压力变送器参数智能压力差压变送器工作原理

合集下载

差压变送器的工作原理

差压变送器的工作原理

差压变送器的工作原理
差压变送器是一种测量流体或气体差压的设备,其工作原理如下:
1. 流体或气体进入差压变送器的两个连接口,并在连接口处形成差压。

2. 差压作用于连接口处的感应装置,感应装置通常由弹簧和膜片组成。

差压的变化会使膜片产生位移,而弹簧则会对膜片产生恢复力。

3. 位移的膜片连接到一个传感器装置上,传感器通常是由应变片或电容器组成。

当膜片位移时,传感器装置会相应地产生电信号。

4. 电信号由电路处理,转换为标准的电压、电流或数字信号输出。

5. 输出信号传输到控制系统或显示设备,供用户分析和判断。

整个过程中,差压变送器通过感应装置和传感器装置将流体或气体的差压转化为电信号输出。

这样通过测量差压的变化,我们可以获取到流体或气体的相关信息,如流量、压力等。

差压变送器广泛应用于化工、电力、石油、冶金等行业中的流体流量、压力等参数的测量和控制。

差压式压力变送器工作原理

差压式压力变送器工作原理

差压式压力变送器工作原理1. 引言哎呀,今天咱们要聊聊一个看似有点冷冰冰的东西——差压式压力变送器。

听着是不是有点高深?别担心,咱们就像喝茶聊天一样,轻松聊聊它的工作原理,让它不再神秘,变得亲切可爱。

毕竟,这玩意在工业里可是个“老江湖”,对测量和控制有着举足轻重的作用。

2. 什么是差压式压力变送器2.1 定义首先,差压式压力变送器,顾名思义,就是用来测量两个不同压力之间差异的设备。

想象一下,就像你在双十一抢购的时候,左手一件衣服,右手一双鞋,最后决定买哪一个一样,变送器就帮我们找出哪个压力“更具优势”。

它的主要任务,就是把这种压力差转化成电信号,方便后面的设备处理。

2.2 工作原理那么,它是怎么做到的呢?其实,它的工作原理就像一个小侦探,潜入不同的环境中,偷偷观察左右两边的“情况”。

在变送器的内部,有两个压力传感器分别感应这两个不同的压力。

咱们可以把它想象成一位敏锐的裁判,正在看哪一边的压力更强。

通过这两个传感器,它会计算出压力的差值,然后把这个数字通过电信号传递给控制系统。

真是个聪明的家伙,对吧?3. 应用场景3.1 工业领域差压式压力变送器可不是闲着没事做,它在很多地方都能派上用场。

比如,在化工厂、石油炼制、供水系统等地方,压力的变化关系到安全与效率。

压力如果失控了,那可不是开玩笑的事儿!通过变送器的实时监测,工作人员就能及时发现异常,做出反应,确保生产顺利进行。

3.2 日常生活听起来工业是它的主场,但其实,它在我们的日常生活中也有一席之地。

比如说,在一些空调系统里,差压变送器可以监控空气流通的情况,确保空气的顺畅流动,给我们带来舒适的居住环境。

这就好比你在家里调节空调温度,最终让自己享受一个“冰爽”的夏天。

4. 优势与挑战4.1 优势那么,这种变送器有什么优势呢?首先,它的结构简单,维护起来也比较方便。

再者,测量范围广,适用于各种环境。

更重要的是,它的响应速度快,能实时反映出压力的变化,真是个快手!在现代工业中,时间就是金钱,慢半拍可就错过机会了。

压差变送器工作原理

压差变送器工作原理

压差变送器工作原理
压差变送器是一种常用的工业测量仪表,它可以将流体压力转换成标准信号输出,广泛应用于石油、化工、冶金、电力等行业。

它的工作原理主要是基于流体力学和压力传感器的原理。

首先,压差变送器通过测量流体在管道中的压力差来实现流量、液位、密度等
参数的测量。

当流体在管道中流动时,会产生压力差,而压差变送器就是利用这个压力差来进行测量的。

它通过安装在管道上游和下游的两个压力传感器来实现压力差的测量,然后将测得的压力差信号转换成标准信号输出。

其次,压差变送器的工作原理还与差压原理有关。

差压原理是指在管道中设置
一个节流装置,使流体通过节流装置时产生压力差,而这个压力差与流体的流速成正比。

压差变送器通过测量这个压力差来确定流体的流速,从而实现流量的测量。

同时,压差变送器还可以根据流体的密度和压力差来计算流体的质量流量。

此外,压差变送器还可以通过测量流体的静压来实现液位的测量。

当流体的静
压发生变化时,压差变送器可以将这个变化转换成标准信号输出,从而实现对液位的监测和控制。

总的来说,压差变送器的工作原理是基于流体力学和压力传感器的原理,通过
测量流体的压力差、流速、密度和静压来实现对流体参数的测量和监测。

它在工业生产中起着非常重要的作用,为生产过程的自动化和智能化提供了可靠的技术支持。

压差变送器工作原理

压差变送器工作原理

