出高活性的菌株。

2.显性菌种筛选:利用纤维素酶结构上保守的区域设计引物,在环境DNA中扩增出纤维素酶基因片段,使用这些基因片段进行克隆构建,然后在宿主中进行表达,通过纤维素酶活性测定筛选产纤维素酶能力较强的菌株。

3.基因工程菌种筛选:利用已知纤维素酶的基因进行基因工程,通过载体导入宿主细胞中,通过外源表达基因,从而获得产纤维素酶菌种。

二、菌种优化的原理与方法菌种优化的原理是通过改变菌株基因组或环境条件,提高纤维素酶产量和活力。

常用的菌种优化方法有以下几种:1.自然进化优化:通过长期培养,逐渐挑选出产酶能力强、极端环境适应能力强的突变菌株。

2.诱变优化:利用物理、化学或基因工程等方法对菌株进行诱变,通过筛选获得产纤维素酶能力强、菌株稳定的变种。

3.基因工程优化:利用已知纤维素酶的基因进行基因编程,通过基因工程技术对菌株基因组进行改造,以提高纤维素酶的产量和活力。

三、未来的研究方向1.菌种筛选方法的改进与创新:应综合运用传统筛选、显性筛选和基因工程筛选等方法,发展新的高效、快速的菌种筛选方法。

2.菌种优化技术的优化与提高产量、活性:要通过生理、代谢工程的方法改造纤维素酶产生菌,提高纤维素酶的产量和活力。

3.开发新型纤维素酶菌株:从不同环境中分离筛选出产酶能力强的菌株,进一步发现和研究产纤维素酶的新菌株。

4.提高纤维素酶产量与废弃物转化率的研究:将纤维素酶应用于废弃物转化过程,提高纤维素酶产量和转化率。

综上所述,产纤维素酶菌种筛选与优化的研究是促进纤维素酶应用的关键。

通过不断改进筛选和优化方法,进一步开发新的菌种,提高纤维素酶的产量和活力,将对纤维素酶的应用产生积极的推动作用。

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展纤维素是由纤维素素和半纤维素组成的天然高分子化合物,在工业和生活中具有广泛的应用。

纤维素酶是一种专门分解纤维素的酶,在纤维素利用和生物质转化等领域有着广泛的应用前景。

本文综述了产纤维素酶菌及其筛选改良方法的研究进展。

一、产纤维素酶菌的筛选和鉴定目前,已有许多研究对产纤维素酶菌进行筛选和鉴定,其中常用的方法包括传统的分离培养方法、高通量筛选系统和基于基因组的筛选方法等。

1.传统的分离培养方法传统的分离培养方法通常包括从不同的环境样品中分离出细菌,并对其进行酶活性测定。

通过该方法已经成功分离出具有纤维素酶活性的微生物,例如Clostridium sp.、Bacillus sp.、Cellulomonas sp.、Acidothermus cellulolyticus等。

2.高通量筛选系统高通量筛选系统是一种快速且高效的筛选方法,常用于从大量的微生物中沉淀出目标细菌。

常用的高通量筛选方法包括微流控装置、免疫分离、荧光筛选和高通量发酵等。

3.基于基因组的筛选方法基于基因组的筛选方法是一种新的筛选方法,它能够根据基因组数据精确地预测目标细菌的性能和代谢特性。

通过依据基因组组态图,可以预测细菌所需的碳水化合物、氮素源、维生素和微量元素等。

并通过基因搜索和蛋白质分析,可以确定特定的酶基因并对其进行驯化研究。

二、纤维素酶菌的改良方法针对传统纤维素酶菌的低效率和耐受性差等问题,研究人员采用不同的改良方法提高纤维素酶的效率和性能。

常用的改良方法包括基因工程技术、筛选和驯化适应性强的菌株、应用生物物理方法提高纤维素酶的结构稳定性等。

1.基因工程技术基因工程技术是一种常见的改良方法,它通过基因重组或突变来优化目标细菌的代谢功能。

例如,利用多肽链替换可以改变纤维素酶的空间结构,提高酶的催化能力。

基因重组还可以将来自不同细菌的多个酶基因组合,形成多功能细菌产生多种酶的机构,提高纤维素降解效率。

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展引言:纤维素酶是一类能够降解纤维素的酶,能够将纤维素水解成可溶性的糖类物质。

这种酶类在生物能源、生物制造等领域具有重要的应用价值。

产纤维素酶的菌种及其筛选改良方法的研究,对提高纤维素降解效率、降低生产成本、推动生物能源利用具有重要意义。

本文将介绍产纤维素酶菌及其筛选改良方法的研究进展。

一、产纤维素酶菌的分类和特点产纤维素酶的菌种多样,主要包括真菌和细菌两大类。

真菌包括木霉属、曲霉属、青霉属等;细菌则主要包括纤维素降解细菌和纤维素生产细菌等。

产纤维素酶菌的特点主要表现在对纤维素的降解效率和产酶条件的适应性上。

一方面,有些产纤维素酶的菌种能够高效降解纤维素,产酶量大,并且在生长环境下对温度、pH等条件的适应性较强,能够在广泛的生境中生长;有些产纤维素酶的菌株则对产酶条件相对苛刻,需要较为特殊的生产条件。

二、产纤维素酶菌的筛选方法为了提高产纤维素酶菌的降解效率和提高其生产水平,需要对产纤维素酶菌进行筛选和改良。

在筛选产纤维素酶菌的过程中,可以通过以下几种方法进行:1. 采用纤维素为唯一碳源的筛选培养基。

利用富含纤维素的培养基,能够筛选出对纤维素降解能力较强的菌株。

2. 通过间接检测法筛选。

可以利用纤维素水解产生的可溶性糖类物质来间接检测纤维素酶的产生情况,从而筛选出产酶量较高的菌株。

3. 利用分子生物学方法筛选。

通过利用特定基因的特异性引物,进行PCR扩增和RFLP分析,还可以利用荧光原位杂交技术等手段,对产纤维素酶的菌株进行筛选和鉴定。

4. 通过连续培养或连续发酵系统,对菌株进行长期的驯化和培养,增加产酶菌株的产酶能力。

三、产纤维素酶菌的改良方法在筛选出具有较高产酶能力的菌株之后,需要对这些菌株进行改良,以提高其产酶能力和降解效率。

产纤维素酶菌的改良方法主要包括以下几种:1. 通过传统的诱变选择法,对产纤维素酶菌株进行诱变处理,产生新的突变型菌株,以提高产酶效果。

筛选产纤维素酶菌株及其产酶条件的优化

筛选产纤维素酶菌株及其产酶条件的优化

筛选产纤维素酶菌株及其产酶条件的优化作者:葛江丽施汉钰刘瑰琦刘芳曹昊来源:《安徽农业科学》2014年第30期摘要[目的]筛选降解菌糠纤维素的菌株,并且优化其发酵条件。

[方法]采用纤维素-刚果红培养基进行筛选,筛选出纤维素酶活较高的菌株。

通过比较不同氮源、碳氮比例等条件下CMC酶活,研究其最佳发酵条件。

[结果]选出一株酶活较高的菌株,命名为N3。

其最适有机氮源为豆饼粉,无机氮源是(NH4)2SO4。

最适合N3 产酶的(NH4)2SO4∶豆饼粉比例为2∶4。

最适碳源氮源比例为 5∶2。

[结论]N3是一株具有研究价值的产纤维素酶的菌株。

关键词纤维素酶;筛选;发酵优化中图分类号S188+.4文献标识码A文章编号0517-6611(2014)30-10441-02基金项目黑龙江省财政预研项目。

作者简介葛江丽(1981- ),女,山东郓城人,工程师,硕士,从事植物生理、微生物和细胞生物学方面的研究。

我国是食用菌生产消费大国。

2010年我国食用菌总产量达2 000万t,占世界的70%。

在食用菌产业迅猛发展的势头下,随之而来的大量废弃菌糠如何处理又是摆在我们面前亟需解决的问题。

长期以来,废弃菌糠一般被废弃、焚烧,这样既浪费资源又污染环境。

另外,能源问题已成为人类社会发展的重要制约因素。

为了缓解这一危机,发展新型的可再生能源已成为世界各国主要的发展目标。

燃料乙醇是目前国际上运用较成功的替代能源之一。

有关燃料乙醇的研究和应用已被许多国家摆到重要的战略地位。

要想将木质纤维素转化为生物燃料,就要先将其分解成单糖。

具有优良性状的产纤维素酶活性菌株的使用,是纤维素资源能否高效利用的关键。

国内虽然有了大量筛选纤维素酶的研究[1],来自自然界中的土壤、水体、腐殖质及生物体内等环境条件下纤维素酶不断被发掘,但迄今为止,我国仍未很好地解决规模生产纤维素酶的难题。

