人教版初一数学七年级数学上册练习题【附答案】
人教版七年级数学上册《第一章有理数》测试卷-附含答案
人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。
人教版七年级上册数学第一章第一节练习题(含答案)
人教版七年级上册数学第一章第一节练习题(含答案)一、单选题1.下列各数中,是负分数的是()A.56B.﹣12C.﹣0.8D.02.如果温度上升3℃记作+3℃,那么下降8℃记作()A.﹣5℃B.11℃C.﹣8℃D.+8℃3.如果把一个物体向右移动1m时记作移动+1m,那么这个物体向左移动2m时记作移动()A.﹣1m B.+2m C.﹣2m D.+3m4.下列四个有理数中是负数的是()A.0B.−12C.2D.3.55.若零上5°C记作+5°C,则零下4°C应记作()A.−5°C B.+5°C C.−4°C D.+4°C二、填空题6.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次正式引入负数.如果收入20元记作+20元,那么支出10元记作元.7.若盈利8万元记作+8万元,则亏损7万元记作万元.8.中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向下潜50m记为+50m,则向上浮30m记为m.9.做生意盈亏属于正常现象,如果盈利500元记作+500元,那么-300元表示.10.如果“+20%”表示增产20%,那么“−12%”表示.三、解答题11.有24筐大庙香水梨,以每筐20千克为标准,超过或不足的分别用正、负来表示,记录如下:请你计算这24筐香水梨的总质量是多少千克.四、综合题12.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?13.某校组织学生去东南花都进行研学活动.第一天下午,学生队伍从露营地出发,开始向东的方向直走到距离露营地500米处的科普园地.学校联络员也从露营地出发,不停地沿途往返行走,为队伍护行.以向东的方向为正方向,联络员从开始到最后行走的情况依次记录如下(单位:米):+150,-75,+205,-30,+25,-25,+30,-25,+75.(1)联络员最终有没有到达科普园?如果没有,那么他离科普园还差多少米?(2)若联络员行走的平均速度为80米/分,请问他此次行程共用了多少分钟?14.城固资源富集,享有“天然药库”的美誉,现有20筐药材,以每筐10千克为标准质量,超过的质量用正数表示,不足的质量用负数表示,结果记录如下:(1)与标准质量相比,这20筐药材总计超过或不足多少千克?(2)若这些药材平均以每千克15元的价格出售,则这20筐药材可卖多少元?15.以45千克为七年级学生的标准体重测量7名学生的体重,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:(1)最接近标准体重的是学生(填序号).(2)最大体重与最小体重相差千克.(3)求7名学生的平均体重.16.某食品厂从生产的食品中抽出样品20袋,检测每袋的质量是否符合标准,超过的部分用正数表示,不足的部分用负数表示,记录如表:(1)若每袋标准质量为350克,则这批抽样检测的样品的总质量是多少克?(2)若该食品的包装袋上标有产品合格要求为“净重350±2克”,则这批样品的合格率为多少?17.某粮库10月23日到25日这3天内进出库的吨数记录如下(“+”表示进库,“-”表示出库):(1)经过这3天进出库后,粮库管理员结算时发现粮库里结存480吨粮食,那么3天前粮库里的存量有多少吨?(2)如果进库的装卸费是每吨8元,出库的装卸费是每吨10元,那么这3天要付出多少装卸费?18.一天,某出租车被安排以A地为出发地,只在东西方向道路上营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣7、﹣6、﹣4、+10.假设该出租车每次乘客下车后,都在停车地等待下一个乘客,直到下一个乘客上车再出发.(1)将最后一名乘客送到目的地,出租车在A地何处?19.测量一幢楼的高度,七次测得的数据分别是:79.8m,80.6m,80.4m,79.1m,80.3m,79.3m,80.5m.(1)以80为标准,用正数表示超出部分,用负数表示不足部分,写出七次测得数据对应的数;(2)求这七次测量的平均值;(3)写出最接近平均值的测量数据,并说明理由.20.王敏为了解自家小汽车的使用情况,连续记录了这周的7天中她家小汽车每天行驶的路程.以20km为标准,每天超过或不足20km的部分分别用正数、负数表示.下面是她记录的数据(单位:km):+4,-2,-4,+8,+6,-3,+4.(1)王敏家小汽车这7天中,行驶路程最多的一天比最少的一天多多少km?(2)请你计算王敏家小汽车这7天共行驶的路程.答案1.C 2.C 3.C 4.B 5.C 6.-10 7.-7 8.-30 9.亏损300元10.减产12% 11.解:−3×1+(−2×4)+(−1.5×4)+(0×6)+(1×5)+(2.5×4)+20×24=−3−8−6+5+10+480=478(千克).答:这24筐香水梨的总质量是478千克.12.(1)解:∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米(2)解:∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)解:这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)13.(1)解:+150-75+205-30+25-25+30-25+75=330米,330<500,∴联络员最终没有到达科普园,离科普园还差170米(2)解:(150+75+205+30+25+25+30+25+75)÷80=8分钟,∴他此次行程共用了8分钟.14.(1)解:(-0.8)×1+(-0.5)×4+(-0.3)×2+0×3+0.4×2+0.5×8,=-0.8-2-0.6+0+0.8+4,=1.4(千克),所以这20筐药材总计超过1.4千克.(2)解:(10×20+1.4)×15,=201.4×15,=3 021(元),所以这20筐药材可卖3021元.15.(1)4号(2)11(3)解:7名学生的平均体重=45+(﹣5+3+2﹣1﹣2+4+6)÷7=46(千克), ∴7名学生的平均体重为46千克.16.(1)解:超出的质量为:−5×2+(−2)×4+0×5+1×5+3×1+6×3=−10−8+0+5+3+18=8(克), 总质量为:350×20+8=7008(克), 答:这批抽样检测样品总质量是7008克.(2)解:因为绝对值小于或等于2的食品的袋数为: 4+5+5=14(袋),所以合格率为:1420×100%=70%,答:这批样品的合格率为70%.17.(1)解:26-38-20+34-32-15=(26+34)-(38+20+32+15)=60-105=-45,∴3天前粮库里的存量=480+45=525吨 (2)解:60×8+105×10=48+1050=1098元. ∴这3天要付出1098元装卸费.18.(1)解:∵行车里程依先后次序记录:+9、﹣3、﹣5、+4、﹣8、+6、﹣7、﹣6、﹣4、+10,∴将最后一名乘客送到目的地出租车在A 地位置:19.(1)解:79.8−80=−0.2,80.6−80=0.6,80.4−80=0.4,79.1−80=−0.9,80.3−80=0.3,79.3−80=−0.7,80.5−80=0.5.故七次测得数据对应的数分别是−0.2,+0.6,+0.4,−0.9,+0.3,−0.7,+0.5. (2)解:79.8+80.6+80.4+79.1+80.3+79.3+80.57=80m故这七次测量的平均值为80m .(3)解:79.8 m ,理由如下:因为|−0.2|=0.2,在七次测得数据中绝对值最小,故最接近平均值的测量数据.20.(1)解:8−(−4)=12(km).答:行驶最多的一天比行驶最少的一天多12km. (2)解:超过或不足20km 的部分的和为(+4)+(−2)+(−4)+(+8)+(+6)+(−3)+(+4)=13, 这7天共行驶的路程是13+7×20=153(km). 答:王敏家小汽车这7天共行驶的路程是153km.。
人教版七年级初一数学上册同步练习1.3.1有理数的加法(附答案)
11.3.1有理数的加法 同步练习基础巩固题:1、计算:(1)15+(-22) (2)(-13)+(-8)(3)(-0.9)+1.51 (4))32(21-+2、计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)3、计算:(1))1713(134)174()134(-++-+-2(2))412(216)313()324(-++-+-4、计算:(1))2117(4128-+ (2))814()75(125.0)411(75.0-+-++-+应用与提高题1、(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。
2、若2,3==b a ,则=+b a ________。
3、已知,3,2,1===c b a 且a >b >c ,求a +b +c 的值。
4、若1<a <3,求a a -+-31的值。
35、计算:7.10)]323([3122.16---+-+-6、计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)7、10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?中考链接1、数轴上A 、B 两点所表示的有理数的和是________。
2、小明记录了今年元月份某五天的最低气温(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )A 、1B 、2C 、0D 、-14参考答案基础检测1、-7,-21,0.61,-61 严格按照加法法则进行运算。
2、-10,-3.把符号相同的数就、或互为相反数的数结合进行简便运算3、-1,213-。
把同分母的数相结合进行简便运算。
4、756,4310-。
拆分带分数,整数部分和分数部分分别进行加法运算;把小数化成分数进行简便运算。
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
人教版初一数学七年级数学上册练习题【附答案】
人教版初一数学七年级数学上册练习题【附答案】(总13页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--人教版七年级数学上册精品练习题七年级有理数一、境空题(每空2分,共38分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请赋予它实际的意义:___________________。
9、绝对值大于1而小于4的整数有____________,其和为_________。
10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。
11、若0|2|)1(2=++-b a ,则b a +=_________。
12、数轴上表示数5-和表示14-的两点之间的距离是__________。
13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、如果0a b +>,且0ab <,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值一定是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为() (A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………()A 、高%B 、低%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。
人教版七年级上册数学 第一章《有理数》练习题(附答案)
1 2
,
−
3
48.食品店一周中的盈亏情况如下 ( 盈余为正 ) : 132 元, −12.5 元, −10.5 元,127 元, −87 元, 136.5 元,98 元. 请通过计算说明这一周食品店的盈亏情况.
