第2章 神经网络 ppt课件

合集下载

神经网络专题ppt课件

神经网络专题ppt课件

(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。

神经网络学习PPT课件

神经网络学习PPT课件
不断迭代,权重逐渐调整到最优解附近。
牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。

BP神经网络ppt

BP神经网络ppt

人工神经网络 是生物神经网络的某种模型(数学模型) 是对生物神经网络的模仿 基本处理单元为人工神经元
1. 生物神经系统与生物神经元
大量生物神经元的广泛、复杂连接,形成生
物神经网络 (Biological Neural Network, BNN)。
实现各种智能活动
生物神经元(neuron)是基本的信息处理单元
(1)生物神经系统
生物神经元(neuron)是基本的信息处理单元, 其组成:
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2 1m =
2 j1
dj f
net
L1 j
2
样本集内所有样本关于该网络的总输出误差
Etotal E
输出层l L 1节点j的净输入
实际输出
nL2
net
L1 j
O L1 L2
ij i
i 1
O L1 j
1
1+e-
net
L1 j
II
输出层的权值iLj 1调整
隐含层 L 2 输出层 L 1
nL2
net
L1 j
=
O L1 L2 ij i
i 1
权值iLj 1对误差E的影响
E
iLj 1
E
net
L1 j
net
L1 j
iLj 1
O L1 L2
j
i
输出层的权值iLj 1调整 iLj 1修正应使误差E最快减小

深度学习之神经网络(CNN-RNN-GAN)算法原理+实战课件PPT模板可编辑全文

深度学习之神经网络(CNN-RNN-GAN)算法原理+实战课件PPT模板可编辑全文
8-1图像生成文本问题引入入
8-5showandtell模型
8-2图像生成文本评测指标
8-4multi-modalrnn模型
8-6showattendandtell模型
8-10图像特征抽取(1)-文本描述文件解析
8-8图像生成文本模型对比与总结
8-9数据介绍,词表生成
8-7bottom-uptop-downattention模型
第6章图像风格转换
06
6-1卷积神经网络的应用
6-2卷积神经网络的能力
6-3图像风格转换v1算法
6-4vgg16预训练模型格式
6-5vgg16预训练模型读取函数封装
6-6vgg16模型搭建与载入类的封装
第6章图像风格转换
单击此处添加文本具体内容,简明扼要的阐述您的观点。根据需要可酌情增减文字,与类别封装
06
7-12数据集封装
第7章循环神经网络
7-13计算图输入定义
7-14计算图实现
7-15指标计算与梯度算子实现
7-18textcnn实现
7-17lstm单元内部结构实现
7-16训练流程实现
第7章循环神经网络
7-19循环神经网络总结
第8章图像生成文本
08
第8章图像生成文本
02
9-9文本生成图像text2img
03
9-10对抗生成网络总结
04
9-11dcgan实战引入
05
9-12数据生成器实现
06
第9章对抗神经网络
9-13dcgan生成器器实现
9-14dcgan判别器实现
9-15dcgan计算图构建实现与损失函数实现
9-16dcgan训练算子实现
9-17训练流程实现与效果展示9-14DCGAN判别器实现9-15DCGAN计算图构建实现与损失函数实现9-16DCGAN训练算子实现9-17训练流程实现与效果展示

神经网络ppt课件

神经网络ppt课件
神经元层次模型 组合式模型 网络层次模型 神经系统层次模型 智能型模型
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s

《BP神经网络》PPT课件 (2)

《BP神经网络》PPT课件 (2)
感知是智能的基础最基本的能力
通过学习取得经验与积累知识的能力
这是人类在世界中能够不断发展的最基本能力。
理解知识,运用知识和经验分析、解决问题的能力
这一能力可以算作是智能的高级形式。是人类对世界进 行适当的改造,推动社会不断发展的基本能力。
2019/11/7
10
人工神经网络的提出
联想、推理、判断、决策语言的能力
去构造一个模型)
用环境)
适应领域 精确计算:符号处理, 非精确计算:模拟处理,感觉,大规模数
2019/11/7
12
人工神经网络的提出
二、人工智能
人工智能:研究如何使类似计算机这样的设备去 模拟人类的这些能力。
研究人工智能的目的
增加人类探索世界,推动社会前进的能力 进一步认识自己
三大学术流派
符号主义(或叫做符号/逻辑主义)学派 联接主义(或者叫做PDP)学派 进化主义(或者叫做行动/响应)学派
神经网络是一个由大量简单的处理单元组 成的高度复杂的大规模非线性自适应系统
ANN力求从四个方面去模拟人脑的智能行为
物理结构 计算模拟 存储与操作 训练
2019/11/7
17
人工神经网络的提出
两种模型的比较
物理符号系统
心理过程
逻辑思维
高级形式(思维的表象)
生理过程
形象思维
低级形式(思维的根本)
仿生
联结主义观点
这是智能的高级形式的又一方面。 预测和认识 主动和被动之分。联想、推理、判断、决策的能
力是主动的基础。
运用进行抽象、概括的能力 上述这5种能力,被认为是人类智能最为基本
的能力
2019/11/7
11
1.1 人工神经网络的提出