长期以来,酶的产量、比活力低一直是制约纤维素酶实际应用的一个重要原因[2]。

【精品】产纤维素酶菌株的筛选

【精品】产纤维素酶菌株的筛选

【精品】产纤维素酶菌株的筛选综述纤维素是植物细胞壁中最常见的多糖之一,由β-1,4-葡聚糖链和其它多糖组成。

由于其普遍存在于植物生物体中,纤维素是最广泛分布的生物大分子之一。

纤维素在生物质燃烧、压缩和暴露于微生物作用等过程中产生可再生能源,并且还可以用于生产生物质燃料、化学品和其他生物制品。

利用纤维素聚合物(包括木材纤维素、竹杆和淀粉纤维素等)进行生物质转化是一项重要的能源和环境保护技术。

纤维素酶是能够水解纤维素并将其转化为可利用的糖的一种酶,其催化作用是将纤维素链切割成较小的可溶性碳水化合物。

纤维素酶可分为三类:β-葡聚糖酶、β-葡聚糖苷酶和β-葡聚糖磷酸酶。

纤维素酶是一种关键的生物质转化酶,也是生物质转化技术的核心之一。

然而,纤维素在自然界中很难被“消化”,因此生产纤维素酶具有较高的技术难度。

在微生物界中,产纤维素酶的菌株很少。

因此,筛选高效的纤维素酶制造菌株是极其必要的。

本文将介绍产纤维素酶菌株的筛选方法,以期为该领域的研究提供一定的参考价值。

筛选方法1.体外筛选1.1 纤维素酶活性测定法纤维素酶的活性可以通过测定其水解纤维素的能力来衡量。

常用的纤维素酶活性测定法有半定量法和定量法两种。

(1)半定量法:将预处理(物理或化学,使它们易于分散或离解)的纤维素培养基(如Whatman No. 1滤纸或微晶纤维素)片加入Petridish中,加入菌株后在37℃下培养,48小时后菌落上出现消耗氧气的透明区,即为阳性。

(2)定量法:在已知含量的标准纤维素上加入纤维素酶样品,反应一定时间后滴加定量白蚁葡聚糖重量的Barfoed试剂,重量测定所得的还原糖量即为纤维素酶酶活的计算量。

1.2 瓶内发酵筛选法把菌株预处理后接种于纤维素培养基液体中进行发酵,无细菌法(革兰氏阴性菌类)的来源可从沉淀性污泥、土壤、泉水、海水、挖掘蚕豆瓢虫肠道中获得。

在瓶内发酵过程中,间断取样测定纤维素酶的活性,并通过相关的统计学方法得到产酶量几何平均值和标准差,从而筛选出高产纤维素酶的菌株。

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展【摘要】本文主要介绍了产纤维素酶菌及其筛选改良方法的研究进展。

首先解释了纤维素酶的作用与应用,然后介绍了不同种类产纤维素酶菌的特点以及筛选方法。

接着讨论了如何改良产纤维素酶菌的培养条件和优化生产工艺。

最后分析了研究的重要性,探讨了未来研究方向,并进行总结。

通过本文的介绍,读者可以了解到产纤维素酶菌及其改良方法在生物工程领域的重要性和潜在应用,为相关领域的研究提供了启示和指导。

【关键词】产纤维素酶菌、筛选、改良、纤维素酶、菌种、特点、培养条件、生产工艺、研究进展、重要性、未来方向、总结。

1. 引言1.1 产纤维素酶菌及其筛选改良方法研究进展产纤维素酶是一类能够降解纤维素的酶,能够将纤维素分解成可利用的小分子糖类,具有重要的应用价值。

随着生物技术的发展,人们对产纤维素酶菌及其筛选改良方法进行了深入研究,取得了一系列进展。

产纤维素酶菌是产生纤维素酶的微生物,包括细菌、真菌和放线菌等。

不同种类的产纤维素酶菌具有不同的特点,如生长速度、纤维素酶产量和适应环境等。

筛选出高效的产纤维素酶菌对于提高纤维素降解效率至关重要。

在筛选产纤维素酶菌的过程中,常采用的方法包括传统的筛选培养基、色谱技术、PCR技术等。

通过这些方法,可以快速有效地筛选出具有高产酶能力的菌株,为纤维素降解的研究和应用提供了有效的渠道。

改良产纤维素酶菌的培养条件也是提高纤维素酶产量的重要途径。

调节温度、pH值、碳源和氮源等因素,可以显著提高产酶菌株的酶活力和产酶量。

在优化产纤维素酶的生产工艺方面,通过对发酵过程中各项参数的精细调控,可以大幅提升纤维素酶的产量和活力,实现经济效益和环境友好的纤维素降解过程。

产纤维素酶菌及其筛选改良方法的研究对于开发和利用纤维素资源具有重要意义。

未来的研究方向应该围绕提高产纤维素酶菌的酶活力、稳定性和产酶量展开,以满足不断增长的纤维素降解需求。

通过不懈的努力和创新,相信产纤维素酶菌及其筛选改良方法的研究将迎来更加美好的发展前景。

1株产纤维素酶真菌的筛选鉴定及其产酶条件优化

1株产纤维素酶真菌的筛选鉴定及其产酶条件优化
本研究旨在筛选并鉴定新的高产纤维素酶真菌。通过从长期堆放的生物质废弃物土壤中分离,我们成功获得了一株产纤维素酶的真菌。经过详细的形态特征观察和ITS分析,该菌株被初其产酶能力,我们进行了一系列的单因素试验,研究了不同碳源、氮源浓度和培养基初始pH值对该菌在液体发酵中产纤维素酶的影响。在此基础上,我们运用响应面法对其最佳发酵条件进行了深入分析。最终,我们确定了Aspergillus ce1403产纤维素酶的最佳条件,包括特定的培养基组分、pH值、温度以及摇床培养时间。在这些优化条件下,该菌株的发酵产纤维素酶活性达到了89.66U/ml,相比未经优化的发酵条件,酶活性提高了15.02%。这一结果充分表明,Aspergillus ce1403在纤维素降解利用方面具备进一步的开发潜力,为未来的应用和研究提供了有力支持。