49.试比较 a 与﹣a 的大小.
50.把下列各数填在相应的表示集合的大括号内:
-3,-
(2)解:原式=
1 2
×(﹣24)+
5 6
×(﹣24)﹣
7 12
×(﹣24)=﹣12﹣20+14=﹣18.
40.【答案】 解:原式=2+2-1=3
四、解答题
41.【答案】
解:正数集合:{
1 10
,2014,20%,…}
负数集合:{-7,﹣
1 3
,
-0.75…}
整数集合:{0,2014…}
正分数集合:{
+
1
+
2
−
3+2×
3 2
−
2
2
=
13 4
−
2
2
37.【答案】 解:(+7)+(﹣4)﹣(﹣3)﹣(+14)=7﹣4+3﹣14=3+3-14=6-14=﹣8
38.【答案】 解:原式 = 3 × 2 − ( − 1)
39.【答案】 (1)解:原式=6.8﹣(﹣4.2)+ ( − 1)3 =6.8+4.2﹣1=10
A. -6
B.
−5
1 3
C.
−4
1 2
D.
−3
3 4
6.计算 18 − ( − 5) 的结果等于( )
人教版七年级数学上册《一元一次方程》练习题-带答案
人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。
人教版 七年级数学上册 3.4 实际问题与一元一次方程 同步练习(含答案)
人教版七年级数学上册 3.4 实际问题与一元一次方程同步练习一、选择题1. 小明所在城市的“阶梯水价”收费办法如下:每户每月用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元.小明家今年5月份用水9吨,共交水费44元,根据题意列出关于x的方程,正确的是()A.5x+4(x+2)=44B.5x+4(x-2)=44C.9(x+2)=44D.9(x+2)-4×2=442. 学校组织知识竞赛,共设20道选择题,各题分值相同.下表记录了3名参赛学生的得分情况,若参赛学生小亮只答对了16道选择题,则小亮的得分是()A.80分B.76分C.75分D.70分3. 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是()A.350元B.400元C.450元D.500元4. 某市出租车的收费标准是起步价5元(行驶路程不超过3 km,都需付5元车费),超过3 km,每增加1 km,加收1.2元(不足1 km的按1 km收费). 某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是()A.8 km B.9 kmC.6 km D.10 km5. 如图,在长为a 厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于( )A.a -85厘米 B.a +85厘米 C.a -45厘米D.a -165厘米6. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少.设合伙人数为x 人,所列方程正确的是( ) A .5x -45=7x -3 B .5x +45=7x +3 C.x +455=x +37D.x -455=x -377. 小明前年用一笔钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年他将得到利息288元,则小明前年买理财产品的钱数为( ) A .6400元 B .3200元 C .2560元D .1600元8. 程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是( ) A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人9. 为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可打8折.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款() A.140元B.150元C.160元D.200元10. 《算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少.”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字.已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+12x+14x=34685二、填空题11. 某商场一件商品按标价的九折销售仍获利20%,已知商品的标价为28元,则商品的进价是元.12. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.13. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.14. 2019·芜湖南陵期末某校组织学生和教师为边远山区学校捐赠图书,原计划共捐赠5000册,实际捐赠时学生比原计划多捐了15%,教师比原计划多捐了20%,实际共捐赠5825册,则原计划学生捐赠图书________册.15. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.16. 某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A地区的物资比发往B地区的物资的1.5倍少1000件,则发往A地区的生活物资为________件.三、解答题17. 某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校的矿泉水件数的2倍少400件.求该企业捐给甲、乙两所学校各多少件矿泉水.18. 一块金与银的合金重250克,放在水中减轻了16克,已知金在水中质量减轻119,银在水中质量减轻110.求这块合金中含金、银各多少克.19. 某班进行期中考试后,班长安排小明购买奖品准备奖励成绩优异的学生.如图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本;(2)请你解释:小明为什么不可能找回68元?20. 如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.21. 为庆祝六一儿童节,某市中小学统一组织文艺会演.甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上(含91套)每套服装的价格60元50元40元如果两所学校分别单独购买服装,那么一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装可以节省多少钱?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法、绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装的方案.人教版七年级数学上册 3.4 实际问题与一元一次方程同步练习-答案一、选择题1. 【答案】A[解析] 由题意可得5x+(9-5)(x+2)=44,即5x+4(x+2)=44.故选A.2. 【答案】B[解析] 根据表格数据,A学生答对20道题得100分,可知答对一题得100÷20=5(分).设答错或不答一道题得x分,由B学生答对18道题,答错2道题得88分,可得18×5+2x=88,解得x=-1,故答错或不答一题扣1分.小亮答对16道题,则有16×5+(-1)×(20-16)=76(分).故选B.3. 【答案】B[解析] 本题相等关系是:利润率=20%,根据相等关系建立方程可得解.设这批服装每件的标价为x 元,得0.6x -200200=20%,解得x =400,故选B.4. 【答案】A[解析] 设此人坐车行驶的路程最多为x km ,则有5+(x -3)×1.2=11,解得x =8.5. 【答案】A[解析] 根据题意和图形可以列出相应的方程,从而可以解答本题.由题意可得5x +2×4=a ,解得x =a -85.故选A.6. 【答案】B7. 【答案】B[解析] 设小明前年买理财产品的钱数是x 元.由题意得4.5%x×2=288,解得x =3200.即小明前年买理财产品的钱数为3200元.8. 【答案】A[解析] 设大和尚有x 人,则小和尚有(100-x)人,根据相等关系:大和尚吃的馒头个数+小和尚吃的馒头个数=100,可列方程为:3x +100-x3=100.解方程可得x =25.所以大和尚25人,小和尚75人.故选A.9. 【答案】B[解析] 此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解. 设小慧同学不买卡直接购书需付款x 元, 则有20+0.8x =x -10, 解得x =150,即小慧同学不买卡直接购书需付款150元.故选B.10. 【答案】A二、填空题11. 【答案】21 [解析]设该商品的进价为x 元,根据题意得:28×0.9-x=20%x ,解得x=21.12. 【答案】180 [解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x 千米/时,则甲车的速度为1.2x 千米/时.根据题意,得2·1.2x +2x =660,解方程,得x =150.150×1.2=180(千米/时).13. 【答案】6[解析] 设蜘蛛有x 只,则蜻蜓有2x 只,由题意,得8x +2x·6=120,解得x =6.14. 