压差变送器工作原理压差变送器是一种用于测量流体压力差的设备,它将压力差转换为标准信号输出,常用于工业自动化控制系统中。

压差变送器的工作原理主要基于流体静压力和动压力的差异,下面将详细介绍压差变送器的工作原理。

1. 流体静压力流体静压力是指流体在静止状态下由于重力作用而产生的压力。

当流体处于静止状态时,它对容器壁面和底部产生的压力称为静压力。

流体静压力与流体的密度和高度成正比,与重力加速度成正比。

在垂直高度上,流体的静压力可以表示为P = ρgh,其中P为静压力,ρ为流体密度,g为重力加速度,h为流体的高度。

2. 流体动压力流体动压力是指流体在运动状态下由于速度变化而产生的压力。

当流体以一定速度通过管道或孔口时,它具有动能,这种动能转化为压力称为动压力。

流体动压力与流体密度和流体速度的平方成正比。

动压力可以表示为q = 0.5ρv^2,其中q为动压力,ρ为流体密度,v为流体速度。

3. 压差变送器的工作原理压差变送器通常由两个测量腔室和一个传感器组成。

当流体通过管道或孔口时,流体的速度和静压力会发生变化,导致两侧的压力不同。

压差变送器的两个测量腔室分别连接到管道的两侧,当流体通过管道时,压差变送器测量腔室内的压力差,并将其转换为标准信号输出。

当流体速度增加时,动压力增加,导致测量腔室内的压力增加;当流体速度减小时,动压力减小,导致测量腔室内的压力减小。

同时,流体的静压力也会随着管道高度的变化而变化,从而影响测量腔室内的压力。

压差变送器的传感器可以测量测量腔室内的压力差,并将其转换为标准信号输出,如电流信号或电压信号。

通过测量腔室内的压力差,压差变送器可以准确地测量流体的速度和静压力,从而实现对流体压力差的测量和控制。

4. 应用领域压差变送器广泛应用于工业自动化控制系统中,如化工、石油、电力、冶金、水利等领域。

它可以用于测量流体流速、流量、液位、压力等参数,实现对流体系统的监测、控制和调节。

压差变送器具有测量精度高、响应速度快、可靠性高等优点,是工业自动化控制系统中不可或缺的重要设备。

压力变送器工作原理

压力变送器工作原理

压力变送器工作原理压力变送器是一种常用的工业自动化仪器,用于测量液体或气体的压力,并将压力信号转换为标准的电信号输出。

本文将详细介绍压力变送器的工作原理。

一、压力变送器的基本构成1.1 压力传感器:用于感应被测介质的压力,并将压力转换为电信号。

1.2 信号调理电路:对传感器输出的信号进行放大、滤波、线性化等处理。

1.3 输出部分:将处理后的信号转换为标准的电信号输出,通常为4-20mA或0-10V。

二、压力变送器的工作原理2.1 压力传感器感应压力:当被测介质施加压力时,压力传感器内部的压力敏感元件(如应变片、电容器等)会产生位移或变化。

2.2 信号调理电路处理信号:传感器输出的微弱信号经过信号调理电路的放大、滤波等处理,使其符合标准的电信号输出要求。

2.3 输出部分输出电信号:经过处理后的信号被转换为标准的电信号输出,用于连接控制系统或显示仪表。

三、压力变送器的工作原理3.1 压力传感器的选择:根据被测介质的性质、测量范围、工作环境等因素选择合适的压力传感器。

3.2 信号调理电路的设计:根据传感器输出信号的特点设计合适的信号调理电路,确保输出信号的准确性和稳定性。

3.3 输出部分的校准:对输出部分进行校准,确保输出的电信号符合标准要求,提高测量的准确性。

四、压力变送器的应用领域4.1 工业自动化:压力变送器广泛应用于工业自动化领域,用于监测各种液体或气体的压力。

4.2 石油化工:在石油化工生产过程中,压力变送器用于监测管道压力、储罐压力等参数。

4.3 汽车制造:汽车制造过程中需要对发动机油压、制动系统压力等进行监测,压力变送器可以实现这些测量。

五、压力变送器的发展趋势5.1 远程监测:随着物联网技术的发展,压力变送器将更多应用于远程监测和控制领域。

5.2 智能化:压力变送器将逐渐实现智能化,具备自动校准、故障诊断等功能。

5.3 多参数测量:未来压力变送器可能会实现多参数(如温度、流量等)的同时测量,提高测量的全面性和准确性。

压差变送器的原理及应用

压差变送器的原理及应用

压差变送器的原理及应用
压差变送器是一种用于测量流体压力差的传感器。

它基于差压的概念,通过测量两个不同位置的压力,计算出流体通过管道时所产生的压力差,并将其转换为标准信号输出。

压差变送器由传感器元件、信号处理电路和输出装置组成。

压差变送器的工作原理如下:其传感器元件将被测介质进入传感器后产生的压力差转化为电信号,然后经过信号处理电路的放大、线性化处理,最后转换为标准的电流信号(如4-20mA)或电压信号(如0-5V)输出。

