DS18B20详细引脚功能描述

合集下载

测温芯片DS18B20详细解读

测温芯片DS18B20详细解读

测温芯片DS18B20羊细解读第一部分:DS18B20的封装和管脚定义首先,我们来认识一下DS18B20这款芯片的外观和针脚定义,DS18B20芯片的常见封装为TO-92,也就是普通直插三极管的样子,当然也可以找到以SO (DS18B20Z )和u SOP (DS18B20U )形式封装的产品,下面为DS18B20各种封装的图示及引脚图。

O £NC匚NC匚心。

匚DQ匚DQ NC底部规角NC GNDT892封裝(DS18B20)8765DALLAS1234SQ封装(DS18B20Z)NCNCNCGNDlo8——1 200 7M 6□ NC 3_1 NC 45p=l NC 声OP封装(DS18320U )* Nd置茫引脚1了解了这些该芯片的封装形式,下面就要说到各个管脚的定义了,如下表即为该芯片的管脚定义:上面的表中提到了一个“奇怪”的词一一“寄生电源”,那我有必要说明一下了,DS18B20芯片可以工作在“寄生电源模式”下,该模式允许DS18B20 工作在无外部电源状态,当总线为高电平时,寄生电源由单总线通过VDD引脚, 此时DS18B20可以从总线“窃取”能量,并将“偷来”的能量储存到寄生电源储能电容(Cpp )中,当总线为低电平时释放能量供给器件工作使用。

所以,当DS18B20工作在寄生电源模式时,VDD引脚必须接地。

第二部分:DS18B20的多种电路连接方式如下面的两张图片所示,分别为外部供电模式下单只和多只DS18B20测温系统的典型电路连接图。

(1 )外部供电模式下的单只DS18B20芯片的连接图Vpv DS18B20单片机(2)外部供电模式下的多只DS18B20芯片的连接图一个单线端口通讯,当全部器件经由一个三态端口或者漏极开路端口与总线连接时,控制线需要连接一个弱上拉电阻。

在多只DS18B20连接时,每个DS18B20 都拥有一个全球唯一的64位序列号,在这个总线系统中,微处理器依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址,从而允许多只DS18B20同时连接在一条单线总线上,因此,可以很轻松地利用一个微处理器去控制很多分布在不同区域的 DS18B20,这一特性在环境控制、探测建筑 物、仪器等温度以及过程监测和控制等方面都非常有用。

DS1820数字温度计的使用

DS1820数字温度计的使用

35.DS18B20数字温度计使用1.DS18B20基本知识DS18B20数字温度计是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。

因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。

1、DS18B20产品的特点(1)、只要求一个端口即可实现通信。

(2)、在DS18B20中的每个器件上都有独一无二的序列号。

(3)、实际应用中不需要外部任何元器件即可实现测温。

(4)、测量温度范围在-55。

C到+125。

C之间。

(5)、数字温度计的分辨率用户可以从9位到12位选择。

(6)、内部有温度上、下限告警设置。

2、DS18B20的引脚介绍TO-92封装的DS18B20的引脚排列见图1,其引脚功能描述见表1。

(底视图)图1表1DS18B20详细引脚功能描述序号名称引脚功能描述1 GND 地信号2 DQ 数据输入/输出引脚。

开漏单总线接口引脚。

当被用着在寄生电源下,也可以向器件提供电源。

3 VDD 可选择的VDD引脚。

当工作于寄生电源时,此引脚必须接地。

3.DS18B20的使用方法由于DS18B20采用的是1-Wire总线协议方式,即在一根数据线实现数据的双向传输,而对AT89S51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。

由于DS18B20是在一根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。

DS18B20有严格的通信协议来保证各位数据传输的正确性和完整性。

该协议定义了几种信号的时序:初始化时序、读时序、写时序。

所有时序都是将主机作为主设备,单总线器件作为从设备。

而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。

数据和命令的传输都是低位在先。

DS18B20的复位时序DS18B20的读时序对于DS18B20的读时序分为读0时序和读1时序两个过程。

DS18B20详细引脚功能描述

DS18B20详细引脚功能描述

DS18B20详细引脚功能描述
1. Vdd:供电引脚,连接到正电压电源,一般为3V到5V。

2.GND:地引脚,连接到负电压电源。

3.DQ:数据引脚,通过此引脚与传感器进行通信。

DS18B20采用了一线制数字接口,通过这一引脚同时传输数据和提供电源,简化了连接。

4. Vdd和DQ之间的串联电阻:为了保护DS18B20不受电源干扰,常常在Vdd和DQ之间串联一个电阻。

5.电源复位引脚:其中一个引脚可以用于电源复位,允许将DS18B20电源复位为初始状态。

6.通信跳线:用于选择设备是否通过树形拓扑结构进行通信。

当通信跳线未连接时,设备处于默认的单总线模式。

在传输数据前,主机设备会发送复位脉冲来初始化DS18B20。

然后主机设备通过发送给DS18B20的时钟控制脉冲来控制数据传输。

DS18B20会利用这些时钟控制脉冲和数据脉冲的上升沿和下降沿来进行数据采样。

总之,DS18B20的引脚功能包括供电、地线、数据传输、电源复位和通信跳线。

通过这些引脚功能,DS18B20能够以高精度测量环境温度,并通过一线制数字接口将数据传输到主机设备。

DS18B20原理及引脚介绍

DS18B20原理及引脚介绍

DS18B20原理及引脚介绍DS18B20数字温度计是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。