【答案】3500[解析] 设原计划学生捐赠图书x 册,则教师捐赠图书(5000-x)册.依题意得15%x +(5000-x)×20%=5825-5000,解得x =3500.15. 【答案】3[解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x8=1, 解得x =2,x +1=3. 故甲一共做了3天.16. 【答案】3200[解析] 设发往A 地区的生活物资为x 件,则发往B 地区的物资为(6000-x)件.依题意可列方程x =1.5×(6000-x)-1000,解得x =3200.三、解答题17. 【答案】解:设该企业捐给乙校x 件矿泉水,则捐给甲校(2x -400)件矿泉水. 根据题意,得x +(2x -400)=2000. 解得x =800, 所以2000-x =1200.答:该企业捐给甲校1200件矿泉水,捐给乙校800件矿泉水.18. 【答案】解:设这块合金中含金x 克,则含银(250-x)克.根据题意,得119x +110(250-x)=16. 解得x =190.250-x =250-190=60.答:这块合金中含金190克,含银60克.19. 【答案】解:(1)设买了x 本单价为5元/本的笔记本,则买了(40-x)本单价为8元/本的笔记本,依题意,得5x +8(40-x)=300-68+13. 解得x =25.40-x =15.答:单价为5元/本和8元/本的笔记本分别买了25本和15本.(2)解法一:由(1)知应找回的钱款为300-5×25-8×15=55(元)≠68元,故不可能找回68元.解法二:设买了m 本单价为5元/本的笔记本,则买了(40-m)本单价为8元/本的笔记本.依题意,得5m +8(40-m)=300-68.解得m =883.因为m 是正整数,所以m =883不合题意,应舍去,故不可能找回68元.20. 【答案】解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒. (2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6; ②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18. 答:当A ,B 两点运动6秒或18秒时相距6个单位长度. (3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43.当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72.答:此时点B 表示的数为-72.21. 【答案】[解析] 首先要认真阅读题目弄清题意,运用方程求出甲、乙两校参加演出的学生数,然后根据数据进行单独购买、联合购买的计算,尤其是两校联合购买比实际人数多购买9套,但实际花费较小这一情形容易被忽视掉.解:(1)由题意,得5000-92×40=1320(元),所以两校联合起来购买服装比各自购买服装可以节省1320元.(2)设甲校有x名学生准备参加演出,则乙校有(92-x)名学生准备参加演出.由题意知甲校的学生多于45人且少于90人,乙校的学生少于45人.依题意列方程,得50x+60(92-x)=5000,解得x=52,92-x=92-52=40.所以甲、乙两所学校分别有52名,40名学生准备参加演出.(3)由于甲校有10人不能参加演出,则甲校有42人参加演出.若两校各自购买服装,则需要(42+40)×60=4920(元).若两校联合购买服装,则需要50×(42+40)=4100(元).这样两校联合购买服装比各自购买可以节省4920-4100=820(元).但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买可节省4100-3640=460(元).因此,最省钱的购买服装的方案是两校联合购买91套服装.。
最新人教版七年级数学上册全套同步练习题(课课练)及答案
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
2023-2024学年人教版七年级数学上册第一章【有理数】训练卷附答案解析
2023-2024学年七年级数学上册第一章【有理数】训练卷(满分120分)一、选择题(本大题共10小题,共30分)1.−2023的绝对值是()A.12023B.2023C.−12023D.−20232.中国人最早使用负数,可追溯到两千多年前的秦汉时期,−0.5的相反数是()A.0.5B.±0.5C.−0.5D.53.负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作+5元,那么支出5元记作()A.−5元B.0元C.+5元D.+10元4.以下说法正确的是()A.正整数和负整数统称整数B.整数和分数统称有理数C.正有理数和负有理数统称有理数D.有理数包括整数、零、分数5.用四舍五入法对0.06045取近似值,错误的是()A.0.1(精确到0.1)B.0.06(精确到百分位)C.0.061(精确到千分位)D.0.0605(精确到0.0001)6.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×1037.有4,−92,−3,0四个数,其中最小的是()A.4B.−92C.−3D.08.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.−3B.0C.3D.−69.中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(−2),根据这种表示法,可推算出图2所表示的算式是()A.(+3)+(+6)B.(+3)+(−6)C.(−3)+(+6)D.(−3)+(−6)10.观察下列等式:31=3,32=9,33=27,34=81,35=243,…,根据其中的规律可得31+32+33+…+32023的结果的个位数字是()A.0B.2C.7D.9二、填空题(本大题共5小题,共15分)11.在−1、0、1、2这四个数中,既不是正数也不是负数的是.12.比较大小:−12−1;−2−|−3|;−(−12)−(−13).13.计算:1+(−2)+3+(−4)+…+2023+(−2024)=________.14.若|x+2|+(y−3)2=0,则x y=.15.已知有理数a、b、c在数轴上对应点的位置如图所示,则|b−c|−|a−b|−|c|的化简结果为.三、计算题(本大题共8小题,共75分)16.(12分)计算:(1)(−16+34−512)×12(2) (−20)−(+5)−(−5)−(−12).(3)(+325)+(−278)−(−535)−(+18)(4)−12−(12−23)÷13×[−2+(−3)2].17.(6分)将下列各数在数轴上表示出来,并用“<”把它们连接起来.−4,−|−3|,0,−13,+(+2),π18.(7分)现有10袋小麦,称量后记录如下(单位:千克) :91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.(1)若以90千克为标准,把超出的千克数记为正数,不足的千克数记为负数,请依次写出10袋小麦的千克数与90的差值.(2)请利用(1)中的差值,求这10袋小麦的质量和.19.(9分)出租车司机老姚某天上午的营运全是在一条笔直的东西走向的路上进行.如果规定向东为正,向西为负,那么他这天上午行车里程(单位:千米)记录如下:+5,−3,+6,−7,+6,−2,−5,+4,+6,−8.(1)将第几名乘客送到目的地时,老姚刚好回到上午的出发点?(2)将最后一名乘客送到目的地时,老姚距上午的出发点多远?在出发点的东面还是西面?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元,则姚师傅在这天上午一共收入多少元?20.(10分)某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超额记为正、不足记为负):(单位:只)星期一二三四五六日与计划量的差值+5−2−4+13−6+6−3(1)根据记录的数据可知该厂生产风筝最多的一天是星期;(2)产量最多的一天比产量最少的一天多生产多少只风筝⋅(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元,少生产一只扣4元,那么该厂工人这一周的工资总额是多少元⋅21(10分)简便运算能使学生思维的灵活性得到充分锻炼,对提高学生的计算能力起到非常大的作用.阅读下列相关材料.材料一:计算:124÷(23−34+16−512).分析:利用通分计算23−34+16−512会很麻烦,可以采用以下方法进行计算.解:∵(23−34+16−512)÷124=(23−34+16−512)×24=23×24−34×24+16×24−512×24=−8,∴124÷(23−34+16−512)=−18.材料二:下列算式是一类两个两位数相乘的特殊计算方法.38×32=100×(32+3)+8×2=1216;67×63=100×(62+6)+7×3=4221.根据以上材料,完成下列计算:(1)请你根据材料一,计算:(−148)÷(−12+516+34−724).(2)请你根据材料二,计算:(−54)×56.22.