控制系统MATLAB仿真3-频率特性仿真(精)

合集下载

实验三 系统频率特性曲线的绘制及系统分析

实验三  系统频率特性曲线的绘制及系统分析

《自动控制原理》实践报告实验三系统频率特性曲线的绘制及系统分析熟悉利用计算机绘制系统伯德图、乃奎斯特曲线的方法,并利用所绘制图形分析系统性能。

一、实验目的1.熟练掌握使用MATLAB软件绘制Bode图及Nyquist曲线的方法;2.进一步加深对Bode图及Nyquist曲线的了解;3.利用所绘制Bode图及Nyquist曲线分析系统性能。

二、主要实验设备及仪器实验设备:每人一台计算机奔腾系列以上计算机,配置硬盘≥2G,内存≥64M。

实验软件:WINDOWS操作系统(WINDOWS XP 或WINDOWS 2000),并安装MATLAB 语言编程环境。

三、实验内容已知系统开环传递函数分别为如下形式, (1))2)(5(50)(++=s s s G (2))15)(5(250)(++=s s s s G(3)210()(21)s G s s s s +=++ (4))12.0)(12(8)(++=s s s s G (5)23221()0.21s s G s s s s ++=+++ (6))]105.0)125.0)[(12()15.0(4)(2++++=s s s s s s G 1.绘制其Nyquist 曲线和Bode 图,记录或拷贝所绘制系统的各种图形; 1、 程序代码: num=[50];den=conv([1 5],[1 2]); bode(num,den)num=[50];den=conv([1 5],[1 2]); nyquist(num,den)-80-60-40-20020M a g n i t u d e (d B)10-210-110101102103-180-135-90-450P h a s e (d e g )Bode DiagramFrequency (rad/sec)-1012345-4-3-2-11234Nyquist DiagramReal AxisI m a g i n a r y A x i s2、 程序代码: num=[250];den=conv(conv([1 0],[1 5]),[1 15]); bode(num,den)num=[250];den=conv(conv([1 0],[1 5]),[1 15]);-150-100-5050M a g n i t u d e (d B )10-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)nyquist(num,den)3、 程序代码: num=[1 10];den=conv([1 0],[2 1 1]); bode(num,den)-150-100-50050100M a g n i t u d e (d B)10-210-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)-1-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10-15-10-551015System: sys Real: -0.132Imag: -0.0124Frequency (rad/sec): -10.3Nyquist DiagramReal AxisI m a g i n a r y A x i snum=[1 10];den=conv([1 0],[2 1 1]); nyquist(num,den)-25-20-15-10-5-200-150-100-5050100150200Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-5050100M a g n i t u d e (d B )10-210-110101102-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)4、 程序代码: num=[8];den=conv(conv([1 0],[2 1]),[0.2 1]); bode(num,den)-18-16-14-12-10-8-6-4-20-250-200-150-100-50050100150200250Nyquist DiagramReal AxisI m a g i n a r y A x i snum=[8];den=conv(conv([1 0],[2 1]),[0.2 1]); nyquist(num,den)5、 程序代码: num=[1 2 1]; den=[1 0.2 1 1]; bode(num,den)num=[1 2 1];den=[1 0.2 1 1]; nyquist(num,den)-40-30-20-10010M a g n i t u d e (d B )10-210-110101102-360-270-180-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)-2.5-2-1.5-1-0.500.51 1.5-3-2-1123Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-5050100M a g n i t u d e (d B )10-210-110101102-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)6、 num=[2 4];den=conv(conv([1 0],[2 1]),[0.015625 0.05 1]); bode(num,den)num=[2 4];den=conv(conv([1 0],[2 1]),[0.015625 0.05 1]); nyquist(num,den)2.利用所绘制出的Nyquist 曲线及Bode 图对系统的性能进行分析:(1)利用以上任意一种方法绘制的图形判断系统的稳定性; 由Nyquist 曲线判断系统的稳定性,Z=P-2N 。