纤维素酶产生菌的筛选-鉴定和产酶条件优化

纤维素酶产生菌的筛选-鉴定和产酶条件优化

纤维素酶产生菌的筛选\鉴定和产酶条件优化摘要:采用稀释平板法分离马铃薯瓢虫肠道菌,利用刚果红平板法对产纤维素酶菌株进行初筛,选取透明圈较大的菌株进行摇瓶发酵复筛,根据菌株形态、生理生化特征对菌株进行初步鉴定,通过正交法优化产酶条件。结果表明,经初筛和复筛得到1株酶活相对较高的菌株B-12,经初步鉴定为芽孢杆菌属(Bacillus sp.)。1.25%麦芽浸粉为碳源、1.5%KNO3为氮源、0.2%的NaCl、0.1%的CMC-Na、接种量6%、培养时间44 h为B-12产酶的适宜条件。优化后发酵液中的内切葡聚糖酶活(CMCA)为111.710 U/mL,较培养44 h后的酶活提高了8.78%;滤纸酶活(FPA)为35.017 U/mL,提高了387.23%;β-葡萄糖苷酶酶活(BGL)为116.799 U/mL,提高了700.38%。关键词:马铃薯瓢虫;肠道菌;纤维素酶;优化Screening,Identification and Cultural Condition Optimization of Cellulase-producing Strains from the Intestine of Henosepilachna vigintioctomaculata Abstract: The bacteria from the intestine of Henosepilachna vigintioctomaculata were isolated through the pour plate method. They were preliminarily screened using Congo red medium plate method, and then screened according to their cellulase activities by flask shaking fermentation method. The strain was identified based on morphological and physiological characters. In addition, the culture substrates and fermentation conditions were optimized by orthogonal experiment method. A high cellulase-producing strain B-12 was screened from the intestine of H. vigintioctomaculata and it was identified as Bacillus sp.. The best culture conditions were as follows: substrate were 1.25% malt meal, 1.5% KNO3, 0.2% NaCl, and 0.1% CMC-Na, inoculation quantity was 6%, culture time was 44 h. In this condition, the enzyme activity of CMCase, filter paper enzyme (FPA), and β-glucosidase (BGL) were 111.710, 35.017, and 116.799 U/mL respectively, which were 8.78%, 387.23% and 700.38% higher than those of the initial strain respectively.Key words: Henosepilachna vigintioctomaculata; intestinal bacteria; cellulase; optimization地球上的生物资源主要来自光合生物,其中90%以上为木质纤维素类物质,它们代表了生态系统中营养金字塔最庞大的基层[1]。天然的木质纤维素材料含有纤维素、半纤维素和木质素等。其中纤维素是地球上最丰富的多糖物质,这类物质是植物细胞壁的主要成分,也是地球上最廉价的可再生资源。另外,人类活动产生的废弃物中也含有大量的纤维素[2]。目前,人们对纤维素的降解和利用主要通过纤维素酶的分解来实现。纤维素酶在再生能源利用方面具有广阔的应用前景,可应用于农业、酿造工业、发酵工业、食品工业以及其他领域[3-9]。因此研究纤维素酶有着十分重要的意义。昆虫肠道菌是指能定植于昆虫肠道的微生物,包括土著的昆虫肠道菌和能定植于昆虫肠道环境的微生物[10]。研究表明一些昆虫肠道菌能帮助昆虫消化食物[10]。对喜食含纤维素食物的昆虫,我们推测其消化纤维素可能与其肠道菌分泌纤维素酶有关。马铃薯瓢虫主要为害茄科植物,喜食茄科植物叶片,它消化叶片中的纤维素可能与其肠道菌有关。本试验从马铃薯瓢虫肠道中分离筛选产纤维素酶菌株并对其产酶条件进行优化,旨在为发现新的纤维素酶高产菌株奠定基础。1材料与方法1.1材料1.1.1菌株采自浙江省金华市婺城区高村附近马铃薯田地的马铃薯瓢虫肠道中的菌株。1.1.2培养基①菌种保藏培养基:牛肉膏蛋白胨培养基(牛肉膏0.30%,蛋白胨1.00%,NaCl 0.50%,琼脂 1.50%~2.00%,pH值7.4~7.6)。②初筛培养基:米糠2.00%,NaCl 0.10%,K2HPO4 0.50%,MgSO4·7H2O 0.02%,(NH4)2SO4 0.06%,琼脂1.50%~2.00%,pH值7.0~7.2。③刚果红纤维素鉴定培养基:羧甲基纤维素钠(CMC-Na)0.30%,NaCl 0.50%,牛肉浸膏0.15%,蛋白胨0.50%,琼脂1.50%~2.00%,pH值7.0~7.2。④种子培养液:酵母膏 1.00%,蛋白胨 1.00%,NaCl0.50%,CMC-Na 0.50%,pH值7.0~7.2。⑤液体产酶发酵培养液:配方同种子培养液。⑥鉴定用培养基:糖发酵试验培养基、葡萄糖蛋白胨水培养基、蛋白胨水解培养基、Simons氏柠檬酸盐培养基、明胶水解试验培养基等。1.1.3主要试剂葡萄糖、pH值4.6的醋酸缓冲液、DNS、2% CMC-Na底物溶液、0.05%水杨苷的醋酸缓冲液、蛋白胨、牛肉膏等。1.1.4主要仪器立式电热压力蒸汽灭菌锅,上海中安医疗器械厂生产;LRH-250生化培养箱,上海一恒科技有限公司生产;D-78532台式冷冻离心机,德国Hettich 公司生产;UV-7504紫外可见分光光度计,上海欣茂仪器有限公司生产;SW-CJ-1B 型单人单面净化工作台,苏州净化设备有限公司生产;电子天平,赛多利斯科学仪器(北京)有限公司生产;HH-4数显恒温水浴锅,山东鄞城科源仪器设备厂生产;远红外快速恒温干燥箱,上海跃进医疗器械厂生产。1.2方法1.2.1纤维素酶产生菌的分离、纯化和初筛马铃薯瓢虫饥饿24 h后,无菌条件下在75%酒精中表面消毒2 min,去离子水漂洗3次,采用稀释平板法分离肠道菌。待菌长出后用无菌牙签挑选单菌落于刚果红纤维素鉴定培养基上影印2~3皿,37℃下培养2~3 d。取其中1皿采用刚果红染色法鉴定其产酶能力[11]。对产生透明圈的菌株进行测量并记录D/d值(D为透明圈直径,d为菌落直径,下同),挑选D/d值大于1的菌株作为初筛菌种,通过连续划线法,分离纯化。得到的初筛菌株转接到保藏斜面,4℃条件下保藏备用。1.2.2纤维素酶产生菌的复筛将初筛到的菌株活化后接种于30/250 mL(250 mL 三角瓶装30 mL培养液,下同)种子培养基中,37℃、180 r/min摇床培养过夜。以2%接种量转接于30/250 mL产酶培养基中,37℃、180r/min培养2~3 d,10 000 r/min冷冻离心10 min,取上清液测定酶活,筛选产纤维素酶最高的菌株。1.2.3酶活力测定测定方法参照文献[12-16]修正得到。1)标准曲线绘制。反应的总体系为3.5 mL,1 mg/mL葡萄糖溶液和去离子水共2 mL,DNS试剂1.5 mL。取10支试管编号分别为1~10。分别吸取0、0.2、0.4、0.6、0.8、1.0、1.2、1.4、1.6、1.8 mL葡萄糖溶液至1~10号试管中;然后分别吸取2.0、1.8、1.6、1.4、1.2、1.0、0.8、0.6、0.4、0.2 mL去离子水至相应的1~10号试管中。向1~10号试管中分别加入1.5 mL DNS试剂。将上述试管一同沸水浴5 min,冷却后稀释至10 mL,在540 nm下用分光光度计测吸光值,绘制葡萄糖标准曲线。2)内切葡聚糖酶活力(CMCase activity,CMCA)测定。取4支干净试管,编号(分别为1~4)后加入1.5 mL底物溶液,并向1号试管中加入1.5 mL DNS溶液以钝化其中的纤维素酶,作为空白对照,比色调零。4支试管置于50℃水浴中预热5 min,再加入0.5 mL酶液(液体发酵液的离心上清液),50℃水浴30 min后立即向2、3、4号试管加入1.5 mL DNS溶液以终止酶反应。充分摇匀后沸水浴5 min,取出冷却后,加入去离子水定容至10 mL,充分混匀。以1号试管为空白对照,540 nm测吸光值,2、3、4号3支试管数值取平均值。3)滤纸酶活力(FPA)测定。方法同上,将底物溶液换成1 mL缓冲液和50 mg滤纸,加入的酶液量为1 mL,反应时间为1 h。4)β-葡萄糖苷酶活力(BGL)的测定。方法同上,将底物溶液换成1.5 mL含0.05%水杨苷的醋酸缓冲液,反应时间为1 h。5)酶活定义。在上述条件下,1 mL粗酶液所产生的1 μg葡萄糖定义为一个酶活力单位(U)。以上的测定中均已扣除了粗酶液中所含有的还原糖量。1.2.4产纤维素酶菌株的鉴定①菌株的形态特征:菌株平板培养2~3 d,观察菌落形态特征,菌体形态经染色(革兰氏染色、鞭毛染色、芽孢染色等)后,于显微镜的100倍油镜下观察并照像。②菌株的生理生化特性:生理生化试验包括糖发酵试验、V. P试验、甲基红试验、吲哚试验、柠檬酸盐利用试验、淀粉水解试验、明胶水解试验等。1.2.5产酶条件的优化对复筛得到的菌株进行产酶条件的优化试验。1)摇瓶生长曲线的测定。在基础培养基的基础上,对复筛得到的菌株测定其在摇瓶培养中的生长曲线和产酶曲线,考察菌体生长状况与菌株产酶能力在时间上的相关性。2)接种量的确定。将培养12 h的种子液分别以1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%的接种量转接入30/250 mL产酶培养基中,置于37℃,180 r/min摇床培养,测定酶活,考察不同接种量对菌株产酶的影响。3)培养基成分的优化。①碳源种类对菌株产酶的影响:分别以1%的CMC-Na、葡萄糖、蔗糖、乳糖、酵母膏、牛肉膏、酵母粉、麦芽浸粉、秸秆汁、米糠作为碳源,摇瓶培养后测定酶活,考察碳源种类对菌株产酶的影响。②氮源种类对菌株产酶的影响:分别以1%的(NH4)2SO4、NH4NO3、KNO3、蛋白胨、尿素、酵母膏、酪蛋白胨作为氮源,以1%葡萄糖作为碳源,摇瓶培养后测定酶活,考察氮源种类对菌株产酶的影响。③NaCl浓度水平对菌株产酶的影响:在原始液体产酶培养基的基础上分别加入0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%的NaCl,摇瓶培养后测定酶活,考察NaCl浓度水平对菌株产酶的影响。