这一电信号可以被控制室或仪表读取,并根据其数值进行相应的控制或显示。

压差变送器的应用非常广泛。

首先,它被广泛应用于工业控制系统中。

例如,在化工工艺控制中,可以使用压差变送器测量管道中的流量,从而实现对工艺参数的精确控制。

此外,压差变送器还可用于测量液位、温度和流速等多个工艺参数。

其次,压差变送器也广泛用于环境监测领域。

例如,可以将压差变送器安装在大气压力传输系统中,用于测量大气压力的变化。

此外,压差变送器还可用于测量气体或液体的压力,以监测环境中特定区域的气体或液体压力变化,从而实现对环境的监测和控制。

此外,压差变送器还经常用于设备运行状态监测中。

例如,在空气处理系统中,可以使用压差变送器测量过滤器的压差,从而判断过滤器是否需要更换。

类似地,它还可以测量机械设备中的冷却水压力差,以判断设备的工作状态。

总之,压差变送器是一种将压力差转换为电信号的传感器,可广泛应用于工业控制、环境监测和设备状态监测等领域。

在实际应用中,我们可以根据具体的需求选择适合的压差变送器型号和参数,以满足不同场合的测量要求。

差压变送器的工作原理

差压变送器的工作原理

差压变送器的工作原理差压变送器 (Differential Pressure Transmitter) 是一种重要的测量仪表,它通过检测压力变化而输出一个信号,从而对压力变化进行测量,并且可以使用这种信号来控制设备的性能。

它的结构形式可以分为电气形式和机械差压变送器。

本文将简要介绍电气形式的差压变送器的工作原理。

差压变送器的工作原理是在翻译压力变化到电气信号的过程中,由一个活检测元件和一个转换变换器组成。

活检测元件结构复杂,常见的有压阻式、变容式、电阻式与可变容积式等。

压阻式活检测元件是由若干螺纹融合在一起,在嵌入式传感器中,采用精密的抗弯梁形状,有两个压力室,就可以测量压力差。

压阻式活检测元件的传感器元件的变化会影响元件的电阻,这种变化会反映在电气信号上。

变容式活检测元件采用一个圆柱形或椭圆柱形夹套,在活检测元件内装有一个容积(常为液体或油),由带有两个压力室的柱形传感器组成。

当压力变化时,液体或油的容积也会发生变化,并由此反映在电气信号上。

电气变送器外壳几乎总是采用不锈钢材料制成,外壳中常填充绝缘物体,例如可塑料、油、沥青等,以防止外界的无形气流,比如雨水或灰尘粉末的侵入,以保证变送器的正常工作。

也许会添加一个双屏蔽保护外壳,多数情况下它们都采用电气连接,当压力变化时,传感器件经过电路再次转换后,将压力变化转化为电信号,并可输出4~20mA,0~10VDC或0~5VDC等标准电信号,这些电气信号具有可靠的信号可被电脑、指示器等数据处理器接收,从而控制系统其它部件的性能。

综上,差压变送器的工作原理是:用活检测元件检测压力变化,转换变换器将压力变化转变为电气信号,传送给数据处理器,控制设备的性能。

差压变送器的工作原理

差压变送器的工作原理

差压变送器的工作原理差压变送器是一种常用的工业自动化测量仪器,它主要用于测量流体的压力差,从而实现对流体流量、液位、密度等参数的测量和控制。

差压变送器的工作原理十分简单,但却十分重要,下面我们将详细介绍差压变送器的工作原理。

首先,差压变送器是通过测量流体在管道中的压力差来实现对流体参数的测量和控制的。

它通常由测压单元、信号处理单元和输出单元组成。

测压单元通过测量管道中两点之间的压力差来获取差压信号,然后将信号传递给信号处理单元进行处理,最后输出单元将处理后的信号转换成标准信号输出,以供显示和控制系统使用。