控制系统matlab仿真讲义

控制系统matlab仿真讲义
本讲义详细介绍了控制系统的matlab仿真与设计,重点围绕控制系统CAD和经典控制理论CAD展开。在控制系统固有特性分析方面,讲义首先探讨了时域分析,通过二阶系统闭环传函的标准形式,分析了阻尼比变化对系统闭环极点位置的影响,并展示了simulink的仿真结果。此讲义深入探讨了频域分析,介绍了频率特性法的基本概念和实用价值,详细阐述了伯德图、奈奎斯特图和尼克尔斯图等频率特性图的应用。特别是,通过伯德图命令的详细示例,展示了如何生成幅频特性和相频特性图,并提供了相应的matlab代码。这些分析方法和示例代码,有助于读者深入理解和掌握控制系统的matlab仿真与设计技术。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。

应用MATLAB绘制系统频率特性曲线

应用MATLAB绘制系统频率特性曲线

G(s)
稳定性。
s3
5系s22.7统4s的 2奈奎斯特曲线,并利用曲线来判别闭环系统的
解 MATLAB仿真程序代码如下:
num1=[ 2.7];
den1=[1 5 4 2];
sys1=tf(num1,den1);
nyquist(sys1)
title('Nyquist图');
运行后,获得如图1-46所示曲线。
自动控制原理
应用MATLAB绘制系统频率特性曲线
1.1用MATLAB绘制系统开环对数频率特性 对于连续系统,用MATLAB函数绘制系统开环对 数频率特性的函数命令调用格式有 Bode(sys) Bode(sys,w) Bode(sys1,sys2,…,sysN) Bode(sys1,sys2,…,sysN,w) [mag,phase,w]=Bode(sys)
例1-15 绘制一阶惯性环节
的G(s奈) 奎3斯特图。
5s 1
解 MATLAB仿真程序代码如下:
G=tf(3,[5 1]);
nyquist(G);Fra bibliotekhold on;
title('Nyquist图');
运行后,获得如图1-45所示曲线。
图1-45 例1-15系统极坐标曲线图
例1-16 用函数nyquist(sys)绘制开环传递函数为
bode(num,den);hold on;
end
grid
获得振荡环节伯德图如图1-43所示,
图1-43 例1-13开环系统伯德图
如果希望求取控制系统的增益裕量 、相位GM裕量 界频率(也称PM交叉频
率) 、穿越g频率 ,可以使c 用margin函数 计算控制系统的相关稳定裕度值。

系统稳定性分析的仿真实验

系统稳定性分析的仿真实验

系统稳定性分析的仿真实验一、实验目的:1.加深了解系统稳定性概念。

2.掌握使用Matlab 分析系统稳定性。

3.掌握使用Matlab 分析系统的频率特性二、实验设备:Matlab三、实验内容:1、已知控制系统开环传递函数为:17.18.01.023+++s s s K ,用Nyquist 稳定判据判定开环放大系数K 为10和50时闭环系统的稳定性。

2、已知控制系统开环传递函数为:()11.0)12.0(++s s s K ,取K =10,要求: ①绘制系统Bode 图,求出频域性能指标,并判断系统的稳定性;②改变开环增益K 值,分析K 变化对开环对数幅频、相频特性曲线的影响;③根据给出的稳定裕量,作K 参数设计,并评估系统性能。

四、实验步骤:实验内容一进入Matlab 命令窗口:1、当K=10时,输入命令num=[10]; %分子系数den=[0.1,0.8,1.7,1]; %分母系数g1=tf(num,den); %建立系统多项式模型nyquist(g1) %绘制Nyquist 图分析开环系统Nyquist 图,曲线是否包围(-1,j0)点?因此闭环系统稳定吗?2、当K=50时,输入命令num=[50]; %分子系数den=[0.1,0.8,1.7,1]; %分母系数g2=tf(num,den); %建立系统多项式模型nyquist(g2) %绘制Nyquist 图分析开环系统Nyquist 图,曲线顺时针包围(-1,j0)点几圈?表明闭环系统稳定性如何?有几个右半s 平面的极点?实验内容二K=10 K=50曲线未包围(-1,j0)点曲线包围(-1,j0)点一圈实验内容二①K=10,程序运行结果和图示可知,幅值裕度k= 1.5000 ,即 db;相位穿越频率wg=7.0711 rad/s;相角裕度r= 11.4304 ;幅值穿越频率wc= 5.7154 rad/s 。