因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。

DS18B20产品的特点(1)、只要求一个端口即可实现通信。

(2)、在DS18B20中的每个器件上都有独一无二的序列号。

(3)、实际应用中不需要外部任何元器件即可实现测温。

(4)、测量温度范围在-55。

C到+125。

C之间。

(5)、数字温度计的分辨率用户可以从9位到12位选择。

(6)、内部有温度上、下限告警设置。

TO-92封装的DS18B20的引脚排列见下图,其引脚功能描述见下:1.GND地信号2.DQ数据输入/输出引脚。

开漏单总线接口引脚。

当被用着在寄生电源下,也可以向器件提供电源。

3.VDD可选择的VDD引脚。

当工作于寄生电源时,此引脚必须接地。

18b20应用电路图18B20控制命令字18B20的ROM命令指令说明读ROM(33H) 读18B20的序列号匹配ROM(55H) 继续读完64位序列号的命令,用于多个18B20时定位跳过ROM(CCH) 此命令执行后的在存储器打操作针对在线所有18B20搜ROM(F0H) 识别总线上各器件的编码,为操作各器件做准备报警搜索(ECH) 公温度越限的器件对此命令作出响应18B20存储控制命令指令说明温度转换(44H) 启动在线ds18B20做温度AD转换读数据(BEH) 从高速暂存器读9位温度值和CRC值写数据(4EH) 将数据写入高速暂存的第3和第4字节中复制(48H) 将高速暂存器中第3和第4字节复制到EERAM读EERAM(B8H) 将EERAM内容写入高速暂存器中第3和第4字节读电源供电方式(B4H) 了解18B20的供电方式18b20程序WENDU_L EQU 29H;用于保存读出温度的低字节WENDU_H EQU 28H;用于保存读出温度的高字节XIAOSHU EQU 27H;用于保存温度的小数部分ZHENGSHU EQU 26H;用于保存整数部分BIAOZHI BIT 50H;18B20检查位1为存在,0为不存在ORG 0000HAJMP MAINORG 0030HMAIN:MOV SCON,#00HACALL DUWENACALL ZHENGHEACALL BCDACALL DISPACALL TIME1AJMP MAIN;----------------------------------------------------------------------------------------------------------------------------------------;读温度子程序;----------------------------------------------------------------------------------------------------------------------------------------DUWEN:SETB P2.0ACALL FUWEI ;读温度之前必须先复位JB BIAOZHI,CUNZAI;查看标志位看18B20是否存在,1为存在,0为不存在RET ;不存在则返回CUNZAI: ;存在则开始读温度MOV A,#0CCH ;跳过ROM匹配ACALL XIE ;调写子程序MOV A,#44H ;发出温度转换命令ACALL XIE ;调写子程序ACALL TIME1 ;调1秒延时,等等AD转换完成,现在分辨率为12位,温度最大转换时间为750MSACALL FUWEI ;读温前需要复位MOV A,#0CCH ;跳过ROM匹配ACALL XIEMOV A,#0BEH ;发读温度命令ACALL XIEACALL DUSHU ;将闱出数据读回CLR P1.2RET;------------------------------------------------------------------------------------------------------------------------------;复位子程序;18B20复位需要将数据位拉低500us;18B20收到信号后要等待16-60us,然后发出60-240us的低脉冲;-------------------------------------------------------------------------------------------------------------------------------FUWEI:SETB P2.0NOPCLR P2.0MOV R0,#3INTE:MOV R1,#107 ;设一个537us延时KK1: DJNZ R1,KK1DJNZ R0,INTESETB P2.0 ;拉高数据线,等待回应NOPNOPNOPMOV R0,#25 ;INTE1:JNB P2.0,INTE2 ;延时延时50us等待18B20回应,若返回低脉冲则说明18B20存在DJNZ R0 ,INTE1AJMP INTE3 ;经过反应时间而没检测到18B20的存在,则跳转去清零标志位INTE2:SETB BIAOZHI ;检测到18B20存在,置1标志位CLR P1.0AJMP INTE4INTE3:CLR BIAOZHI ;没检测到18B20,清零标志位AJMP INTE5INTE4:MOV R0,#120 ;延时240us,确定回应信号已发完KK: DJNZ R0,KKINTE5:SETB P2.0RET;----------------------------------------------------------------------------------------------------------------------------------------;写18B20子程序;-----------------------------------------------------------------------------------------------------------------------------------------XIE:MOV R2,#8 ;写计数寄存器,一共有8位数据CLR CLP:CLR P2.0MOV R3,#6 ;设一个延时LL1:DJNZ R3,LL1RRC A ;右循环,先输出低位MOV P2.0,CMOV R3,#23 ;设延时LL: DJNZ R3,LL ;SETB P2.0NOPNOPDJNZ R2,LP ;判断是否完成数据传送SETB P2.0 ;完成传送拉高数据位RET;-----------------------------------------------------------------------------------------------------------------------------------------;从18B20中读出温度数据子程序;----------------------------------------------------------------------------------------------------------------------------------------- DUSHU:MOV R4,#2 ;设读回数据个数指针MOV R1,#WENDU_L ;把温度数据低位存入29HRE: MOV R2,#8 ;设数据长度指针RE1: CLR CSETB P2.0NOPNOPCLR P2.0NOPNOPNOPSETB P2.0MOV R3,#9DJNZ R3,$MOV C,P2.0MOV R3,#23NN: DJNZ R3,NNRRC ADJNZ R2,RE1MOV @R1,ADEC R1 ;高位存入28HDJNZ R4,RERET;---------------------------------------------------------------------------------------------------------------------------------;数据整合子程序;温度源数据的整合,读出数据的高字节的低四位决定温度的整数部分;低字节的低四位决定小数部分;-----------------------------------------------------------------------------------------------------------------------------ZHENGHE:MOV A,#0FHANL A,WENDU_L ;低字节的低四位就是小数部分MOV XIAOSHU,A ;获得小数部分MOV A,WENDU_L ;将高字节的低四位移入低字节的高4位,MOV C,40H ;获得的新字节就是整数部分的数据RRC AMOV C,41HRRC AMOV C,42HRRC AMOV C,43HRRC AMOV ZHENGSHU,ARET;-----------------------------------------------------------------------------------------------------------------------------------------;显示数据拆解程序、显示程序、延时程序;----------------------------------------------------------------------------------------------------------------------------------------;数据拆解程序BCD:MOV A,ZHENGSHUMOV B,#10DIV ABMOV 50H,AMOV 51H,BMOV A,XIAOSHUMOV R0,#52HMOV R2,#4D0:MOV B,#10MUL ABMOV B,#16DIV ABMOV @R0,AINC R0MOV A,BDJNZ R2,D0RET;----------------------------------- ;显示程序;---------------------------------- DISP:ACALL TIMEMOV R7,#6MOV DPTR,#TABMOV R0,#55HLP1:MOV A ,@R0;MOVC A,@A+DPTRCJNE R7,#2,NE1ANL A,#07FHNE1:MOV SBUF,AJNB TI ,$CLR TIDEC R0DJNZ R7,LP1RET;---------------------------------------- ;延时程序;---------------------------------------- TIME1:MOV R6,#4LOOP2:MOV R5,#250LOOP1:ACALL D1MSDJNZ R5,LOOP1DJNZ R6,LOOP2RETTIME:MOV R6,#200LOOP3:ACALL D1MSDJNZ R6,LOOP3RETD1MS:MOV R7,#250LOOP0:NOPNOPNOPDJNZ R7,LOOP0RETTAB:DB 0C0H,0F9H,0A4H,0B0H DB 99H, 92H, 82H, 0F8HDB 80H, 90H, 88H, 83HDB 0C6H,0A1H,86H, 8EHDB 0FFHEND18B20温度传感器温度计程序。