其次,差压变送器的测压单元通常采用压力传感器,通过传感器感应管道内流体的压力,然后将压力信号转换成电信号输出。

信号处理单元接收到压力信号后,对信号进行放大、滤波、线性化等处理,最终输出标准信号。

输出单元通常将标准信号转换成4-20mA电流信号或0-10V电压信号输出,以供显示仪表或控制系统使用。

此外,差压变送器的工作原理还涉及到差压测量的原理。

差压测量是通过测量管道两点之间的压力差来获取流体的流量、液位等参数的。

差压变送器通过安装在管道上的测压单元感应管道内的压力差,然后将压力差信号转换成标准信号输出,以供显示仪表或控制系统使用。

最后,差压变送器的工作原理还涉及到压力测量的原理。

压力测量是通过测量流体对单位面积的压力来获取流体的压力参数的。

差压变送器通过测量管道内流体的压力差来实现对流体参数的测量和控制,从而实现对流体流量、液位、密度等参数的测量和控制。

总之,差压变送器的工作原理是通过测量管道内流体的压力差来实现对流体参数的测量和控制的。

它通过测压单元、信号处理单元和输出单元的协同工作,将管道内的压力差转换成标准信号输出,以供显示仪表或控制系统使用。

差压变送器在工业自动化控制中起着至关重要的作用,是不可或缺的测量仪器之一。

差压变送器的工作原理

差压变送器的工作原理

差压变送器的工作原理
首先,差压变送器通过安装在管道中的测压孔来测量流体在管道中的压力差。

当流体在管道中流动时,它会受到管道壁和阻力的作用,从而产生压力差。

差压变送器通过测量管道两侧的压力来获取这个压力差值,然后将其转换成标准信号输出。

其次,差压变送器的工作原理还涉及到流体静力学的原理。

根据流体静力学,
流体在管道中流动时会产生静压力,即流体静压力=液体密度×重力加速度×流体
高度。

差压变送器利用这一原理,通过测量管道两侧的静压力来计算流体的流量、液位或密度。

此外,差压变送器还利用泊松方程来实现流量、液位或密度的测量。

泊松方程
是描述流体静力学的重要方程之一,它可以表达流体在管道中流动时的压力分布和压力差。

差压变送器通过测量管道两侧的压力,并结合泊松方程来计算流体的流量、液位或密度。

总的来说,差压变送器的工作原理是基于流体静力学和泊松方程的原理,通过
测量管道两侧的压力差来实现流量、液位或密度的测量。

它在工业生产中起着重要的作用,广泛应用于化工、石油、电力、水利等领域。

希望通过本文的介绍,能让大家对差压变送器的工作原理有更深入的了解。

压力变送器的原理和分类

压力变送器的原理和分类

压力变送器的原理和分类压力变送器是一种常见的工业自动化仪表,用于测量介质中的压力,并将其转换为标准的电信号输出。

本文将介绍压力变送器的工作原理以及常见的分类。

一、压力变送器的工作原理压力变送器主要由压力传感器和信号转换电路组成。

其工作原理简单来说,当介质中存在压力时,压力传感器会感受到压力的变化,并将其转换成电信号。

信号转换电路进一步处理这个电信号,将其转换成标准的电流信号(例如4-20mA)或电压信号(例如0-10V),用于传输或控制。

常见的压力传感器有压阻式、压电式、静电式、压差式等。

其中,压阻式传感器是最常见的一种。

它由电阻片和变形片组成,当受到外界压力作用时,变形片会变形,导致电阻值的变化。

压力变送器会内置一个称为“桥式电路”的电路,用来测量电阻值的变化,并将其转换成标准的电信号输出。

二、压力变送器的分类根据测量压力的范围和应用领域的不同,压力变送器可以分为多种类型。

1. 绝对压力变送器(Absolute Pressure Transmitter)绝对压力变送器主要用于测量相对于真空的绝对压力。

例如,用于测量大气压力,通过将其设置为参考点,可以测量其他压力相对于大气压力的变化。

2. 相对压力变送器(Gauge Pressure Transmitter)相对压力变送器用于测量相对于环境压力的压力变化。

例如,工业生产中常见的管道压力测量,相对压力变送器可以将管内介质的压力转换为电信号输出。

3. 差压变送器(Differential Pressure Transmitter)差压变送器用于测量两个不同位置之间的压力差异。

常见的应用包括流量计算、过滤器堵塞检测等。

差压变送器通常具有两个输入端口,分别与两个测量点相连,并将压力差转换为电信号输出。

4. 绝对差压变送器(Absolute Differential Pressure Transmitter)绝对差压变送器也是一种用于测量压力差的变送器,但它测量的是绝对压力差,即考虑了大气压力的影响。