(10分)如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示−1的点重合,则表示−3的点与表示______的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示−3的点与表示______的点重合;②若数轴上A,B两点的距离为6(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为______,点B表示的数为______.23(11分)(1)比较下列各式的大小:|5|+|3||5+3|,|−5|+|−3||(−5)+(−3)|,|−5|+|3||(−5)+3|,|0|+|−5||0+(−5)|.(2)通过(1)的比较、观察,请你归纳猜想:当a,b为有理数时,|a|+|b|a+b|.(填“≥”“≤”“>”或“<”)(3)根据以上信息,小华提出:“当|x|+|−2|=|x−2|成立时,x是负数”,你同意他的观点吗⋅请说明理由.答案和解析1.【答案】B解:因为负数的绝对值等于它的相反数,所以−2023的绝对值是:2023.故选:B.2.【答案】A解:−0.5的相反数是0.5,故选:A.3.【答案】A【解答】解:由把收入5元记作+5元,可知支出5元记作−5元;故选A.4.【答案】B解:A.正整数,负整数和0统称整数,所以本选项错误;B.整数和分数统称为有理数,本选项正确;C.正有理数,负有理数和0统称有理数,故C选项错误;D.有理数包括整数、分数,故D选项错误,故选B.5.【答案】C解:A、0.06045精确到0.1得0.1,故本选项不符合题意;B、0.06045精确到百分位得0.06,故本选项不符合题意;C、0.06045精确到千分位得0.060,故本选项符合题意;D、0.06045精确到0.0001得0.0605,故本选项不符合题意.故选:C.【点睛】6.【答案】B解:将数据186000用科学记数法表示为 1.86×105;故选B7.【答案】B解:−92<−3<0<4,故最小的数为−92,故选:B.8.【答案】A解:因为a+b=0,所以a=−b,即a与b互为相反数.又因为AB=6,所以b−a=6.所以2b=6.所以b=3.所以a=−3,即点A表示的数为−3.故选:A.9.【答案】B解:由题意可知:(+3)+(−6),故选:B.10.【答案】D解:由已知可知31=3,32=9,33=27,34=81,…个位数字每四个一组循环,∵31=3,32=9,33=27,34=81四个数的个位数字之和是0,又2023÷4=505…3,∴3+9+7=19,∴31+32+33+…+32023的结果的个位数字是9.故选:D.11.【答案】0解:一个数既不是正数,也不是负数,则这个数是0.故答案为:0.12.【答案】>>13.【答案】−1013解:1+(−2)+3+(−4)+…+2025+(−2026)=[1+(−2)]+[3+(−4)]+…+[2023+(−2024)] =(−1)+(−1)+…+(−1)=−1×1012=−1012.故答案为−1012.14.【答案】−8解:因为|x+2|+(y−3)2=0,所以x+2=0,y−3=0,所以x=−2,y=3,所以(−2)3=−8.故答案为:−8.15.【答案】a解:由数轴可知,a<0,b>0,c<0,∴b−c>0,a−b<0,∴|b−c|−|a−b|−|c|=(b−c)−(b−a)−(−c)=b−c−b+a+c=a,故答案为:a.16.【答案】解:(1) (−16+34−512)×12=−16×12+34×12−512×12=−2+9−5=2(2)原式=−20+(−5)+5+12=−8.(3)原式=325+535−278−18=9−3=6.(4)原式=2.5.17.【答案】在数轴上表示如下.−4<−|−3|<−13<0<+(+2)<π.18.【答案】【小题1】+1,+1,+1.5,−1,+1.2,+1.3,−1.3,−1.2,+1.8,+1.1.【小题2】905.4千克.19.【答案】解:(1)因为5−3+6−7+6−2−5=0,所以将第7名乘客送到目的地时,老姚刚好回到上午的出发点.(2)因为5−3+6−7+6−2−5+4+6−8=2,所以将最后一名乘客送到目的地时,老姚距上午的出发点2 km,在出发点的东面.(3)8+2×2+8+8+2×3+8+2×4+8+2×3+8+8+2×2+8+2×1+8+2×3+8+ 2×5=126(元).所以姚师傅在这天上午一共收入126元.20..【答案】【小题1】四【小题2】+13−(−6)=13+6=19(只).答:产量最多的一天比产量最少的一天多生产19只风筝.【小题3】(+5)+(−2)+(−4)+(+13)+(−6)+(+6)+(−3)=9(只),(700+9)×20+9×5=709×20+45=14180+45=14225(元).答:该厂工人这一周的工资总额是14225元.21.【答案】【小题1】−113.【小题2】−3024.22.【答案】37−15解:操作一:∵折叠数轴,使表示1的点与表示−1的点重合,∴原点为折叠点,即1与−1的中点为原点,∵表示−3的点距原点的距离为3,表示3的点距原点的距离为3,∴表示−3的点与表示3的点重合.故答案为:3.操作二:①∵折叠数轴,使表示1的点与表示3的点重合,∴表示2的点为折叠点,即表示2的点为重合点的中点,∵表示−3的点距表示2的距离为5,表示7的点距表示2的距离为5,∴表示−3的点与表示7的点重合;故答案为:7.②∵AB=6,折叠后A,B两点重合,∴点A到表示2的点的距离与点B到表示2的点的距离都为3,∵到表示2的点的距离等于3的点对应的数分别为:−1,5,又∵A在B的左侧,∴A点表示的数为−1,B点表示的数为5.故答案为:−1;5.本题主要考查了数轴,两点之间的距离,本题是操作型题目,根据折叠的对称性是解题的关键.23.【答案】【小题1】==>=【小题2】≥【小题3】不同意,x还可以是0,那么x应该是非正数.。
2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)
2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)1.下列选项中具有相反意义的量是()A.胜1局和亏损2万元B.向东行驶5km与向北行驶10kmC.运进6kg苹果与卖完5kg苹果D.水位上升0.6米与水位下降1米2.在中国古代数学著作《九章算术》中记载了用算筹表示正负数的方法,即“正算赤,负算黑”.如果向西走80米记作“−80米”,那么向东走40米记作()A.+40米B.+80米C.−80米D.−40米3.人体的正常体温大约为36.5℃,如果低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作()A.−0.8℃B.+0.8℃C.−37.3℃D.+37.3℃4.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果收入100元记作+100,那么−40表示为()A.收入40元B.支出40元C.收入60元D.支出60元5.下列说法中不正确的是()A.任何一个有理数都可以用数轴上的一个点表示B.一个负数的绝对值等于它的相反数C.在数轴上,到原点距离越远的点所表示的数一定越大D.任何有理数都有相反数6.古人都讲“四十不惑”,如果以40岁为基,张明60岁,记为+20岁,那么王横25岁,记为()A.25岁B.−25岁C.−15岁D.+15岁7.一袋面粉的标准质量是15kg,如果把一袋面粉15.5kg记为+0.5kg,那么另一袋面粉14.7kg记为()A.−14.7kg B.+14.7kg C.-0.3kg D.+0.3kg8.下列各数中,最小的数是().A.1B.2C.−12D.−39.下列各数中是负数的是()A.−3B.−(−1)C.0D.−210.在下列数−56,+1,6.7,0,722,−5,25%中整数有()A.2个B.3个C.4个D.5个11.下列四个数在数轴上表示的点,距离原点最近的是()A.−1B.−1.5C.+0.5D.+112.下列比较大小正确的是()A.−3=−−73B.−56<−45C.−−21<+−21D.−|−10|>813.下列各组数中,互为相反数的一组是()A.+−2和−+2B.−−2和+2C.−−2和−2D.−+2和−+214.下列化简正确的是()A.−+2=2B.−−2=−2C.+−2=−2D.−+2=2 15.在−1,0,53,−6.8和2024这五个有理数中,正数有()A.1个B.2个C.3个D.4个16.在−2,0,3.14,102,3,−−2021,100%中,非负整数的个数有()A.2个B.3个C.4个D.5个17.如果在数轴上A点表示−3,那么在数轴上与点A距离2个长度单位的点所表示的数是()A.−1B.−1和−5C.+1或−5D.−518.液体沸腾时的温度叫做沸点,下表是几种物质在标准大气压下的沸点,则沸点最低的物质是()物质酒精液态甲醛液态一氧化碳花生油沸点/℃78−19.5−191.5335A.液态一氧化碳B.液态甲醛C.酒精D.花生油19.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.+0.9B.−3.5C.−0.5D.+2.520.实数a、b在数轴上的位置如图所示,则下列结论正确的是()A.>B.−>−C.>D.−>−参考答案1.解:A、胜1局和亏损2万元不具有相反意义的量,故选项不合题意;B、向东行驶5km与向北行驶10km不具有相反意义的量,故选项不合题意;C、运进6kg苹果与卖完5kg苹果不具有相反意义的量,故选项不合题意;D、水位上升0.6米与水位下降1米是一对意义相反的量,故选项符合题意.故选:D.2.解:∵向东走与向西走是一对意义相反的量,∴如果向西走80米记作“−80米”,∴向东走40米记作+40米,故选:A.3.