②改变K值,分别取K为K1,K2,K3值时,观察系统的开环对数幅频、相频特性曲线的变化,分析K值变化对其影响。

控制系统的频率特性分析实验报告

控制系统的频率特性分析实验报告

竭诚为您提供优质文档/双击可除控制系统的频率特性分析实验报告篇一:控制系统频率特性实验实验名称控制系统的频率特性实验序号3实验时间学生姓名学号专业班级年级指导教师实验成绩一、实验目的:研究控制系统的频率特性,及频率的变化对被控系统的影响。

二、实验条件:1、台式计算机2、控制理论&计算机控制技术实验箱ThKKL-4系列3、ThKKL仿真软件三、实验原理和内容:1.被测系统的方块图及原理被测系统的方块图及原理:图3—1被测系统方块图系统(或环节)的频率特性g(jω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。

本实验应用频率特性测试仪测量系统或环节的频率特性。

图4—1所示系统的开环频率特性为:采用对数幅频特性和相频特性表示,则式(3—2)表示为:将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输入端[r(t)],然后分别测量相应的反馈信号[b(t)]和误差信号[e(t)]的对数幅值和相位。

频率特性测试仪测试数据经相关器件运算后在显示器中显示。

根据式(3—3)和式(3—4)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸上作出实验曲线:开环对数幅频曲线和相频曲线。

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。

所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。

如果测量所得的相位在高频(相对于转角频率)时不等于-90°(q-p)[式中p和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。

2.被测系统的模拟电路图被测系统的模拟电路图:见图3-2注意:所测点-c(t)、-e(t)由于反相器的作用,输出均为负值,若要测其正的输出点,可分别在-c(t)、-e(t)之后串接一组1/1的比例环节,比例环节的输出即为c(t)、e(t)的正输出。

MATLAB与控制系统仿真

MATLAB与控制系统仿真
在线性系统理论中,一般常用的数学模型形式有:传 递函数模型(系统的外部模型)、状态方程模型(系
第31页/共52页
传递函数描述
连续系统的传递函数模型
连续系统的传递函数如下:
G(s)
C(s) R(s)
b1s m a1s n
b2 s m1 a2 s n1
... bns ... ans
bm1 an1
(2)“%” 后面所有文字为注释. (3) “...”表示续行.
+ 加法运算,适用于两个数或两个同阶矩阵相加. — 减法运算 * 乘法运算 .* 点乘运算 / 除法运算 ./ 点除运算 ^ 乘幂运算 .^ 点乘幂运算 \ 反斜杠表示左除.
第3页/共52页
3、数学函数
函数 sin(x) cos(x) tan(x) abs(x) min(x) sqrt(x) log(x) sign(x)
end 步长的缺省值是1。步长可以在正实数或负实数范围内任意指定,对 于正数,循环变量的值大于终止值时,循环结束;对于负数,循环变量的 值小于终止值时,循环结束。
第8页/共52页
程序控制语句
while循环的基本格式为: while 表达式 循环体 end
若表达式为真,则执行循环体的内容,执行后再判断表达式是否为真,若 为假则跳出循环体,向下继续执行,否则继续执行循环体。 • break:从循环体中跳出,并使循环结束
• Gzpk=zpk(Gtf) • [zz,pp,kk]=zp kdata(Gzpk ,’v’) • %获得G(s)的零点、极点和增益
• ZPK形式变换为TF形式
• Svv=tf(Sxx) • [nn,dd]=tfdata(Svv,’v’) • %获得分子分母多项式系数
第17页/共52页