DS18B20中文资料(全)

DS18B20中文资料(全)

-0.5
1111 1111 1111 1000
-10.125
1111 1111 0101 1110
-25.0625
1111 1110 0110 1111
-55
1111 1100 1001 0000
*上电复位时温度寄存器默认值为+85℃
数据输出(十六进制) 07D0h 0550h 0191h 00A2h 0008h 0000h FFF8h FF5Eh FE6Eh FC90h
DS18B20通过达拉斯公司独有的单总线协议依靠一个单线端口通讯。当全部器件 经由一个3态端口或者漏极开路端口(DQ引脚在DS18B20上的情况下)与总线连接 的时候,控制线需要连接一个弱上拉电阻。在这个总线系统中,微控制器(主器 件)依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地 址。 由于每个装置有一个独特的片序列码,总线可以连接的器件数目事实上是无 限的。单总线协议,包括指令的详细解释和“时序”见单总线系统节。
DS18B20 可以通过从 VDD 引脚接入一个外部电源供电,或者可以工作于寄生电源 模式,该模式允许 DS18B20 工作于无外部电源需求状态。寄生电源在进行远距离 测温时是非常有用的。寄生电源的控制回路见图 1,当总线为高电平时,寄生电 源由单总线通过 VDD 引脚。这个电路会在总线处于高电平时偷能量,部分汲取的
报警操作信号
DS18B20 完成一次温度转换后,就拿温度值与和存储在 TH 和 TL 中一个字节的用 户自定义的报警预置值进行比较。标志位(S)指出温度值的正负:正数 S=0,负 数 S=1。TH 和 TL 寄存器是非易失性的,所以它们在掉电时仍然保存数据。在存 储器节将解释 TH 和 TL 是怎么存入高速暂存器的第 2 和第 3 个字节的。

DS18B20详细引脚功能描述

DS18B20详细引脚功能描述

DS18B20详细引脚功能描述(1)适应电压范围更宽,电压范围:~,在寄生电源方式下可由数据线供电(2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内(5)温范围-55℃~+125℃,在-10~+85℃时精度为±℃(6)可编程的分辨率为9~12位,对应的可分辨温度分别为℃、℃、℃和℃,可实现高精度测温(7)在9位分辨率时最多在内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快(8)测量结果直接输出数字温度信号,以“一线总线”串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。

DS18B20 测温原理DS18B20 测量温度时使用特有的温度测量技术。

其内部的低温度系数振荡器能产生稳定的频率信号f0,高温度系数振荡器则将被测温度转换成频率信号f。

当计数门打开时,DS18B20 对f0 计数,计数门开通时间由高温度系数振荡器决定。

芯片内部还有斜率累加器,可对频率的非线性予以被偿。

测量结果存入温度寄存器中。

一般情况下的温度值应为9 位(符号点1位),但因符号位扩展成高8 位,故以16 位被码形式读出,表2 给出了温度和数字量的关系。

温度传感器选择DS18B20优点温度采集模块电路如下:报警电路 :报警模块由两个部分组成:蜂鸣器报警和LED灯报警显示电路显示部分采用液晶显示器LCD1602优点–按键电路采用4个按键,以控制设定温度上下限电路原理总图系统仿真程序的调试在Keil环境完成,将编译生成的可执行文件导入到Proteus硬件原理图中,就可进行仿真。