压力变送器的工作原理

压力变送器的工作原理

压力变送器的工作原理压力变送器是一种广泛应用于工业控制领域的仪器,它能够将被测物体的压力信号转换为标准的电信号输出。

本文将介绍压力变送器的工作原理和相关的技术参数。

一、压力变送器的结构压力变送器主要由感应元件、信号处理电路和输出电路三部分组成。

感应元件通常采用压阻式传感器或压电式传感器,用于对压力信号进行感应和转换。

压阻式传感器是通过将变化的压力作用在感应膜片上,从而导致电阻的变化,来实现压力信号的转换。

而压电式传感器则是利用压电晶体在受力时产生电荷,从而产生电压信号。

信号处理电路主要用于对感应元件输出的压力信号进行放大、滤波和线性化处理,以确保输出的电信号符合工业控制的要求。

同时,信号处理电路还可根据需要进行温度补偿和故障诊断等功能。

输出电路将经过处理的信号转换为标准的电信号输出,通常为4-20mA的电流信号,也可选择0-5V、0-10V等电压信号输出。

输出电路还需提供对其它仪器设备的二次输入的保护功能,以避免对其它设备的损坏。

二、压力变送器的工作原理可分为以下几个步骤:1. 压力传感:被测介质的压力作用在感应元件上,产生应变或电荷。

2. 信号转换:感应元件将应变或电荷转换为电信号。

3. 信号放大:信号处理电路对电信号进行放大,增强其灵敏度和稳定性。

4. 信号调理:信号处理电路对电信号进行滤波、线性化和温度补偿等处理,以获得准确可靠的输出信号。

5. 信号输出:输出电路将处理后的信号转换为标准的电信号输出。

常见的输出形式为4-20mA电流信号或0-10V电压信号。

三、压力变送器的技术参数在选择和应用压力变送器时,需要了解和考虑一些重要的技术参数,包括量程范围、准确度、稳定性、响应时间、耐压能力等。

1. 量程范围:压力变送器所能测量的最大和最小压力范围,通常以单位为MPa或bar表示。

2. 准确度:压力变送器输出信号与被测压力的实际值之间的偏差,一般以百分比或绝对值来表示。

3. 稳定性:压力变送器长期稳定工作的能力,包括零点稳定性和满刻度稳定性。

差压变送器原理

差压变送器原理

差压变送器原理
差压变送器是一种用来测量两个不同位置之间的压力差的仪器。

它可以将差压信号转换为标准电信号输出,常用于工业过程控制和自动化领域。

差压变送器的工作原理基于压力差引起的力的平衡关系。

通常,差压变送器由两个压力接口、扁平弹簧和力平衡器组成。

当压力差存在时,位于差压变送器两个接口的压力力量会分别作用在弹簧两侧的力平衡器上。

当弹簧受到不平衡的力时,它会迅速移动并引起一个机械结构的变化。

力平衡器的移动会导致一个电阻力量的变化,这个变化会被传感器捕捉并转换成标准电信号。

这个信号可以通过连接到差压变送器的电缆传输到控制室或其他处理设备上。

差压变送器的输出信号可以被用来控制其他设备,比如打开或关闭阀门、调节液位或流量等。

利用差压变送器可以实现对不同位置的压力差进行实时监测和控制,从而提高工业过程的效率和安全性。

总之,差压变送器通过测量两个不同位置之间的压力差,将其转换为标准电信号输出,实现对压力差的实时监测和控制。

这在工业过程控制和自动化领域中具有重要的应用价值。

差压变送器原理及用途

差压变送器原理及用途

差压变送器原理及用途差压变送器(Differential Pressure Transmitter)是一种测量两个不同压力之间差值的设备,通常用于监测和控制工业过程中的液体或气体流量、液位和压力等参数。