解:体温低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作+0.8℃,故选:B.4.解:如果收入100元记作+100,那么−40表示为支出40元.故选:B.5.解:∵实数与数轴上的点一一对应,故选项A正确;∵负数的绝对值等于它的相反数,∴一个负数的绝对值等于它的相反数,故选项B正确;∵在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,故选项C不正确;∵任何有理数都有相反数,故选项D正确.故选:C.6.解:由题意得:王横25岁,记为−15岁,故选:C.7.解:一袋面粉15.5kg记为+0.5kg,那么另一袋面粉14.7kg记为-0.3kg.故选:C.8.解:∵−3<−12<1<2,∴所给的各数中,最小的数是−3.故选:D9.解:A.−3=3是正数,不符合题意;B.−(−1)=1是正数,不符合题意;C.0既不是正数,也不是负数,不符合题意;D.−2是负数,符合题意;故选:D.10.解:−56,+1,6.7,0,722,−5,25%中整数有:+1,0,−5,共3个,故选:B.11.解:∵−1=1,−1.5=1.5,+0.5=0.5,+1=1,∴−1.5>−1=+1>+0.5,∴+0.5的位置距离原点最近,故选:C.12.解:A、∵−=−723,−−7=723,∴−<−−7符合题意;B、∵−=56=2530,−=45=2430,∴−56<−45,故本选项正确,符合题意;C、∵−−21=21,+−21=−21,∴−−21>+−21,故本选项错误,不符合题意;D、∵−|−10|=−10,∴−|−10|<8,故本选项错误,不符合题意.故选:B.13.解:A、+−2=−2,−+2=−2,故两数不是相反数,不符合题意;B、−−2=−2,+2=2,两数互为相反数,符合题意;C、−−2=2,−2=2,故两数不是相反数,不符合题意;D、−+2=−2,−+2=−2,故两数不是相反数,不符合题意.故选:B.14.解:A、−+2=−2,此选项化简错误,不符合题意;B、−−2=2,此选项化简错误,不符合题意;C、+−2=−2,此选项化简正确,符合题意;D、−+2=−2,此选项化简错误,不符合题意;故选:C.15.解:正数有:53和2024,有2个正数.故选B.16.解:−2为负数,不符合题意;0为非负整数,符合题意;3.14为小数,不符合题意;102=5为非负整数,符合题意;3为小数,不符合题意;−−2021=2021为非负整数,符合题意;100%=1为非负整数,符合题意;综上所述,非负整数的个数有4个,故选:C.17.解:如图所示,∴在数轴上与点A距离2个长度单位的点所表示的数是−1和−5.故选B.18.解:∵−191.5>−19.5,∴−191.5<−19.5<78<335,∴沸点最低的液体是液态一氧化碳.故选A.19.解:+0.9=0.9,−3.5=3.5,−0.5=0.5,+2.5=2.5,∵0.5<0.9<2.5<3.5,∴从轻重的角度看,最接近标准的是−0.5,故选:C.20.解:由图可得:0<<,且|U<|U,∴A、<,故此选项不符合题意;B、−>−,故此选项符合题意;C、|U<|U,故此选项不符合题意;D、|−U<|−U,故此选项不符合题意;故选:B.。
初一数学试题]]新人教版初一数学上册练习题(含答案)
七年级数学练习题(一)一、填空:(每小题2分,共20分)1. 21-的倒数是 2.2007年12月21日中央气象台的天气预报,22日(冬至)北京市的最低气温为-4℃,南平市的最低气温为6℃,这一天北京市的最低气温比南平市的最低气温低 ℃ 3.用四舍五入法对下列各数取近似数:(1)≈ (保留两个有效数字) (2)≈ (精确到4.建瓯市约万人口,用科学记数法表示为 人5.一件衣服的进价为50元,若要利润率是20%,应该把售价定为 元6.关于x 的方程132-=-m x 解为1-=x ,则=m7.某校的早读时间是7:30-7:50,在这个时间中,分针旋转的角度为 度8.若25y x n -与m y x 2312是同类项,则=m ,=n9.若某三位数的个位数字为a ,十位数字为b ,百位数字为c ,则此三位数可表示为 10.写出一个满足“①未知数的系数是21-,②方程的解是3”的一元一次方程为二、选择题(每小题2分,共12分)11.下列各组数中,互为相反数的是( )A .1-与2)1(- B. 2)1(-与 1 与21与2-12.若a 是有理数,则4a 与3a 的大小关系是( )A. 4a >3aB. 4a =3aC. 4a <3aD.不能确定13.如图,OC 是平角∠AOB 的平分线,OD 、OE 分别是∠AOC 和∠BOC 的平分线, 图中和∠COD 互余的角有( )个14.如果an am =,那么下列等式不.一定成立的是( ) A. 33-=-an am B. an am +=+55 C. n m = D. an am 2121-=-15.下列判断正确的是( )A.锐角的补角不一定是钝角;B.一个角的补角一定大于这个角C.如果两个角是同一个角的补角,那么它们相等;D.锐角和钝角互补16.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏损20%,则本次出售中商场( )A.不赔不赚B.赚160元C.赚80元D.赔80元 三、解答题(共68分)17.按下列语句画出图形(5分) (1)作线段AB=3cm(2)过线段AB 中点C 作射线CDABC E O E(3)作∠ACD 的平分线CE(4)量出∠BCD 的度数,求∠DCE 的大小。
人教版七年级数学上册《第一章有理数》练习题-附有答案
人教版七年级数学上册《第一章有理数》练习题-附有答案考点1【正负数和零】1.一种巧克力的质量标识为“23±0.25千克”则下列哪种巧克力的质量是合格的.()A.23.30千克B.22.70千克C.23.55千克D.22.80千克【答案】D解:∵23+0.25=23.2523-0.25=22.75∴巧克力的重量在23.25与22.75kg之间.∴符合条件的只有D.2.若足球质量与标准质量相比超出部分记作正数不足部分记作负数则在下面4个足球中质量最接近标准的是()A.B.C.D.【答案】A-<+<+<-解:0.70.8 2.1 3.5∴质量最接近标准的是A选项的足球3.我市某天最高气温是12℃最低气温是零下3℃那么当天的日温差是_________ ℃【答案】15.12−(−3)=12+3=15(℃)4.若某次数学考试标准成绩定为85分规定高于标准记为正两位学生的成绩分别记作:+9分和﹣3分则第一位学生的实际得分为______分.5.教师节当天出租车司机小王在东西向的街道上免费接送教师规定向东为正向西为负当天出租车的行程如下(单位:千米):+5 ﹣4 ﹣8 +10 +3 ﹣6 +7 ﹣11﹣﹣1)将最后一名老师送到目的地时小王距出发地多少千米?方位如何?﹣2)若汽车耗油量为0.2升/千米则当天耗油多少升?若汽油价格为5.70元/升则小王共花费了多少元钱?解℃℃1℃+5℃4℃8+10+3℃6+7℃11=℃4℃则距出发地西边4千米;℃2)汽车的总路程是:5+4+8+10+3+6+7+11=54千米则耗油是54×0.2=10.8升花费10.8×5.70=61.56元答:当天耗油10.8升小王共花费了61.56元.考点2【有理数分类】1.在数22715π0.40.30.1010010001... 3.1415中有理数有()A.3个B.4个C.5个D.6个【答案】C数22715π0.40.30.1010010001... 3.1415中有理数有227150.40.3 3.1415共计5个2.下列说法正确的有( )(1)整数就是正整数和负整数;(2)零是整数但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数它不是整数就是分数.A.1个B.2个C.3个D.4个【答案】B℃分数包括正分数、负分数正确;℃正数、负数和0 统称为有理数故错误;℃一个有理数它不是整数就是分数正确3.在3.142π15-00.12个数中是有理数的几个()A.2B.3C.4D.5【答案】C解:有理数为3.1415-00.12共4个4.若a是最小的自然数b是最大的负整数c是绝对值最小的有理数则a-b-c的值为()A.-1B.0C.2D.1【答案】D解:由题意得:a=0b=-1c=0∴a-b-c=0-(﹣1)-0=1.5.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【答案】DA.非负有理数就是正有理数和零故A错误;B.零表示没有是自然数故B错误;C.整正数、零、负整数统称为整数故C错误;D.整数和分数统称有理数故D正确;考点3【数轴】1.在数轴上表示a﹣b两数的点如图所示则下列判断正确的是()A.a+b﹣0B.a+b﹣0C.a﹣|b|D.|a|﹣|b|【答案】B解℃℃b℃0℃a而且a℃|b|℃a+b℃0∴选项A不正确选项B正确;℃a℃|b|∴选项C不正确;℃|a|℃|b|∴选项D不正确.2.数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画出一条长2000厘米的线段AB盖住的整点的个数共有()个.A.1998或1999B.1999或2000C.2000或2001D.2001或2002【答案】C解:依题意得:①当线段AB起点在整点时覆盖2001个数;②当线段AB起点不在整点即在两个整点之间时覆盖2000个数.3.已知点A和点B在同一数轴上点A表示数﹣2又已知点B和点A相距5个单位长度则点B表示的数是()A.3B.