DS18B20引脚图及功能中文资料 word

DS18B20引脚图及功能中文资料 word

单总线温度传感器DS18B20简介(pandren整理)DS18B20是DALLAS公司生产的单总线式数字温度传感器,它具有微型化、低功耗、高性能、搞干扰能力强、易配处理器等优点,特别适用于构成多点温度测控系统,可直接将温度转化成串行数字信号(提供9位二进制数字)给单片机处理,且在同一总线上可以挂接多个传感器芯片。

它具有3引脚TO-92小体积封装形式,温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出,其工作电源既可在远端引入,也可采用寄生电源方式产生,多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与多个DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

以上特点使DS18B20非常适用于远距离多点温度检测系统。

在TO-92和SO-8的封装中引脚有所不同,具体差别请查阅PDF手册,在TO-92封装中引脚分配如下:1(GND):地2(DQ):单线运用的数据输入输出引脚3(VDD):可选的电源引脚DS18B20工作过程及时序DS18B20内部的低温度系数振荡器是一个振荡频率随温度变化很小的振荡器,为计数器1提供一频率稳定的计数脉冲。

高温度系数振荡器是一个振荡频率对温度很敏感的振荡器,为计数器2提供一个频率随温度变化的计数脉冲。

初始时,温度寄存器被预置成-55℃,每当计数器1从预置数开始减计数到0时,温度寄存器中寄存的温度值就增加1℃,这个过程重复进行,直到计数器2计数到0时便停止。

初始时,计数器1预置的是与-55℃相对应的一个预置值。

以后计数器1每一个循环的预置数都由斜率累加器提供。

为了补偿振荡器温度特性的非线性性,斜率累加器提供的预置数也随温度相应变化。

计数器1的预置数也就是在给定温度处使温度寄存器寄存值增加1℃计数器所需要的计数个数。

DS18B20内部的比较器以四舍五入的量化方式确定温度寄存器的最低有效位。

DS18B20中文手册

DS18B20中文手册
总线控制器通过发出报警搜索命令[ECh]检测总线上所有的 DS18B20 报警标识。 任何置位报警标识的 DS18B20 将响应这条命令,所以总线控制器能精确定位每一 个满足报警条件的 DS18B20。如果报警条件成立,而 TH 或 TL 的设置已经改变, 另一个温度转换将重新确认报警条件。
DS18B20 供电
达拉斯 半导体
DS18B20 可编程分辨率的 单总线®数字温度计
特征
引脚排列
l 独特的单线接口仅需一个端口引脚 进行通讯
l 每个器件有唯一的 64 位的序列号存 储在内部存储器中
l 简单的多点分布式测温应用 l 无需外部器件 l 可通过数据线供电。供电范围为 3.0V
到 5.5V。 l 测温范围为-55~+125℃(-67~+
外部电源给 DS18B20 供电 图 5
64 位(激)光刻只读存储器
每只 DS18B20 都有一个唯一存储在 ROM 中的 64 位编码。最前面 8 位是单线系列 编码:28h。接着的 48 位是一个唯一的序列号。最后 8 位是以上 56 位的 CRC 编 码。CRC 的详细解释见 CRC 发生器节。64 位 ROM 和 ROM 操作控制区允许 DS18B20 作为单总线器件并按照详述于单总线系统节的单总线协议工作。
每个 DS18B20 都有一个独特的 64 位序列号,从而允许多只 DS18B20 同时连在 一根单线总线上;因此,很简单就可以用一个微控制器去控制很多覆盖在一大片 区域的 DS18B20。这一特性在 HVAC 环境控制、探测建筑物、仪器或机器的温 度以及过程监测和控制等方面非常有用。
详细的引脚说明 表 1
8 引脚 SOIC 封装* TO-9 封装
5
1
4