④底物(CMC-Na)浓度水平对菌株产酶的影响:在原始液体产酶培养基的基础上分别加入0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%的CMC-Na,摇瓶培养后测定酶活,考察底物浓度水平对菌株产酶的影响。⑤根据上述试验得到的最适培养基组成,选取L9(34)型正交表设计正交试验,试验因素和水平见表1,以上清液酶活大小为指标,选择最优培养基组成。2结果与分析2.1纤维素酶产生菌的初筛采用刚果红染色法从瓢虫肠道中分离纯化得到16株透明圈较大的细菌,细菌编号及其D/d值分别为:B-1,6.167;B-35,5.667;B-11,5.000;B-19,4.750;B-9,4.000;B-26,3.750;B-37,3.000;B -27,1.833;B-53,3.000;B-47,2.714;B-36,2.667;B-42,2.571;B-32,2.500;B-46,2.429;B-1 2,2.083;B-10,1.420。2.2纤维素酶产生菌的复筛对初筛得到的16株菌株进行摇瓶复筛,以CMCA为指标,筛选出B-12、B-10、B-53、B-11等4株产纤维素酶活力较高的菌株,CMCA(3次测定的平均值)分别为76.85、68.85、53.94、71.27 U/mL。菌株B-12的CMCA最高,该菌株用以后续的试验。2.3DNS法葡萄糖标准曲线葡萄糖标准曲线如图1所示,得到方程y=0.916 9x-0.110 4,r2=0.991 4。2.4菌株B-12的初步鉴定2.4.1形态特征菌株B-12在牛肉膏蛋白胨琼脂培养基上菌落较大、圆形、边缘整齐、不透明、乳白色、微隆起、湿润、生长较快。显微镜观察细胞呈杆状,两头稍平;周生鞭毛,革兰氏染色呈阳性;芽孢椭圆形或柱状,中生或偏端生,芽孢囊不膨大。2.4.2生理生化特征V.P反应为阴性,吲哚反应、甲基红反应为阳性。该菌株可利用葡萄糖产酸,能水解淀粉,分解明胶,不能利用柠檬酸盐。结合形态特征和生理生化特征,参考《伯杰细菌鉴定手册》第八版,将菌株B-12鉴定为芽孢杆菌属(Bacillus sp.)。2.5产酶条件的优化2.5.1摇瓶生长曲线的确定在原始培养基基础上从发酵开始至72 h,连续取样,在600 nm下测定生物量,离心后取上清液测定酶活,得到与时间相关的该菌株的生长曲线以及产酶曲线(图2、图3)。由图2、图3可知,在3 h左右菌株进入对数生长期,16 h左右菌株生长开始进入稳定期,44 h以后开始进入衰亡期。CMCA、FPA、BGL开始时增长较为缓慢,CMCA、BGL在44 h时达到最大值,FPA在47 h时达到最大,综合考虑将最佳培养时间定为44 h。总体趋势表明菌株B-12的产酶能力与菌体生长状况有耦连相关性。在44 h时CMCA为102.694 U/mL,FPA为7.187 U/mL,BGL为14.593 U/mL。2.5.2不同接种量对菌株酶活力的影响不同接种量对菌株酶活力的影响结果见图4。综合考虑,在接种量为6%时3个酶活指标均较高,CMCA为73.901 U/mL,FPA 为8.232 U/mL,BGL为7.140 U/mL。因此最佳接种量选择6%。2.5.3不同碳源对菌株B-12酶活力的影响碳源对微生物生长代谢的作用主要是提供细胞碳架、细胞生命活动所需的能量以及合成产物的碳架。根据微生物所能产生的酶系不同,不同的微生物可利用的碳源不同。在产酶培养基的基础上改变不同的碳源检测菌株B-12的产酶情况。由图5可知,不同种类的碳源对菌株产纤维素酶影响不同,其中麦芽浸粉作为碳源时3个酶活指标均较高,CMCA为74.592 U/mL,FPA为6.778 U/mL,BGL为7.667 U/mL。因此确定麦芽浸粉作为菌株B-12的产酶培养基的适宜碳源。2.5.4不同氮源对菌株酶活力的影响氮源是合成菌体蛋白质、核酸及其他含氮化合物的重要组成成分。不同种类的氮源对菌株的产酶影响结果见图6。当KNO3作为氮源时,3个酶活指标均较高,CMCA为230.080 U/mL,FPA为101.636 U/mL,BGL 为93.009 U/mL。因此确定该菌株的产酶培养基的适宜氮源为KNO3(图6)。2.5.5NaCl浓度对菌株酶活力的影响试验设置了0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%等10个NaCl浓度梯度,在不同NaCl浓度下测定纤维素酶的3个酶活指标。由图7可知,当NaCl浓度为0.2%时,CMCA活性最高,为75.137 U/mL,FPA和BGL活性相对较高,分别为5.533 U/mL和7.485 U/mL。因此,NaCl浓度为0.2%时菌株B-12的酶活较大。2.5.6底物(CMC-Na)含量对菌株酶活力的影响试验测定CMC-Na不同添加量(0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%)时菌株B-12的产酶水平。由图8可知,当CMC-Na浓度达到0.2%时,CMCA活性最高,为90.043 U/mL,FPA和BGL活性相对较高,分别为7.287 U/mL和7.213 U/mL;表明菌株B-12适宜底物(CMC-Na)浓度为0.2%。2.5.7最适培养基组成确定选取L9(34)型正交表设计正交试验,以上清液酶活大小为指标,选择最优培养基组成。对正交试验结果进行极差分析(表2)可以发现对于CMCA酶活而言,主要因素的影响顺序为:麦芽浸粉>NaCl>KNO3>CMC-Na,最佳组合为:1.25%麦芽浸粉、1.0% KNO3、0.1% NaCl、0.2% CMC-Na。对于FPA酶活,主要因素的影响顺序为:CMC-Na>NaCl>KNO3>麦芽浸粉,最佳组合为:1.25%麦芽浸粉、1.5% KNO3、0.2% NaCl、0.1% CMC-Na。对于BGL酶活,主要因素的影响顺序为:KNO3>CMC-Na>麦芽浸粉>NaCl,最佳组合为:1.25%麦芽浸粉、1.5% KNO3、0.2% NaCl、0.1% CMC-Na。综合考虑,最终确定最佳培养基配方为:1.25%麦芽浸粉,1.5%KNO3,0.2%NaCl,0.1% CMC-Na。此时,CMCA、FPA和BGL分别为111.710 U/mL、35.017 U/mL和116.799 U/mL,较菌株培养44 h时的酶活分别提高了8.78%、387.23%和700.38%。3讨论利用刚果红平板法初筛得到的透明圈比值大的菌株,其酶活并不一定高。试验中我们发现菌株B-1的透明圈比值高达 6.167,而菌株B-12的透明圈比值仅为2.083,但从摇瓶发酵复筛结果看,菌株B-12的酶活要高于B-1的。因此,在筛选纤维素酶高产菌株时,摇瓶发酵复筛是必要的。我们首次从马铃薯瓢虫肠道中分离得到多株产纤维素酶肠道菌并筛选到1株酶活性较高的菌株B-12,产酶条件经优化后,其CMCA为111.710 U/mL,FPA为35.017 U/mL,BGL为116.799 U/mL。而采用同样的酶活测试方法,林祥木等[17]从土壤中分离得到的最好的菌株其CMCA为36 U/mL,FPA为31 U/mL,BGL不足41 U/mL。昆虫是地球生物圈中已知种类最多的一群生物[18,19],昆虫种类、数量及分布范围的多样性意味着昆虫肠道菌的多样性[20]。研究表明昆虫肠道菌是微生物新种的潜在资源[21,22]。因此,昆虫肠道菌可能是新高产纤维素酶的广泛来源,而从昆虫肠道菌分离产纤维素酶菌还鲜有报道,亟待研究开发。参考文献:[1] TOMME P, WARREN R A J, GILKES N R. Cellulose hydrolysis by bacteria and fungi[J]. Advances in microbial physiology, 1995,37(1):1-81.[2] 李燕红,赵辅昆. 纤维素酶的研究进展[J]. 生命科学,2005, 17(4):392-397.[3] 张大羽,诸永,程家安. 黄胸散白蚁和台湾白蚁不同品级虫体内纤维素酶的活性[J]. 浙江大学学报(农业与生命科学版),2001,27(1):1-4.[4] 邱雁临. 纤维素酶的研究和应用前景[J]. 粮食与饲料工业,2001(8): 30-31.[5] 乞永立,耿月霞,任章启. 纤维素酶的生产及应用[J]. 适用技术市场,2000(6):20-21.[6] 刘英昊,崔文华. 纤维素酶及其生产工艺简介[J]. 饲料博览,1997(6):26.[7] 张加春,王权飞,余尊祥. 里氏木霉的纤维素酶产生条件研究[J]. 食品与发酵工业,2000,26(3):1-23.[8] 邬敏辰,李江华, 邻显章. 黑曲霉固态培养生产纤维素酶的研究[J]. 酿酒,1997(6):5-9.[9] 施安辉,刘尔敬. 纤维素酶固体生产和应用中的有关问题[J]. 中国调味品, 1997(10): 6-10.[10] DILLON R J, DILLON V M. The gut bacteria of insects: Nonpathogenic interactions[J]. Annual Review of Entomology, 2004,49: 71-92.[11] CANTWELL B A, McCONNELL D J. Molecular cloning and expression of a Bacillus subtilis 13-glucanase gene in Escherichia coli[J]. Gene,1983,23(2):211-219.[12] GAO J, WENG H, ZHU D, et al. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover[J]. Bioresource Technology, 2008,99(16):7623-7629.[13] 刘韫滔,榻淑霞,龙传南,等. 纤维素降解菌L-06的筛选、鉴定及其产酶条件的分析[J]. 生物工程学报, 2008,24(6):1112-1116.[14] 周刚.白蚁内生菌的分离及其纤维素酶、木质素酶高产菌株的鉴定[D].哈尔滨: 黑龙江大学,2006.[15] 李方. 一株白蚁内生放线菌次级代谢产物及纤维素酶的研究[D]. 南京: 南京大学,2008.[16] 张树政. 酶工业制剂(下册)[M]. 北京:科学出版社,1998. 606-608.[17] 林祥木,童金秀,陈汉清,等. 产纤维素酶菌株的筛选及产酶条件的选择[J]. 福建农林大学学报(自然科学版),2003,32(4):510-513.[18] 雷朝亮,荣秀兰. 普通昆虫学[M]. 北京:中国农业出版社,2003.[19] 彩万志,庞雄飞,花保祯,等. 普通昆虫学[M]. 北京:中国农业出版社,2001.[20] 张应烙. 昆虫肠道真菌的新活性物质研究[D]. 南京:南京大学,2008.[21] HAWKSWORTH D L. Fungal diversity and its implications for genetic resource collections[J]. Studies in Mycology,2004,50:9-18.[22] WHITE M M,LICHTWADT R W. Fungal symbionts (Harpellales) in Norwegian aquatic insect larvae[J]. Mycologia,2004,96(4):891-910.。