﹣7C.3或﹣7D.3或7【答案】C分为两种情况:当B点在A点的左边时B点所表示的数是-2-5=−7;当B点在A点的右边时B点所表示的数是-2+5=3;4.a b ,是有理数 它们在数轴上的对应点的位置如图所示 把a a b b --,,,按照从小到大的顺序排列( )A .b a a b -<<-<B .a b a b -<-<<C .b a a b -<-<<D .b b a a -<<-<【答案】A观察数轴可知:b >0>a 且b 的绝对值大于a 的绝对值.在b 和-a 两个正数中 -a <b ;在a 和-b 两个负数中 绝对值大的反而小 则-b <a . 因此 -b <a <-a <b .5.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm) 刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x 则x 的值为( )A .4.2B .4.3C .4.4D .4.5【答案】C利用减法的意义 x -(-3.6)=8 x =4.4.所以选C.6.如图 数轴上四点O A B C 其中O 为原点 且2AC = OA OB = 若点C 表示的数为x 则点B 表示的数为( )A .()2x -+B .()2x --C .2x +D .2x -【答案】B解:∵AC=2 点C 表示的数为x∵OA OB =∴点B 表示的数为:-(x -2)7.点A 在数轴上距原点5个单位长度 将A 点先向左移动2个单位长度 再向右移动6个单位长度 此时A 点所表示的数是( ) A .-1 B .9C .-1或9D .1或9【答案】C解:∵点A 在数轴上距原点5个单位长度 ∴点A 表示的数是−5或5∵A 点先向左移动2个单位长度 再向右移动6个单位长度 ∴−5−2+6=−1或5−2+6=9 ∴此时点A 所表示的数是−1或9.考点4【相反数】1.若a 与1互为相反数 则a +3的值为( ) A .2 B .0C .﹣1D .1【答案】A∵a 与1互为相反数 ∴a =﹣1则a +3的值为:﹣1+3=2.2.下列各对数:()3+-与3- ()3++与+3 ()3--与()3+- ()3-+与()3+-()3-+与()3++ +3与3-中 互为相反数的有( )A .3对B .4对C .5对D .6对解:根据相反数的定义得-(-3)与+(-3)-(+3)与+(+3)+3与-3互为相反数所以有3对.3.如果a+b=0那么a b两个数一定()A.都等于0B.互为相反数C.一正一负D.a>b【答案】B由a+b=0则有=-a b所以a b两个数一定是互为相反数-的相反数是-2那么a是()4.7aA.5B.-3C.2D.1【答案】A解:∵7-a的相反数是-2∴7-a=2解得a=5.5.若a表示有理数则-a是()A.正数B.负数C.a的相反数D.a的倒数【答案】Ca表示有理数则a-表示a的相反数考点5【绝对值】1.下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有()A.0个B.1个C.2个D.3个【答案】B解:①∵互为相反数的两个数相加和为0移项后两边加上绝对值是相等的∴互为相反数的两个数绝对值相等故①正确;④∵|2|=|-2| 但2≠-2 ∴④错误2.如果一个有理数的绝对值是正数 那么这个数必定是( ) A .是正数 B .不是0C .是负数D .以上都不对【答案】B由于正数和负数的绝对值都是正数 而0的绝对值是0;所以若一个有理数的绝对值是正数 那么这个数必不为0.3.已知a>0 b<0 c<0且c >a >b 则下列结论错误的是( ) A .a+c<0 B .b -c>0C .c<-b<-aD .-b<a<-c【答案】C解:∵a>0 b<0 c<0且c >a >b在数轴上表示如下:则a+c<0 b -c>0 c<-a<-b -b<a<-c 故C 错误4.若a ab b=- 则下列结论正确的是( ) A .0a < 0b < B .0a > 0b >C .0ab >D .0ab ≤【答案】D解:a ab b=- ∴0ab≤ 即0ab ≤;A.a>0B.a≥0C.a<0D.a≤0【答案】D=-解:∵||a a∴a≤0.-表示的数是( )6.若x为有理数则x xA.正数B.非正数C.负数D.非负数【答案】D【解析】℃1)若x≥0时丨x丨-x=x-x=0℃℃2)若x℃0时丨x丨-x=-x-x=-2x℃0℃由(1℃℃2)可得丨x丨-x表示的数是非负数.考点6【有理数的加减法】1.已知|a|=7|b|=2且a<b求a+b的值.【答案】-5或-9解:∵|a|=7∴a=±7又∵|b|=2∴b=±2又∵a<b∴a=-7b=2或a=-7b=-2当a=-7b=2时a+b=-7+2=-5当a=-7b=-2时a+b=-7+(-2)=-9综上所述a+b的值为-5或-9.2.已知|a| = 3 |b| = 2 且ab < 0 求:a + b的值.解:℃|a|=3 |b|=2 ℃a=±3 b=±2; ℃ab <0 ℃ab 异号.℃当a=3时 b=-2 则a + b=3+(-2)=1; 当a=-3时 b=2 则a + b=-3+2=-1.3.已知5a = 2a b -=且a b a b -=- 求+a b 的值 【答案】8或-12 解:∵|a|=5 ∴a=±5∵2a b -=且a b a b -=- ∴0a b -> 2a b -= ∴2b a =- ∴当a=5 则b= 3 当a=-5 则b= -7 ∴a+b=8或-12;4.已知│a │=4且a<0 b 是绝对值最小的数 c 是最大的负整数 则a+b -c=____. 【答案】﹣3解:因为a =4且a <0 b 是绝对值最小的数 c 是最大的负整数所以a =﹣4 b =0 c =﹣1所以a +b -c =﹣4+0-(﹣1)=﹣4+1=﹣3.5.绝对值大于3且小于5.5的所有整数的和为______________ ;解:∵绝对值大于3而小于5.5的整数为:-4-545∴其和为:-4+(-5)+4+5=0故绝对值大于3且小于5.5的所有整数的和为0.考点7【有理数的乘除法】1.先阅读下面的材料再回答后面的问题:计算:10÷(12-13+16).解法一:原式=10÷12-10÷13+10÷16=10×2-10×3+10×6=50;解法二:原式=10÷(36-26+16)=10÷26=10×3=30;解法三:原式的倒数为(12-13+16)÷10=(12-13+16)×110=12×110-13×110+16×110=130故原式=30.(1)上面得到的结果不同肯定有错误的解法你认为解法是错误的。
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案一.选择题(共10小题 满分20分 每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( ) A .411 B .910 C .19 D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭ 91123722182218=+-+ 92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭ 7111=-+ 411=. 故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号 去掉括号和负号 括号内各项都要变号”先去括号 再利用加法的交换律和结合律 将分母相同的加数结合在一起 进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃ 中午上升了7°C 半夜又下降了8℃ 则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C 【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B【思路引导】根据题意可得算式:-3+7-8 计算即可。
3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412 -+=+-++=A1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭B 1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭C1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭D1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。
七年级数学上册《第一章-有理数加减混合运算》练习题附答案-人教版