它基于差压原理工作,通过测量流体在管道或容器中的压力差来实现对参数的监测和控制。

差压变送器通常由以下几个主要组成部分构成:传感器、放大器、显示器和输出信号接口。

传感器是差压变送器的核心部件,它可以将流体的压力差转化为电信号。

传感器中最常用的元件是压阻式传感器和压电式传感器。

放大器可以将传感器输出的微弱电信号放大,并进行线性校准和滤波处理。

显示器可以将经过处理的信号转化为易于读取的数值,并可选配报警功能。

输出信号接口用于将处理后的信号传输给控制系统,通常采用模拟信号输出(如4-20mA)或数字信号输出(如HART协议)。

差压变送器的用途非常广泛。

其主要应用领域包括但不限于以下几个方面:1. 流量测量:差压变送器可以测量流体在管道中的压差,并基于流体力学原理计算出流体的实际流量。

在工业生产中,流量测量是很重要的参数,例如石油化工、水处理、食品饮料等行业都需要对流体的流量进行准确测量和控制。

2. 液位测量:差压变送器可以通过测量容器底部和液面之间的压差来计算液位高度。

在储罐、水箱、污水处理等场合,液位测量是必要的,差压变送器广泛应用于这些领域。

3. 压力测量:差压变送器不仅可以测量流体的差压,也可以用于测量单一压力值。

通过将一个压力接口通向待测压力的测量点,然后将另一个压力接口接地,就可以测得待测压力值。

4. 液体和气体测量:差压变送器可以用于测量液体和气体的密度、黏度和粘度等参数。

通过与流量计、温度传感器等配合使用,可以实现复杂的流体流量和能量计算。

5. 控制和监测系统:差压变送器是工业自动化控制系统的重要组成部分,它与PLC、DCS等控制设备配合使用,用于控制某些参数的变化,并监测设备或管道的运行状况。

差压变送器原理

差压变送器原理

差压变送器原理
差压变送器是一种常用的工业仪表,用于测量管道中的流体流速和流量。

它的
原理是利用流体在管道中流动时产生的压力差来进行测量。

差压变送器通常由测压管、传感器和电子元件组成,通过测量流体流过管道时的压力差来计算流速和流量。

差压变送器的工作原理是基于伯努利定律和皮托管原理。

伯努利定律表明,在
管道中流动的流体速度越快,压力越低,而流速越慢,压力越高。

而皮托管原理则是利用管道中的两个孔,一个位于流体流速较快的地方,另一个位于流速较慢的地方,通过测量两个孔的压力差来计算流速和流量。

差压变送器在工业生产中有着广泛的应用,特别是在化工、石油、电力等行业。

它可以用来测量液体、气体和蒸汽等不同介质的流速和流量,对于控制和监测生产过程起着至关重要的作用。

除了测量流速和流量外,差压变送器还可以用于测量液体、气体和蒸汽的密度、粘度和温度等参数。

它的高精度、稳定性和可靠性使其成为工业自动化控制系统中不可或缺的一部分。

总之,差压变送器原理是基于流体在管道中流动时产生的压力差来进行测量,
通过测量流体流过管道时的压力差来计算流速和流量。

它在工业生产中有着广泛的应用,对于控制和监测生产过程起着至关重要的作用。

智能压力变送器校准方法 压力变送器是如何工作的

智能压力变送器校准方法 压力变送器是如何工作的

智能压力变送器校准方法压力变送器是如何工作的智能压力变送器真正的校准是需要用一台标准压力源输入变送器的。

由于不使用标准器而调量程(LRV、URV)不是校准,疏忽输入部分(输入变送器的压力)来进行输出调整(变送器的转换电路)不是正确的校准。

再者压力、差压检测部件与A/D转换电路、电流输出的关系并不对等,校准的目的就是找准三者的变化关系。

强调一点:只有对输入和输出(输入变送器的压力、A/D转换电路、环路电流输出电路)一齐调试,才称得上是真正意义上的校准。

一、智能压力变送器准备工作压力源通过胶皮管与自制接头相连接,关闭平衡阀门,并检查气路密封情况,然后把电流表(电压表)、手操器接入压力变送器输出电路中,通电预热后开始校准。

我们知道不管什么型号的差压变送器,其正、负压室都有排气、排液阀或旋塞;这就为我们现场校准E+H差压变送器供应了便利,也就是说不用拆除导压管就可校准差压变送器。

对差压变送器进行校按时,先把三阀组的正、负阀门关闭,打开平衡阀门,然后旋松排气、排液阀或旋塞放空,然后用自制的接头来代替接正压室的排气、排液阀或旋塞;而负压室则保持旋松状态,使其通大气。

二、常规差压变送器的校准先将阻尼调至零状态,先调零点,然后加满度压力调满量程,使输出为20mA,在现场调校讲的是快,在此介绍零点、量程的快速调校法。

调零点时对满度几乎没有影响,但调满度时对零点有影响,在不带迁移时其影响约为量程调整量的1/5,即量程向上调整1mA,零点将向上移动约0.2mA,反之亦然。

三、智能差压变送器的校准用上述的常规方法对智能变送器进行校准是不行的,由于这是由变送器结构原理所决议了。

由于智能变送器在输入压力源和产生的4—20mA电流信号之间,除机械、电路外,还有微处理芯片对输入数据的运算工作。

因此调校与常规方法有所区分。

实际上厂家对智能变送器的校准也是有说明的,如ABB的变送器,对校准就有:设定量程、重定量程、微调之分。

其中设定量程操作紧要是通过LRV.URV的数字设定来完成配置工作,而重定量程操作则要求将变送器连接到标准压力源上,通过一系列指令引导,由E变送器直接感应实际压力并对数值进行设置。

使用说明书压力差压智能变送器

使用说明书压力差压智能变送器

使用说明书压力差压智能变送器目录1.引言······························································()2.运输······························································()3.储藏······························································()4.产品标识·························································()5.工作原理·························································()6.安装······························································()7.电气连接·························································()8.使用······························································()9.菜单操作························································()10.维护·····························································()11.修理·····························································()引言智能压力差压变送器是采用高精度硅传感器技术,新型智能高精度变送器,基于通过微处理器的电子部件,实现与现场设备通信。