Ds18b20温度传感器使用手册

Ds18b20温度传感器使用手册

Ds18b20温度传感器使用手册一、传感器实物图二、引脚说明(1)1 VCC 3.0~5.5V/DC 3 GND42 DQ 数字信号输入/输出端(2)1 5 GND2 63 VCC 3.0~5.5V/DC 74 DQ 数字信号输入/输出8端三、软件设计功能说明:ds18b20采集温度并显示在1602液晶上#include <reg52.h>#include <stdio.h>#define uchar unsigned char#define uint unsigned intsbit ds=P2^4; //温度传感器信号线uint temp;float f_temp;sbit rs=P1^0; //sbit lcden=P1^2; // 液晶sbit wr=P1^1; //void delay(uint z)//延时函数{uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}/***********液晶**************/void write_com(uchar com){//写液晶命令函数rs=0;lcden=0;P0=com;delay(3);lcden=1;delay(3);lcden=0;}void write_date(uchar date){//写液晶数据函数rs=1;lcden=0;P0=date;delay(3);lcden=1;delay(3);lcden=0;}void init() //液晶初始化{lcden=0;write_com(0x38);write_com(0x0e);write_com(0x06);write_com(0x01);}/***********ds18b20**********/void dsreset(void) //18B20复位,初始化函数{uint i;ds=0;i=103;while(i>0)i--;ds=1;i=4;while(i>0)i--;}bit tempreadbit(void) //读1位函数{uint i;bit dat;ds=0;i++; //i++ 起延时作用ds=1;i++;i++;dat=ds;i=8;while(i>0)i--;return (dat);}uchar tempread(void) //读1个字节{uchar i,j,dat;dat=0;for(i=1;i<=8;i++){j=tempreadbit();dat=(j<<7)|(dat>>1); //读出的数据最低位在最前面,这样刚好一个字节在DAT里}return(dat);}void tempwritebyte(uchar dat) //向18B20写一个字节数据{uint i;uchar j;bit testb;for(j=1;j<=8;j++){testb=dat&0x01;dat=dat>>1;if(testb) //写1{ds=0;i++;i++;ds=1;i=8;while(i>0)i--;}else{ds=0; //写0i=8;while(i>0)i--;ds=1;i++;i++;}}}void tempchange(void) //DS18B20 开始获取温度并转换{dsreset();delay(1);tempwritebyte(0xcc); // 写跳过读ROM指令tempwritebyte(0x44); // 写温度转换指令}uint get_temp() //读取寄存器中存储的温度数据{uchar a,b;dsreset();delay(1);tempwritebyte(0xcc);tempwritebyte(0xbe);a=tempread(); //读低8位b=tempread(); //读高8位temp=b;temp<<=8; //两个字节组合为1个字temp=temp|a;f_temp=temp*0.0625; //温度在寄存器中为12位分辨率位0.0625°temp=f_temp*10+0.5; //乘以10表示小数点后面只取1位,加0.5是四舍五入f_temp=f_temp+0.05;return temp; //temp是整型}uchar change(uchar a) //将数字转换为字符{uchar b;if(a==0) b='0';if(a==1) b='1';if(a==2) b='2';if(a==3) b='3';if(a==4) b='4';if(a==5) b='5';if(a==6) b='6';if(a==7) b='7';if(a==8) b='8';if(a==9) b='9';return b;}void dis_temp(uint t) //显示程序{uchar a,b;write_com(0x80+0x40);a=t/100;b=change(a);write_date(b); //十位数delay(5);a=t%100/10;b=change(a); //个位数write_date(b);delay(5);write_date(0x2e); //小数点delay(5);a=t%100%10;b=change(a); //十分位write_date(b);delay(5);write_date(0xdf); //摄氏度的符号delay(5);write_date(0x43);delay(5);}void main(){wr=0;init();while(1){write_com(0x01);tempchange();dis_temp(get_temp());delay(500);}}。

DS18B20引脚图及功能中文资料

DS18B20引脚图及功能中文资料

机产生至少 1uS 的低电平,表示读时间的起始。随后在总线被释放后的 15uS 中 DS18B20 会发送内部数据位,这时控制如果发现总线为高电平表示读出“1”, 如果总线为低电平则表示读出数据“0”。每一位的读取前都由控制器加一个 起始信号。注意:如图 8 所示,必须在读间隙开始的 15uS 内读取数据位才可以 保证通信的正确。 在通信时是以 8 位“0”或“1”为一个字节,字节的读或写是从高位开始的,即 A7 到 A0.字节的读写顺序也是如图 2 自上而下的。
DS18B20 引脚功能: ·GND 电压地 ·DQ 单数据总线 ·VDD 电源电压 ·NC 空引脚 DS18B20 工作原理及应用: DS18B20 的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更 强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流 程之前我们有必要了解 18B20 的内部存储器资源。18B20 共有三种形态的存储器 资源,它们分别是: ROM 只读存储器,用于存放 DS18B20ID 编码,其前 8 位是单线系列编码(DS18B 20 的编码是 19H),后面 48 位是芯片唯一的序列号,最后 8 位是以上 56 的位的 CRC 码(冗余校验)。数据在出产时设置不由用户更改。DS18B20 共 64 位 ROM。
#i nclude<pic.h> //__CONFIG(0x1832); //芯片配置字,看门狗关,上电延时开,掉电检测关,低压编程关,加密,4M 晶体 HS 振荡
#define uch unsigned char 名 uch # define DQ RA0 # define DQ_DIR TRISA0 存器 # define DQ_HIGH() DQ_DIR =1 # define DQ_LOW() DQ = 0; DQ_DIR = 0 unsigned char TLV=0 ; unsigned char THV=0; unsigned char TZ=0; 分 unsigned char TX=0; 分 unsigned int wd; 形式

DS18B20详细中文资料

DS18B20详细中文资料

分辨率可编程单总线数字温度传感器——DS18B20 特征:独特单总线接口,只需要一个端口引脚线即可实现通信每个器件的片上ROM 有一个独特64 位串行码存储多点能力使分布式温度检测应用得到简化不需要外围元件能用数据线供电,供电的范围3.0V~5.5V测量温度的范围:-55℃~+125℃(-67℉~+257℉)从-10℃~+85℃的测量的精度是±0.5℃温度传感器分别率由用户从9-12 位中选择在750ms 内把温度转换为12 位数字字(最大值)用户可定义,非易失性温度告警设置告警搜索命令识别和寻址温度在编定的极限之外的器件(温度告警情况)可采用8 引脚SO(150mil)、8 引脚µSOP 和3 引脚TO-92 封装软件兼容DS1822 器件应用范围包括:恒温控制、工业系统、消费类产品、温度计和任何的热敏系统图1 DS18B20 引脚排列图引脚说明:GND—地DQ—数字输入输出VDD—供电电压NC—空连接一般说明:DS18B20 数字温度传感器提供9~12 位摄氏温度的测量,拥有非易失性用户可编程最高与最低触发点告警功能。