七年级数学上册《第一章 有理数加减混合运算》练习题附答案-人教版一、选择题1.计算(﹣3)+9的结果等于( )A.6B.12C.﹣12D.﹣62.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高( )A.﹣3℃B.7℃C.3℃D.﹣7℃3.在算式﹣1+7﹣( )=﹣3中,括号里应填( )A.+2B.﹣2C.+9D.﹣94.﹣6的相反数与比5的相反数小1的数的和为( )A.1B.0C.2D.115.如果两个数的和为负数,那么这两个数一定是( )A.正数B.负数C.一正一负D.至少一个为负数6.计算﹣(+1)+|﹣1|,结果为( )A.﹣2B.2C.1D.07.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的数,则a ﹣b +c 的值为() A.﹣1 B.0 C.1 D.2 8.把﹣2+(+3)﹣(﹣5)+(﹣4)﹣(+3)写成省略括号和的形式,正确的是( )A.﹣2+3﹣5﹣4﹣3B.﹣2+3+5﹣4+3C.﹣2+3+5+4﹣3D.﹣2+3+5﹣4﹣39.若四个有理数之和的14是3,其中三个数是﹣10,+8,﹣6,则第四个数是( )A.+8B.﹣8C.+20D.+1110.若|m|=3,|n|=5且m ﹣n >0,则m +n 的值是( )A.﹣2B.﹣8或 ﹣2C.﹣8或 8D.8或﹣211.已知a,b,c 在数轴上的位置如图,化简∣a+c ∣﹣∣a ﹣2b ∣﹣∣c ﹣2b ∣的结果是()A.0B.4bC.﹣2a﹣2cD.2a﹣4b;12.计算+++++……+的值为( )A. B. C. D.二、填空题13.把(+5)﹣(﹣7)+(﹣23)﹣(+6)写成省略括号的和的形式为________.14.某冷库的室温为﹣4 ℃,一批食品需要在﹣28 ℃冷藏,如果每小时降温3 ℃,经过小时后能降到所要求的温度.15.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c= .16.若∣x+y∣+∣y﹣3∣=0,则x﹣y的值为 .17.已知a、b、c是三个非负实数,且a+b=7, c ﹣ a =﹣5, s=a+b+c,则s的最大值与它最小值为的差为________.18.已知有理数a, b, c在数轴上的位置如图所示,则化简代数式∣b﹣c∣﹣∣c﹣a∣+∣b ﹣a∣= .三、解答题19.计算:13+(﹣15)﹣(﹣23).20.计算:﹣17+(﹣33)﹣10﹣(﹣16).21.计算:(﹣34)﹣(﹣12)+(+34)+(+8.5)﹣13;22.计算:434﹣(+3.85)﹣(﹣314)+(﹣3.15).23.一辆货车从货场A出发,向东行驶了2km到达批发部B,继续向东行驶了1.5km到达商场C,又向西行驶了5.5km到达超市D,最后回到货场.(1)用一个单位长度表示1km,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?24.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米),依先后次序记录如下:+9,﹣3,﹣5,+6,﹣7,+10,﹣6,﹣4,+4,﹣3,+7.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.1升,则这辆出租车这天下午耗油多少升?25.检查一商店某水果罐头10瓶的质量,超出记为“+”号,不足记为“﹣”号,情况如下:﹣3克,+2克,﹣1克,﹣5克,﹣2克,+3克,﹣2克,+3克,+1克,﹣1克.(1)总的情况是超出还是不足?(2)这些罐头平均超出或不足为多少?(3)最多与最少相差是多少?26.某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表:(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比是增加了还是减少了?具体数量是多少?产量最多的一天比产量最少的一天多生产了多少27.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示):(1)这天冷库的冷冻食品比原来增加了还是减少了?增加或减少了多少吨?(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用是500元,运出每吨冷冻食品费用是800元;方案二:不管是运进还是运出,每吨冷冻食品费用都是600元.从节约运费的角度考虑,选用哪一种方案比较合适?参考答案1.【答案】A2.【答案】B3.【答案】C4.【答案】B5.【答案】D6.【答案】D.7.【答案】C8.【答案】D9.【答案】C10.【答案】D11.【答案】B12.【答案】B13.【答案】5+7﹣23﹣614.【答案】815.【答案】016.【答案】﹣517.【答案】2.18.【答案】0.19.【答案】解:原式=13﹣15+23=21.20.【答案】解:原式=﹣17﹣33﹣10+16=﹣60+16=﹣44.21.【答案】解:原式=(﹣34+34)+(12+8.5)﹣13=0+9﹣13=823.22.【答案】解:原式=4.75﹣3.85+3.25﹣3.15=123.【答案】解:(1)如图.(2)由数轴可知超市D距货场A有2km.(3)货车一共行驶了2+1.5+5.5+2=11(km).24.【答案】解:(1)出租车离公园8千米,在公园的东方;(2)这辆出租车这天下午耗油6.4升.25.解:(1)﹣3+2﹣1﹣5﹣2+3﹣2+3+1﹣1=﹣5(克),即总的情况是不足5克.(2)5÷10=0.5(克),即平均不足0.5克.(3)3﹣(﹣5)=8(克),即最多与最少相差8克. 26.【答案】解:(1)250﹣9=241(辆).故本周六生产了241辆摩托车.(2)﹣5+7﹣3+4+10﹣9﹣25=﹣21<0所以本周总产量与计划相比减少了21辆.产量最多的一天为周五,产量最少的一天多生产了35辆.与计划相比减少了21辆.27.【答案】解:(1)﹣3×2+4×1+(﹣1)×3+2×3+(﹣5)×2=﹣9.故这天冷库的冷冻食品比原来减少了,减少了9吨.(2)方案一:费用为4×500+2×3×500+3×2×800+3×1×800+5×2×800=20200(元)方案二:费用为(6+4+3+6+10)×600=17400(元)由于17400<20200,所以从节约运费的角度考虑,选用方案二比较合适.。
数学人教版2024版七年级初一上册 5.3 实际问题与一元一次方程 课时练01测试卷含答案
第五章 一元一次方程5.3 实际问题与一元一次方程一、单选题1.某学校为了表彰暑假自主学习标兵,决定购买一批奖品,分别是40支钢笔,40个笔记本,一共支付800元,若钢笔的单价是笔记本的4倍,则购买6支钢笔的费用是 ( )A .4元B .16元C .24元D .96元2.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则缺25本.设这个班有学生x 人,则可以列方程为( )A .320425x x -=+B .320425x x +=-C .202534x x +-=D .202534x x +=-3.如图,线段AB 表示一条对折的绳子,现从P 点将绳子剪断,剪断后的各段绳子中最长的一段为60cm ,若23AP BP =,则原来绳长为( )A .120cmB .100cmC .50cm 或75cmD .100cm 或150cm 4.已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利20%,另一个亏损20%,在这次买卖中,这家商店盈利了?还是亏损了?( )A .盈利了B .亏损了C .不盈不亏D .不能确定5.2023年12月22日,第78届联合国大会协商一致通过决议,将春节(农历新年)确定联合国假日,“中国年”升格为“世界年”.某商场购进一批“国潮”年货礼盒,每盒进价为200元,为庆祝这一好消息,商场决定在12月22日,将这批“国潮”年货礼盒按标价的8折销售.若打8折后仍能获利20%,则这批“国潮”年货礼盒每盒的标价应为( )A .220元B .260元C .300元D .320元6.安徽某中学开展校运动会,参加跳高的学生是参加立定跳远的学生的2倍少3人,已知参与这两项运动的人数共86人.设参加立定跳远的学生有x 人,则下列方程中正确的是( )A .13862x x ++=B .13862x x -+=C .2386x x ++=D .2386x x +-=7.我国古代《孙子算经》中记载“多人共车”问题,其原文如下:“今有三人共车,二车空,二人共车,九人步,问人与车各几何.”其大意为:若3人乘一辆车,则空2辆车;若2人乘一辆车,则有9人要步行,问人与车数各是多少.若设有x 人,则可列方程为 ( )A .()3229x x -=-B .()3229x x -=+C .9232xx -+=D .9232xx ++=8.元旦假期小李去歌乐山爬山,上山每小时走4km ,下山时按原路返回,下山每小时走5km ,结果上山比下山多花16小时,设下山所用时间为x 小时,可列方程为( )A .1456x x æö-=ç÷èøB .1456x x æö+=ç÷èøC .1546x x æö-=ç÷èøD .1546x x æö+=ç÷èø二、填空题9.有一些人共同买一个物品,若每人出8元,还盈余3元; 若每人出7元,则还差4元.问共有多少人?设有x 人,则根据题意可列方程为 .10.学生甲在一列队伍的排尾以每小时6千米的速度赶到队伍排头后,又以同样的速度返回队尾,一共用了3小时,若队伍进行的速度为每小时4千米,则队伍长为 千米.11.一桶油,第一天用去全部油的25%,第二天用去20千克,这时用去的油与剩下的油之比为3:5,则此时还剩下 千克油.12.(方程应用)有一个首位数为1的六位数,如果把首位数字从最左移到最右,其余5个数字顺序不变则新数是原数的3倍.则原数是 .13.据我国古代《易经》记载,远古时期人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满五进一,用来记录采集到的野果的个数.她一共采集到了38个野果,则在第2根绳子上的打结数是 个.14.一刀书法毛边练习纸,按成本价提高40%后标价,促销活动中按标价的九折出售,每刀售12.6元,则每刀书法毛边练习纸的成本价为 元.15.