智能压力|差压变送器使用说明书

智能压力|差压变送器使用说明书

WT2000系列智能压力变送器报告书学院:浙江水利水电学院班级:机械质量管理与检测技术组员:罗永林陈建江徐于峰余毅俊黄琦超指导老师:王益土目录1差压变送器(罗永林) (3)1-1差压变送器介绍 (3)1-2特点 (4)1-3设计原理 (4)2尔泰WT2000差压变送器产品详情(陈建江) (4)2-1原理 (6)2-2主要性能 (6)3 发展历史(徐于峰) (7)4 发展趋势(余毅俊黄琦超) (8)1差压变送器(罗永林)1-1差压变送器介绍差压变压器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。

下面就简单介绍一些常用压力变送器的原理及其应用、压力变送器是用于测量液体、气体或蒸汽的液位、密度和压力,然后将压力信号转变成4~20mA DC信号输出。

压力变送器主要有电容式压力变送器和扩散硅压力变送器,陶瓷压力变送器,应变式压力变送器等。

压力变送器根据测压范围可分成一般压力变送器(0.001MPa~35MPa)和微差压变送器(0~1.5kPa),负压变送器三种。

压力变送器的主要作用把压力信号传到电子设备,进而在计算机显示压力其原理大致是:将水压这种压力的力学信号转变成电流(4-20mA)这样的电子信号压力和电压或电流大小成线性关系,一般是正比关系。

所以,变送器输出的电压或电流随压力增大而增大由此得出一个压力和电压或电流的关系式压力变送器的被测介质的两种压力通入高、低两压力室,低压室压力采用大气压或真空,作用在δ元(即敏感元件)的两侧隔离膜片上,通过隔离片和元件内的填充液传送到测量膜片两侧。