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展近年来,随着对可再生能源的需求增加,纤维素酶作为生物质能源转化的重要酶类受到了广泛关注。

产纤维素酶菌及其筛选改良方法的研究成为了热点和难点,本文将以此为核心,对其研究进展进行综述。

1. 产纤维素酶菌的研究目前已发现的产纤维素酶菌主要包括枯草芽孢杆菌、放线菌、真菌等。

其中,枯草芽孢杆菌是目前被广泛应用于纤维素酶生产的菌种之一,因为其产酶量高、生长速度快、生长条件较为简单等特点而备受青睐。

同时,枯草芽孢杆菌的基因组测序也为其分子遗传学和代谢分析等研究提供了可能。

除枯草芽孢杆菌外,还有放线菌属和糯米壳属等菌种也被报道能够分泌纤维素酶。

这些菌株相对于枯草芽孢杆菌的优点在于产酶能力更强,而缺点在于生长周期长、生长条件较苛刻,且在发酵过程中容易受到杂菌的污染等。

因此,在生产实践中,不同菌种或不同菌株的选择需要根据具体情况进行。

2.1 筛选纤维素酶的筛选方法主要有传统筛选和高通量筛选两种。

传统筛选方法常常是采用纤维素颗粒为基质,利用纤维素降解能力较强的菌株筛选;或者采用含有纤维素的大量自然产物、如木屑等物质进行筛选。

此外,还有利用血红蛋白作为指示物的筛选方法。

这些方法的优点在于操作简单易行,且与实际应用环境接近,但筛选效率较低、筛选速度较慢。

高通量筛选方法是近年来发展起来的一种新型筛选方法。

该方法利用微流控技术,快速筛选出高效纤维素酶生产菌株,并能够评估其酶的活力和稳定性。

同时,还可以利用基因工程手段进行优化,以提高酶的产量和稳定性。

该方法具有快速、高效、高精度等优点,可以大大缩短筛选周期和降低筛选成本。

2.2 改良为了提高纤维素酶的产量和性能,研究人员采用了多种改良方法,包括物理改良、化学改良和基因工程改良等。

物理改良是利用辐射、超声波、高压等物理手段对纤维素酶生产菌株进行改良。

该方法具有操作简单、安全易行、无毒副作用等优点,但改良效果不一定理想。

化学改良主要是利用化学物质处理菌株,使其产生变异,进而产生更高产的纤维素酶。

产纤维素酶菌株的筛选及其酶活的测定

产纤维素酶菌株的筛选及其酶活的测定

本科开放项目题目:产纤维素酶菌株的筛选及其酶活的测定学生姓名:指导教师:学院:专业班级:2016年3月产纤维素酶菌株的筛选及其酶活的测定摘要纤维素作为植物光合作用的主要多糖类产物,是高等植物细胞壁的主要成分,是公认的自然界数量最丰富、最廉价的可再生有机物质资源。

据估计,纤维素生成量每年高达1000亿吨。

我国每年农作物秸秆总产量为7亿吨左右,仅农业生产中形成的农作物残渣(如稻草、玉米秸、麦秸等),每年就有5亿吨之多。

纤维素的降解是自然界碳素循环的中心环节。

但由于纤维素的结构特点,对纤维素的利用仍然非常有限。

目前仅有20%的纤维素物质被开发利用,大量的纤维素物质因无法分解利用而废弃,不仅造成资源浪费,而且污染环境。

随着人口数量的不断增长和人民生活水平的不断提高,能源危机、食物短缺、环境污染等问题日益严重,寻找利用可再生资源、节省粮食、减少环境污染的有效途径显得日趋重要。

采用微生物技术处理秸秆是当前研究最多的一种秸秆处理方法,纤维素酶能将天然纤维素降解,生成纤维素分子链、纤维二糖和葡萄糖,然而目前制约纤维素材料转化为乙醇并实现产业化的关键因素之一是纤维素酶效率低下,从而造成生产成本过高。

因此,筛选具有高活性纤维素酶的秸秆降解微生物菌株以及相关研究是当前研究的热点和难点。

关键词:纤维素降解高活性纤维素酶微生物菌株目录第1章绪论 (1)1.1 实验原理 (1)1.2 实验仪器及试剂 (2)1.2.1 实验材料 (2)1.2.2 实验仪器 (2)1.2.3 培养基 (2)第2章实验步骤 (3)2.1 采样培养 (3)2.2 初筛 (4)2.3 复筛 (4)2.4 酶活的测定 (4)2.4.1原理 (4)2.4.2溶液配制 (4)2.4.3实验步骤 (5)第3章实验结果 (7)3.1 标准曲线的绘制 (7)3.2 菌株复筛结果 (8)3.3 测定纤维素酶活力结果 (9)结束语 (10)参考文献 (11)第1章绪论1.1 实验原理自然界中存在大量的纤维素类物质,同时存在着很多能分解纤维素类物质的生物,小到细菌、放线菌、真菌,大到一些食草类昆虫与动物。

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展产纤维素酶菌是一类能够分解纤维素的微生物。

纤维素酶具有重要的工业应用价值,可以用于生产生物燃料、食品添加剂、饲料酶和纸浆加工等。

研究纤维素酶菌及其筛选改良方法对于提高纤维素酶的产量和活性具有重要意义。

纤维素酶菌主要包括细菌、真菌和原生动物等。

细菌是目前研究的重点,主要有属于泛菌纲的革兰氏阴性细菌和厌氧细菌、属于革兰氏阳性细菌的放线菌等。

真菌中的木霉属和曲霉属是常见的纤维素酶产生菌。

原生动物中的淀粉硬蛋白原核为革兰氏阳性细菌,同样具有较高的纤维素酶产生能力。

纤维素酶菌的筛选方法可以分为传统筛选和基因工程筛选两大类。

传统筛选主要通过菌落特征、纤维素酶活力和酶促介质分析等方法来确定纤维素酶产生菌。

基因工程筛选主要利用纤维素酶基因在基因库中的表达情况进行筛选。

目前,纤维素酶菌的改良方法主要包括传统遗传改良和基因工程改良两种。

传统遗传改良主要包括辐射诱变、化学诱变和选择性培养等方法。

辐射诱变是通过辐射来引发细菌基因突变,从而获得新的纤维素酶产生菌。

化学诱变则是通过化学物质来诱发细菌基因的突变。

选择性培养是在特定的培养基中培养纤维素酶产生菌,然后通过对菌群的筛选来获得高产菌株。

基因工程改良主要是通过将高效纤维素酶基因导入到微生物中,从而提高纤维素酶的产量和活性。

常用的基因工程改良方法包括限制性酶切、DNA连接、转化和表达等。

限制性酶切是通过酶切酶将目标基因切割成特定长度的DNA片段。

DNA连接是将目标基因片段连接到载体DNA上,形成重组DNA。

转化则是将重组DNA导入到宿主细胞中。

表达是使宿主细胞能够表达目标基因所编码的纤维素酶。

产纤维素酶菌及其筛选改良方法的研究进展主要包括纤维素酶菌的分类研究和筛选方法的改良研究。

通过对纤维素酶菌的筛选和改良,可以提高纤维素酶的产量和活性,为纤维素酶的工业应用提供技术支持。

未来的研究将更加注重基因工程筛选和改良方法的研究,以提高纤维素酶的产量和活性。

高产纤维素酶菌株的筛选、固态发酵条件优化及其酶学性质研究

高产纤维素酶菌株的筛选、固态发酵条件优化及其酶学性质研究

高产纤维素酶菌株的筛选、固态发酵条件优化及其酶学性质研究目录一、内容描述 (2)1. 研究背景和意义 (2)1.1 纤维素酶的应用领域 (4)1.2 高产纤维素酶菌株的重要性 (5)1.3 固态发酵技术在工业中的应用 (6)2. 研究目的和任务 (7)2.1 研究目的 (8)2.2 研究任务 (9)3. 文献综述 (9)3.1 国内外研究现状 (11)3.2 研究方法概述 (12)二、高产纤维素酶菌株的筛选 (13)1. 菌株来源与采集 (14)2. 菌株初筛与复筛方法 (15)3. 高产纤维素酶菌株的鉴定与保存 (16)三、固态发酵条件优化 (17)1. 实验材料与方法 (18)1.1 原料的选择与处理 (20)1.2 固态发酵流程设计 (20)1.3 实验因素与水平设计 (21)2. 结果与分析 (22)2.1 单因素实验结果分析 (24)2.2 正交实验结果分析 (25)2.3 固态发酵条件优化方案的确定与应用效果评估 (27)四、酶学性质研究 (28)一、内容描述本研究报告围绕高产纤维素酶菌株的筛选、固态发酵条件优化及其酶学性质展开。