神经网络基本介绍PPT课件

神经网络基本介绍PPT课件

神经系统的基本构造是神经元(神经细胞 ),它是处理人体内各部分之间相互信息传 递的基本单元。
每个神经元都由一个细胞体,一个连接 其他神经元的轴突和一些向外伸出的其它 较短分支—树突组成。
轴突功能是将本神经元的输出信号(兴奋 )传递给别的神经元,其末端的许多神经末 梢使得兴奋可以同时传送给多个神经元。
将神经网络与专家系统、模糊逻辑、遗传算法 等相结合,可设计新型智能控制系统。
(4) 优化计算 在常规的控制系统中,常遇到求解约束
优化问题,神经网络为这类问题的解决提供 了有效的途径。
常规模型结构的情况下,估计模型的参数。 ② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测 模型,实现非线性系统的建模。
(2) 神经网络控制器 神经网络作为实时控制系统的控制器,对不
确定、不确知系统及扰动进行有效的控制,使控 制系统达到所要求的动态、静态特性。 (3) 神经网络与其他算法相结合
4 新连接机制时期(1986-现在) 神经网络从理论走向应用领域,出现
了神经网络芯片和神经计算机。 神经网络主要应用领域有:模式识别
与图象处理(语音、指纹、故障检测和 图象压缩等)、控制与优化、系统辨识 、预测与管理(市场预测、风险分析) 、通信等。
神经网络原理 神经生理学和神经解剖学的研究表 明,人脑极其复杂,由一千多亿个神经 元交织在一起的网状结构构成,其中大 脑 皮 层 约 140 亿 个 神 经 元 , 小 脑 皮 层 约 1000亿个神经元。 人脑能完成智能、思维等高级活动 ,为了能利用数学模型来模拟人脑的活 动,导致了神经网络的研究。
(2) 学习与遗忘:由于神经元结构的可塑 性,突触的传递作用可增强和减弱,因 此神经元具有学习与遗忘的功能。 决定神经网络模型性能三大要素为:

智能控制系统 -神经网络-PPT课件

智能控制系统 -神经网络-PPT课件
1 1T 2 Jn () e ( n ) e( n )( e n ) k 2k 2
1 1T 2 J E e ( n ) E e ( n )( e n ) k 2 2 k
13
误差纠正学习
w J 用梯度下降法求解 k 对于感知器和线性网络:
1
感知器网络
感知器是1957年美国学者Rosenblatt提出的 一种用于模式分类的神经网络模型。 感知器是由阈值元件组成且具有单层计算单元 的神经网络,具有学习功能。 感知器是最简单的前馈网络,它主要用于模式 分类,也可用在基于模式分类的学习控制和多 模态控制中,其基本思想是将一些类似于生物 神经元的处理元件构成一个单层的计算网络
w ( p w ) 若 神 经 元 k 获 胜 k j j k j w 0 若 神 经 元 k 失 败 k j
wkj
pj
k
5.2
前向网络及其算法
前馈神经网络(feed forward NN):各神经元接受 前级输入,并输出到下一级,无反馈,可用一 有向无环图表示。 图中结点为神经元(PE):多输入单输出,输 出馈送多个其他结点。 前馈网络通常分为不同的层(layer),第i层的输入 只与第i-1层的输出联结。 可见层:输入层(input layer)和输出层(output layer) 隐层(hidden layer) :中间层
5.1
神经网络的基本原理和结构
1
神经细胞的结构与功能
神经元是由细胞体、树突和轴突组成
图 生物神经元模型
神经网络的基本模型
2
人工神经元模型
人工神经网络是对生物神经元的一种模拟和简化,是 神经网络的基本处理单元。
神经元输出特性函数常选用的类型有:

《神经网络》PPT幻灯片PPT

《神经网络》PPT幻灯片PPT
➢因此,类神经网络在选取启动函数时,不能够使用 传统的线性函数,通常来说会选择兼具正向收敛与 负向收敛的函数。
20
2.阶梯(step)启动函数的一般形式:
f Ij
,Ij 0 ,Ij 0
阶梯启动函数又称阈值(threshold)启动函
数。当 时1,,得0到
1
f Ij 0
,Ij 0 ,Ij 0
输入层只从外部环境接收信息,该层的每 个神经元相当于自变量,不完成任何计算 ,只为下一层传递信息。
输出层生成最终结果,为网络送给外部系 统的结果值。
13
隐藏层介于输入层和输出层之间,这些层 完全用于分析,其函数联系输入层变量和 输出层变量,使其更拟合(fit)资料。
隐藏层的功能主要是增加类神经网络的复 杂性,以能够模拟复杂的非线性关系。
一个神经元 j,有阈值,从上一层连接的 神经元得到n个输入变量X,每个输入变 量附加一个链接权重w。
输入变量将依照不同权重加以合并(一般 是加权总和),链接成组合函数( combination function),组合函数的值称 为电位(potential);然后,启动(转换 、激活、赋活)函数(activation function) 将电位转换成输出信号。
隐藏层的多少要适当,过多容易过度拟合 。
一层加权神经元的网络称单层感知器,多 层加权神经元的网络称多层感知器( multi-layer perceptrons)。
14
神经网络的形式:
一个 输出 元的 两层 神经 网络
15
一 个输 出元 的三 层神 经网 络
16
多个输出元的三层神经网络
17
三、神经元的结构
类神经网络可以处理连续型和类别型的数 据,对数据进行预测。

神经网络基础PPT课件

神经网络基础PPT课件

AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。

2人工神经网络基础知识PPT课件

2人工神经网络基础知识PPT课件

.
7
2.2人工神经元模型
人工神经网络是在现代神经生物学研究基础上提出的模 拟生物过程以反映人脑某些特性的计算结构。它不是人脑神 经系统的真实描写,而只是它的某种抽象、简化和模拟。根 据前面对生物神经网络的研究可知,神经元及其突触是神经 网络的基本器件。因此,模拟生物神经网络应首先模拟生物 神经元。
为简便起见,省去式中(t),而且常用向量表示
ne'tj WjT X
式中 W j和X 均为列向量:
X [x 1 x 2 .x .n ] .T ,W j [w 1 w 2 .w .n ] .T
若令 x0 1 ,w 0j,则 . w 0x 有 0j,则激 n表 e活 t 为
n
nejt wijxi WjTX
人的智能来自于大脑,大脑是由大量的神经细胞或神经元 组成的。每个神经元可以看作为一个小的处理单元,这些神经 元按照某种方式互相连接起来,构成了大脑内部的生物神经元 网络,他们中各神经元之间连接的强弱,按照外部的激励信号 作自适应变化,而每个神经元又随着接收到的多个激励信号的 综合大小呈现兴奋或抑制状态。据现在的了解,大脑的学习过 程就是神经元之间连接强度随外部激励信息做自适应变化的过 程,大脑处理信息的结果确由神经元的状态表现出来。显然, 神经元是信息处理系统的最小单元。虽然神经元的类型有很多 种,但其基本结构相似,生物学中神经元结构如图所示。
数。
.
9
上述约定是对生物神经元信息处理过程的简化和概括,它清晰 地描述了生物神经元信息处理的特点,而且便于进行形式化表 达。通过上述假定,人工神经元的结构模型如图所示。
.
10
人工神经元的数学模型描述:
第j个神经元,接受多个其它神经元i在t时刻的输入xi(t),引起 神经元j的信息输出为yj(t):

机器学习与应用第02讲人工神经网络ppt课件

机器学习与应用第02讲人工神经网络ppt课件

1
w(2) 21
y1
w222
y2
w223
y3
w224
y4
b22
神经网络每一层完成的变换
ul Wlxl1 bl
xl f ul
权重矩阵的每一行为本层神经元与上一层所有神经 元的连接权重
激活函数分别作用于每个神经元的输出值,即向量 的每个分量,且使用了相同的函数
内积 加偏置
激活函数
w11l
以下面的3层网络为例:
输入层
隐含层
输出层
激活函数选用sigmoid:
f
x
1
1 exp
x
隐含层完成的变换:
y1 1 exp
1
w(1) 11
x1
w112 x2
w113 x3
b11
1
y2 1 exp
w(1) 21
x1
w212 x2
w213 x3
b21
y3 1 exp
1
w(1) 31
分类问题-手写数字图像识别
28 28
输入层有784个神经元
隐含层的神经元数量根据需要设定
0 1 2 3 4 5 6 7 8 9
输出层有10个神经元
回归问题-预测人脸关键点 神经网络直接为输入图像预测出关键点的坐标(x, y)
反向传播算法简介 解决神经网络参数求导问题 源自微积分中多元函数求导的链式法则 与梯度下降法配合,完成网络的训练
y1
w122
y2
w132
y3
w142
y4
b12
z2 1 exp
1
w(2) 21
y1
w222
y2
w223
y3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟神经元的细胞体 加工和处理信号
模拟神经元的轴突 控制信号的输出
模拟神经元的突触 对结果进行输出
人工神 经元结 构功能 示意图
x1
w1
x2
w2
x3
w3
…………wn
xn

输出f
结果
f
(
x1,
x2
,……,
xn
)