《自动控制原理》Matlab求解控制系统频域分析实验

《自动控制原理》Matlab求解控制系统频域分析实验
频率分析法在自动控制系统的分析中具有许多优点,频域分析不仅可以分析线性定常系统,还可以推广到非线性系统,借助于MATLAB软件来分析系统的频率特性,可以简化分析中的大量计算,直接可以得到需要的性能参数,结合参数和相应的曲线来对系统进行分析。使用MATLAB软件可以精确地绘制出系统的bode图、nyquist曲线和Nichols曲线,使得对系统的分析带来很大的方便
《自动控制原理》Matlab求解控制系统频域分析实验
一、实验目的
1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、Bode图的基本方法。
3、掌握典型环节的频率特性。
二、实验仪器
Matlab2014b版
三、实验原理
1.奈奎斯特图(幅相频率特性图)
MATLAB为用户提供了专门用于绘制奈奎斯特图的函数nyquist
axis([-2,0.4,-1.5,1.5]);
k=500;
num=[1,10];
den=conv([1,0],conv([1,1],conv([1,20],[h,50])));
w=logspace(-1,3,200)
bode(k*num,den,w);
grid;
五、实验原始数据记录与数据处理
六、实验结果与分析讨论
范围是自动确定的。当需要指定幅值范围和相角范围时,则需用下面的功能指令:
[mag,phase,w]=bode(num,den,w)
四、实验内容及步骤
z=[]:
p=[0,-1,-2]:
k=5;
g=zpk(z,p,k):
nyquist(g);
w=0.5:0.1:10:
figure(2):
nyquist(g:w);

基于MATLAB自动控制系统时域频域分析与仿真

基于MATLAB自动控制系统时域频域分析与仿真

基于MATLAB自动控制系统时域频域分析与仿真MATLAB是一款强大的数学软件,也是自动控制系统设计的常用工具。

它不仅可以进行时域分析和频域分析,还可以进行相关仿真实验。

本文将详细介绍MATLAB如何进行自动控制系统的时域和频域分析,以及如何进行仿真实验。

一、时域分析时域分析是指对系统的输入信号和输出信号进行时域上的观察和分析,以了解系统的动态特性和稳定性。

MATLAB提供了一系列的时域分析工具,如时域响应分析、稳态分析和步骤响应分析等。

1.时域响应分析通过时域响应分析,可以观察系统对于不同的输入信号的响应情况。

在MATLAB中,可以使用`lsim`函数进行系统的时域仿真。

具体步骤如下:- 利用`tf`函数或`ss`函数创建系统模型。

-定义输入信号。

- 使用`lsim`函数进行时域仿真,并绘制系统输出信号。

例如,假设我们有一个二阶传递函数模型,并且输入信号为一个单位阶跃函数,可以通过以下代码进行时域仿真:```num = [1];den = [1, 1, 1];sys = tf(num, den);t=0:0.1:10;u = ones(size(t));[y, t, x] = lsim(sys, u, t);plot(t, y)```上述代码中,`num`和`den`分别表示系统的分子和分母多项式系数,`sys`表示系统模型,`t`表示时间序列,`u`表示输入信号,`y`表示输出信号。

通过绘制输出信号与时间的关系,可以观察到系统的响应情况。

2.稳态分析稳态分析用于研究系统在稳态下的性能指标,如稳态误差和稳态标准差。

在MATLAB中,可以使用`step`函数进行稳态分析。

具体步骤如下:- 利用`tf`函数或`ss`函数创建系统模型。

- 使用`step`函数进行稳态分析,并绘制系统的阶跃响应曲线。

例如,假设我们有一个一阶传递函数模型,可以通过以下代码进行稳态分析:```num = [1];den = [1, 1];sys = tf(num, den);step(sys)```通过绘制系统的阶跃响应曲线,我们可以观察到系统的稳态特性。

控制系统的频率特性分析

控制系统的频率特性分析

【实验名称】控制系统的频率特性分析【实验目的】1) 掌握运用MATLAB 软件绘制控制系统波特图的方法; 2) 掌握MATLAB 软件绘制奈奎斯特图的方法; 3) 利用波特图和奈奎斯特图对控制系统性能进行分析。