通过一系列的筛选实验,从自然界或实验室培养物中分离出具有高效纤维素酶生产能力的菌株。

利用先进的固态发酵技术,针对该菌株的特点,优化其生长和产酶条件,旨在提高纤维素酶的产量和活性。

在菌株筛选阶段,我们利用纤维素作为唯一碳源,通过测定不同菌株在特定时间内的葡萄糖消耗量和纤维素酶活性的变化,筛选出具有高产酶能力的菌株。

在固态发酵条件下,我们系统地研究了温度、湿度、通气量、菌种浓度等关键参数对纤维素酶产量的影响,并通过数学模型对结果进行了拟合和分析。

我们还深入探讨了所筛选菌株所产纤维素酶的酶学性质,包括其最适pH值、最适温度、热稳定性以及与其他成分的协同作用等。

这些研究不仅为纤维素酶的生产提供了理论依据和技术支持,而且有助于我们更好地理解和利用纤维素这一可再生资源。

高产纤维素酶菌株的筛选及产酶条件研究

高产纤维素酶菌株的筛选及产酶条件研究

高产纤维素酶菌株的筛选及产酶条件研究研究目标本研究旨在筛选高产纤维素酶的菌株,并优化其产酶条件,以提高纤维素降解效率和产酶量。

方法1. 菌种收集与筛选1.收集土壤、水源等环境样品,分离出潜在的纤维素酶产生菌株。

2.通过平板培养和传代培养,筛选出具有纤维素酶活性的菌株。

2. 纤维素酶活性测定1.利用Congo Red染色法测定菌株的纤维素酶活性。

2.选择具有较高纤维素酶活性的菌株作为后续研究对象。

3. 优化产酶条件1.确定最适pH:在不同初始pH值下培养菌株,测定产酶量和纤维素酶活性。

2.确定最适温度:在不同培养温度下培养菌株,测定产酶量和纤维素酶活性。

3.确定最适碳源:使用不同碳源(如纤维素、木质素等)培养菌株,测定产酶量和纤维素酶活性。

4.确定最适氮源:使用不同氮源(如蛋白质、尿素等)培养菌株,测定产酶量和纤维素酶活性。

4. 鉴定菌株1.利用生化和分子生物学方法对优选出的菌株进行鉴定,确定其属于哪个科、属、种。

2.利用16S rRNA基因序列分析确定菌株的系统发育关系。

5. 产酶机制研究1.利用电镜观察菌株在不同培养条件下的形态结构变化。

2.利用基因组学方法分析纤维素酶基因在不同条件下的表达情况。

发现1.从环境样品中筛选出了多个具有纤维素酶活性的菌株,其中某一菌株表现出较高的纤维素酶活性。

2.最适pH为7.0,最适温度为50℃,最适碳源为纤维素,最适氮源为蛋白质。

3.经鉴定,该菌株属于纤维素酶产生菌属,并命名为XX菌株。

4.电镜观察发现,在最适产酶条件下,XX菌株的纤维素酶形态结构清晰可见。

5.通过基因组学方法分析,发现XX菌株在最适产酶条件下纤维素酶基因的表达水平较高。

结论1.通过本研究筛选出了一株高产纤维素酶的菌株XX。

2.最适产酶条件为pH 7.0、温度50℃、碳源为纤维素、氮源为蛋白质。

3.该菌株具有潜力应用于纤维素降解和生物质转化领域。

4.通过深入研究其产酶机制,可以进一步优化该菌株的产酶性能和应用前景。

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展一、引言纤维素是一种生物质资源中丰富的多糖类化合物,广泛存在于植物细胞壁中。

纤维素降解酶能够有效地将纤维素降解为可发酵的糖类产物,为生物质能源的利用提供了重要的基础。

纤维素降解酶主要由细菌、真菌、古菌和原生生物等微生物产生,其中以细菌和真菌产纤维素降解酶的应用研究最为广泛。

随着生物质资源的大规模利用和生物技术的不断发展,产纤维素酶菌及其筛选改良方法的研究备受关注。

在这一领域,通过对产纤维素酶菌菌株的采集、筛选及相关基因工程技术的应用,可以大大提高纤维素降解效率,为生物质能源的利用提供重要的技术支撑。

本文将从产纤维素酶菌的筛选及改良方法研究进展方面进行综述,以期为该领域的研究提供一定的指导和参考。

二、产纤维素酶菌菌株的筛选1. 野生菌株的采集与筛选产纤维素酶菌的筛选工作通常以野生菌株的采集和筛选为起点。

在自然界中,各种微生物对纤维素的降解能力普遍存在,因此通过对各种环境样品的采集和分离,可以筛选到具有较强纤维素降解能力的细菌或真菌菌株。

这种筛选方法具有样品来源广泛、种类多样等优点,但也存在筛选周期长、效率低等不足之处。

2. 高通量筛选技术为解决野生菌株筛选效率低下的问题,研究人员逐渐引入高通量筛选技术。

通过构建含有纤维素降解酶检测基因的高通量筛选系统,可以实现对大量菌株的快速筛选。

这种筛选方法大大缩短了筛选周期,提高了筛选效率,为产纤维素酶菌的有效筛选提供了重要手段。

三、产纤维素酶菌的改良方法1. 遗传工程改良采用遗传工程方法对产纤维素酶菌进行改良是目前应用较为广泛的方法之一。

通过对纤维素降解酶相关基因进行工程改造,可以提高其纤维素降解能力、稳定性和耐受性等性能。

通过引入纤维素降解酶基因的多拷贝、异源基因导入以及克隆表达等策略,可以显著提高纤维素降解酶的活性和产量。

2. 自然选择改良除了遗传工程改良方法,自然选择改良也是一种重要的改良手段。

在传统发酵工艺中,通过长期连续传代培养和诱变育种等方法,可以获得具有良好纤维素降解性能的高产菌株。

产纤维素酶菌种的筛选与优化

产纤维素酶菌种的筛选与优化

产纤维素酶菌种的筛选与优化目记录实验1分离和初筛实验2复筛和保存实验3酶活测定和继代保存实验实验4紫外诱变育种实验5产纤维素酶菌株产酶条件优化实验6产酶条件优化结果实验1了解产纤维素酶微生物分离的基本原理;2.掌握产纤维素酶微生物分离的操作方法2,实验原理自然界中有大量的纤维素物质,同时也有许多能分解纤维素物质的生物,从细菌、放线菌、真菌到一些食草昆虫和动物。

这些生物和绿色植物一起构成了世界的碳循环。

在发酵堆肥中,有大量耐高温纤维素分解菌,但大多数是混合分解菌。

菌株需要1。

内切葡萄糖苷酶(endo-1,4-β-d-葡聚糖酶,简称EC 3.3.1.4,EBG),也称为Cx酶,CMC酶,例如这种酶作用于纤维素分子内的非晶区,随机识别并水解β-1,4-糖苷键,截短长链纤维素分子,并产生大量末端不还原的纤维素小分子。

2.胞外-1,4-β-D-葡聚糖酶(酶代码3.2.1.91),也称为C1酶、微晶纤维素酶和纤维二糖水解酶(CBH),它从纤维素长链的非还原端水解β-1,4-糖苷键,一次切割纤维二糖分子;3β-葡萄糖苷酶(β-葡萄糖苷酶,EC3.2.21,缩写为BG),也称为纤维二糖酶,可水解纤维二糖酶糖和短链纤维低聚糖生成葡萄糖,并快速水解纤维二糖和纤维三糖。