压力变送器是由测量膜片与两侧绝缘片上的电极各组成一个电容器。

当两侧压力不一致时,致使测量膜片产生位移,其位移量和压力差成正比,故两侧电容量就不等,通过振荡和解调环节。

1-2特点或HART 275手操器相互通讯,通过它们进行设定和监控等。

压力和差压变送器详细详解使用说明书

压力和差压变送器详细详解使用说明书

压力和差压变送器详细使用说明(一)差压变送器原理与使用本节根据实际使用中的差压变送器主要介绍电容式差压变送器。

1. 差压变送器原理压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。

差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。

图1.1 测量转换电路图1.2 差动电容结构差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。

中心可动极板与两侧固定极板构成两个平面型电容H C和L C。

可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。

一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。

隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。

差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。

2. 变送器的使用(1)表压压力变送器的方向低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。

此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。

保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。

图1.3为低压侧压力口。

图1.3 低压侧压力口(2)电气接线①拆下标记“FIELD TERMINALS”电子外壳。

②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。

注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。

上海自动化所 智能压力差压变送器中文

上海自动化所 智能压力差压变送器中文
运行 Precali 程序将出现 设定工具 的界面 界面上的各层按键及 参数说明如下
传感器量程下限 传感器量程上限 显示传感器的极限量程 它与在 仪表特征化过程中所设的量程代码有关
AD 值 平时显示 A/D 转换的结果 在做某些操作时也可用于人为设 置 A/D 值
PV 值 显示计算出的压力值 电流 显示仪表输出电流的数字显示值 仪表调整组 包括 仪表特征化 传感器微调 和 输出电流 有关使用方法见下节 检查组 包括 开关与键检查 自检 和 输出电流检查 开关与键检查对话框 用以检查仪表上按键等是否良好 自检按键 可检查仪表是否出错 输出电流测试输入框 可键入电流值观察仪表的输出电流是否有偏 差 如果有偏差 可以按 仪表调整 组中的 输出电流 进行校正 参数设置组 包括 模拟量程 性能参数 材料参数 阵发 设置 仪表信息 和 温度补偿 模拟量程对话框 可设置模拟量程的上下限 注意此上下限之差的 绝对值不能小于传感器量程的 1/15 性能参数设置对话框 可改变 阻尼时间 输出类型 及 显示 单位 阻尼时间的合理范围为 0.1~16s 如果输入 9999 s 则可以借用 Rosemount 公司的 275 手持通信器中有关 Smart 1151 的操作功能 再次 输入 9999 s 或电路板断电后再次上电 电路板将恢复到原来状态 输出类型可选择 线性 或 非线性 非线性输出时电路板的输出 电流与输入呈开方关系 见图 3 显示单位提供对电路板内 14 种常用单位的选择 材料参数设置对话框包括 法兰类型 显示仪表 等材料参数和
手持终端或主机通讯电路不能直接跨接在电源两端 但既可接于现 场两端 A B 上 也可接在负载电阻两端 B C 两种情况下 电路 都要通过电源来供电
5.3 调校工具 用户拿到的电路板仅设置了设备识别号 变送器制造者需结合传感
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铭牌不能用线直接绕在仪表上.
showing instrument tag numbers. Wired are not acceptable. Design by 设计: Supplier 供货方:
ห้องสมุดไป่ตู้N O T E
3 器 9 Capillary/Fill Fluid Model No. 毛细管/填充液型号 / 40 Capillary Length 毛细管长度 / 41 Capillary Material 毛细管材质 / 42 Capillary Armor 毛细管铠装 / 43 Armor Material 铠装材质 / 44 System Fill Fluid 填充液 / 45 Diaphragm Material 膜片材质 / 46 Failsafe Direction:Upscale/Downscale 故障位置:上限/下限 Downscale 1 Full description must be used. example: Class I, Division 2, Group必须完整地叙述. A,B,C,D. 2 备This item is the "Weatherproofing"rating,not the electrical rating.此项是指防护等级,而非电气等级. 3 Span Limits is defined as maximun range measurable by the device. 测量范围是指仪表可测量的最大范围. 4 Calibrated Range ia defined as the actual measuring range for which is thecalibrated.标定量程是指实际标定的测量范围. device 5 注All instruments shall be identified with permanently affixed stainless 所有仪表都带有永久性不锈钢制成的铭牌,上注有位号. steel tags
1/4"NPT/1/2"NPT/Other 1/4"NPT/1/2"NPT/其它 超压保护 壳体材质 测量元件材质 过程连接法兰材质 远传装置型号 密封膜片形式 密封膜片连接体材质 远传法兰连接: 尺寸/形式/等级 16 MPa Polyurethane Aluminum 316SS 316SS / / / /
T R A N S M I T T E R
31 3 变 2 33 34 35 送 36 37 38
Overrange Protection To Housing Material Element Material Process Flange Material Remote Seal Model No. Diaphragm Seal Type Diaphragm Seal Body Material Remote Flange Connection: Size/Type/Rating
项目名称 PROJECT
测试台改造项目 立式泵测试罐安装
设计院
仪 表 规 格 书 分项名称 Instrument Specification SUBPROJECT 压力变送器
合同号CONT.NO
图号 DWG. NO. 设计阶段 STAGE 详细设计 第1页 共1页
Instrument Code 仪表代号: Pressure Transmitter 压 力 变 送 器 G 1 Item Number 序号 1 2 E 2 概TAG Number 位号 PTSV N 3 PID Number 流程图号 E 4 Line or Equipment Number 管线或设备号 R 5 Manufacturer 制造厂 上海蒙晖机电科技有限公司 A 6 述Series or Model Number 型号 MH3051LT系列 L 7 Service 应用 立式泵测试罐进口压力 8 Function: XMTR/Other 功能: 变送器/其它 变送器 9 Mounting: 2"Pipe/Panel/Bracket 安装方式: 2"管/面板/支架 直接安装 A 10 Display Meter: Integral/Remote 显示表: 一体式/分体式 一体式 P 11 Message Format: 4 Byte/6 Byte 显示表头: 四位/六位 四位 P 12 应Display Type: LED/LCD/Meter/Other显示表类型: 发光二极管/液晶/表/其它 液晶 L 13 Device Meets Electronic Area 防爆区划分 (见注1) 非防爆 I Classification ( 1) C 14 Hazardous Location Certification:防爆产品认证: FM/CSA/其它 A FM/CSA/Other T 15 Enclosure Type: NEMA_/Other(2) 防护等级: NEMA_/其它(见注2) IP68 I 16 用 Electrical Explosion Proof Rating防爆等级 O 17 Power Supply: 220VAC/24VDC/Other 供电:220V交流/24V直流/其它 24 V DC From DCS N 18 Power Supply Cable Connection 供电电缆接口 / 19 Output: 4~20mA/4~20mA+Hart/Other 输出:4~20mA/4~20mA+Hart/其它 4~20 mA DC 20 Signal Cable Connection 信号电缆接口 1/2" FNPT S 21 工Process Fluid 介质 水 E 22 Maximum Pressure(KPa) 最高压力(KPa) 1.0MPa R 23 艺Normal Pressure(KPa) 正常压力(KPa) 0.44MPa V 24 Maximum Temperature(℃) 最高温度(℃) 环境温度 I 25 条 Normal Temperature(℃) 操作温度(℃) 环境温度 C 26 Minimum Ambient Temperature(℃) 最低环境温度(℃) 环境温度 E 2 件 7 28 Span Limits(3) 测量范围(见注3) -0.1~2.0MPa 29 Calibrated Range(4) 标定量程(见注4) -0.1~1.0MPa 30 Process Connection 引压接口 1/2" FNPT
相关文档
最新文档