DS18B20 通过单总线实现通信,单总线通常是DS18B20 连接。

它能够感应温度的范围为-55℃~+125℃,在-10℃~+85℃的测量的精度是±0.5℃,而且DS18B20 可以直接从数据线上获取供电(寄生电源)而不需要一个额外的外部电源。

因为每个DS18B20 拥有一个独特的64 序列号,因此它允许多个DS18B20 在一条单总线上,所以很方便使用一个微控制器来控制多个分布在较大范围内的DS18B20。

受益于这一特性的应用包括HAVC 环境控制、建筑物、设备和机械内的温度监测、以及过程监测和控制过程的温度监测。

图2注意: A "+"符号在封装上也标有。

订购信息表1S O* µSOP * TO-924 4 15 1 23 8 3DS18B20 详细引脚说明号符明说GND 地当脚引线总单路开,脚引出输入输据数,DQ 生寄见(供件器给时式模源电生寄用使电)分部源电VDD 选可下式模作操源电生寄在脚引,VDDVDD 地接须必* 表中所有未列出的引脚都是NC(空接)概述:方框图3 给出了表一所描述的DS18B20 的主要引脚连接。

DS18B20特性

DS18B20特性

DS18B20特性DS18B20简介一、概述DALLAS 公司推出的DS18B20数字式温度传感器是一线式数字温度传感器。

它将地址线、数据线、控制线合为一根双向串行传输数据的信号线,并允许在这根信号线上挂接多个DS18B20,其广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。

它具有微型化、低功耗、高性能、抗干扰能力强等优点,可直接将温度转化成串型数字信号供处理器处理。

二、DS18B20的外形和引脚功能DS18B20的引脚排列如图1及外形如图2所示,它采用了3脚PR-35、TO-92封装或8脚SOIC 封装。

表1 引脚功能图1 DS18B20引脚图图2 实物图引脚功能 GND 电压地 NC 空引脚DQ 单数据总线(数据输入/输出引脚) VDD电源电压(寄生电源供电时接地;外部电源供电时接工作电源)三、DS18B20的内部结构DS18B20的内部结构3所示,主要包括下列7个部分。

(1)寄生电源。

(2)温度传感器。

(3)64位光刻(laser )ROM 与单线接口:64位光刻ROM 从高位到低位依次为8位CRC 、48位序列号和8位家族代码(28H )。

(4)高速暂存器,即便签式RAM ,用于存放中间数据;配置寄存器为高速暂存器中的第5个字节。

DS18B20在工作时,按此寄存器中设置的分辨率将温度转换成相应精度的数值。

该寄存器的R0、R1为分辨率视之为,出厂时R0、R1置位默认值,即R0=1,R1=1(即12位分辨率),用户可根据需要改写配置寄存器以获得合适的分辨率。

(5)高温触发器TH 和低温触发器TL ,分别用来存储用户设定的温度上、下限值。

(6)存储与控制逻辑。

(7)8位循环冗余校验码(CRC )发生器。

图2-3 DS18B20的内部结构光刻ROM 中的64位序列号是出厂前被光刻号的,可以看成是该DS18B20的地址序列码。

64位光刻ROM 的排列是:开始8位(28H )是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。

温度传感器DS18B20工作原理以及引脚图

温度传感器DS18B20工作原理以及引脚图

温度传感器:DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

以上特点使DS18B20非常适用于远距离多点温度检测系统。

2 DS18B20的内部结构DS18B20内部结构如图1所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地,见图4)。

ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。

64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+1)。

ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

图2DS18B20的管脚排列DS18B20中的温度传感器完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S 为符号位。

例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。

温度值高字节高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入。

其中配置寄存器的格式如下:R1、R0决定温度转换的精度位数:R1R0=“00”,9位精度,最大转换时间为93.75ms;R1R0=“01”,10位精度,最大转换时间为187.5ms;R1R0=“10”,11位精度,最大转换时间为375ms;R1R0=“11”,12位精度,最大转换时间为750ms;未编程时默认为12位精度。

ds18b20详细引脚功能描述

ds18b20详细引脚功能描述

ds18b20详细引脚功能描述
DS18B20是一种数字式温度传感器,具有精准度高、精度稳定、结构简单、易于接口、功耗低等特点,因此被广泛应用于温度测量和监控等领域。

下面详细介绍DS18B20的引脚
功能。

引脚1(VCC):为DS18B20供电的引脚,电压范围为3V到5.5V。

在供电电压不高于5.5V的情况下,可以直接使用单个电池或锂电池提供电源。

引脚2(DQ):数字信号引脚,用于传输温度数据和控制指令,并与外部设备进行通讯。

DQ引脚实现了1-Wire总线协议,可以连接多个DS18B20传感器,实现多个传感器的温度测量和监控。

引脚3(GND):接地引脚。

引脚4(NC):该引脚没有任何功能,可以不连接。

在工作过程中,DS18B20可以通过控制器对其进行复位、开始转换温度、读取温度等
操作。

控制器可以采用单片机、单片机开发板或适配器等设备。

因此,DS18B20是一种灵
活可配的数字式温度传感器,可以方便地应用于各种需要温度测量和监控的场合。

DS18B20中文资料(特点,管脚图,寄存器及应用电路及程序)