甲、乙两列火车同时从A 地出发向反方向行驶,分别开往B 地和C 地,已知A ,B 之间路程是A ,C 之间路程的910,当甲车行驶60千米时,乙车行驶的路程与剩下路程之比是1:3,这时两列火车离目的地的路程相等.A ,C 之间的路程是 千米.16.甲、乙两人分别从A 、B 两地出发,相向而行,当乙离B 地72千米时甲才出发,两人相遇点离A 、B 两地的距离之比是3:4,已知甲、乙两人的速度比是5:4,A 、B 两地的距离是 千米.三、解答题17.光明中学共有550名学生,其中八年级学生人数是七年级的1.5倍,九年级学生人数是八年级的2倍,求光明中学九年级学生有多少人?18.一艘船在水上航行,水流速度是3km/h ,船在静水中的速度是km/h x .若从A 码头到B 码头花了2h ,回来时用了2.5h ,则船在静水中的速度为多少?两地间的距离呢?19.用150张铁皮做罐头盒,每张铁皮可制盒身15个或盒底45个,1个盒身与2个盒底配成一套罐头盒.问:用多少张铁皮制盒身,多少张铁皮制盒底,使得制成的盒身和盒底恰好配套?20.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?参考答案1.D2.B3.D4.B5.C6.D7.C8.B9.8374x x -=+10.511.10012.14285713.214.1015.40016.31517.解:设七年级有x 人,则八年级有1.5x 人,九年级有2 1.5x ´人. ∴ 1.52 1.5550x x x ++´=,解得:100x =,∴33100300x =´=,答:九年级学生有300人.18.解:船在静水中的速度是km/h x .则船顺水的速度为()/h 3km x +,逆水时的速度为()/h 3km x -,根据题意,得()()23 2.53x x +=-解得:27x =,两地间的距离为:()()()23227360km x +=+=,答:船在静水中的速度为27km/h ,两地间的距离为60km .19.解:设用x 张铁皮制盒身,则制盒底的铁皮数是()150x -张,由题意可得:()21545150x x ´=-,解得:90x =,∴15060x -=.答:用90张铁皮制盒身,60张铁皮制盒底,使得制成的盒身和盒底恰好配套.20.(1)解:设这个班有x 名学生,由题意得:320425x x +=-,解得:45x =,∴这个班有45名学生;(2)解:当45x =时,32034520155x +=´+=(本),∴这批图书共有155本.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册精品练习题(附答案)有理数一、境空题(每空2分,共38分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请赋予它实际的意义:___________________。
9、绝对值大于1而小于4的整数有____________,其和为_________。
10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。
11、若0|2|)1(2=++-b a ,则b a +=_________。
12、数轴上表示数5-和表示14-的两点之间的距离是__________。
13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、如果0a b +>,且0ab <,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值一定是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为() (A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………()A 、高12.8%B 、低12.8%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。
(7分)26、若x>0,y<0,求32---+-x y y x 的值。
(7分)27、已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x nm c b mn --++-2的值(7分)28、现规定一种运算“*”,对于a 、b 两数有:ab a b a b 2*-=,试计算2*)3(-的值。
(7分)29、某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、 -3、 -5、 +4、 -8、 +6、 -3、-6、 -4、 +10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?(8分)30、某中学位于东西方向的人民路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家,请问:(1)聪聪家与刚刚家相距多远?(2)如果把这条人民路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出他们三家与学校的大概位置(数轴上一格表示50米).(3)聪聪家向西210米是体育场,体育场所在点所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离? (10分)整 式一.判断题 (1)31+x 是关于x 的一次两项式. ( )(2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y 2,x 3+ x 2-3中,多项式有() A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2xy -5都是多项式C .多项式-2x 2+4xy 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、xa 523+ D 、-2005 6.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。
A 、2b a +B 、b a s +C 、b s a s +D 、b s a s s +29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3y D.52x 10.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , a A.4个 B.5个 C.6个 D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3C .-23,2D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、519.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个 B .2个 C .3个 D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a =;2.单项式: 3234y x -的系数是,次数是;3.多项式:y y x xy x +-+3223534是次项式;4.220053xy 是次单项式;5.y x 342-的一次项系数是,常数项是;6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是. 9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有,多项式有10.x+2xy +y 是次多项式.11.比m 的一半还少4的数是;12.b 的311倍的相反数是; 13.设某数为x ,10减去某数的2倍的差是;14.n 是整数,用含n 的代数式表示两个连续奇数;15.42234263y y x y x x --+-的次数是;16.当x =2,y =-1时,代数式||||x xy -的值是;17.当t =时,31t t +-的值等于1; 18.当y =时,代数式3y -2与43+y 的值相等;19.-23ab 的系数是,次数是次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是式;(2)都是次.21.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是,二次项是,常数项是.22.若2313m x y z -与2343x y z 是同类项,则m =.23.在x 2,21 (x +y),1,-3中,单项式是,多项式是,整式是. 24.单项式7532c ab 的系数是____________,次数是____________. 25.多项式x 2y +xy -xy 2-53中的三次项是____________.26.当a=____________时,整式x 2+a -1是单项式.27.多项式xy -1是____________次____________项式.28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有个,分别是.32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是.四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。