随着葡萄糖聚合酶的增加和水解率的降低,这种酶的特异性相对较差。

只有三种酶协同作用,才能很好地分解纤维素。

就单个菌落而言,木霉、曲霉和青霉等霉菌具有较高的总体酶活和较大的产量,因此用于畜牧业和饲料工业的纤维素酶主要是真菌纤维素酶。

在本实验中,以羟甲基纤维素钠为唯一碳源的培养基作为筛选培养基。

只有能将纤维素水解成单糖并加以利用的微生物才能在筛选培养基上生长。

从筛选培养基中分离产生纤维素酶的微生物。

使用羧甲基纤维素钠(CMC-Na)作为唯一碳源,并使用CMC-Na通过微生物分解来分离能够产生纤维素酶的菌株。

刚果红是一种酸性染料,可与纤维素反应形成红色络合物。

纤维素酶产生菌的筛选及产酶条件优化

纤维素酶产生菌的筛选及产酶条件优化


作者 简 介 : 曾 ̄ (9 5 , , 南新 化 人 , 士研 究 生 , 究 方 向 : 物化 工 ; 讯 作 者 : 群 良 , 士 , 1 8 一) 男 湖 硕 研 生 通 李 博 副教 授 ,- i q ni gi E ma :u l n l l a @
y h o c r. n a o .o c 。 n
1 7 酶 活 力 的 测 定 .
图 2 培 养 温 度对 酶 活 力 的影 响
Fi.2 Thee fc fc t r e p r t eo e y ea tvt g fe to ulu e tm e aur n nz m c iiy
移 取 0 5mL含有 1 C . MC Na — 的液 体发酵 培养 基于试 管 中, 入 0 5mL粗 酶 液 , 5 加 . 于 5℃水 浴 保温 1 n后 , 0mi 加入 2 0mL 3 5二 硝基水 杨 酸终止 反应 , . ,一 煮沸 1 n 取 1mL溶 液 稀释 l 0mi, 0倍 , 7 2型 分光 用 2 光度计 于 5 0D 波长 下 比色 , 照 葡萄 糖 标 准 曲线 4 m 对 换算成 葡萄糖质 量 。 酶 活力单位 ( 定义 : U) 在上 述条件 下 , 每毫升 粗酶 液反应 1mi 生 成 1 g葡 萄糖 的酶 量 为一 个 酶 活力 n 单位 。
液体 发酵培养 基 ( MC Na培养 基 ) C — 0 C — : MC Na1
g ( , NH4 2 O4 4 g, ) S KH2 O4 . M g O4・ 7 P 0 g, 2 S H2 O
0 5g 蛋 白胨 1 , 1 0 , H 值 自然 。 . , 0g 水 0 0mL p
由图 1可知 , 随着培 养 时间 的延 长 , 活力 增 大 , 酶

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展
纤维素是植物细胞壁的主要成分之一,其作用是保护细胞并提供支持。

然而,由于人
类食品需求的快速增长,大量的农业废弃物和纤维素质材被浪费,造成了严重的环境问题。

因此,开发高效的纤维素酶菌及其筛选改良方法已成为当前的研究热点。

现代的纤维素酶生产研究主要集中在两个方面:一是利用微生物和真菌酶解纤维素,
另一方面则是开发转基因技术以改良纤维素酶的菌株。

其中包括嗜热菌、厌氧菌、真菌及
其产生的酶等等。

嗜热菌是一类常见的产纤维素酶菌,其最适生长温度在50°C-90°C之间。

近年来,
研究人员开始关注来自深海生态系统的嗜热菌,这些嗜热菌对极端环境的适应性很强,其
产生的酶能够高效地分解纤维素。

此外,厌氧菌也是一种常见的产纤维素酶菌,被广泛应
用于生物质炭化技术和生物制氢技术中。

在筛选改良方面,目前主要采用的方法是基于高通量筛选技术的原理,利用自动化仪
器对大量样品同时进行酶活性检测,从而筛选出优异的产纤维素酶菌。

另外,可以对产纤
维素酶菌进行基因组学研究,通过比对其基因组序列,找到影响纤维素酶产生和活性的关
键基因,进而利用基因编辑技术进行改良。

总的来说,产纤维素酶菌及其筛选改良方法的研究正在逐渐深入,未来还将涌现出更
多的新研究成果,为纤维素酶的高效生产和利用提供有力的支持。

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展

产纤维素酶菌及其筛选改良方法研究进展1. 引言1.1 研究背景产纤维素酶是一类能够分解纤维素的酶,可以将废弃的植物纤维素有效地转化为生物能源或化学品。

由于纤维素在自然界中广泛存在且易获得,产纤维素酶逐渐成为生物质能源领域的研究热点。

目前市面上的产纤维素酶酶活性较低、稳定性差,限制了其在工业生产中的应用。

对产纤维素酶菌的筛选和改良方法进行深入研究具有重要意义。

产纤维素酶菌在自然界中具有多样性,因而研究如何高效筛选出具有优良酶活性的产纤维素酶菌成为亟须解决的问题。

通过改良产纤维素酶菌的菌种,提高其在酶活性、抗性和稳定性等方面的表现,也为产纤维素酶的应用提供了可能。

在未来的研究中,将进一步探索产纤维素酶菌的特点及筛选方法,加强对产纤维素酶菌的改良研究,不断提高产纤维素酶的性能,拓展其在生物质能源领域的应用前景。

随着技术的不断发展,产纤维素酶菌的研究将迎来更多挑战,但也将有更多的发展机遇。

愿未来产纤维素酶菌及其筛选改良方法研究取得新的突破,为生物质能源的开发和利用做出更大贡献。

1.2 研究目的本研究的目的是探索产纤维素酶菌及其筛选改良方法的研究进展,为提高纤维素降解效率和提高生物质资源利用率提供理论基础和实践参考。

具体目标包括:1.分析产纤维素酶菌的特点,揭示其在纤维素降解中的作用机制;2.探讨产纤维素酶菌的筛选方法,寻求高效、快速和经济的筛选途径;3.研究产纤维素酶菌的改良方法,提高其纤维素降解能力和稳定性;4.探讨产纤维素酶菌在生物质资源利用中的应用前景,拓展其产业化应用领域;5.分析产纤维素酶菌研究面临的挑战,并展望未来发展方向。

通过本研究,旨在推动纤维素降解技术的创新和进步,实现生物质资源的高效转化和利用。

1.3 研究意义产纤维素酶菌是一类具有生物降解纤维素能力的微生物,在生物能源开发和环境保护领域具有重要作用。

研究产纤维素酶菌及其筛选改良方法的意义在于探索更高效、更稳定的纤维素酶产生菌株,为工业生产提供更好的菌种资源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录实验一产纤维素酶菌种的分离与初筛实验二产纤维素酶菌种的复筛与保藏实验三酶活测定与传代保藏实验四产纤维素酶菌种的紫外诱变育种实验五产纤维素酶菌种的产酶条件优化实验六产纤维素酶菌种的产酶条件优化的结果分析实验一产纤维素酶菌种的分离与初步鉴定一、实验目的1.了解产纤维素酶微生物分离的基本原理;2.掌握产纤维素酶微生物分离的操作方法。

二、实验原理自然界中存在大量的纤维素类物质,同时存在着很多能分解纤维素类物质的生物,小到细菌、放线菌、真菌,大到一些食草类昆虫与动物。

这些生物与绿色植物一起构成了这个世界的碳循环。

在发酵堆肥中,存在着大量的,耐高温的纤维素分解菌株,但多半都为混合分解,菌种需要:1.内切型葡萄糖苷酶(endo-1,4-β-D-glucanase,EC3.3.1.4,简称EBG),也称Cx酶、CMC酶、EG。

这类酶作用于纤维素分子内部的非结晶区,随机识别并水解β-1,4-糖苷键,将长链纤维素分子截短,产生大量非还原性末端的小分子纤维素;2.外切型葡萄糖苷酶(exo-1,4-β-D-glucanase,EC3.2.1.91),也称C1酶、微晶纤维素酶、纤维二糖水解酶(Cellobiohydrolase,简称CBH),这类酶从纤维素长链的非还原性末端水解β-1,4-糖苷键,每次切下纤维二糖分子;3.Β-葡萄糖苷酶(β-glucosidase,EC3.2.21,简称BG)又称纤维二糖酶,它能水解纤维二糖以及短链的纤维寡糖生产葡萄糖,对纤维二糖和纤维三糖的水解很快。

随着葡萄糖聚合酶的增加水解速度下降,这种酶的专一性比较差。

只有三种酶的协同作用,才能较好的分解纤维素。

就单菌落而言,霉菌如木霉、曲霉和青霉的总体酶活性较高,产量大,故在畜牧业和饲料工业中的应用的纤维素酶主要是真菌纤维素酶。

本实验以羟甲基纤维素钠为唯一碳源的培养基作为筛选培养基,只有能够水解纤维素成单糖并加以利用的微生物才能在筛选培养基上生长,利用筛选培养基分离产纤维素酶的微生物。

以羧甲基纤维素钠(CMC-Na)为唯一碳源,通过微生物分解利用CMC-Na,分离出能产纤维素酶的菌种;刚果红是一种酸性染料,可与纤维素反应形成红色复合物。

三、实验仪器及试剂1.材料土样取自学校校门口小树林5—20cm深处;2.仪器试管、烧杯、移液管、平板、锥形瓶、玻璃珠、电磁炉、电子称、量筒、培养皿、酒精灯、移液枪、接种环、高压灭菌锅等;3.培养基(1)筛选培养基(500ml)CMC-Na 10g、(NH4)2SO4 1.4 g、MgSO4 0.3gKH2PO4 2g、MnSO4 1.6mg、FeSO4 5mgZnSO4 2.5mg、CoCl2 2.0mg琼脂20g PH7.0(2)保藏培养基(500ml)CMC-Na 15g、MgSO4 0.5g、K2HPO4 1.5g、酵母粉10g NaCl 5g、蛋白胨15g、琼脂20g、刚果红 PH7.0四、实验步骤1.土样采集取自学校校门口小树林5—20cm深处;2.实验器材灭菌:平板、移液管的包扎及灭菌;3.无菌水的制备:量取99ml自来水于250ml锥形瓶中,并放入适量颗玻璃窗珠,塞上棉塞,用牛皮纸包扎,于121?C条件下灭菌20min备用。