1
,
if
n i =1
xi wi

0 , otherwise
ppt课件
第2章 神经网络
Contents
1 神经网络简介
2 神经网络的典型结构
3 神经网络的学习算法 4 BP神经网络
5 进化神经网络
6 神经网络的应用
ppt课件
2
2.1 神经网络简介
什么是神经网络?
神经网络(Neural Network,NN)一般 也称为人工神经网络(Artificial Neural Network,ANN),是科学家们在对生物的神 经元、神经系统等生理学的研究取得了突破 性进展以及对人脑的结构、组成和基本工作 单元有了进一步认识的基础上,通过借助数 学和物理的方法从信息处理的角度对人脑神 经网络进行抽象后建立的简化模型。
ppt课件
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
20世纪90年代中后期,神经网 络研究进入了一个新的发展阶 段,一方面已有理论在不断地 深化和得到进一步推广,另一 方面,新的理论和方法也在不 断出现。 光学神经网络、混沌神经网络、 模糊神经网络、进化神经网络 等新模型陆续出现。
ppt课件
8
2.1.2 研究进展
重要学术期刊
IEEE Transactions on Neural Networks IEEE Transactions on Systems, Man and
由于这种网络结构相对简单,因此能力也非常的 有限,一般比较少用
单网
y1
……
yi
……
yn
层络
感示 知意
……
……
器图
x1
……
xi
……
xn
ppt课件
13
2.2.2 前馈型网络
前馈型网络的信号由输入层到输出层单向传输
每层的神经元仅与其前一层的神经元相连,仅接受前一层传输来的信息
是一种最为广泛使用的神经网络模型,因为它本身的结构也不太复杂, 学习和调整方案也比较容易操作,而且由于采用了多层的网络结构,其 求解问题的能力也得到明显的加强,基本上可以满足使用要求
6
2.1.2 研究进展
启蒙萌芽时期 1940s至1960s
1943年McCullonch和Pritts提 出了M-P模型,该模型提出了 神经元的数学描述和网络的结 构方法,这标志着神经网络计 算时代的开始。 1957年Rosenblatt定义一个称 为感知器的神经网络结构,第 一次把神经网络从纯理论的探 讨推向了工程实现,掀起了神 经网络研究的高潮。
x1
……
y1
……
……
……
……
……
xi
……
yi
……
……
……
……
……
xn
……
yn
ppt课件
14
2.2.3 前馈内层互联网络
这种网络结构从外部看还是一个前馈型的网络, 但是内部有一些节点在层内互连
x1
……
y1
…… ……
…… ……
……
xi
……
yi
…… ……
…… ……
……
xn
……
yn
ppt课件
15
2.2.4 反馈型网络
按对生物神经系统的层次模拟区分
神经元层次模型 组合式模型 网络层次模型 神经系统层次模型 智能型模型
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
ppt课件
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
Cybernetics Journal of Artificial Neural Networks Journal of Neural Systems Neural Networks Neural Computation Networks Computation in Neural Systems Machine Learning……
ppt课件
3
2.1.1 基本原理
生物神经元基本结构示意图树突Fra bibliotek突触细胞体
细胞核
轴突末梢
轴突
ppt课件
4
2.1.1 基本原理
生物神经元
•树突 •细胞体 •轴突 •突触
类比关系
•输入层 •加权和 •阈值函数 •输出层
人工神经元
ppt课件
5
2.1.1 基本原理
输入层
加权和
阈值函数
输出层
模拟神经元的树突 接收输入信号
ppt课件
10
2.2 神经网络的典型结构
按网络的结构区分
前向网络 反馈网络
按学习方式区分
有教师(监督)学习网络 无教师(监督)学习网络
按网络的性能区分
连续型和离散型网络 随机型和确定型网络
ppt课件
11
2.2 神经网络的典型结构
按突触性质区分
一阶线性关联网络 高阶非线性关联网络
y1
这种网络结构在输入输出之 间还建立了另外一种关系, 就是网络的输出层存在一个 反馈回路到输入层作为输入 层的一个输入,而网络本身 还是前馈型的
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
低潮反思时期 1960s至1970s
Minsky和Papert在1969年发 表论著《Perceptrons》指出 感知器仅能解决一阶谓词逻 辑,只能完成线性划分,对 于非线性或者其他分类会遇 到很多困难,就连简单的 XOR(异或)问题都解决不 了。由此,神经网络的研究 进入了反思期。
ppt课件
7
2.1.2 研究进展
复兴发展时期 1980s至1990s
1982年Hopfield提出的全连 接网络模型才使得人们对神 经网络有了重新的认识,开辟 了一条新的研究道路。1986 年Rumelhart等人提出的反 向传播算法,使Hopfield模 型和多层前馈神经网络成为 应用最广泛的神经网络模型 之一。
新的发展时期 1990s中后期之后
相关文档
最新文档