【实验仪器】1) PC 机一台 2) MATLAB 软件【实验原理】1. 奈奎斯特稳定判据及稳定裕量(1)奈氏(Nyquist )判据:反馈控制系统稳定的充要条件是奈氏曲线逆时针包围临界点的圈数R 等于开环传递函数右半s 平面的极点数P , 即R=P ;否则闭环系统不稳定, 闭环正实部特征根个数Z 可按下式确定Z=P-R=P-2N (2)稳定裕量利用)()(ωωj H j G 轨迹上两个特殊点的位置来度量相角裕度和增益裕度。

其中)()(ωωj H j G 与单位圆的交点处的频率为c ω(截止频率);)()(ωωj H j G 与负实轴的交点频率为x ω(穿越频率)。

则相角裕度:)(180)()(180c c c j H j G ωϕωωγ+=∠+= 增益裕度:)(1)()(1x x x A j H j G h ωωω==(对数形式:)(lg 20)()(lg 20x x x A j H j G h ωωω-=-= 2. 对数频率稳定判据将系统开环频率特性曲线分为幅频特性和相频特性,分别画在两个坐标上,横轴都用频率ω,纵轴一个用对数幅值和相角,这两条曲线画成的图就是Bode 图,即对数频率特性图。

因为Bode 图与奈氏图有一一对应关系,因此,奈氏稳定判据就可描述为基于Bode 图的对数频率稳定判据:(1)开环系统稳定,即开环系统没有极点在正右半根平面,如果其对数幅频曲线大于0dB 的区域内,相频曲线对180-线正负穿越次数相等,那么闭环系统就是稳定的,否则是不稳定的。

(2)开环系统不稳定,有P 个极点在正右半平面,如果其对数幅频曲线大于0dB 的区域内,相频曲线对180-线正穿越次数大于负穿越次数P/2,闭环系统就是稳定的,否则是不稳定的。

MATLAB控制系统的仿真

MATLAB控制系统的仿真

C R
x1 x2
0 1
L
u
L
y [1
0]
x1 x2
[0]u

x Ax bu
y CT x du
• 没有良好的计算工具前:系统建立、变换、分析、设 计、绘图等相当复杂。
• MATLAB控制系统软件包以面向对象的数据结构为基 础,提供了大量的控制工程计算、设计库函数,可以 方便地用于控制系统设计、分析和建模。
Transfer function:
s+1 ------------s^2 + 5 s + 6
Matlab与系统仿真
22
应用——系统稳定性判断
系统稳定性判据: 对于连续时间系统,如果闭环极点全部在S平面左半平面,
则系统是稳定的;
若连续时间系统的全部零/极点都位于S左半平面, 则系统是——最小相位系统。
Matlab与系统仿真
38
4.2 动态特性和时域分析函数
(一)动态特性和时域分析函数表 (二)常用函数说明 (三)例子
Matlab与系统仿真
39
(一)动态特性和时域分析函数表 ——与系统的零极点有关的函数
表8.6前部分p263
Matlab与系统仿真
40
——与系统的时域分析有关的函数
Matlab与系统仿真
Matlab与系统仿真
8
4.1 控制工具箱中的LTI对象
Linear Time Invariable
(一)控制系统模型的建立 (二)模型的简单组合 (三)连续系统和采样系统变换(*略)
Matlab与系统仿真
9
(一)控制系统模型的建立
➢ MATLAB规定3种LTI子对象:
• Tf 对象—— 传递函数模型 • zpk 对象—— 零极增益模型 • ss 对象—— 状态空间模型