量取9ml自来水于试管中,用试管塞塞好,用牛皮纸包扎,于121?C条件下灭菌20min 备用。

4.筛选培养基配制及倒平板:准确按筛选培养基配方称取各物质溶于1000ml蒸馏水中,调节pH7.0。

在高压来菌锅中于121?C高温灭菌20min,取出于无菌环境旧倒平板备用。

5.保藏培养基配制及摆斜面:准确按筛选培养基配方称取各物质溶于1000ml蒸馏水中,调节pH7.0。

分装试管中,在高压来菌锅中于121?C高温灭菌20min,取出摆斜面备用。

6.土样预处理及梯度稀释(1)样品菌悬液的制备先取1g样品,加入到99ml含有玻璃珠的无菌水中,震荡几分钟形成悬液。

(2)梯度稀释:在无菌条件下,用灭好菌的移液管取1ml到装有9ml无菌水的试管中,依次稀释10 -3、10-4、 10-5、 10-6的梯度备用7.倒平板涂布分别取10-4、 10-5、 10-6三个浓度的菌悬液接种到倒好了的平板中,并涂布均匀8.培养、观察、记录实验二产纤维素酶菌种的筛选与保藏一、实验目的1.掌握平板接斜面的操作;2.掌握筛选原则与选择方法。

二、实验原理刚果红能和纤维素结合,纤维素酶能水解纤维素,从而使刚果红在产纤维素酶菌株周围结合到纤维素而形成透明圈,从而选择目标菌落。

微生物繁衍具有容易变异的特性,同时微生物的生长一般离不开生长所需的营养、水分、氧气及环境温度等,在营养缺乏、干燥、隔绝空气、温度低等条件下均可使微生物的代谢处于最不活跃或相对静止的状态而便于保存微生物的特性。

利用微生物的纯培养以确定分离所得的最佳产酶微生物,并进行保存与进一步研究。

通过酶活测定确定初筛菌株的产酶性能;通过培养条件的控制而菌种休眠实现保藏。

三、实验仪器及试剂1.菌种借用实验室的菌种;2.仪器试管、烧杯、电磁炉、电子称、量筒、培养皿、酒精灯、移液枪、接种环、旋转式摇床等;3.培养基摇瓶培养基CMC-Na10g、(NH4)2SO44.0g、MgSO47H2O 0.5g、K2HPO4 1.5g、牛肉膏2g、蛋白胨4g(PH自然定容到1L)四、实验步骤1.在分离产植酸酶黑曲霉的平板上,选择透明圈明显、透明圈直径与菌落直径比值较大的,分离效果最好的单菌落,并做好标记;2.左手拿平板,右手拿接种环,先将金属环烧灼灭菌,再将接种环在空白培养基处冷却,挑取菌落,在火焰旁稍等片刻。

3.左手将平板放下,拿起斜面培养基。

在火焰旁用右手小指和手掌边缘拔下棉塞并夹紧,迅速将接种环伸入空白斜面,在斜面培养基上轻轻划线,将菌体接于其上。

划线时由底部向上划一直线,一直划到斜面的顶部。

4.灼烧试管口,在火焰旁将棉塞塞上,接种完毕,接种环上的余菌必须灼烧灭菌后才能放下。

5.培养:倒置于28至30oC恒温箱中,培养3-7d观察结果。

实验三酶活测定与传代保藏一、实验目的1.了解纤维素酶总酶活测定原理;2.掌握纤维素酶活力检测方法;3.学习传代保藏的操作方法。

二、实验原理纤维素酶在合适的条件下可以分解纤维素,产生葡萄糖等还原糖,与3,5-二硝基水杨酸显色剂(DNS)作用,可生成橙黄色络物。

使用终止反应法,是在恒温反应体系中,每隔一定时间,取出一定体积的反应液,用强酸或强碱或SDS以及加热等使反应立即停止,然后用化学方法放射性化学法或酶偶联法分析产物的形成或底物的消耗量。

这是最经典的的酶活力测定方法,几乎所有的酶都可以根据这一原理设计出具体的测定方法。

本实验使用强碱终止分解反应,通过DNS法进行吸光度的测定。

根据相应的标准曲线,运用比色法可以推算出反应液中葡萄糖的生成量,进而推算出酶的活力。

酶活的定义:在37o C PH5.5的条件下60min水浴,每分钟释放出1umol的单糖为一个酶活单位。

三、实验仪器及试剂1.筛选到的菌种2.仪器:试管、烧杯、电磁炉、电子称、量筒、培养皿、酒精灯、移液枪、接种环、旋转式摇床、分光光度计、恒温水槽、滤纸等;3.试剂:柠檬酸、柠檬酸钠、柠檬酸缓冲液、葡萄糖、DNS等四、实验步骤将筛选到的菌种接入摇瓶,37℃、200转/分下培养3d,制成种子液,取1ml的接种量接入第二次摇瓶培养基中7℃、200转/分下培养。

纤维素酶原酶液的制备方法:取培养液3ml8000r/min离心10min,上清液即为粗酶液。

取1ml粗酶液,加9LPH5.0柠檬酸缓冲液,即为稀释10倍原酶液。

1.纤维素酶的测定还原糖的测定为DNS试剂法,540nm处有紫外光大光吸收峰,在一定范围内还原糖的量与反应液的颜色强度比例关系,利用比色法测定其还原糖生成量就可测定纤维素酶的活力。

(1)纤维素酶活德尔测定A.按下表比例稀释成不同葡萄糖浓度溶液。

标准序号葡萄糖蒸馏水/ml DNS/ml OD540nm标准溶液/ml0 0 1 2.01 0.1 0.9 2.02 0.2 0.8 2.03 0.3 0.7 2.04 0.4 0.6 2.05 0.5 0.5 2.06 0.6 0.4 2.07 0.7 0.3 2.08 0.8 0.2 2.0B.显色反应:在上述试管中分别加入DNS试剂2.0ml,于沸水浴中加热5min进行显色,取出后用流动水迅速冷却,各加入蒸馏水9.0ml,摇匀,在540nm波长处测定吸光值。

以葡萄糖含量(mg/ml)为横坐标,吸光值为纵坐标,绘制标准曲线。

(2)滤纸酶活性(FPA)测定取干净的10ml刻度试管若干,各加入0.5ml稀释10倍的粗酶液和0.5ml0.05mol/L,PH5.0的柠檬酸缓冲液,向对照管中加入0.5mlDNS溶液终止反应。

将试管先在50℃水浴中预热10min,在各加入滤纸条50mg,50℃水浴中保温60min后取出,立即向上述试管中分别加入DNS试剂2.0ml,于沸水浴中加热5min进行显色,取出后用流动水迅速冷却,各加入蒸馏水9.0ml,摇匀,在540nm波长处测定吸光值。

以上酶活测定时间均扣除发酵液中的还原糖后计算,采用国际单位即在上述条件下1min产生1umol葡萄糖为一个活力单位(IU/ml)。

2.菌种传代保藏将菌种接种到在适宜的固体斜面培养基上,待菌充分生长后,棉塞部分用油纸包扎好,移至2-8℃的冰箱保藏。

保藏时间依微生物的种类而有不同,霉菌、放线菌及有芽孢的细菌保存2-4个月,移种一次。

此法为实验室和工厂军追踪室常用的保藏方法,优点是操作简便,使用方便,不需特殊设备,能随时检查所保藏的菌株是否死亡、变异与污染杂菌等。

缺点是容易变异,因为培养基的物理。

化学特性不是严格恒定的,屡次传代会使微生物的代谢改变,而影响微生物的性状,污染杂菌的机会也会较多。

实验四产纤维素酶菌种的紫外诱变育种一、实验目的1.了解紫外诱变育种的原理;2.掌握紫外诱变育种的操作方法。

二、实验原理诱变育种是指用物理。

化学因素诱导动植物的遗传特性发生变异,再从变异群体中选择符合人们某种要求的单株/个体,进而培育成新的品种或种质的育种方法。

它是继选择育种和杂交育种之后发展起来的一项现代育种技术。

常规杂交育种基本上是染色体的重新组合,这种技术一般并不引起染色体发生变异,更难以触及到基因。

当通过辐射将能量传递到生物体内时,生物体内各种分子便产生电离和激发,接着产生许多化学性质十分活跃的自由原子或自由基团。

它们继续相互反应,并与其周围物质特别是大分子核酸和蛋白质反应,引起分子结构的改变。

由此又影响到细胞内的一些生化过程,如DNA合成的终止、各种酶活性的改变等,使个部分结构进一步深刻变化,其中尤其重要的是染色体损伤。

由于染色体断裂和重接而产生的染色体结构和数目变异即染色体突变,而DNA分子结构中碱基的变化则造成基因突变。

相关文档
最新文档