DS18B20中文资料(特点,管脚图,寄存器及应用电路及程序)

DS18B20特点1.单线结构,只需一根信号线和CPU相连。

2. 不需要外部元件,直接输出串行数据。

3. 可不需要外部电源,直接通过信号线供电,电源电压范围为3.3V~5V。

4.测温精度高,测温范围为:一55℃~+125℃,在-10℃~+85℃范围内,精度为±O.5℃。

5.测温分辨率高,当选用12位转换位数时,温度分辨率可达0.0625℃。

6.数字量的转换精度及转换时间可通过简单的编程来控制:9位精度的转换时间为93.75 ms:10位精度的转换时间187.5ms:12位精度的转换时间750ms。

7.具有非易失性上、下限报警设定的功能,用户可方便地通过编程修改上、下限的数值。

8.可通过报警搜索命令识别哪片DS18820采集的温度超越上、下限。

DS18B20引脚及管脚功能介绍DS18B20的常用封装有3脚、8脚等几种形式,如图1所示。

各脚含义如下:DQ:数字信号输入/输出端。

GND:电源地端。

VDD:外接供电电源输入端(在寄生电源接线时此脚应接地)。

DS18B20内部结构简要介绍:DS18820的内部结构如图3所示:主要有64位光刻ROM、温度传感器、非易失性温度报警触发器TH和TL、配置寄存器等组成。

1.64位光刻ROM是生产厂家给每一个出厂的DS18820命名的产品序列号,可以看作为该器件的地址序列号。

其作用是使每一个出厂的DS18820地址序列号都各不相同,这样,就可以实现一根总线上挂接多个DS18820的目的。

2.DS18820中的温度传感器完成对温度的测量,输出格式为:16位符号扩展的二进制补码。

当测温精度设置为12位时,分辨率为O.0625℃,即O.0625℃/LSB。

其二进制补码格式如图2所示。

其中,S为符号位,S=1,表示温度为负值;S=0,表示温度为正值。

例如+125℃的数字输出为07D0H,-55℃的数字输出为FC90H。

一些温度值对应的数字输出如图4所示。

3.DS18820中的低温触发器TL、高温触发器TH,用于设置低温、高温的报警数值。

DS18B20数字温度传感器应用详解

DS18B20数字温度传感器应用详解

DS18B20数字温度传感器应用详解电路图参考图:在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。

另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。

因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。

新的"一线器件"DS18B20体积更小、适用电压更宽、更经济。

美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。

全部传感元件及转换电路集成在形如一只三极管的集成电路内。

一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

现在,新一代的DS18B20体积更小、更经济、更灵活。

使你可以充分发挥“一线总线”的优点。

目前DS18B20批量采购价格仅10元左右。

DS18B20、DS1822 "一线总线"数字化温度传感器同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS1822的精度较差为±2°C。

现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

数字温度传感器DS18B20应用实例

数字温度传感器DS18B20应用实例

二、对DS18B20写1字节数据


对应程序
(1)数据线先置低电平0,发送的起始 void write_OneChar(uchar dat) 信号。 { (2)延时确定的时间为15µs; uchar i = 0; (3)按低位到高位顺序发送数据(一次 for (i = 8; I > 0; i--) 只发送一位)。 { (4)延时时间为45µs,等待DS18B20 DQ = 0; 接收; delay(5); (5)将数据线拉到高电平1,单片机释 DQ = dat & 0x01; 放总线; delay(15); (6)重复①~⑤步骤,直到发送完整个 DQ = 1; 字节; dat >> = 1; (7)最后将数据线拉高,单片机释放总 } 线。 delay(4); }
所示。
图3 - 1 DS18B20外形及引脚排列D源自18B20引脚功能描述序号
1 2
名称
GND DQ 地信号
描述
数据输入输出引脚
3
Vdd 电源输入引脚,当工作于寄生 (Vcc) 电源模式时,此引脚必须接地
值得一提的是DQ引脚的I/O为数据输入/输出端(即单 总线),该引脚为漏极开路输出,常态下呈高电平。而单 总线技术是DS18B20的一个特点,也是目前的技术热点之 一。
3.2 单总线数据传输原理
单总线协议规定一条数据线传输串行数据,时序有严格 的控制,对于DS18B20的程序设计,必须遵守单总线协议。 DS18B20操作主要分初始化、写数据、读数据。下面分别 介绍操作步骤。
一、初始化时序
对DS18B20初始化的不得是:单片机感知 DS18B20存在并为下一步操作做准备,同时启动 DS18B20,程序设计依据时序进行。设P1.0口与 DS18B20的数据DQ连接,初始化过程如下:

数字温度传感器DS18B20详解

数字温度传感器DS18B20详解

数字温度传感器DS18B20详解一、概述传统的温度检测大多以热敏电阻为传感器,采用热敏电阻,可满足40℃至90℃测量范围,但热敏电阻可靠性差,测量温度准确率低,对于小于1℃的温度信号是不适用的,还得经过专门的接口电路转换成数字信号才能由微处理器进行处理。