自动控制原理的MATLAB仿真与实践第5章 线性系统的频域分析

自动控制原理的MATLAB仿真与实践第5章  线性系统的频域分析
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
7
【例5-1】 试绘制惯性环节G(jω)=1/(2s+1)的Nyquist曲线 和Bode图。
解:程序如下:
>>clear
G=tf(1,[2,1]); %建立模型
nyquist (G); %绘制Nyquist图
figure(2); bode (G); %绘制Bode图
4
ngrid;ngrid(‘new’):绘制尼科尔斯坐标网格即等 20lgM圆和等角曲线组成的网格。‘new’代表清除以前 的图形,与后一个nichols()一起绘制网格。
semilogx(w,20*log10(mag)):绘制半对数坐标下的幅 频特性曲线。
semilogx(w,phase*180/pi):绘制半对数坐标下的相频 特性曲线。
MATLAB提供了许多用于线性系统频率分析 的函数命令,可用于系统频域的响应曲线、参数分析 和系统设计等。常用的频率特性函数命令格式及其功 能见表5-1。 bode (G):绘制传递函数的伯德图。其中:G为传递
函数模型,如:tf(), zpk(), ss()。 bode(num,den):num,den分别为传递函数的分子与
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
6
5.2.1 Nyquist曲线和Bode图
MATLAB频率特性包括幅频特性和相频特性。 当用极坐标图描述系统的幅相频特性时,通常称为 奈奎斯特(Nyquist)曲线;用半对数坐标描述系 统的幅频特性和相频特性时,称为伯德(Bode) 图;在对数幅值-相角坐标系上绘制等闭环参数( M和N)轨迹图,称为尼克尔斯(Nichols)图。
运行结果如图5-2所示。

控制系统仿真试题参考2解析

控制系统仿真试题参考2解析

控制系统仿真试题参考2解析频率特性类题⽬1 ⼀个系统的开环传递函数为,试绘制其当K=5、30时系统的开环频率特性Nyquist 图,并判断系统的稳定性。

2系统开环传递函数为,建⽴其零极点增益模型,然后分别绘制当K=5、K=30时系统的开环频率特性Bode 图,并判断系统的稳定性。

3 系统开环传递函数为,计算K=5和K=30时系统的幅值裕度与相位裕度。

4 已知某系统的闭环传递函数()s Φ如下,试⽤roots ()命令来判断系统的稳定性。

25432325()24576s s s s s s s s ++Φ=+++++5 某单位负反馈系统的开环控制系统的传递函数为2k (0.80.64)()(0.05)(5)(40)K s s G s s s s s ++=+++(1)绘制系统的根轨迹;(2)当10K =时,绘制系统的Bode 图,判断系统的稳定性,并且求出幅值裕度和相⾓裕度。

6 已知系统的状态空间模型如下:=11x -31x + ??01u [1=y ]1x(1)绘制系统的Bode 图和nyquist 图;(2)求系统的幅值裕度和相位裕度;7 已知单位负反馈系统的开环传递函数为)1(12++s s s ,试绘制系统的单位阶跃响应、开环Bode 图和Nyquist 曲线,并求系统的幅值裕度和相位裕度。

)5.01)(1.01()(s s s k s G ++=)5.01)(1.01()(s s s ks G ++=)5.01)(1.01()(s s s ks G ++=8 ⽤筛选法求某⾃然数范围内的全部素数。

素数是⼤于1,且除了1和它本⾝以外,不能被其他任何整数所整除的整数。

⽤筛选法求素数的基本思想是:要找出2~m 之间的全部素数,⾸先在2~m 中划去2的倍数(不包括2),然后划去3的倍数(不包括3),由于4已被划去,再找5的倍数 (不包括5),…,直到再划去不超过的数的倍数,剩下的数都是素数。

9 已知 ∑=-=nk k y 1121,当n=100时,求y 的值。

自控实验-自动控制系统的MATLAB仿真分析

自控实验-自动控制系统的MATLAB仿真分析

实验名称:自动控制系统的MATLAB仿真分析一、实验目的1.熟悉MATLAB在自动控制系统仿真中的应用;2.对自动控制系统进行仿真研究;3.掌握用MATLAB绘制自动控制系统根轨迹及对数频率特性的方法,掌握根据系统根轨迹及对数频率特性分析自动控制系统性能的方法。

二、实验设备1.计算机2.MATLAB软件三、实验内容1.用MATLAB提供的Simulink仿真软件工具对实验一中的各个典型环节及二阶系统进行阶跃响应仿真研究,将仿真获得的阶跃响应结果与模拟电路获得的阶跃响应结果进行比较。

(1)比例环节传递函数为200 ()51 G s=建立仿真模型,得到的输出结果如图所示:(2)积分环节传递函数为9.8 ()G ss=建立仿真模型,得到的输出结果如图所示:(3)一阶惯性环节传递函数为3.9 ()0.21G ss=+建立仿真模型,得到的输出结果如图所示:(4)比例积分环节传递函数为0.39781 ()0.102sG ss+=建立仿真模型,得到的输出结果如图所示:(5)比例微分环节传递函数为10 ()220s G ss=++建立仿真模型,得到的输出结果如图所示:(6)比例微分积分环节传递函数为51050 ()220sG ss s+=+++建立仿真模型,得到的输出结果如图所示:(7) 二阶系统的阶跃响应 ①0.325K ξ==传递函数为2()250()10250C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:②0.510K ξ==传递函数为2()100()10100C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:③0.75K ξ==传递函数为2()50()1050C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:2. 单位负反馈系统的开环传递函数为:(1)()()(21)k s G s H s s s +=+仿真绘制K 从0~∞变化时的根轨迹,分析系统的稳定性。

《MATLAB Simulink与控制系统仿真(第4版)》的课件 第7章 频域分析法

《MATLAB Simulink与控制系统仿真(第4版)》的课件  第7章  频域分析法
MATLAB 6.0以上版本还提供了计算系统稳定裕度的函数allmargin,其调用法 则如下。 s=allmargin(sys):计算幅值裕度、相角裕度以及对应的频率。幅值裕度和相角 裕度是针对开环SISO系统而言,输出s是一个结构体,它包括幅值裕度、相角 裕度以及对应的频率、时滞增益裕度。
极坐标图(Nyquist图)
7.3.2 对数坐标图(Bode图)
Bode图的优点可概括如下: (1)将幅值相乘化为对数相加运算,大大简化了系统频率特性 的绘制工作。 (2)由于横轴采用了对数分度,缩小了比例尺,从而扩大了频 率视野,可以在较大的频段范围内表示系统频率特性。在一张 Bode图上,既画出了频率特性的中、高频段,又能清楚地画出其 低频段,在分析和设计系统时,低频段特性也是非常重要的。 (3)可以绘制渐近的对数幅频特性;也可以制作标准样板,画 出精确的对数频率特性。
第7章 频域分析法
7.1 引言 7.2 频率特性基本概念 7.3 频率特性的表示方法 7.4 系统开环频率特性作图 7.5 频率响应分析 7.6 MATLAB在频率法中的应用 7.7 频率法的稳定性分析 7.8 综合实例及MATLAB/SIMULINK应用 习题
内容提要
控制系统的频率特性反映的是系统对正弦输入信号的 响应性能。频域分析法是一种图解分析法,它依据系 统频率特性对系统的性能(如稳定性、快速性和准确 性)进行分析。
频域分析法的突出优点是可以通过试验直接求得频率 特性来分析系统的品质,应用频率特性分析系统可以 得出定性和定量的结论,并具有明显的物理含义。
对数幅相图(Nichols图)
7.3.3 对数幅相图(Nichols图)
对数幅相图也称Nichols图,它是将对数幅频特性和相频特性两张图在角频率 为参变量的情况下合成为一张图。

自动控制原理MATLAB仿真实验指导书(4个实验)

自动控制原理MATLAB仿真实验指导书(4个实验)

自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。

利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。

1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。

2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。

图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。

以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。

点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。

2)改变模块参数。

在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。

其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。

3)建立其它传递函数模块。

按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。

例:比例环节用“Math”右边窗口“Gain”的图标。

4)选取阶跃信号输入函数。

用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档