目前常用的微机与外设之间进行的数据通信的串行总线主要有I2C总线,SPI总线等。

其中I2C总线以同步串行2线方式进行通信(一条时钟线,一条数据线),SPI总线则以同步串行3线方式进行通信(一条时钟线,一条数据输入线,一条数据输出线)。

这些总线至少需要两条或两条以上的信号线。

而单总线( 1-wire bus ),采用单根信号线,既可传输数据,而且数据传输是双向的,CPU 只需一根端口线就能与诸多单总线器件通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

因而,这种单总线技术具有线路简单,硬件开销少,成本低廉,软件设计简单,便于总线扩展和维护。

同时,基于单总线技术能较好地解决传统识别器普遍存在的携带不便,易损坏,易受腐馈,易受电磁干扰等不足,因此,单总线具有广阔的应用前景,是值得关注的一个发展领域。

单总线即只有一根数据线,系统中的数据交换,控制都由这根线完成。

主机或从机通过一个漏极开路或三态端口连至数据线,以允许设备在不发送数据时能够释放总线,而让其它设备使用总线。

单总线通常要求外接一个约为 4.7K 的上拉电阻,这样,当总线闲置时其状态为高电平。

DS18B20数字式温度传感器,与传统的热敏电阻有所不同的是,使用集成芯片,采用单总线技术,其能够有效的减小外界的干扰,提高测量的精度。

同时,它可以直接将被测温度转化成串行数字信号供微机处理,接口简单,使数据传输和处理简单化。

部分功能电路的集成,使总体硬件设计更简洁,能有效地降低成本,搭建电路和焊接电路时更快,调试也更方便简单化,这也就缩短了开发的周期。

DS18B20单线数字温度传感器,即“一线器件”,其具有独特的优点:( 1 )采用单总线的接口方式与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

DS18B20

DS18B20

基于单总线器件DS18B20的温度测量仪发布时间:2009-8-3 阅读次数:228 字体大小: 【小】【中】【大】1 引言许多情况下需要测量温度参数。

通常测温系统的主要器件是热敏电阻,由于它体积小、重复性好、测量方法简单,所以在测温系统中广泛应用。

但采用热敏电阻的测温系统需要A/D转换,而且测量精度不高。

本文采用Dallas公司生产的一种新型温度传感器DS18B20,它集温度测量、A/D转换于一体,其测量范围宽(-55℃~+125℃),精度高(0.0625℃),DS18B20是一款具有单总线结构的器件。

由DS18B20组建的温度测量单元体积小,便于携带、安装。

同时,DS18B20的输出为数字量,可以直接与单片机连接,无需后级A/D转换,控制简单。

由于DS18B20具有单总线特性,便于扩展,可在一根总线上挂接多个DS18B20来组建温度测量网络。

2 硬件电路设计本系统设计采用 Mega8单片机控制DS18B20,由显示电路显示当前温度。

其系统硬件电路如图1所示。

Atmel 的Mega8单片机采用RTSC(精简指令集),指令执行速度快,内嵌8 KB Flash程序存储器,支持ISP(在系统编程),片内含有大容量的RAM区,具有SPT总线、I2C总线、ADC功能。

Mega8单片机体积小,功能强,具有PDIP-28封装及TQFP封装。

DS18B20采用单总线方式和Mega8单片机相连,即DS18B20的1引脚和3引脚接地,2引脚通过一只240 Ω的电阻接至Mega8的PB7引脚,同时将PB7引脚采用一只4.7 kΩ的电阻上拉至VCC。

单总线即只用一根信号线,既供电,又传输数据,而且数据传输是双向的,单总线具有"线与"功能,连接方便,便于扩展。

由于DS18B20采用 CMOS技术,耗电量很小,从总线上"偷"一点电保存到DS18B20内的电容中就可供给器件工作。

串联240 Ω电阻的目的是防止有缺陷的程序损坏DS18B20,如果没有正确地采用OC(集电极开路)或OD(漏极开路)结构驱动DS18B20,而是选择推挽方式,DS18B20可能被烧坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DS18B20详细引脚功能描述
(2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯
(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温
(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内
(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃
(6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温
(7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms 内把温度值转换为数字,速度更快
(8)测量结果直接输出
数字温度信号,以“一线总线”串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力
(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。

DS18B20 测温原理
DS18B20 测量温度时使用特有的温度测量技术。

其内部的低温度系数振荡器能产生稳定的频率信号f0,高温度系数振荡器则将被测温度转换成频率信号f。

当计数门打开时,DS18B20 对f0 计数,计数门开通时间由高温度系数振荡器决定。

芯片内部还有斜率累加器,可对频率的非线性予以被偿。

测量结果存入温度寄存器中。

一般情况下的温度值应为9 位(符号点1位),但因符号位扩展成高8 位,故以16 位被码形式读出,表2 给出了温度和数字量的关系。

温度传感器选择DS18B20 优点
温度采集模块电路如下:
报警电路 :
报警模块由两个部分组成:蜂鸣器报警和LED 灯报警
报警电

51 单 片 机
温度传感电路
显示电

按键电路
◆显示电路显示部分采用液晶显示器LCD1602
◆优点

按键电路
◆采用4个按键,以控制设定温度上下限
电路原理总图
系统仿真
程序的调试在Keil环境完成,将编译生成的可执行文件导入到Proteus硬件原理图中,就可进行仿真。

系统框图。

相关文档
最新文档